SemaOverload.cpp revision 08972924fadafeadcee25ecf52c5fa6cfc729332
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const
144{
145  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
146  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
147
148  // Note that FromType has not necessarily been transformed by the
149  // array-to-pointer or function-to-pointer implicit conversions, so
150  // check for their presence as well as checking whether FromType is
151  // a pointer.
152  if (ToType->isBooleanType() &&
153      (FromType->isPointerType() || FromType->isBlockPointerType() ||
154       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
155    return true;
156
157  return false;
158}
159
160/// isPointerConversionToVoidPointer - Determines whether this
161/// conversion is a conversion of a pointer to a void pointer. This is
162/// used as part of the ranking of standard conversion sequences (C++
163/// 13.3.3.2p4).
164bool
165StandardConversionSequence::
166isPointerConversionToVoidPointer(ASTContext& Context) const
167{
168  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
169  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
170
171  // Note that FromType has not necessarily been transformed by the
172  // array-to-pointer implicit conversion, so check for its presence
173  // and redo the conversion to get a pointer.
174  if (First == ICK_Array_To_Pointer)
175    FromType = Context.getArrayDecayedType(FromType);
176
177  if (Second == ICK_Pointer_Conversion)
178    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
179      return ToPtrType->getPointeeType()->isVoidType();
180
181  return false;
182}
183
184/// DebugPrint - Print this standard conversion sequence to standard
185/// error. Useful for debugging overloading issues.
186void StandardConversionSequence::DebugPrint() const {
187  bool PrintedSomething = false;
188  if (First != ICK_Identity) {
189    fprintf(stderr, "%s", GetImplicitConversionName(First));
190    PrintedSomething = true;
191  }
192
193  if (Second != ICK_Identity) {
194    if (PrintedSomething) {
195      fprintf(stderr, " -> ");
196    }
197    fprintf(stderr, "%s", GetImplicitConversionName(Second));
198
199    if (CopyConstructor) {
200      fprintf(stderr, " (by copy constructor)");
201    } else if (DirectBinding) {
202      fprintf(stderr, " (direct reference binding)");
203    } else if (ReferenceBinding) {
204      fprintf(stderr, " (reference binding)");
205    }
206    PrintedSomething = true;
207  }
208
209  if (Third != ICK_Identity) {
210    if (PrintedSomething) {
211      fprintf(stderr, " -> ");
212    }
213    fprintf(stderr, "%s", GetImplicitConversionName(Third));
214    PrintedSomething = true;
215  }
216
217  if (!PrintedSomething) {
218    fprintf(stderr, "No conversions required");
219  }
220}
221
222/// DebugPrint - Print this user-defined conversion sequence to standard
223/// error. Useful for debugging overloading issues.
224void UserDefinedConversionSequence::DebugPrint() const {
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    fprintf(stderr, " -> ");
228  }
229  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
230  if (After.First || After.Second || After.Third) {
231    fprintf(stderr, " -> ");
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  switch (ConversionKind) {
240  case StandardConversion:
241    fprintf(stderr, "Standard conversion: ");
242    Standard.DebugPrint();
243    break;
244  case UserDefinedConversion:
245    fprintf(stderr, "User-defined conversion: ");
246    UserDefined.DebugPrint();
247    break;
248  case EllipsisConversion:
249    fprintf(stderr, "Ellipsis conversion");
250    break;
251  case BadConversion:
252    fprintf(stderr, "Bad conversion");
253    break;
254  }
255
256  fprintf(stderr, "\n");
257}
258
259// IsOverload - Determine whether the given New declaration is an
260// overload of the Old declaration. This routine returns false if New
261// and Old cannot be overloaded, e.g., if they are functions with the
262// same signature (C++ 1.3.10) or if the Old declaration isn't a
263// function (or overload set). When it does return false and Old is an
264// OverloadedFunctionDecl, MatchedDecl will be set to point to the
265// FunctionDecl that New cannot be overloaded with.
266//
267// Example: Given the following input:
268//
269//   void f(int, float); // #1
270//   void f(int, int); // #2
271//   int f(int, int); // #3
272//
273// When we process #1, there is no previous declaration of "f",
274// so IsOverload will not be used.
275//
276// When we process #2, Old is a FunctionDecl for #1.  By comparing the
277// parameter types, we see that #1 and #2 are overloaded (since they
278// have different signatures), so this routine returns false;
279// MatchedDecl is unchanged.
280//
281// When we process #3, Old is an OverloadedFunctionDecl containing #1
282// and #2. We compare the signatures of #3 to #1 (they're overloaded,
283// so we do nothing) and then #3 to #2. Since the signatures of #3 and
284// #2 are identical (return types of functions are not part of the
285// signature), IsOverload returns false and MatchedDecl will be set to
286// point to the FunctionDecl for #2.
287bool
288Sema::IsOverload(FunctionDecl *New, Decl* OldD,
289                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
290{
291  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
292    // Is this new function an overload of every function in the
293    // overload set?
294    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
295                                           FuncEnd = Ovl->function_end();
296    for (; Func != FuncEnd; ++Func) {
297      if (!IsOverload(New, *Func, MatchedDecl)) {
298        MatchedDecl = Func;
299        return false;
300      }
301    }
302
303    // This function overloads every function in the overload set.
304    return true;
305  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
306    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
307  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
308    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
309    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
310
311    // C++ [temp.fct]p2:
312    //   A function template can be overloaded with other function templates
313    //   and with normal (non-template) functions.
314    if ((OldTemplate == 0) != (NewTemplate == 0))
315      return true;
316
317    // Is the function New an overload of the function Old?
318    QualType OldQType = Context.getCanonicalType(Old->getType());
319    QualType NewQType = Context.getCanonicalType(New->getType());
320
321    // Compare the signatures (C++ 1.3.10) of the two functions to
322    // determine whether they are overloads. If we find any mismatch
323    // in the signature, they are overloads.
324
325    // If either of these functions is a K&R-style function (no
326    // prototype), then we consider them to have matching signatures.
327    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
328        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
329      return false;
330
331    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
332    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
333
334    // The signature of a function includes the types of its
335    // parameters (C++ 1.3.10), which includes the presence or absence
336    // of the ellipsis; see C++ DR 357).
337    if (OldQType != NewQType &&
338        (OldType->getNumArgs() != NewType->getNumArgs() ||
339         OldType->isVariadic() != NewType->isVariadic() ||
340         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
341                     NewType->arg_type_begin())))
342      return true;
343
344    // C++ [temp.over.link]p4:
345    //   The signature of a function template consists of its function
346    //   signature, its return type and its template parameter list. The names
347    //   of the template parameters are significant only for establishing the
348    //   relationship between the template parameters and the rest of the
349    //   signature.
350    //
351    // We check the return type and template parameter lists for function
352    // templates first; the remaining checks follow.
353    if (NewTemplate &&
354        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
355                                         OldTemplate->getTemplateParameters(),
356                                         false, false, SourceLocation()) ||
357         OldType->getResultType() != NewType->getResultType()))
358      return true;
359
360    // If the function is a class member, its signature includes the
361    // cv-qualifiers (if any) on the function itself.
362    //
363    // As part of this, also check whether one of the member functions
364    // is static, in which case they are not overloads (C++
365    // 13.1p2). While not part of the definition of the signature,
366    // this check is important to determine whether these functions
367    // can be overloaded.
368    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
369    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
370    if (OldMethod && NewMethod &&
371        !OldMethod->isStatic() && !NewMethod->isStatic() &&
372        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
373      return true;
374
375    // The signatures match; this is not an overload.
376    return false;
377  } else {
378    // (C++ 13p1):
379    //   Only function declarations can be overloaded; object and type
380    //   declarations cannot be overloaded.
381    return false;
382  }
383}
384
385/// TryImplicitConversion - Attempt to perform an implicit conversion
386/// from the given expression (Expr) to the given type (ToType). This
387/// function returns an implicit conversion sequence that can be used
388/// to perform the initialization. Given
389///
390///   void f(float f);
391///   void g(int i) { f(i); }
392///
393/// this routine would produce an implicit conversion sequence to
394/// describe the initialization of f from i, which will be a standard
395/// conversion sequence containing an lvalue-to-rvalue conversion (C++
396/// 4.1) followed by a floating-integral conversion (C++ 4.9).
397//
398/// Note that this routine only determines how the conversion can be
399/// performed; it does not actually perform the conversion. As such,
400/// it will not produce any diagnostics if no conversion is available,
401/// but will instead return an implicit conversion sequence of kind
402/// "BadConversion".
403///
404/// If @p SuppressUserConversions, then user-defined conversions are
405/// not permitted.
406/// If @p AllowExplicit, then explicit user-defined conversions are
407/// permitted.
408/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
409/// no matter its actual lvalueness.
410ImplicitConversionSequence
411Sema::TryImplicitConversion(Expr* From, QualType ToType,
412                            bool SuppressUserConversions,
413                            bool AllowExplicit, bool ForceRValue,
414                            bool InOverloadResolution)
415{
416  ImplicitConversionSequence ICS;
417  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
418    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
419  else if (getLangOptions().CPlusPlus &&
420           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
421                                   !SuppressUserConversions, AllowExplicit,
422                                   ForceRValue)) {
423    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
424    // C++ [over.ics.user]p4:
425    //   A conversion of an expression of class type to the same class
426    //   type is given Exact Match rank, and a conversion of an
427    //   expression of class type to a base class of that type is
428    //   given Conversion rank, in spite of the fact that a copy
429    //   constructor (i.e., a user-defined conversion function) is
430    //   called for those cases.
431    if (CXXConstructorDecl *Constructor
432          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
433      QualType FromCanon
434        = Context.getCanonicalType(From->getType().getUnqualifiedType());
435      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
436      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
437        // Turn this into a "standard" conversion sequence, so that it
438        // gets ranked with standard conversion sequences.
439        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
440        ICS.Standard.setAsIdentityConversion();
441        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
442        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
443        ICS.Standard.CopyConstructor = Constructor;
444        if (ToCanon != FromCanon)
445          ICS.Standard.Second = ICK_Derived_To_Base;
446      }
447    }
448
449    // C++ [over.best.ics]p4:
450    //   However, when considering the argument of a user-defined
451    //   conversion function that is a candidate by 13.3.1.3 when
452    //   invoked for the copying of the temporary in the second step
453    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
454    //   13.3.1.6 in all cases, only standard conversion sequences and
455    //   ellipsis conversion sequences are allowed.
456    if (SuppressUserConversions &&
457        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
458      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
459  } else
460    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
461
462  return ICS;
463}
464
465/// IsStandardConversion - Determines whether there is a standard
466/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
467/// expression From to the type ToType. Standard conversion sequences
468/// only consider non-class types; for conversions that involve class
469/// types, use TryImplicitConversion. If a conversion exists, SCS will
470/// contain the standard conversion sequence required to perform this
471/// conversion and this routine will return true. Otherwise, this
472/// routine will return false and the value of SCS is unspecified.
473bool
474Sema::IsStandardConversion(Expr* From, QualType ToType,
475                           bool InOverloadResolution,
476                           StandardConversionSequence &SCS)
477{
478  QualType FromType = From->getType();
479
480  // Standard conversions (C++ [conv])
481  SCS.setAsIdentityConversion();
482  SCS.Deprecated = false;
483  SCS.IncompatibleObjC = false;
484  SCS.FromTypePtr = FromType.getAsOpaquePtr();
485  SCS.CopyConstructor = 0;
486
487  // There are no standard conversions for class types in C++, so
488  // abort early. When overloading in C, however, we do permit
489  if (FromType->isRecordType() || ToType->isRecordType()) {
490    if (getLangOptions().CPlusPlus)
491      return false;
492
493    // When we're overloading in C, we allow, as standard conversions,
494  }
495
496  // The first conversion can be an lvalue-to-rvalue conversion,
497  // array-to-pointer conversion, or function-to-pointer conversion
498  // (C++ 4p1).
499
500  // Lvalue-to-rvalue conversion (C++ 4.1):
501  //   An lvalue (3.10) of a non-function, non-array type T can be
502  //   converted to an rvalue.
503  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
504  if (argIsLvalue == Expr::LV_Valid &&
505      !FromType->isFunctionType() && !FromType->isArrayType() &&
506      Context.getCanonicalType(FromType) != Context.OverloadTy) {
507    SCS.First = ICK_Lvalue_To_Rvalue;
508
509    // If T is a non-class type, the type of the rvalue is the
510    // cv-unqualified version of T. Otherwise, the type of the rvalue
511    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
512    // just strip the qualifiers because they don't matter.
513
514    // FIXME: Doesn't see through to qualifiers behind a typedef!
515    FromType = FromType.getUnqualifiedType();
516  } else if (FromType->isArrayType()) {
517    // Array-to-pointer conversion (C++ 4.2)
518    SCS.First = ICK_Array_To_Pointer;
519
520    // An lvalue or rvalue of type "array of N T" or "array of unknown
521    // bound of T" can be converted to an rvalue of type "pointer to
522    // T" (C++ 4.2p1).
523    FromType = Context.getArrayDecayedType(FromType);
524
525    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
526      // This conversion is deprecated. (C++ D.4).
527      SCS.Deprecated = true;
528
529      // For the purpose of ranking in overload resolution
530      // (13.3.3.1.1), this conversion is considered an
531      // array-to-pointer conversion followed by a qualification
532      // conversion (4.4). (C++ 4.2p2)
533      SCS.Second = ICK_Identity;
534      SCS.Third = ICK_Qualification;
535      SCS.ToTypePtr = ToType.getAsOpaquePtr();
536      return true;
537    }
538  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
539    // Function-to-pointer conversion (C++ 4.3).
540    SCS.First = ICK_Function_To_Pointer;
541
542    // An lvalue of function type T can be converted to an rvalue of
543    // type "pointer to T." The result is a pointer to the
544    // function. (C++ 4.3p1).
545    FromType = Context.getPointerType(FromType);
546  } else if (FunctionDecl *Fn
547             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
548    // Address of overloaded function (C++ [over.over]).
549    SCS.First = ICK_Function_To_Pointer;
550
551    // We were able to resolve the address of the overloaded function,
552    // so we can convert to the type of that function.
553    FromType = Fn->getType();
554    if (ToType->isLValueReferenceType())
555      FromType = Context.getLValueReferenceType(FromType);
556    else if (ToType->isRValueReferenceType())
557      FromType = Context.getRValueReferenceType(FromType);
558    else if (ToType->isMemberPointerType()) {
559      // Resolve address only succeeds if both sides are member pointers,
560      // but it doesn't have to be the same class. See DR 247.
561      // Note that this means that the type of &Derived::fn can be
562      // Ret (Base::*)(Args) if the fn overload actually found is from the
563      // base class, even if it was brought into the derived class via a
564      // using declaration. The standard isn't clear on this issue at all.
565      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
566      FromType = Context.getMemberPointerType(FromType,
567                    Context.getTypeDeclType(M->getParent()).getTypePtr());
568    } else
569      FromType = Context.getPointerType(FromType);
570  } else {
571    // We don't require any conversions for the first step.
572    SCS.First = ICK_Identity;
573  }
574
575  // The second conversion can be an integral promotion, floating
576  // point promotion, integral conversion, floating point conversion,
577  // floating-integral conversion, pointer conversion,
578  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
579  // For overloading in C, this can also be a "compatible-type"
580  // conversion.
581  bool IncompatibleObjC = false;
582  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
583    // The unqualified versions of the types are the same: there's no
584    // conversion to do.
585    SCS.Second = ICK_Identity;
586  } else if (IsIntegralPromotion(From, FromType, ToType)) {
587    // Integral promotion (C++ 4.5).
588    SCS.Second = ICK_Integral_Promotion;
589    FromType = ToType.getUnqualifiedType();
590  } else if (IsFloatingPointPromotion(FromType, ToType)) {
591    // Floating point promotion (C++ 4.6).
592    SCS.Second = ICK_Floating_Promotion;
593    FromType = ToType.getUnqualifiedType();
594  } else if (IsComplexPromotion(FromType, ToType)) {
595    // Complex promotion (Clang extension)
596    SCS.Second = ICK_Complex_Promotion;
597    FromType = ToType.getUnqualifiedType();
598  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
599           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
600    // Integral conversions (C++ 4.7).
601    // FIXME: isIntegralType shouldn't be true for enums in C++.
602    SCS.Second = ICK_Integral_Conversion;
603    FromType = ToType.getUnqualifiedType();
604  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
605    // Floating point conversions (C++ 4.8).
606    SCS.Second = ICK_Floating_Conversion;
607    FromType = ToType.getUnqualifiedType();
608  } else if (FromType->isComplexType() && ToType->isComplexType()) {
609    // Complex conversions (C99 6.3.1.6)
610    SCS.Second = ICK_Complex_Conversion;
611    FromType = ToType.getUnqualifiedType();
612  } else if ((FromType->isFloatingType() &&
613              ToType->isIntegralType() && (!ToType->isBooleanType() &&
614                                           !ToType->isEnumeralType())) ||
615             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
616              ToType->isFloatingType())) {
617    // Floating-integral conversions (C++ 4.9).
618    // FIXME: isIntegralType shouldn't be true for enums in C++.
619    SCS.Second = ICK_Floating_Integral;
620    FromType = ToType.getUnqualifiedType();
621  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
622             (ToType->isComplexType() && FromType->isArithmeticType())) {
623    // Complex-real conversions (C99 6.3.1.7)
624    SCS.Second = ICK_Complex_Real;
625    FromType = ToType.getUnqualifiedType();
626  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
627                                 FromType, IncompatibleObjC)) {
628    // Pointer conversions (C++ 4.10).
629    SCS.Second = ICK_Pointer_Conversion;
630    SCS.IncompatibleObjC = IncompatibleObjC;
631  } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
632    // Pointer to member conversions (4.11).
633    SCS.Second = ICK_Pointer_Member;
634  } else if (ToType->isBooleanType() &&
635             (FromType->isArithmeticType() ||
636              FromType->isEnumeralType() ||
637              FromType->isPointerType() ||
638              FromType->isBlockPointerType() ||
639              FromType->isMemberPointerType() ||
640              FromType->isNullPtrType())) {
641    // Boolean conversions (C++ 4.12).
642    SCS.Second = ICK_Boolean_Conversion;
643    FromType = Context.BoolTy;
644  } else if (!getLangOptions().CPlusPlus &&
645             Context.typesAreCompatible(ToType, FromType)) {
646    // Compatible conversions (Clang extension for C function overloading)
647    SCS.Second = ICK_Compatible_Conversion;
648  } else {
649    // No second conversion required.
650    SCS.Second = ICK_Identity;
651  }
652
653  QualType CanonFrom;
654  QualType CanonTo;
655  // The third conversion can be a qualification conversion (C++ 4p1).
656  if (IsQualificationConversion(FromType, ToType)) {
657    SCS.Third = ICK_Qualification;
658    FromType = ToType;
659    CanonFrom = Context.getCanonicalType(FromType);
660    CanonTo = Context.getCanonicalType(ToType);
661  } else {
662    // No conversion required
663    SCS.Third = ICK_Identity;
664
665    // C++ [over.best.ics]p6:
666    //   [...] Any difference in top-level cv-qualification is
667    //   subsumed by the initialization itself and does not constitute
668    //   a conversion. [...]
669    CanonFrom = Context.getCanonicalType(FromType);
670    CanonTo = Context.getCanonicalType(ToType);
671    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
672        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
673      FromType = ToType;
674      CanonFrom = CanonTo;
675    }
676  }
677
678  // If we have not converted the argument type to the parameter type,
679  // this is a bad conversion sequence.
680  if (CanonFrom != CanonTo)
681    return false;
682
683  SCS.ToTypePtr = FromType.getAsOpaquePtr();
684  return true;
685}
686
687/// IsIntegralPromotion - Determines whether the conversion from the
688/// expression From (whose potentially-adjusted type is FromType) to
689/// ToType is an integral promotion (C++ 4.5). If so, returns true and
690/// sets PromotedType to the promoted type.
691bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
692{
693  const BuiltinType *To = ToType->getAsBuiltinType();
694  // All integers are built-in.
695  if (!To) {
696    return false;
697  }
698
699  // An rvalue of type char, signed char, unsigned char, short int, or
700  // unsigned short int can be converted to an rvalue of type int if
701  // int can represent all the values of the source type; otherwise,
702  // the source rvalue can be converted to an rvalue of type unsigned
703  // int (C++ 4.5p1).
704  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
705    if (// We can promote any signed, promotable integer type to an int
706        (FromType->isSignedIntegerType() ||
707         // We can promote any unsigned integer type whose size is
708         // less than int to an int.
709         (!FromType->isSignedIntegerType() &&
710          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
711      return To->getKind() == BuiltinType::Int;
712    }
713
714    return To->getKind() == BuiltinType::UInt;
715  }
716
717  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
718  // can be converted to an rvalue of the first of the following types
719  // that can represent all the values of its underlying type: int,
720  // unsigned int, long, or unsigned long (C++ 4.5p2).
721  if ((FromType->isEnumeralType() || FromType->isWideCharType())
722      && ToType->isIntegerType()) {
723    // Determine whether the type we're converting from is signed or
724    // unsigned.
725    bool FromIsSigned;
726    uint64_t FromSize = Context.getTypeSize(FromType);
727    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
728      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
729      FromIsSigned = UnderlyingType->isSignedIntegerType();
730    } else {
731      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
732      FromIsSigned = true;
733    }
734
735    // The types we'll try to promote to, in the appropriate
736    // order. Try each of these types.
737    QualType PromoteTypes[6] = {
738      Context.IntTy, Context.UnsignedIntTy,
739      Context.LongTy, Context.UnsignedLongTy ,
740      Context.LongLongTy, Context.UnsignedLongLongTy
741    };
742    for (int Idx = 0; Idx < 6; ++Idx) {
743      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
744      if (FromSize < ToSize ||
745          (FromSize == ToSize &&
746           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
747        // We found the type that we can promote to. If this is the
748        // type we wanted, we have a promotion. Otherwise, no
749        // promotion.
750        return Context.getCanonicalType(ToType).getUnqualifiedType()
751          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
752      }
753    }
754  }
755
756  // An rvalue for an integral bit-field (9.6) can be converted to an
757  // rvalue of type int if int can represent all the values of the
758  // bit-field; otherwise, it can be converted to unsigned int if
759  // unsigned int can represent all the values of the bit-field. If
760  // the bit-field is larger yet, no integral promotion applies to
761  // it. If the bit-field has an enumerated type, it is treated as any
762  // other value of that type for promotion purposes (C++ 4.5p3).
763  // FIXME: We should delay checking of bit-fields until we actually perform the
764  // conversion.
765  using llvm::APSInt;
766  if (From)
767    if (FieldDecl *MemberDecl = From->getBitField()) {
768      APSInt BitWidth;
769      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
770          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
771        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
772        ToSize = Context.getTypeSize(ToType);
773
774        // Are we promoting to an int from a bitfield that fits in an int?
775        if (BitWidth < ToSize ||
776            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
777          return To->getKind() == BuiltinType::Int;
778        }
779
780        // Are we promoting to an unsigned int from an unsigned bitfield
781        // that fits into an unsigned int?
782        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
783          return To->getKind() == BuiltinType::UInt;
784        }
785
786        return false;
787      }
788    }
789
790  // An rvalue of type bool can be converted to an rvalue of type int,
791  // with false becoming zero and true becoming one (C++ 4.5p4).
792  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
793    return true;
794  }
795
796  return false;
797}
798
799/// IsFloatingPointPromotion - Determines whether the conversion from
800/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
801/// returns true and sets PromotedType to the promoted type.
802bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
803{
804  /// An rvalue of type float can be converted to an rvalue of type
805  /// double. (C++ 4.6p1).
806  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
807    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
808      if (FromBuiltin->getKind() == BuiltinType::Float &&
809          ToBuiltin->getKind() == BuiltinType::Double)
810        return true;
811
812      // C99 6.3.1.5p1:
813      //   When a float is promoted to double or long double, or a
814      //   double is promoted to long double [...].
815      if (!getLangOptions().CPlusPlus &&
816          (FromBuiltin->getKind() == BuiltinType::Float ||
817           FromBuiltin->getKind() == BuiltinType::Double) &&
818          (ToBuiltin->getKind() == BuiltinType::LongDouble))
819        return true;
820    }
821
822  return false;
823}
824
825/// \brief Determine if a conversion is a complex promotion.
826///
827/// A complex promotion is defined as a complex -> complex conversion
828/// where the conversion between the underlying real types is a
829/// floating-point or integral promotion.
830bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
831  const ComplexType *FromComplex = FromType->getAsComplexType();
832  if (!FromComplex)
833    return false;
834
835  const ComplexType *ToComplex = ToType->getAsComplexType();
836  if (!ToComplex)
837    return false;
838
839  return IsFloatingPointPromotion(FromComplex->getElementType(),
840                                  ToComplex->getElementType()) ||
841    IsIntegralPromotion(0, FromComplex->getElementType(),
842                        ToComplex->getElementType());
843}
844
845/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
846/// the pointer type FromPtr to a pointer to type ToPointee, with the
847/// same type qualifiers as FromPtr has on its pointee type. ToType,
848/// if non-empty, will be a pointer to ToType that may or may not have
849/// the right set of qualifiers on its pointee.
850static QualType
851BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
852                                   QualType ToPointee, QualType ToType,
853                                   ASTContext &Context) {
854  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
855  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
856  unsigned Quals = CanonFromPointee.getCVRQualifiers();
857
858  // Exact qualifier match -> return the pointer type we're converting to.
859  if (CanonToPointee.getCVRQualifiers() == Quals) {
860    // ToType is exactly what we need. Return it.
861    if (ToType.getTypePtr())
862      return ToType;
863
864    // Build a pointer to ToPointee. It has the right qualifiers
865    // already.
866    return Context.getPointerType(ToPointee);
867  }
868
869  // Just build a canonical type that has the right qualifiers.
870  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
871}
872
873/// IsPointerConversion - Determines whether the conversion of the
874/// expression From, which has the (possibly adjusted) type FromType,
875/// can be converted to the type ToType via a pointer conversion (C++
876/// 4.10). If so, returns true and places the converted type (that
877/// might differ from ToType in its cv-qualifiers at some level) into
878/// ConvertedType.
879///
880/// This routine also supports conversions to and from block pointers
881/// and conversions with Objective-C's 'id', 'id<protocols...>', and
882/// pointers to interfaces. FIXME: Once we've determined the
883/// appropriate overloading rules for Objective-C, we may want to
884/// split the Objective-C checks into a different routine; however,
885/// GCC seems to consider all of these conversions to be pointer
886/// conversions, so for now they live here. IncompatibleObjC will be
887/// set if the conversion is an allowed Objective-C conversion that
888/// should result in a warning.
889bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
890                               bool InOverloadResolution,
891                               QualType& ConvertedType,
892                               bool &IncompatibleObjC)
893{
894  IncompatibleObjC = false;
895  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
896    return true;
897
898  // Conversion from a null pointer constant to any Objective-C pointer type.
899  if (ToType->isObjCObjectPointerType() &&
900      From->isNullPointerConstant(Context)) {
901    ConvertedType = ToType;
902    return true;
903  }
904
905  // Blocks: Block pointers can be converted to void*.
906  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
907      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
908    ConvertedType = ToType;
909    return true;
910  }
911  // Blocks: A null pointer constant can be converted to a block
912  // pointer type.
913  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
914    ConvertedType = ToType;
915    return true;
916  }
917
918  // If the left-hand-side is nullptr_t, the right side can be a null
919  // pointer constant.
920  if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
921    ConvertedType = ToType;
922    return true;
923  }
924
925  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
926  if (!ToTypePtr)
927    return false;
928
929  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
930  if (From->isNullPointerConstant(Context)) {
931    ConvertedType = ToType;
932    return true;
933  }
934
935  // Beyond this point, both types need to be pointers.
936  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
937  if (!FromTypePtr)
938    return false;
939
940  QualType FromPointeeType = FromTypePtr->getPointeeType();
941  QualType ToPointeeType = ToTypePtr->getPointeeType();
942
943  // An rvalue of type "pointer to cv T," where T is an object type,
944  // can be converted to an rvalue of type "pointer to cv void" (C++
945  // 4.10p2).
946  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
947    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
948                                                       ToPointeeType,
949                                                       ToType, Context);
950    return true;
951  }
952
953  // When we're overloading in C, we allow a special kind of pointer
954  // conversion for compatible-but-not-identical pointee types.
955  if (!getLangOptions().CPlusPlus &&
956      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
957    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
958                                                       ToPointeeType,
959                                                       ToType, Context);
960    return true;
961  }
962
963  // C++ [conv.ptr]p3:
964  //
965  //   An rvalue of type "pointer to cv D," where D is a class type,
966  //   can be converted to an rvalue of type "pointer to cv B," where
967  //   B is a base class (clause 10) of D. If B is an inaccessible
968  //   (clause 11) or ambiguous (10.2) base class of D, a program that
969  //   necessitates this conversion is ill-formed. The result of the
970  //   conversion is a pointer to the base class sub-object of the
971  //   derived class object. The null pointer value is converted to
972  //   the null pointer value of the destination type.
973  //
974  // Note that we do not check for ambiguity or inaccessibility
975  // here. That is handled by CheckPointerConversion.
976  if (getLangOptions().CPlusPlus &&
977      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
978      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
979    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
980                                                       ToPointeeType,
981                                                       ToType, Context);
982    return true;
983  }
984
985  return false;
986}
987
988/// isObjCPointerConversion - Determines whether this is an
989/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
990/// with the same arguments and return values.
991bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
992                                   QualType& ConvertedType,
993                                   bool &IncompatibleObjC) {
994  if (!getLangOptions().ObjC1)
995    return false;
996
997  // First, we handle all conversions on ObjC object pointer types.
998  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
999  const ObjCObjectPointerType *FromObjCPtr =
1000    FromType->getAsObjCObjectPointerType();
1001
1002  if (ToObjCPtr && FromObjCPtr) {
1003    // Objective C++: We're able to convert between "id" or "Class" and a
1004    // pointer to any interface (in both directions).
1005    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1006      ConvertedType = ToType;
1007      return true;
1008    }
1009    // Conversions with Objective-C's id<...>.
1010    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1011         ToObjCPtr->isObjCQualifiedIdType()) &&
1012        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1013                                                  /*compare=*/false)) {
1014      ConvertedType = ToType;
1015      return true;
1016    }
1017    // Objective C++: We're able to convert from a pointer to an
1018    // interface to a pointer to a different interface.
1019    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1020      ConvertedType = ToType;
1021      return true;
1022    }
1023
1024    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1025      // Okay: this is some kind of implicit downcast of Objective-C
1026      // interfaces, which is permitted. However, we're going to
1027      // complain about it.
1028      IncompatibleObjC = true;
1029      ConvertedType = FromType;
1030      return true;
1031    }
1032  }
1033  // Beyond this point, both types need to be C pointers or block pointers.
1034  QualType ToPointeeType;
1035  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1036    ToPointeeType = ToCPtr->getPointeeType();
1037  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1038    ToPointeeType = ToBlockPtr->getPointeeType();
1039  else
1040    return false;
1041
1042  QualType FromPointeeType;
1043  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1044    FromPointeeType = FromCPtr->getPointeeType();
1045  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1046    FromPointeeType = FromBlockPtr->getPointeeType();
1047  else
1048    return false;
1049
1050  // If we have pointers to pointers, recursively check whether this
1051  // is an Objective-C conversion.
1052  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1053      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1054                              IncompatibleObjC)) {
1055    // We always complain about this conversion.
1056    IncompatibleObjC = true;
1057    ConvertedType = ToType;
1058    return true;
1059  }
1060  // If we have pointers to functions or blocks, check whether the only
1061  // differences in the argument and result types are in Objective-C
1062  // pointer conversions. If so, we permit the conversion (but
1063  // complain about it).
1064  const FunctionProtoType *FromFunctionType
1065    = FromPointeeType->getAsFunctionProtoType();
1066  const FunctionProtoType *ToFunctionType
1067    = ToPointeeType->getAsFunctionProtoType();
1068  if (FromFunctionType && ToFunctionType) {
1069    // If the function types are exactly the same, this isn't an
1070    // Objective-C pointer conversion.
1071    if (Context.getCanonicalType(FromPointeeType)
1072          == Context.getCanonicalType(ToPointeeType))
1073      return false;
1074
1075    // Perform the quick checks that will tell us whether these
1076    // function types are obviously different.
1077    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1078        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1079        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1080      return false;
1081
1082    bool HasObjCConversion = false;
1083    if (Context.getCanonicalType(FromFunctionType->getResultType())
1084          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1085      // Okay, the types match exactly. Nothing to do.
1086    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1087                                       ToFunctionType->getResultType(),
1088                                       ConvertedType, IncompatibleObjC)) {
1089      // Okay, we have an Objective-C pointer conversion.
1090      HasObjCConversion = true;
1091    } else {
1092      // Function types are too different. Abort.
1093      return false;
1094    }
1095
1096    // Check argument types.
1097    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1098         ArgIdx != NumArgs; ++ArgIdx) {
1099      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1100      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1101      if (Context.getCanonicalType(FromArgType)
1102            == Context.getCanonicalType(ToArgType)) {
1103        // Okay, the types match exactly. Nothing to do.
1104      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1105                                         ConvertedType, IncompatibleObjC)) {
1106        // Okay, we have an Objective-C pointer conversion.
1107        HasObjCConversion = true;
1108      } else {
1109        // Argument types are too different. Abort.
1110        return false;
1111      }
1112    }
1113
1114    if (HasObjCConversion) {
1115      // We had an Objective-C conversion. Allow this pointer
1116      // conversion, but complain about it.
1117      ConvertedType = ToType;
1118      IncompatibleObjC = true;
1119      return true;
1120    }
1121  }
1122
1123  return false;
1124}
1125
1126/// CheckPointerConversion - Check the pointer conversion from the
1127/// expression From to the type ToType. This routine checks for
1128/// ambiguous or inaccessible derived-to-base pointer
1129/// conversions for which IsPointerConversion has already returned
1130/// true. It returns true and produces a diagnostic if there was an
1131/// error, or returns false otherwise.
1132bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1133  QualType FromType = From->getType();
1134
1135  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1136    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1137      QualType FromPointeeType = FromPtrType->getPointeeType(),
1138               ToPointeeType   = ToPtrType->getPointeeType();
1139
1140      if (FromPointeeType->isRecordType() &&
1141          ToPointeeType->isRecordType()) {
1142        // We must have a derived-to-base conversion. Check an
1143        // ambiguous or inaccessible conversion.
1144        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1145                                            From->getExprLoc(),
1146                                            From->getSourceRange());
1147      }
1148    }
1149  if (const ObjCObjectPointerType *FromPtrType =
1150        FromType->getAsObjCObjectPointerType())
1151    if (const ObjCObjectPointerType *ToPtrType =
1152          ToType->getAsObjCObjectPointerType()) {
1153      // Objective-C++ conversions are always okay.
1154      // FIXME: We should have a different class of conversions for the
1155      // Objective-C++ implicit conversions.
1156      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1157        return false;
1158
1159  }
1160  return false;
1161}
1162
1163/// IsMemberPointerConversion - Determines whether the conversion of the
1164/// expression From, which has the (possibly adjusted) type FromType, can be
1165/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1166/// If so, returns true and places the converted type (that might differ from
1167/// ToType in its cv-qualifiers at some level) into ConvertedType.
1168bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1169                                     QualType ToType, QualType &ConvertedType)
1170{
1171  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1172  if (!ToTypePtr)
1173    return false;
1174
1175  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1176  if (From->isNullPointerConstant(Context)) {
1177    ConvertedType = ToType;
1178    return true;
1179  }
1180
1181  // Otherwise, both types have to be member pointers.
1182  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1183  if (!FromTypePtr)
1184    return false;
1185
1186  // A pointer to member of B can be converted to a pointer to member of D,
1187  // where D is derived from B (C++ 4.11p2).
1188  QualType FromClass(FromTypePtr->getClass(), 0);
1189  QualType ToClass(ToTypePtr->getClass(), 0);
1190  // FIXME: What happens when these are dependent? Is this function even called?
1191
1192  if (IsDerivedFrom(ToClass, FromClass)) {
1193    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1194                                                 ToClass.getTypePtr());
1195    return true;
1196  }
1197
1198  return false;
1199}
1200
1201/// CheckMemberPointerConversion - Check the member pointer conversion from the
1202/// expression From to the type ToType. This routine checks for ambiguous or
1203/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1204/// for which IsMemberPointerConversion has already returned true. It returns
1205/// true and produces a diagnostic if there was an error, or returns false
1206/// otherwise.
1207bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1208                                        CastExpr::CastKind &Kind) {
1209  QualType FromType = From->getType();
1210  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1211  if (!FromPtrType) {
1212    // This must be a null pointer to member pointer conversion
1213    assert(From->isNullPointerConstant(Context) &&
1214           "Expr must be null pointer constant!");
1215    Kind = CastExpr::CK_NullToMemberPointer;
1216    return false;
1217  }
1218
1219  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1220  assert(ToPtrType && "No member pointer cast has a target type "
1221                      "that is not a member pointer.");
1222
1223  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1224  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1225
1226  // FIXME: What about dependent types?
1227  assert(FromClass->isRecordType() && "Pointer into non-class.");
1228  assert(ToClass->isRecordType() && "Pointer into non-class.");
1229
1230  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1231                  /*DetectVirtual=*/true);
1232  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1233  assert(DerivationOkay &&
1234         "Should not have been called if derivation isn't OK.");
1235  (void)DerivationOkay;
1236
1237  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1238                                  getUnqualifiedType())) {
1239    // Derivation is ambiguous. Redo the check to find the exact paths.
1240    Paths.clear();
1241    Paths.setRecordingPaths(true);
1242    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1243    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1244    (void)StillOkay;
1245
1246    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1247    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1248      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1249    return true;
1250  }
1251
1252  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1253    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1254      << FromClass << ToClass << QualType(VBase, 0)
1255      << From->getSourceRange();
1256    return true;
1257  }
1258
1259  // Must be a base to derived member conversion.
1260  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1261  return false;
1262}
1263
1264/// IsQualificationConversion - Determines whether the conversion from
1265/// an rvalue of type FromType to ToType is a qualification conversion
1266/// (C++ 4.4).
1267bool
1268Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1269{
1270  FromType = Context.getCanonicalType(FromType);
1271  ToType = Context.getCanonicalType(ToType);
1272
1273  // If FromType and ToType are the same type, this is not a
1274  // qualification conversion.
1275  if (FromType == ToType)
1276    return false;
1277
1278  // (C++ 4.4p4):
1279  //   A conversion can add cv-qualifiers at levels other than the first
1280  //   in multi-level pointers, subject to the following rules: [...]
1281  bool PreviousToQualsIncludeConst = true;
1282  bool UnwrappedAnyPointer = false;
1283  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1284    // Within each iteration of the loop, we check the qualifiers to
1285    // determine if this still looks like a qualification
1286    // conversion. Then, if all is well, we unwrap one more level of
1287    // pointers or pointers-to-members and do it all again
1288    // until there are no more pointers or pointers-to-members left to
1289    // unwrap.
1290    UnwrappedAnyPointer = true;
1291
1292    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1293    //      2,j, and similarly for volatile.
1294    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1295      return false;
1296
1297    //   -- if the cv 1,j and cv 2,j are different, then const is in
1298    //      every cv for 0 < k < j.
1299    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1300        && !PreviousToQualsIncludeConst)
1301      return false;
1302
1303    // Keep track of whether all prior cv-qualifiers in the "to" type
1304    // include const.
1305    PreviousToQualsIncludeConst
1306      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1307  }
1308
1309  // We are left with FromType and ToType being the pointee types
1310  // after unwrapping the original FromType and ToType the same number
1311  // of types. If we unwrapped any pointers, and if FromType and
1312  // ToType have the same unqualified type (since we checked
1313  // qualifiers above), then this is a qualification conversion.
1314  return UnwrappedAnyPointer &&
1315    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1316}
1317
1318/// \brief Given a function template or function, extract the function template
1319/// declaration (if any) and the underlying function declaration.
1320template<typename T>
1321static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1322                                   FunctionTemplateDecl *&FunctionTemplate) {
1323  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1324  if (FunctionTemplate)
1325    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1326  else
1327    Function = cast<T>(Orig);
1328}
1329
1330
1331/// Determines whether there is a user-defined conversion sequence
1332/// (C++ [over.ics.user]) that converts expression From to the type
1333/// ToType. If such a conversion exists, User will contain the
1334/// user-defined conversion sequence that performs such a conversion
1335/// and this routine will return true. Otherwise, this routine returns
1336/// false and User is unspecified.
1337///
1338/// \param AllowConversionFunctions true if the conversion should
1339/// consider conversion functions at all. If false, only constructors
1340/// will be considered.
1341///
1342/// \param AllowExplicit  true if the conversion should consider C++0x
1343/// "explicit" conversion functions as well as non-explicit conversion
1344/// functions (C++0x [class.conv.fct]p2).
1345///
1346/// \param ForceRValue  true if the expression should be treated as an rvalue
1347/// for overload resolution.
1348bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1349                                   UserDefinedConversionSequence& User,
1350                                   bool AllowConversionFunctions,
1351                                   bool AllowExplicit, bool ForceRValue)
1352{
1353  OverloadCandidateSet CandidateSet;
1354  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1355    if (CXXRecordDecl *ToRecordDecl
1356          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1357      // C++ [over.match.ctor]p1:
1358      //   When objects of class type are direct-initialized (8.5), or
1359      //   copy-initialized from an expression of the same or a
1360      //   derived class type (8.5), overload resolution selects the
1361      //   constructor. [...] For copy-initialization, the candidate
1362      //   functions are all the converting constructors (12.3.1) of
1363      //   that class. The argument list is the expression-list within
1364      //   the parentheses of the initializer.
1365      DeclarationName ConstructorName
1366        = Context.DeclarationNames.getCXXConstructorName(
1367                          Context.getCanonicalType(ToType).getUnqualifiedType());
1368      DeclContext::lookup_iterator Con, ConEnd;
1369      for (llvm::tie(Con, ConEnd)
1370             = ToRecordDecl->lookup(ConstructorName);
1371           Con != ConEnd; ++Con) {
1372        // Find the constructor (which may be a template).
1373        CXXConstructorDecl *Constructor = 0;
1374        FunctionTemplateDecl *ConstructorTmpl
1375          = dyn_cast<FunctionTemplateDecl>(*Con);
1376        if (ConstructorTmpl)
1377          Constructor
1378            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1379        else
1380          Constructor = cast<CXXConstructorDecl>(*Con);
1381
1382        if (!Constructor->isInvalidDecl() &&
1383            Constructor->isConvertingConstructor()) {
1384          if (ConstructorTmpl)
1385            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1386                                         1, CandidateSet,
1387                                         /*SuppressUserConversions=*/true,
1388                                         ForceRValue);
1389          else
1390            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1391                                 /*SuppressUserConversions=*/true, ForceRValue);
1392        }
1393      }
1394    }
1395  }
1396
1397  if (!AllowConversionFunctions) {
1398    // Don't allow any conversion functions to enter the overload set.
1399  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1400                                 PDiag(0)
1401                                   << From->getSourceRange())) {
1402    // No conversion functions from incomplete types.
1403  } else if (const RecordType *FromRecordType
1404               = From->getType()->getAs<RecordType>()) {
1405    if (CXXRecordDecl *FromRecordDecl
1406          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1407      // Add all of the conversion functions as candidates.
1408      // FIXME: Look for conversions in base classes!
1409      OverloadedFunctionDecl *Conversions
1410        = FromRecordDecl->getConversionFunctions();
1411      for (OverloadedFunctionDecl::function_iterator Func
1412             = Conversions->function_begin();
1413           Func != Conversions->function_end(); ++Func) {
1414        CXXConversionDecl *Conv;
1415        FunctionTemplateDecl *ConvTemplate;
1416        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1417        if (ConvTemplate)
1418          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1419        else
1420          Conv = dyn_cast<CXXConversionDecl>(*Func);
1421
1422        if (AllowExplicit || !Conv->isExplicit()) {
1423          if (ConvTemplate)
1424            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1425                                           CandidateSet);
1426          else
1427            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1428        }
1429      }
1430    }
1431  }
1432
1433  OverloadCandidateSet::iterator Best;
1434  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1435    case OR_Success:
1436      // Record the standard conversion we used and the conversion function.
1437      if (CXXConstructorDecl *Constructor
1438            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1439        // C++ [over.ics.user]p1:
1440        //   If the user-defined conversion is specified by a
1441        //   constructor (12.3.1), the initial standard conversion
1442        //   sequence converts the source type to the type required by
1443        //   the argument of the constructor.
1444        //
1445        // FIXME: What about ellipsis conversions?
1446        QualType ThisType = Constructor->getThisType(Context);
1447        User.Before = Best->Conversions[0].Standard;
1448        User.ConversionFunction = Constructor;
1449        User.After.setAsIdentityConversion();
1450        User.After.FromTypePtr
1451          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1452        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1453        return true;
1454      } else if (CXXConversionDecl *Conversion
1455                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1456        // C++ [over.ics.user]p1:
1457        //
1458        //   [...] If the user-defined conversion is specified by a
1459        //   conversion function (12.3.2), the initial standard
1460        //   conversion sequence converts the source type to the
1461        //   implicit object parameter of the conversion function.
1462        User.Before = Best->Conversions[0].Standard;
1463        User.ConversionFunction = Conversion;
1464
1465        // C++ [over.ics.user]p2:
1466        //   The second standard conversion sequence converts the
1467        //   result of the user-defined conversion to the target type
1468        //   for the sequence. Since an implicit conversion sequence
1469        //   is an initialization, the special rules for
1470        //   initialization by user-defined conversion apply when
1471        //   selecting the best user-defined conversion for a
1472        //   user-defined conversion sequence (see 13.3.3 and
1473        //   13.3.3.1).
1474        User.After = Best->FinalConversion;
1475        return true;
1476      } else {
1477        assert(false && "Not a constructor or conversion function?");
1478        return false;
1479      }
1480
1481    case OR_No_Viable_Function:
1482    case OR_Deleted:
1483      // No conversion here! We're done.
1484      return false;
1485
1486    case OR_Ambiguous:
1487      // FIXME: See C++ [over.best.ics]p10 for the handling of
1488      // ambiguous conversion sequences.
1489      return false;
1490    }
1491
1492  return false;
1493}
1494
1495/// CompareImplicitConversionSequences - Compare two implicit
1496/// conversion sequences to determine whether one is better than the
1497/// other or if they are indistinguishable (C++ 13.3.3.2).
1498ImplicitConversionSequence::CompareKind
1499Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1500                                         const ImplicitConversionSequence& ICS2)
1501{
1502  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1503  // conversion sequences (as defined in 13.3.3.1)
1504  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1505  //      conversion sequence than a user-defined conversion sequence or
1506  //      an ellipsis conversion sequence, and
1507  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1508  //      conversion sequence than an ellipsis conversion sequence
1509  //      (13.3.3.1.3).
1510  //
1511  if (ICS1.ConversionKind < ICS2.ConversionKind)
1512    return ImplicitConversionSequence::Better;
1513  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1514    return ImplicitConversionSequence::Worse;
1515
1516  // Two implicit conversion sequences of the same form are
1517  // indistinguishable conversion sequences unless one of the
1518  // following rules apply: (C++ 13.3.3.2p3):
1519  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1520    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1521  else if (ICS1.ConversionKind ==
1522             ImplicitConversionSequence::UserDefinedConversion) {
1523    // User-defined conversion sequence U1 is a better conversion
1524    // sequence than another user-defined conversion sequence U2 if
1525    // they contain the same user-defined conversion function or
1526    // constructor and if the second standard conversion sequence of
1527    // U1 is better than the second standard conversion sequence of
1528    // U2 (C++ 13.3.3.2p3).
1529    if (ICS1.UserDefined.ConversionFunction ==
1530          ICS2.UserDefined.ConversionFunction)
1531      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1532                                                ICS2.UserDefined.After);
1533  }
1534
1535  return ImplicitConversionSequence::Indistinguishable;
1536}
1537
1538/// CompareStandardConversionSequences - Compare two standard
1539/// conversion sequences to determine whether one is better than the
1540/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1541ImplicitConversionSequence::CompareKind
1542Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1543                                         const StandardConversionSequence& SCS2)
1544{
1545  // Standard conversion sequence S1 is a better conversion sequence
1546  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1547
1548  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1549  //     sequences in the canonical form defined by 13.3.3.1.1,
1550  //     excluding any Lvalue Transformation; the identity conversion
1551  //     sequence is considered to be a subsequence of any
1552  //     non-identity conversion sequence) or, if not that,
1553  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1554    // Neither is a proper subsequence of the other. Do nothing.
1555    ;
1556  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1557           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1558           (SCS1.Second == ICK_Identity &&
1559            SCS1.Third == ICK_Identity))
1560    // SCS1 is a proper subsequence of SCS2.
1561    return ImplicitConversionSequence::Better;
1562  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1563           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1564           (SCS2.Second == ICK_Identity &&
1565            SCS2.Third == ICK_Identity))
1566    // SCS2 is a proper subsequence of SCS1.
1567    return ImplicitConversionSequence::Worse;
1568
1569  //  -- the rank of S1 is better than the rank of S2 (by the rules
1570  //     defined below), or, if not that,
1571  ImplicitConversionRank Rank1 = SCS1.getRank();
1572  ImplicitConversionRank Rank2 = SCS2.getRank();
1573  if (Rank1 < Rank2)
1574    return ImplicitConversionSequence::Better;
1575  else if (Rank2 < Rank1)
1576    return ImplicitConversionSequence::Worse;
1577
1578  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1579  // are indistinguishable unless one of the following rules
1580  // applies:
1581
1582  //   A conversion that is not a conversion of a pointer, or
1583  //   pointer to member, to bool is better than another conversion
1584  //   that is such a conversion.
1585  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1586    return SCS2.isPointerConversionToBool()
1587             ? ImplicitConversionSequence::Better
1588             : ImplicitConversionSequence::Worse;
1589
1590  // C++ [over.ics.rank]p4b2:
1591  //
1592  //   If class B is derived directly or indirectly from class A,
1593  //   conversion of B* to A* is better than conversion of B* to
1594  //   void*, and conversion of A* to void* is better than conversion
1595  //   of B* to void*.
1596  bool SCS1ConvertsToVoid
1597    = SCS1.isPointerConversionToVoidPointer(Context);
1598  bool SCS2ConvertsToVoid
1599    = SCS2.isPointerConversionToVoidPointer(Context);
1600  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1601    // Exactly one of the conversion sequences is a conversion to
1602    // a void pointer; it's the worse conversion.
1603    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1604                              : ImplicitConversionSequence::Worse;
1605  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1606    // Neither conversion sequence converts to a void pointer; compare
1607    // their derived-to-base conversions.
1608    if (ImplicitConversionSequence::CompareKind DerivedCK
1609          = CompareDerivedToBaseConversions(SCS1, SCS2))
1610      return DerivedCK;
1611  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1612    // Both conversion sequences are conversions to void
1613    // pointers. Compare the source types to determine if there's an
1614    // inheritance relationship in their sources.
1615    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1616    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1617
1618    // Adjust the types we're converting from via the array-to-pointer
1619    // conversion, if we need to.
1620    if (SCS1.First == ICK_Array_To_Pointer)
1621      FromType1 = Context.getArrayDecayedType(FromType1);
1622    if (SCS2.First == ICK_Array_To_Pointer)
1623      FromType2 = Context.getArrayDecayedType(FromType2);
1624
1625    QualType FromPointee1
1626      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1627    QualType FromPointee2
1628      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1629
1630    if (IsDerivedFrom(FromPointee2, FromPointee1))
1631      return ImplicitConversionSequence::Better;
1632    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1633      return ImplicitConversionSequence::Worse;
1634
1635    // Objective-C++: If one interface is more specific than the
1636    // other, it is the better one.
1637    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1638    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1639    if (FromIface1 && FromIface1) {
1640      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1641        return ImplicitConversionSequence::Better;
1642      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1643        return ImplicitConversionSequence::Worse;
1644    }
1645  }
1646
1647  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1648  // bullet 3).
1649  if (ImplicitConversionSequence::CompareKind QualCK
1650        = CompareQualificationConversions(SCS1, SCS2))
1651    return QualCK;
1652
1653  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1654    // C++0x [over.ics.rank]p3b4:
1655    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1656    //      implicit object parameter of a non-static member function declared
1657    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1658    //      rvalue and S2 binds an lvalue reference.
1659    // FIXME: We don't know if we're dealing with the implicit object parameter,
1660    // or if the member function in this case has a ref qualifier.
1661    // (Of course, we don't have ref qualifiers yet.)
1662    if (SCS1.RRefBinding != SCS2.RRefBinding)
1663      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1664                              : ImplicitConversionSequence::Worse;
1665
1666    // C++ [over.ics.rank]p3b4:
1667    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1668    //      which the references refer are the same type except for
1669    //      top-level cv-qualifiers, and the type to which the reference
1670    //      initialized by S2 refers is more cv-qualified than the type
1671    //      to which the reference initialized by S1 refers.
1672    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1673    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1674    T1 = Context.getCanonicalType(T1);
1675    T2 = Context.getCanonicalType(T2);
1676    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1677      if (T2.isMoreQualifiedThan(T1))
1678        return ImplicitConversionSequence::Better;
1679      else if (T1.isMoreQualifiedThan(T2))
1680        return ImplicitConversionSequence::Worse;
1681    }
1682  }
1683
1684  return ImplicitConversionSequence::Indistinguishable;
1685}
1686
1687/// CompareQualificationConversions - Compares two standard conversion
1688/// sequences to determine whether they can be ranked based on their
1689/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1690ImplicitConversionSequence::CompareKind
1691Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1692                                      const StandardConversionSequence& SCS2)
1693{
1694  // C++ 13.3.3.2p3:
1695  //  -- S1 and S2 differ only in their qualification conversion and
1696  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1697  //     cv-qualification signature of type T1 is a proper subset of
1698  //     the cv-qualification signature of type T2, and S1 is not the
1699  //     deprecated string literal array-to-pointer conversion (4.2).
1700  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1701      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1702    return ImplicitConversionSequence::Indistinguishable;
1703
1704  // FIXME: the example in the standard doesn't use a qualification
1705  // conversion (!)
1706  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1707  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1708  T1 = Context.getCanonicalType(T1);
1709  T2 = Context.getCanonicalType(T2);
1710
1711  // If the types are the same, we won't learn anything by unwrapped
1712  // them.
1713  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1714    return ImplicitConversionSequence::Indistinguishable;
1715
1716  ImplicitConversionSequence::CompareKind Result
1717    = ImplicitConversionSequence::Indistinguishable;
1718  while (UnwrapSimilarPointerTypes(T1, T2)) {
1719    // Within each iteration of the loop, we check the qualifiers to
1720    // determine if this still looks like a qualification
1721    // conversion. Then, if all is well, we unwrap one more level of
1722    // pointers or pointers-to-members and do it all again
1723    // until there are no more pointers or pointers-to-members left
1724    // to unwrap. This essentially mimics what
1725    // IsQualificationConversion does, but here we're checking for a
1726    // strict subset of qualifiers.
1727    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1728      // The qualifiers are the same, so this doesn't tell us anything
1729      // about how the sequences rank.
1730      ;
1731    else if (T2.isMoreQualifiedThan(T1)) {
1732      // T1 has fewer qualifiers, so it could be the better sequence.
1733      if (Result == ImplicitConversionSequence::Worse)
1734        // Neither has qualifiers that are a subset of the other's
1735        // qualifiers.
1736        return ImplicitConversionSequence::Indistinguishable;
1737
1738      Result = ImplicitConversionSequence::Better;
1739    } else if (T1.isMoreQualifiedThan(T2)) {
1740      // T2 has fewer qualifiers, so it could be the better sequence.
1741      if (Result == ImplicitConversionSequence::Better)
1742        // Neither has qualifiers that are a subset of the other's
1743        // qualifiers.
1744        return ImplicitConversionSequence::Indistinguishable;
1745
1746      Result = ImplicitConversionSequence::Worse;
1747    } else {
1748      // Qualifiers are disjoint.
1749      return ImplicitConversionSequence::Indistinguishable;
1750    }
1751
1752    // If the types after this point are equivalent, we're done.
1753    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1754      break;
1755  }
1756
1757  // Check that the winning standard conversion sequence isn't using
1758  // the deprecated string literal array to pointer conversion.
1759  switch (Result) {
1760  case ImplicitConversionSequence::Better:
1761    if (SCS1.Deprecated)
1762      Result = ImplicitConversionSequence::Indistinguishable;
1763    break;
1764
1765  case ImplicitConversionSequence::Indistinguishable:
1766    break;
1767
1768  case ImplicitConversionSequence::Worse:
1769    if (SCS2.Deprecated)
1770      Result = ImplicitConversionSequence::Indistinguishable;
1771    break;
1772  }
1773
1774  return Result;
1775}
1776
1777/// CompareDerivedToBaseConversions - Compares two standard conversion
1778/// sequences to determine whether they can be ranked based on their
1779/// various kinds of derived-to-base conversions (C++
1780/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1781/// conversions between Objective-C interface types.
1782ImplicitConversionSequence::CompareKind
1783Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1784                                      const StandardConversionSequence& SCS2) {
1785  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1786  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1787  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1788  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1789
1790  // Adjust the types we're converting from via the array-to-pointer
1791  // conversion, if we need to.
1792  if (SCS1.First == ICK_Array_To_Pointer)
1793    FromType1 = Context.getArrayDecayedType(FromType1);
1794  if (SCS2.First == ICK_Array_To_Pointer)
1795    FromType2 = Context.getArrayDecayedType(FromType2);
1796
1797  // Canonicalize all of the types.
1798  FromType1 = Context.getCanonicalType(FromType1);
1799  ToType1 = Context.getCanonicalType(ToType1);
1800  FromType2 = Context.getCanonicalType(FromType2);
1801  ToType2 = Context.getCanonicalType(ToType2);
1802
1803  // C++ [over.ics.rank]p4b3:
1804  //
1805  //   If class B is derived directly or indirectly from class A and
1806  //   class C is derived directly or indirectly from B,
1807  //
1808  // For Objective-C, we let A, B, and C also be Objective-C
1809  // interfaces.
1810
1811  // Compare based on pointer conversions.
1812  if (SCS1.Second == ICK_Pointer_Conversion &&
1813      SCS2.Second == ICK_Pointer_Conversion &&
1814      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1815      FromType1->isPointerType() && FromType2->isPointerType() &&
1816      ToType1->isPointerType() && ToType2->isPointerType()) {
1817    QualType FromPointee1
1818      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1819    QualType ToPointee1
1820      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1821    QualType FromPointee2
1822      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1823    QualType ToPointee2
1824      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1825
1826    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1827    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1828    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1829    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1830
1831    //   -- conversion of C* to B* is better than conversion of C* to A*,
1832    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1833      if (IsDerivedFrom(ToPointee1, ToPointee2))
1834        return ImplicitConversionSequence::Better;
1835      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1836        return ImplicitConversionSequence::Worse;
1837
1838      if (ToIface1 && ToIface2) {
1839        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1840          return ImplicitConversionSequence::Better;
1841        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1842          return ImplicitConversionSequence::Worse;
1843      }
1844    }
1845
1846    //   -- conversion of B* to A* is better than conversion of C* to A*,
1847    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1848      if (IsDerivedFrom(FromPointee2, FromPointee1))
1849        return ImplicitConversionSequence::Better;
1850      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1851        return ImplicitConversionSequence::Worse;
1852
1853      if (FromIface1 && FromIface2) {
1854        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1855          return ImplicitConversionSequence::Better;
1856        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1857          return ImplicitConversionSequence::Worse;
1858      }
1859    }
1860  }
1861
1862  // Compare based on reference bindings.
1863  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1864      SCS1.Second == ICK_Derived_To_Base) {
1865    //   -- binding of an expression of type C to a reference of type
1866    //      B& is better than binding an expression of type C to a
1867    //      reference of type A&,
1868    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1869        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1870      if (IsDerivedFrom(ToType1, ToType2))
1871        return ImplicitConversionSequence::Better;
1872      else if (IsDerivedFrom(ToType2, ToType1))
1873        return ImplicitConversionSequence::Worse;
1874    }
1875
1876    //   -- binding of an expression of type B to a reference of type
1877    //      A& is better than binding an expression of type C to a
1878    //      reference of type A&,
1879    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1880        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1881      if (IsDerivedFrom(FromType2, FromType1))
1882        return ImplicitConversionSequence::Better;
1883      else if (IsDerivedFrom(FromType1, FromType2))
1884        return ImplicitConversionSequence::Worse;
1885    }
1886  }
1887
1888
1889  // FIXME: conversion of A::* to B::* is better than conversion of
1890  // A::* to C::*,
1891
1892  // FIXME: conversion of B::* to C::* is better than conversion of
1893  // A::* to C::*, and
1894
1895  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1896      SCS1.Second == ICK_Derived_To_Base) {
1897    //   -- conversion of C to B is better than conversion of C to A,
1898    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1899        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1900      if (IsDerivedFrom(ToType1, ToType2))
1901        return ImplicitConversionSequence::Better;
1902      else if (IsDerivedFrom(ToType2, ToType1))
1903        return ImplicitConversionSequence::Worse;
1904    }
1905
1906    //   -- conversion of B to A is better than conversion of C to A.
1907    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1908        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1909      if (IsDerivedFrom(FromType2, FromType1))
1910        return ImplicitConversionSequence::Better;
1911      else if (IsDerivedFrom(FromType1, FromType2))
1912        return ImplicitConversionSequence::Worse;
1913    }
1914  }
1915
1916  return ImplicitConversionSequence::Indistinguishable;
1917}
1918
1919/// TryCopyInitialization - Try to copy-initialize a value of type
1920/// ToType from the expression From. Return the implicit conversion
1921/// sequence required to pass this argument, which may be a bad
1922/// conversion sequence (meaning that the argument cannot be passed to
1923/// a parameter of this type). If @p SuppressUserConversions, then we
1924/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1925/// then we treat @p From as an rvalue, even if it is an lvalue.
1926ImplicitConversionSequence
1927Sema::TryCopyInitialization(Expr *From, QualType ToType,
1928                            bool SuppressUserConversions, bool ForceRValue,
1929                            bool InOverloadResolution) {
1930  if (ToType->isReferenceType()) {
1931    ImplicitConversionSequence ICS;
1932    CheckReferenceInit(From, ToType,
1933                       SuppressUserConversions,
1934                       /*AllowExplicit=*/false,
1935                       ForceRValue,
1936                       &ICS);
1937    return ICS;
1938  } else {
1939    return TryImplicitConversion(From, ToType,
1940                                 SuppressUserConversions,
1941                                 /*AllowExplicit=*/false,
1942                                 ForceRValue,
1943                                 InOverloadResolution);
1944  }
1945}
1946
1947/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1948/// the expression @p From. Returns true (and emits a diagnostic) if there was
1949/// an error, returns false if the initialization succeeded. Elidable should
1950/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1951/// differently in C++0x for this case.
1952bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1953                                     const char* Flavor, bool Elidable) {
1954  if (!getLangOptions().CPlusPlus) {
1955    // In C, argument passing is the same as performing an assignment.
1956    QualType FromType = From->getType();
1957
1958    AssignConvertType ConvTy =
1959      CheckSingleAssignmentConstraints(ToType, From);
1960    if (ConvTy != Compatible &&
1961        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1962      ConvTy = Compatible;
1963
1964    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1965                                    FromType, From, Flavor);
1966  }
1967
1968  if (ToType->isReferenceType())
1969    return CheckReferenceInit(From, ToType,
1970                              /*SuppressUserConversions=*/false,
1971                              /*AllowExplicit=*/false,
1972                              /*ForceRValue=*/false);
1973
1974  if (!PerformImplicitConversion(From, ToType, Flavor,
1975                                 /*AllowExplicit=*/false, Elidable))
1976    return false;
1977
1978  return Diag(From->getSourceRange().getBegin(),
1979              diag::err_typecheck_convert_incompatible)
1980    << ToType << From->getType() << Flavor << From->getSourceRange();
1981}
1982
1983/// TryObjectArgumentInitialization - Try to initialize the object
1984/// parameter of the given member function (@c Method) from the
1985/// expression @p From.
1986ImplicitConversionSequence
1987Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1988  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1989  unsigned MethodQuals = Method->getTypeQualifiers();
1990  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1991
1992  // Set up the conversion sequence as a "bad" conversion, to allow us
1993  // to exit early.
1994  ImplicitConversionSequence ICS;
1995  ICS.Standard.setAsIdentityConversion();
1996  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1997
1998  // We need to have an object of class type.
1999  QualType FromType = From->getType();
2000  if (const PointerType *PT = FromType->getAs<PointerType>())
2001    FromType = PT->getPointeeType();
2002
2003  assert(FromType->isRecordType());
2004
2005  // The implicit object parmeter is has the type "reference to cv X",
2006  // where X is the class of which the function is a member
2007  // (C++ [over.match.funcs]p4). However, when finding an implicit
2008  // conversion sequence for the argument, we are not allowed to
2009  // create temporaries or perform user-defined conversions
2010  // (C++ [over.match.funcs]p5). We perform a simplified version of
2011  // reference binding here, that allows class rvalues to bind to
2012  // non-constant references.
2013
2014  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2015  // with the implicit object parameter (C++ [over.match.funcs]p5).
2016  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2017  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
2018      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
2019    return ICS;
2020
2021  // Check that we have either the same type or a derived type. It
2022  // affects the conversion rank.
2023  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2024  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2025    ICS.Standard.Second = ICK_Identity;
2026  else if (IsDerivedFrom(FromType, ClassType))
2027    ICS.Standard.Second = ICK_Derived_To_Base;
2028  else
2029    return ICS;
2030
2031  // Success. Mark this as a reference binding.
2032  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2033  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2034  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2035  ICS.Standard.ReferenceBinding = true;
2036  ICS.Standard.DirectBinding = true;
2037  ICS.Standard.RRefBinding = false;
2038  return ICS;
2039}
2040
2041/// PerformObjectArgumentInitialization - Perform initialization of
2042/// the implicit object parameter for the given Method with the given
2043/// expression.
2044bool
2045Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2046  QualType FromRecordType, DestType;
2047  QualType ImplicitParamRecordType  =
2048    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2049
2050  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2051    FromRecordType = PT->getPointeeType();
2052    DestType = Method->getThisType(Context);
2053  } else {
2054    FromRecordType = From->getType();
2055    DestType = ImplicitParamRecordType;
2056  }
2057
2058  ImplicitConversionSequence ICS
2059    = TryObjectArgumentInitialization(From, Method);
2060  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2061    return Diag(From->getSourceRange().getBegin(),
2062                diag::err_implicit_object_parameter_init)
2063       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2064
2065  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2066      CheckDerivedToBaseConversion(FromRecordType,
2067                                   ImplicitParamRecordType,
2068                                   From->getSourceRange().getBegin(),
2069                                   From->getSourceRange()))
2070    return true;
2071
2072  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2073                    /*isLvalue=*/true);
2074  return false;
2075}
2076
2077/// TryContextuallyConvertToBool - Attempt to contextually convert the
2078/// expression From to bool (C++0x [conv]p3).
2079ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2080  return TryImplicitConversion(From, Context.BoolTy,
2081                               // FIXME: Are these flags correct?
2082                               /*SuppressUserConversions=*/false,
2083                               /*AllowExplicit=*/true,
2084                               /*ForceRValue=*/false,
2085                               /*InOverloadResolution=*/false);
2086}
2087
2088/// PerformContextuallyConvertToBool - Perform a contextual conversion
2089/// of the expression From to bool (C++0x [conv]p3).
2090bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2091  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2092  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2093    return false;
2094
2095  return Diag(From->getSourceRange().getBegin(),
2096              diag::err_typecheck_bool_condition)
2097    << From->getType() << From->getSourceRange();
2098}
2099
2100/// AddOverloadCandidate - Adds the given function to the set of
2101/// candidate functions, using the given function call arguments.  If
2102/// @p SuppressUserConversions, then don't allow user-defined
2103/// conversions via constructors or conversion operators.
2104/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2105/// hacky way to implement the overloading rules for elidable copy
2106/// initialization in C++0x (C++0x 12.8p15).
2107void
2108Sema::AddOverloadCandidate(FunctionDecl *Function,
2109                           Expr **Args, unsigned NumArgs,
2110                           OverloadCandidateSet& CandidateSet,
2111                           bool SuppressUserConversions,
2112                           bool ForceRValue)
2113{
2114  const FunctionProtoType* Proto
2115    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2116  assert(Proto && "Functions without a prototype cannot be overloaded");
2117  assert(!isa<CXXConversionDecl>(Function) &&
2118         "Use AddConversionCandidate for conversion functions");
2119  assert(!Function->getDescribedFunctionTemplate() &&
2120         "Use AddTemplateOverloadCandidate for function templates");
2121
2122  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2123    if (!isa<CXXConstructorDecl>(Method)) {
2124      // If we get here, it's because we're calling a member function
2125      // that is named without a member access expression (e.g.,
2126      // "this->f") that was either written explicitly or created
2127      // implicitly. This can happen with a qualified call to a member
2128      // function, e.g., X::f(). We use a NULL object as the implied
2129      // object argument (C++ [over.call.func]p3).
2130      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2131                         SuppressUserConversions, ForceRValue);
2132      return;
2133    }
2134    // We treat a constructor like a non-member function, since its object
2135    // argument doesn't participate in overload resolution.
2136  }
2137
2138
2139  // Add this candidate
2140  CandidateSet.push_back(OverloadCandidate());
2141  OverloadCandidate& Candidate = CandidateSet.back();
2142  Candidate.Function = Function;
2143  Candidate.Viable = true;
2144  Candidate.IsSurrogate = false;
2145  Candidate.IgnoreObjectArgument = false;
2146
2147  unsigned NumArgsInProto = Proto->getNumArgs();
2148
2149  // (C++ 13.3.2p2): A candidate function having fewer than m
2150  // parameters is viable only if it has an ellipsis in its parameter
2151  // list (8.3.5).
2152  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2153    Candidate.Viable = false;
2154    return;
2155  }
2156
2157  // (C++ 13.3.2p2): A candidate function having more than m parameters
2158  // is viable only if the (m+1)st parameter has a default argument
2159  // (8.3.6). For the purposes of overload resolution, the
2160  // parameter list is truncated on the right, so that there are
2161  // exactly m parameters.
2162  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2163  if (NumArgs < MinRequiredArgs) {
2164    // Not enough arguments.
2165    Candidate.Viable = false;
2166    return;
2167  }
2168
2169  // Determine the implicit conversion sequences for each of the
2170  // arguments.
2171  Candidate.Conversions.resize(NumArgs);
2172  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2173    if (ArgIdx < NumArgsInProto) {
2174      // (C++ 13.3.2p3): for F to be a viable function, there shall
2175      // exist for each argument an implicit conversion sequence
2176      // (13.3.3.1) that converts that argument to the corresponding
2177      // parameter of F.
2178      QualType ParamType = Proto->getArgType(ArgIdx);
2179      Candidate.Conversions[ArgIdx]
2180        = TryCopyInitialization(Args[ArgIdx], ParamType,
2181                                SuppressUserConversions, ForceRValue,
2182                                /*InOverloadResolution=*/true);
2183      if (Candidate.Conversions[ArgIdx].ConversionKind
2184            == ImplicitConversionSequence::BadConversion) {
2185        Candidate.Viable = false;
2186        break;
2187      }
2188    } else {
2189      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2190      // argument for which there is no corresponding parameter is
2191      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2192      Candidate.Conversions[ArgIdx].ConversionKind
2193        = ImplicitConversionSequence::EllipsisConversion;
2194    }
2195  }
2196}
2197
2198/// \brief Add all of the function declarations in the given function set to
2199/// the overload canddiate set.
2200void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2201                                 Expr **Args, unsigned NumArgs,
2202                                 OverloadCandidateSet& CandidateSet,
2203                                 bool SuppressUserConversions) {
2204  for (FunctionSet::const_iterator F = Functions.begin(),
2205                                FEnd = Functions.end();
2206       F != FEnd; ++F) {
2207    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2208      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2209                           SuppressUserConversions);
2210    else
2211      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2212                                   /*FIXME: explicit args */false, 0, 0,
2213                                   Args, NumArgs, CandidateSet,
2214                                   SuppressUserConversions);
2215  }
2216}
2217
2218/// AddMethodCandidate - Adds the given C++ member function to the set
2219/// of candidate functions, using the given function call arguments
2220/// and the object argument (@c Object). For example, in a call
2221/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2222/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2223/// allow user-defined conversions via constructors or conversion
2224/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2225/// a slightly hacky way to implement the overloading rules for elidable copy
2226/// initialization in C++0x (C++0x 12.8p15).
2227void
2228Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2229                         Expr **Args, unsigned NumArgs,
2230                         OverloadCandidateSet& CandidateSet,
2231                         bool SuppressUserConversions, bool ForceRValue)
2232{
2233  const FunctionProtoType* Proto
2234    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2235  assert(Proto && "Methods without a prototype cannot be overloaded");
2236  assert(!isa<CXXConversionDecl>(Method) &&
2237         "Use AddConversionCandidate for conversion functions");
2238  assert(!isa<CXXConstructorDecl>(Method) &&
2239         "Use AddOverloadCandidate for constructors");
2240
2241  // Add this candidate
2242  CandidateSet.push_back(OverloadCandidate());
2243  OverloadCandidate& Candidate = CandidateSet.back();
2244  Candidate.Function = Method;
2245  Candidate.IsSurrogate = false;
2246  Candidate.IgnoreObjectArgument = false;
2247
2248  unsigned NumArgsInProto = Proto->getNumArgs();
2249
2250  // (C++ 13.3.2p2): A candidate function having fewer than m
2251  // parameters is viable only if it has an ellipsis in its parameter
2252  // list (8.3.5).
2253  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2254    Candidate.Viable = false;
2255    return;
2256  }
2257
2258  // (C++ 13.3.2p2): A candidate function having more than m parameters
2259  // is viable only if the (m+1)st parameter has a default argument
2260  // (8.3.6). For the purposes of overload resolution, the
2261  // parameter list is truncated on the right, so that there are
2262  // exactly m parameters.
2263  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2264  if (NumArgs < MinRequiredArgs) {
2265    // Not enough arguments.
2266    Candidate.Viable = false;
2267    return;
2268  }
2269
2270  Candidate.Viable = true;
2271  Candidate.Conversions.resize(NumArgs + 1);
2272
2273  if (Method->isStatic() || !Object)
2274    // The implicit object argument is ignored.
2275    Candidate.IgnoreObjectArgument = true;
2276  else {
2277    // Determine the implicit conversion sequence for the object
2278    // parameter.
2279    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2280    if (Candidate.Conversions[0].ConversionKind
2281          == ImplicitConversionSequence::BadConversion) {
2282      Candidate.Viable = false;
2283      return;
2284    }
2285  }
2286
2287  // Determine the implicit conversion sequences for each of the
2288  // arguments.
2289  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2290    if (ArgIdx < NumArgsInProto) {
2291      // (C++ 13.3.2p3): for F to be a viable function, there shall
2292      // exist for each argument an implicit conversion sequence
2293      // (13.3.3.1) that converts that argument to the corresponding
2294      // parameter of F.
2295      QualType ParamType = Proto->getArgType(ArgIdx);
2296      Candidate.Conversions[ArgIdx + 1]
2297        = TryCopyInitialization(Args[ArgIdx], ParamType,
2298                                SuppressUserConversions, ForceRValue,
2299                                /*InOverloadResolution=*/true);
2300      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2301            == ImplicitConversionSequence::BadConversion) {
2302        Candidate.Viable = false;
2303        break;
2304      }
2305    } else {
2306      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2307      // argument for which there is no corresponding parameter is
2308      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2309      Candidate.Conversions[ArgIdx + 1].ConversionKind
2310        = ImplicitConversionSequence::EllipsisConversion;
2311    }
2312  }
2313}
2314
2315/// \brief Add a C++ member function template as a candidate to the candidate
2316/// set, using template argument deduction to produce an appropriate member
2317/// function template specialization.
2318void
2319Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2320                                 bool HasExplicitTemplateArgs,
2321                                 const TemplateArgument *ExplicitTemplateArgs,
2322                                 unsigned NumExplicitTemplateArgs,
2323                                 Expr *Object, Expr **Args, unsigned NumArgs,
2324                                 OverloadCandidateSet& CandidateSet,
2325                                 bool SuppressUserConversions,
2326                                 bool ForceRValue) {
2327  // C++ [over.match.funcs]p7:
2328  //   In each case where a candidate is a function template, candidate
2329  //   function template specializations are generated using template argument
2330  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2331  //   candidate functions in the usual way.113) A given name can refer to one
2332  //   or more function templates and also to a set of overloaded non-template
2333  //   functions. In such a case, the candidate functions generated from each
2334  //   function template are combined with the set of non-template candidate
2335  //   functions.
2336  TemplateDeductionInfo Info(Context);
2337  FunctionDecl *Specialization = 0;
2338  if (TemplateDeductionResult Result
2339      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2340                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2341                                Args, NumArgs, Specialization, Info)) {
2342        // FIXME: Record what happened with template argument deduction, so
2343        // that we can give the user a beautiful diagnostic.
2344        (void)Result;
2345        return;
2346      }
2347
2348  // Add the function template specialization produced by template argument
2349  // deduction as a candidate.
2350  assert(Specialization && "Missing member function template specialization?");
2351  assert(isa<CXXMethodDecl>(Specialization) &&
2352         "Specialization is not a member function?");
2353  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2354                     CandidateSet, SuppressUserConversions, ForceRValue);
2355}
2356
2357/// \brief Add a C++ function template specialization as a candidate
2358/// in the candidate set, using template argument deduction to produce
2359/// an appropriate function template specialization.
2360void
2361Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2362                                   bool HasExplicitTemplateArgs,
2363                                 const TemplateArgument *ExplicitTemplateArgs,
2364                                   unsigned NumExplicitTemplateArgs,
2365                                   Expr **Args, unsigned NumArgs,
2366                                   OverloadCandidateSet& CandidateSet,
2367                                   bool SuppressUserConversions,
2368                                   bool ForceRValue) {
2369  // C++ [over.match.funcs]p7:
2370  //   In each case where a candidate is a function template, candidate
2371  //   function template specializations are generated using template argument
2372  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2373  //   candidate functions in the usual way.113) A given name can refer to one
2374  //   or more function templates and also to a set of overloaded non-template
2375  //   functions. In such a case, the candidate functions generated from each
2376  //   function template are combined with the set of non-template candidate
2377  //   functions.
2378  TemplateDeductionInfo Info(Context);
2379  FunctionDecl *Specialization = 0;
2380  if (TemplateDeductionResult Result
2381        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2382                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2383                                  Args, NumArgs, Specialization, Info)) {
2384    // FIXME: Record what happened with template argument deduction, so
2385    // that we can give the user a beautiful diagnostic.
2386    (void)Result;
2387    return;
2388  }
2389
2390  // Add the function template specialization produced by template argument
2391  // deduction as a candidate.
2392  assert(Specialization && "Missing function template specialization?");
2393  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2394                       SuppressUserConversions, ForceRValue);
2395}
2396
2397/// AddConversionCandidate - Add a C++ conversion function as a
2398/// candidate in the candidate set (C++ [over.match.conv],
2399/// C++ [over.match.copy]). From is the expression we're converting from,
2400/// and ToType is the type that we're eventually trying to convert to
2401/// (which may or may not be the same type as the type that the
2402/// conversion function produces).
2403void
2404Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2405                             Expr *From, QualType ToType,
2406                             OverloadCandidateSet& CandidateSet) {
2407  assert(!Conversion->getDescribedFunctionTemplate() &&
2408         "Conversion function templates use AddTemplateConversionCandidate");
2409
2410  // Add this candidate
2411  CandidateSet.push_back(OverloadCandidate());
2412  OverloadCandidate& Candidate = CandidateSet.back();
2413  Candidate.Function = Conversion;
2414  Candidate.IsSurrogate = false;
2415  Candidate.IgnoreObjectArgument = false;
2416  Candidate.FinalConversion.setAsIdentityConversion();
2417  Candidate.FinalConversion.FromTypePtr
2418    = Conversion->getConversionType().getAsOpaquePtr();
2419  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2420
2421  // Determine the implicit conversion sequence for the implicit
2422  // object parameter.
2423  Candidate.Viable = true;
2424  Candidate.Conversions.resize(1);
2425  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2426
2427  if (Candidate.Conversions[0].ConversionKind
2428      == ImplicitConversionSequence::BadConversion) {
2429    Candidate.Viable = false;
2430    return;
2431  }
2432
2433  // To determine what the conversion from the result of calling the
2434  // conversion function to the type we're eventually trying to
2435  // convert to (ToType), we need to synthesize a call to the
2436  // conversion function and attempt copy initialization from it. This
2437  // makes sure that we get the right semantics with respect to
2438  // lvalues/rvalues and the type. Fortunately, we can allocate this
2439  // call on the stack and we don't need its arguments to be
2440  // well-formed.
2441  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2442                            SourceLocation());
2443  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2444                                CastExpr::CK_Unknown,
2445                                &ConversionRef, false);
2446
2447  // Note that it is safe to allocate CallExpr on the stack here because
2448  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2449  // allocator).
2450  CallExpr Call(Context, &ConversionFn, 0, 0,
2451                Conversion->getConversionType().getNonReferenceType(),
2452                SourceLocation());
2453  ImplicitConversionSequence ICS =
2454    TryCopyInitialization(&Call, ToType,
2455                          /*SuppressUserConversions=*/true,
2456                          /*ForceRValue=*/false,
2457                          /*InOverloadResolution=*/false);
2458
2459  switch (ICS.ConversionKind) {
2460  case ImplicitConversionSequence::StandardConversion:
2461    Candidate.FinalConversion = ICS.Standard;
2462    break;
2463
2464  case ImplicitConversionSequence::BadConversion:
2465    Candidate.Viable = false;
2466    break;
2467
2468  default:
2469    assert(false &&
2470           "Can only end up with a standard conversion sequence or failure");
2471  }
2472}
2473
2474/// \brief Adds a conversion function template specialization
2475/// candidate to the overload set, using template argument deduction
2476/// to deduce the template arguments of the conversion function
2477/// template from the type that we are converting to (C++
2478/// [temp.deduct.conv]).
2479void
2480Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2481                                     Expr *From, QualType ToType,
2482                                     OverloadCandidateSet &CandidateSet) {
2483  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2484         "Only conversion function templates permitted here");
2485
2486  TemplateDeductionInfo Info(Context);
2487  CXXConversionDecl *Specialization = 0;
2488  if (TemplateDeductionResult Result
2489        = DeduceTemplateArguments(FunctionTemplate, ToType,
2490                                  Specialization, Info)) {
2491    // FIXME: Record what happened with template argument deduction, so
2492    // that we can give the user a beautiful diagnostic.
2493    (void)Result;
2494    return;
2495  }
2496
2497  // Add the conversion function template specialization produced by
2498  // template argument deduction as a candidate.
2499  assert(Specialization && "Missing function template specialization?");
2500  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2501}
2502
2503/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2504/// converts the given @c Object to a function pointer via the
2505/// conversion function @c Conversion, and then attempts to call it
2506/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2507/// the type of function that we'll eventually be calling.
2508void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2509                                 const FunctionProtoType *Proto,
2510                                 Expr *Object, Expr **Args, unsigned NumArgs,
2511                                 OverloadCandidateSet& CandidateSet) {
2512  CandidateSet.push_back(OverloadCandidate());
2513  OverloadCandidate& Candidate = CandidateSet.back();
2514  Candidate.Function = 0;
2515  Candidate.Surrogate = Conversion;
2516  Candidate.Viable = true;
2517  Candidate.IsSurrogate = true;
2518  Candidate.IgnoreObjectArgument = false;
2519  Candidate.Conversions.resize(NumArgs + 1);
2520
2521  // Determine the implicit conversion sequence for the implicit
2522  // object parameter.
2523  ImplicitConversionSequence ObjectInit
2524    = TryObjectArgumentInitialization(Object, Conversion);
2525  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2526    Candidate.Viable = false;
2527    return;
2528  }
2529
2530  // The first conversion is actually a user-defined conversion whose
2531  // first conversion is ObjectInit's standard conversion (which is
2532  // effectively a reference binding). Record it as such.
2533  Candidate.Conversions[0].ConversionKind
2534    = ImplicitConversionSequence::UserDefinedConversion;
2535  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2536  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2537  Candidate.Conversions[0].UserDefined.After
2538    = Candidate.Conversions[0].UserDefined.Before;
2539  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2540
2541  // Find the
2542  unsigned NumArgsInProto = Proto->getNumArgs();
2543
2544  // (C++ 13.3.2p2): A candidate function having fewer than m
2545  // parameters is viable only if it has an ellipsis in its parameter
2546  // list (8.3.5).
2547  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2548    Candidate.Viable = false;
2549    return;
2550  }
2551
2552  // Function types don't have any default arguments, so just check if
2553  // we have enough arguments.
2554  if (NumArgs < NumArgsInProto) {
2555    // Not enough arguments.
2556    Candidate.Viable = false;
2557    return;
2558  }
2559
2560  // Determine the implicit conversion sequences for each of the
2561  // arguments.
2562  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2563    if (ArgIdx < NumArgsInProto) {
2564      // (C++ 13.3.2p3): for F to be a viable function, there shall
2565      // exist for each argument an implicit conversion sequence
2566      // (13.3.3.1) that converts that argument to the corresponding
2567      // parameter of F.
2568      QualType ParamType = Proto->getArgType(ArgIdx);
2569      Candidate.Conversions[ArgIdx + 1]
2570        = TryCopyInitialization(Args[ArgIdx], ParamType,
2571                                /*SuppressUserConversions=*/false,
2572                                /*ForceRValue=*/false,
2573                                /*InOverloadResolution=*/false);
2574      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2575            == ImplicitConversionSequence::BadConversion) {
2576        Candidate.Viable = false;
2577        break;
2578      }
2579    } else {
2580      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2581      // argument for which there is no corresponding parameter is
2582      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2583      Candidate.Conversions[ArgIdx + 1].ConversionKind
2584        = ImplicitConversionSequence::EllipsisConversion;
2585    }
2586  }
2587}
2588
2589// FIXME: This will eventually be removed, once we've migrated all of the
2590// operator overloading logic over to the scheme used by binary operators, which
2591// works for template instantiation.
2592void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2593                                 SourceLocation OpLoc,
2594                                 Expr **Args, unsigned NumArgs,
2595                                 OverloadCandidateSet& CandidateSet,
2596                                 SourceRange OpRange) {
2597
2598  FunctionSet Functions;
2599
2600  QualType T1 = Args[0]->getType();
2601  QualType T2;
2602  if (NumArgs > 1)
2603    T2 = Args[1]->getType();
2604
2605  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2606  if (S)
2607    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2608  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2609  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2610  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2611  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2612}
2613
2614/// \brief Add overload candidates for overloaded operators that are
2615/// member functions.
2616///
2617/// Add the overloaded operator candidates that are member functions
2618/// for the operator Op that was used in an operator expression such
2619/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2620/// CandidateSet will store the added overload candidates. (C++
2621/// [over.match.oper]).
2622void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2623                                       SourceLocation OpLoc,
2624                                       Expr **Args, unsigned NumArgs,
2625                                       OverloadCandidateSet& CandidateSet,
2626                                       SourceRange OpRange) {
2627  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2628
2629  // C++ [over.match.oper]p3:
2630  //   For a unary operator @ with an operand of a type whose
2631  //   cv-unqualified version is T1, and for a binary operator @ with
2632  //   a left operand of a type whose cv-unqualified version is T1 and
2633  //   a right operand of a type whose cv-unqualified version is T2,
2634  //   three sets of candidate functions, designated member
2635  //   candidates, non-member candidates and built-in candidates, are
2636  //   constructed as follows:
2637  QualType T1 = Args[0]->getType();
2638  QualType T2;
2639  if (NumArgs > 1)
2640    T2 = Args[1]->getType();
2641
2642  //     -- If T1 is a class type, the set of member candidates is the
2643  //        result of the qualified lookup of T1::operator@
2644  //        (13.3.1.1.1); otherwise, the set of member candidates is
2645  //        empty.
2646  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2647    // Complete the type if it can be completed. Otherwise, we're done.
2648    if (RequireCompleteType(OpLoc, T1, PartialDiagnostic(0)))
2649      return;
2650
2651    LookupResult Operators = LookupQualifiedName(T1Rec->getDecl(), OpName,
2652                                                 LookupOrdinaryName, false);
2653    for (LookupResult::iterator Oper = Operators.begin(),
2654                             OperEnd = Operators.end();
2655         Oper != OperEnd;
2656         ++Oper)
2657      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2658                         Args+1, NumArgs - 1, CandidateSet,
2659                         /*SuppressUserConversions=*/false);
2660  }
2661}
2662
2663/// AddBuiltinCandidate - Add a candidate for a built-in
2664/// operator. ResultTy and ParamTys are the result and parameter types
2665/// of the built-in candidate, respectively. Args and NumArgs are the
2666/// arguments being passed to the candidate. IsAssignmentOperator
2667/// should be true when this built-in candidate is an assignment
2668/// operator. NumContextualBoolArguments is the number of arguments
2669/// (at the beginning of the argument list) that will be contextually
2670/// converted to bool.
2671void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2672                               Expr **Args, unsigned NumArgs,
2673                               OverloadCandidateSet& CandidateSet,
2674                               bool IsAssignmentOperator,
2675                               unsigned NumContextualBoolArguments) {
2676  // Add this candidate
2677  CandidateSet.push_back(OverloadCandidate());
2678  OverloadCandidate& Candidate = CandidateSet.back();
2679  Candidate.Function = 0;
2680  Candidate.IsSurrogate = false;
2681  Candidate.IgnoreObjectArgument = false;
2682  Candidate.BuiltinTypes.ResultTy = ResultTy;
2683  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2684    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2685
2686  // Determine the implicit conversion sequences for each of the
2687  // arguments.
2688  Candidate.Viable = true;
2689  Candidate.Conversions.resize(NumArgs);
2690  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2691    // C++ [over.match.oper]p4:
2692    //   For the built-in assignment operators, conversions of the
2693    //   left operand are restricted as follows:
2694    //     -- no temporaries are introduced to hold the left operand, and
2695    //     -- no user-defined conversions are applied to the left
2696    //        operand to achieve a type match with the left-most
2697    //        parameter of a built-in candidate.
2698    //
2699    // We block these conversions by turning off user-defined
2700    // conversions, since that is the only way that initialization of
2701    // a reference to a non-class type can occur from something that
2702    // is not of the same type.
2703    if (ArgIdx < NumContextualBoolArguments) {
2704      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2705             "Contextual conversion to bool requires bool type");
2706      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2707    } else {
2708      Candidate.Conversions[ArgIdx]
2709        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2710                                ArgIdx == 0 && IsAssignmentOperator,
2711                                /*ForceRValue=*/false,
2712                                /*InOverloadResolution=*/false);
2713    }
2714    if (Candidate.Conversions[ArgIdx].ConversionKind
2715        == ImplicitConversionSequence::BadConversion) {
2716      Candidate.Viable = false;
2717      break;
2718    }
2719  }
2720}
2721
2722/// BuiltinCandidateTypeSet - A set of types that will be used for the
2723/// candidate operator functions for built-in operators (C++
2724/// [over.built]). The types are separated into pointer types and
2725/// enumeration types.
2726class BuiltinCandidateTypeSet  {
2727  /// TypeSet - A set of types.
2728  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2729
2730  /// PointerTypes - The set of pointer types that will be used in the
2731  /// built-in candidates.
2732  TypeSet PointerTypes;
2733
2734  /// MemberPointerTypes - The set of member pointer types that will be
2735  /// used in the built-in candidates.
2736  TypeSet MemberPointerTypes;
2737
2738  /// EnumerationTypes - The set of enumeration types that will be
2739  /// used in the built-in candidates.
2740  TypeSet EnumerationTypes;
2741
2742  /// Sema - The semantic analysis instance where we are building the
2743  /// candidate type set.
2744  Sema &SemaRef;
2745
2746  /// Context - The AST context in which we will build the type sets.
2747  ASTContext &Context;
2748
2749  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2750  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2751
2752public:
2753  /// iterator - Iterates through the types that are part of the set.
2754  typedef TypeSet::iterator iterator;
2755
2756  BuiltinCandidateTypeSet(Sema &SemaRef)
2757    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2758
2759  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2760                             bool AllowExplicitConversions);
2761
2762  /// pointer_begin - First pointer type found;
2763  iterator pointer_begin() { return PointerTypes.begin(); }
2764
2765  /// pointer_end - Past the last pointer type found;
2766  iterator pointer_end() { return PointerTypes.end(); }
2767
2768  /// member_pointer_begin - First member pointer type found;
2769  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2770
2771  /// member_pointer_end - Past the last member pointer type found;
2772  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2773
2774  /// enumeration_begin - First enumeration type found;
2775  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2776
2777  /// enumeration_end - Past the last enumeration type found;
2778  iterator enumeration_end() { return EnumerationTypes.end(); }
2779};
2780
2781/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2782/// the set of pointer types along with any more-qualified variants of
2783/// that type. For example, if @p Ty is "int const *", this routine
2784/// will add "int const *", "int const volatile *", "int const
2785/// restrict *", and "int const volatile restrict *" to the set of
2786/// pointer types. Returns true if the add of @p Ty itself succeeded,
2787/// false otherwise.
2788bool
2789BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2790  // Insert this type.
2791  if (!PointerTypes.insert(Ty))
2792    return false;
2793
2794  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2795    QualType PointeeTy = PointerTy->getPointeeType();
2796    // FIXME: Optimize this so that we don't keep trying to add the same types.
2797
2798    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2799    // pointer conversions that don't cast away constness?
2800    if (!PointeeTy.isConstQualified())
2801      AddPointerWithMoreQualifiedTypeVariants
2802        (Context.getPointerType(PointeeTy.withConst()));
2803    if (!PointeeTy.isVolatileQualified())
2804      AddPointerWithMoreQualifiedTypeVariants
2805        (Context.getPointerType(PointeeTy.withVolatile()));
2806    if (!PointeeTy.isRestrictQualified())
2807      AddPointerWithMoreQualifiedTypeVariants
2808        (Context.getPointerType(PointeeTy.withRestrict()));
2809  }
2810
2811  return true;
2812}
2813
2814/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2815/// to the set of pointer types along with any more-qualified variants of
2816/// that type. For example, if @p Ty is "int const *", this routine
2817/// will add "int const *", "int const volatile *", "int const
2818/// restrict *", and "int const volatile restrict *" to the set of
2819/// pointer types. Returns true if the add of @p Ty itself succeeded,
2820/// false otherwise.
2821bool
2822BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2823    QualType Ty) {
2824  // Insert this type.
2825  if (!MemberPointerTypes.insert(Ty))
2826    return false;
2827
2828  if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
2829    QualType PointeeTy = PointerTy->getPointeeType();
2830    const Type *ClassTy = PointerTy->getClass();
2831    // FIXME: Optimize this so that we don't keep trying to add the same types.
2832
2833    if (!PointeeTy.isConstQualified())
2834      AddMemberPointerWithMoreQualifiedTypeVariants
2835        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2836    if (!PointeeTy.isVolatileQualified())
2837      AddMemberPointerWithMoreQualifiedTypeVariants
2838        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2839    if (!PointeeTy.isRestrictQualified())
2840      AddMemberPointerWithMoreQualifiedTypeVariants
2841        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2842  }
2843
2844  return true;
2845}
2846
2847/// AddTypesConvertedFrom - Add each of the types to which the type @p
2848/// Ty can be implicit converted to the given set of @p Types. We're
2849/// primarily interested in pointer types and enumeration types. We also
2850/// take member pointer types, for the conditional operator.
2851/// AllowUserConversions is true if we should look at the conversion
2852/// functions of a class type, and AllowExplicitConversions if we
2853/// should also include the explicit conversion functions of a class
2854/// type.
2855void
2856BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2857                                               bool AllowUserConversions,
2858                                               bool AllowExplicitConversions) {
2859  // Only deal with canonical types.
2860  Ty = Context.getCanonicalType(Ty);
2861
2862  // Look through reference types; they aren't part of the type of an
2863  // expression for the purposes of conversions.
2864  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2865    Ty = RefTy->getPointeeType();
2866
2867  // We don't care about qualifiers on the type.
2868  Ty = Ty.getUnqualifiedType();
2869
2870  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2871    QualType PointeeTy = PointerTy->getPointeeType();
2872
2873    // Insert our type, and its more-qualified variants, into the set
2874    // of types.
2875    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2876      return;
2877
2878    // Add 'cv void*' to our set of types.
2879    if (!Ty->isVoidType()) {
2880      QualType QualVoid
2881        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2882      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2883    }
2884
2885    // If this is a pointer to a class type, add pointers to its bases
2886    // (with the same level of cv-qualification as the original
2887    // derived class, of course).
2888    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
2889      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2890      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2891           Base != ClassDecl->bases_end(); ++Base) {
2892        QualType BaseTy = Context.getCanonicalType(Base->getType());
2893        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2894
2895        // Add the pointer type, recursively, so that we get all of
2896        // the indirect base classes, too.
2897        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2898      }
2899    }
2900  } else if (Ty->isMemberPointerType()) {
2901    // Member pointers are far easier, since the pointee can't be converted.
2902    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2903      return;
2904  } else if (Ty->isEnumeralType()) {
2905    EnumerationTypes.insert(Ty);
2906  } else if (AllowUserConversions) {
2907    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
2908      if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) {
2909        // No conversion functions in incomplete types.
2910        return;
2911      }
2912
2913      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2914      // FIXME: Visit conversion functions in the base classes, too.
2915      OverloadedFunctionDecl *Conversions
2916        = ClassDecl->getConversionFunctions();
2917      for (OverloadedFunctionDecl::function_iterator Func
2918             = Conversions->function_begin();
2919           Func != Conversions->function_end(); ++Func) {
2920        CXXConversionDecl *Conv;
2921        FunctionTemplateDecl *ConvTemplate;
2922        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
2923
2924        // Skip conversion function templates; they don't tell us anything
2925        // about which builtin types we can convert to.
2926        if (ConvTemplate)
2927          continue;
2928
2929        if (AllowExplicitConversions || !Conv->isExplicit())
2930          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2931      }
2932    }
2933  }
2934}
2935
2936/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
2937/// the volatile- and non-volatile-qualified assignment operators for the
2938/// given type to the candidate set.
2939static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
2940                                                   QualType T,
2941                                                   Expr **Args,
2942                                                   unsigned NumArgs,
2943                                    OverloadCandidateSet &CandidateSet) {
2944  QualType ParamTypes[2];
2945
2946  // T& operator=(T&, T)
2947  ParamTypes[0] = S.Context.getLValueReferenceType(T);
2948  ParamTypes[1] = T;
2949  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2950                        /*IsAssignmentOperator=*/true);
2951
2952  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
2953    // volatile T& operator=(volatile T&, T)
2954    ParamTypes[0] = S.Context.getLValueReferenceType(T.withVolatile());
2955    ParamTypes[1] = T;
2956    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2957                          /*IsAssignmentOperator=*/true);
2958  }
2959}
2960
2961/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2962/// operator overloads to the candidate set (C++ [over.built]), based
2963/// on the operator @p Op and the arguments given. For example, if the
2964/// operator is a binary '+', this routine might add "int
2965/// operator+(int, int)" to cover integer addition.
2966void
2967Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2968                                   Expr **Args, unsigned NumArgs,
2969                                   OverloadCandidateSet& CandidateSet) {
2970  // The set of "promoted arithmetic types", which are the arithmetic
2971  // types are that preserved by promotion (C++ [over.built]p2). Note
2972  // that the first few of these types are the promoted integral
2973  // types; these types need to be first.
2974  // FIXME: What about complex?
2975  const unsigned FirstIntegralType = 0;
2976  const unsigned LastIntegralType = 13;
2977  const unsigned FirstPromotedIntegralType = 7,
2978                 LastPromotedIntegralType = 13;
2979  const unsigned FirstPromotedArithmeticType = 7,
2980                 LastPromotedArithmeticType = 16;
2981  const unsigned NumArithmeticTypes = 16;
2982  QualType ArithmeticTypes[NumArithmeticTypes] = {
2983    Context.BoolTy, Context.CharTy, Context.WCharTy,
2984// FIXME:   Context.Char16Ty, Context.Char32Ty,
2985    Context.SignedCharTy, Context.ShortTy,
2986    Context.UnsignedCharTy, Context.UnsignedShortTy,
2987    Context.IntTy, Context.LongTy, Context.LongLongTy,
2988    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2989    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2990  };
2991
2992  // Find all of the types that the arguments can convert to, but only
2993  // if the operator we're looking at has built-in operator candidates
2994  // that make use of these types.
2995  BuiltinCandidateTypeSet CandidateTypes(*this);
2996  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2997      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2998      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2999      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3000      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3001      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3002    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3003      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3004                                           true,
3005                                           (Op == OO_Exclaim ||
3006                                            Op == OO_AmpAmp ||
3007                                            Op == OO_PipePipe));
3008  }
3009
3010  bool isComparison = false;
3011  switch (Op) {
3012  case OO_None:
3013  case NUM_OVERLOADED_OPERATORS:
3014    assert(false && "Expected an overloaded operator");
3015    break;
3016
3017  case OO_Star: // '*' is either unary or binary
3018    if (NumArgs == 1)
3019      goto UnaryStar;
3020    else
3021      goto BinaryStar;
3022    break;
3023
3024  case OO_Plus: // '+' is either unary or binary
3025    if (NumArgs == 1)
3026      goto UnaryPlus;
3027    else
3028      goto BinaryPlus;
3029    break;
3030
3031  case OO_Minus: // '-' is either unary or binary
3032    if (NumArgs == 1)
3033      goto UnaryMinus;
3034    else
3035      goto BinaryMinus;
3036    break;
3037
3038  case OO_Amp: // '&' is either unary or binary
3039    if (NumArgs == 1)
3040      goto UnaryAmp;
3041    else
3042      goto BinaryAmp;
3043
3044  case OO_PlusPlus:
3045  case OO_MinusMinus:
3046    // C++ [over.built]p3:
3047    //
3048    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3049    //   is either volatile or empty, there exist candidate operator
3050    //   functions of the form
3051    //
3052    //       VQ T&      operator++(VQ T&);
3053    //       T          operator++(VQ T&, int);
3054    //
3055    // C++ [over.built]p4:
3056    //
3057    //   For every pair (T, VQ), where T is an arithmetic type other
3058    //   than bool, and VQ is either volatile or empty, there exist
3059    //   candidate operator functions of the form
3060    //
3061    //       VQ T&      operator--(VQ T&);
3062    //       T          operator--(VQ T&, int);
3063    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3064         Arith < NumArithmeticTypes; ++Arith) {
3065      QualType ArithTy = ArithmeticTypes[Arith];
3066      QualType ParamTypes[2]
3067        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3068
3069      // Non-volatile version.
3070      if (NumArgs == 1)
3071        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3072      else
3073        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3074
3075      // Volatile version
3076      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
3077      if (NumArgs == 1)
3078        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3079      else
3080        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3081    }
3082
3083    // C++ [over.built]p5:
3084    //
3085    //   For every pair (T, VQ), where T is a cv-qualified or
3086    //   cv-unqualified object type, and VQ is either volatile or
3087    //   empty, there exist candidate operator functions of the form
3088    //
3089    //       T*VQ&      operator++(T*VQ&);
3090    //       T*VQ&      operator--(T*VQ&);
3091    //       T*         operator++(T*VQ&, int);
3092    //       T*         operator--(T*VQ&, int);
3093    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3094         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3095      // Skip pointer types that aren't pointers to object types.
3096      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3097        continue;
3098
3099      QualType ParamTypes[2] = {
3100        Context.getLValueReferenceType(*Ptr), Context.IntTy
3101      };
3102
3103      // Without volatile
3104      if (NumArgs == 1)
3105        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3106      else
3107        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3108
3109      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3110        // With volatile
3111        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3112        if (NumArgs == 1)
3113          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3114        else
3115          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3116      }
3117    }
3118    break;
3119
3120  UnaryStar:
3121    // C++ [over.built]p6:
3122    //   For every cv-qualified or cv-unqualified object type T, there
3123    //   exist candidate operator functions of the form
3124    //
3125    //       T&         operator*(T*);
3126    //
3127    // C++ [over.built]p7:
3128    //   For every function type T, there exist candidate operator
3129    //   functions of the form
3130    //       T&         operator*(T*);
3131    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3132         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3133      QualType ParamTy = *Ptr;
3134      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3135      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3136                          &ParamTy, Args, 1, CandidateSet);
3137    }
3138    break;
3139
3140  UnaryPlus:
3141    // C++ [over.built]p8:
3142    //   For every type T, there exist candidate operator functions of
3143    //   the form
3144    //
3145    //       T*         operator+(T*);
3146    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3147         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3148      QualType ParamTy = *Ptr;
3149      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3150    }
3151
3152    // Fall through
3153
3154  UnaryMinus:
3155    // C++ [over.built]p9:
3156    //  For every promoted arithmetic type T, there exist candidate
3157    //  operator functions of the form
3158    //
3159    //       T         operator+(T);
3160    //       T         operator-(T);
3161    for (unsigned Arith = FirstPromotedArithmeticType;
3162         Arith < LastPromotedArithmeticType; ++Arith) {
3163      QualType ArithTy = ArithmeticTypes[Arith];
3164      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3165    }
3166    break;
3167
3168  case OO_Tilde:
3169    // C++ [over.built]p10:
3170    //   For every promoted integral type T, there exist candidate
3171    //   operator functions of the form
3172    //
3173    //        T         operator~(T);
3174    for (unsigned Int = FirstPromotedIntegralType;
3175         Int < LastPromotedIntegralType; ++Int) {
3176      QualType IntTy = ArithmeticTypes[Int];
3177      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3178    }
3179    break;
3180
3181  case OO_New:
3182  case OO_Delete:
3183  case OO_Array_New:
3184  case OO_Array_Delete:
3185  case OO_Call:
3186    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3187    break;
3188
3189  case OO_Comma:
3190  UnaryAmp:
3191  case OO_Arrow:
3192    // C++ [over.match.oper]p3:
3193    //   -- For the operator ',', the unary operator '&', or the
3194    //      operator '->', the built-in candidates set is empty.
3195    break;
3196
3197  case OO_EqualEqual:
3198  case OO_ExclaimEqual:
3199    // C++ [over.match.oper]p16:
3200    //   For every pointer to member type T, there exist candidate operator
3201    //   functions of the form
3202    //
3203    //        bool operator==(T,T);
3204    //        bool operator!=(T,T);
3205    for (BuiltinCandidateTypeSet::iterator
3206           MemPtr = CandidateTypes.member_pointer_begin(),
3207           MemPtrEnd = CandidateTypes.member_pointer_end();
3208         MemPtr != MemPtrEnd;
3209         ++MemPtr) {
3210      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3211      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3212    }
3213
3214    // Fall through
3215
3216  case OO_Less:
3217  case OO_Greater:
3218  case OO_LessEqual:
3219  case OO_GreaterEqual:
3220    // C++ [over.built]p15:
3221    //
3222    //   For every pointer or enumeration type T, there exist
3223    //   candidate operator functions of the form
3224    //
3225    //        bool       operator<(T, T);
3226    //        bool       operator>(T, T);
3227    //        bool       operator<=(T, T);
3228    //        bool       operator>=(T, T);
3229    //        bool       operator==(T, T);
3230    //        bool       operator!=(T, T);
3231    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3232         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3233      QualType ParamTypes[2] = { *Ptr, *Ptr };
3234      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3235    }
3236    for (BuiltinCandidateTypeSet::iterator Enum
3237           = CandidateTypes.enumeration_begin();
3238         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3239      QualType ParamTypes[2] = { *Enum, *Enum };
3240      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3241    }
3242
3243    // Fall through.
3244    isComparison = true;
3245
3246  BinaryPlus:
3247  BinaryMinus:
3248    if (!isComparison) {
3249      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3250
3251      // C++ [over.built]p13:
3252      //
3253      //   For every cv-qualified or cv-unqualified object type T
3254      //   there exist candidate operator functions of the form
3255      //
3256      //      T*         operator+(T*, ptrdiff_t);
3257      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3258      //      T*         operator-(T*, ptrdiff_t);
3259      //      T*         operator+(ptrdiff_t, T*);
3260      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3261      //
3262      // C++ [over.built]p14:
3263      //
3264      //   For every T, where T is a pointer to object type, there
3265      //   exist candidate operator functions of the form
3266      //
3267      //      ptrdiff_t  operator-(T, T);
3268      for (BuiltinCandidateTypeSet::iterator Ptr
3269             = CandidateTypes.pointer_begin();
3270           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3271        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3272
3273        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3274        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3275
3276        if (Op == OO_Plus) {
3277          // T* operator+(ptrdiff_t, T*);
3278          ParamTypes[0] = ParamTypes[1];
3279          ParamTypes[1] = *Ptr;
3280          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3281        } else {
3282          // ptrdiff_t operator-(T, T);
3283          ParamTypes[1] = *Ptr;
3284          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3285                              Args, 2, CandidateSet);
3286        }
3287      }
3288    }
3289    // Fall through
3290
3291  case OO_Slash:
3292  BinaryStar:
3293  Conditional:
3294    // C++ [over.built]p12:
3295    //
3296    //   For every pair of promoted arithmetic types L and R, there
3297    //   exist candidate operator functions of the form
3298    //
3299    //        LR         operator*(L, R);
3300    //        LR         operator/(L, R);
3301    //        LR         operator+(L, R);
3302    //        LR         operator-(L, R);
3303    //        bool       operator<(L, R);
3304    //        bool       operator>(L, R);
3305    //        bool       operator<=(L, R);
3306    //        bool       operator>=(L, R);
3307    //        bool       operator==(L, R);
3308    //        bool       operator!=(L, R);
3309    //
3310    //   where LR is the result of the usual arithmetic conversions
3311    //   between types L and R.
3312    //
3313    // C++ [over.built]p24:
3314    //
3315    //   For every pair of promoted arithmetic types L and R, there exist
3316    //   candidate operator functions of the form
3317    //
3318    //        LR       operator?(bool, L, R);
3319    //
3320    //   where LR is the result of the usual arithmetic conversions
3321    //   between types L and R.
3322    // Our candidates ignore the first parameter.
3323    for (unsigned Left = FirstPromotedArithmeticType;
3324         Left < LastPromotedArithmeticType; ++Left) {
3325      for (unsigned Right = FirstPromotedArithmeticType;
3326           Right < LastPromotedArithmeticType; ++Right) {
3327        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3328        QualType Result
3329          = isComparison
3330          ? Context.BoolTy
3331          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3332        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3333      }
3334    }
3335    break;
3336
3337  case OO_Percent:
3338  BinaryAmp:
3339  case OO_Caret:
3340  case OO_Pipe:
3341  case OO_LessLess:
3342  case OO_GreaterGreater:
3343    // C++ [over.built]p17:
3344    //
3345    //   For every pair of promoted integral types L and R, there
3346    //   exist candidate operator functions of the form
3347    //
3348    //      LR         operator%(L, R);
3349    //      LR         operator&(L, R);
3350    //      LR         operator^(L, R);
3351    //      LR         operator|(L, R);
3352    //      L          operator<<(L, R);
3353    //      L          operator>>(L, R);
3354    //
3355    //   where LR is the result of the usual arithmetic conversions
3356    //   between types L and R.
3357    for (unsigned Left = FirstPromotedIntegralType;
3358         Left < LastPromotedIntegralType; ++Left) {
3359      for (unsigned Right = FirstPromotedIntegralType;
3360           Right < LastPromotedIntegralType; ++Right) {
3361        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3362        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3363            ? LandR[0]
3364            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3365        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3366      }
3367    }
3368    break;
3369
3370  case OO_Equal:
3371    // C++ [over.built]p20:
3372    //
3373    //   For every pair (T, VQ), where T is an enumeration or
3374    //   pointer to member type and VQ is either volatile or
3375    //   empty, there exist candidate operator functions of the form
3376    //
3377    //        VQ T&      operator=(VQ T&, T);
3378    for (BuiltinCandidateTypeSet::iterator
3379           Enum = CandidateTypes.enumeration_begin(),
3380           EnumEnd = CandidateTypes.enumeration_end();
3381         Enum != EnumEnd; ++Enum)
3382      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3383                                             CandidateSet);
3384    for (BuiltinCandidateTypeSet::iterator
3385           MemPtr = CandidateTypes.member_pointer_begin(),
3386         MemPtrEnd = CandidateTypes.member_pointer_end();
3387         MemPtr != MemPtrEnd; ++MemPtr)
3388      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3389                                             CandidateSet);
3390      // Fall through.
3391
3392  case OO_PlusEqual:
3393  case OO_MinusEqual:
3394    // C++ [over.built]p19:
3395    //
3396    //   For every pair (T, VQ), where T is any type and VQ is either
3397    //   volatile or empty, there exist candidate operator functions
3398    //   of the form
3399    //
3400    //        T*VQ&      operator=(T*VQ&, T*);
3401    //
3402    // C++ [over.built]p21:
3403    //
3404    //   For every pair (T, VQ), where T is a cv-qualified or
3405    //   cv-unqualified object type and VQ is either volatile or
3406    //   empty, there exist candidate operator functions of the form
3407    //
3408    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3409    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3410    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3411         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3412      QualType ParamTypes[2];
3413      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3414
3415      // non-volatile version
3416      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3417      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3418                          /*IsAssigmentOperator=*/Op == OO_Equal);
3419
3420      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3421        // volatile version
3422        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3423        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3424                            /*IsAssigmentOperator=*/Op == OO_Equal);
3425      }
3426    }
3427    // Fall through.
3428
3429  case OO_StarEqual:
3430  case OO_SlashEqual:
3431    // C++ [over.built]p18:
3432    //
3433    //   For every triple (L, VQ, R), where L is an arithmetic type,
3434    //   VQ is either volatile or empty, and R is a promoted
3435    //   arithmetic type, there exist candidate operator functions of
3436    //   the form
3437    //
3438    //        VQ L&      operator=(VQ L&, R);
3439    //        VQ L&      operator*=(VQ L&, R);
3440    //        VQ L&      operator/=(VQ L&, R);
3441    //        VQ L&      operator+=(VQ L&, R);
3442    //        VQ L&      operator-=(VQ L&, R);
3443    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3444      for (unsigned Right = FirstPromotedArithmeticType;
3445           Right < LastPromotedArithmeticType; ++Right) {
3446        QualType ParamTypes[2];
3447        ParamTypes[1] = ArithmeticTypes[Right];
3448
3449        // Add this built-in operator as a candidate (VQ is empty).
3450        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3451        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3452                            /*IsAssigmentOperator=*/Op == OO_Equal);
3453
3454        // Add this built-in operator as a candidate (VQ is 'volatile').
3455        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3456        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3457        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3458                            /*IsAssigmentOperator=*/Op == OO_Equal);
3459      }
3460    }
3461    break;
3462
3463  case OO_PercentEqual:
3464  case OO_LessLessEqual:
3465  case OO_GreaterGreaterEqual:
3466  case OO_AmpEqual:
3467  case OO_CaretEqual:
3468  case OO_PipeEqual:
3469    // C++ [over.built]p22:
3470    //
3471    //   For every triple (L, VQ, R), where L is an integral type, VQ
3472    //   is either volatile or empty, and R is a promoted integral
3473    //   type, there exist candidate operator functions of the form
3474    //
3475    //        VQ L&       operator%=(VQ L&, R);
3476    //        VQ L&       operator<<=(VQ L&, R);
3477    //        VQ L&       operator>>=(VQ L&, R);
3478    //        VQ L&       operator&=(VQ L&, R);
3479    //        VQ L&       operator^=(VQ L&, R);
3480    //        VQ L&       operator|=(VQ L&, R);
3481    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3482      for (unsigned Right = FirstPromotedIntegralType;
3483           Right < LastPromotedIntegralType; ++Right) {
3484        QualType ParamTypes[2];
3485        ParamTypes[1] = ArithmeticTypes[Right];
3486
3487        // Add this built-in operator as a candidate (VQ is empty).
3488        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3489        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3490
3491        // Add this built-in operator as a candidate (VQ is 'volatile').
3492        ParamTypes[0] = ArithmeticTypes[Left];
3493        ParamTypes[0].addVolatile();
3494        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3495        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3496      }
3497    }
3498    break;
3499
3500  case OO_Exclaim: {
3501    // C++ [over.operator]p23:
3502    //
3503    //   There also exist candidate operator functions of the form
3504    //
3505    //        bool        operator!(bool);
3506    //        bool        operator&&(bool, bool);     [BELOW]
3507    //        bool        operator||(bool, bool);     [BELOW]
3508    QualType ParamTy = Context.BoolTy;
3509    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3510                        /*IsAssignmentOperator=*/false,
3511                        /*NumContextualBoolArguments=*/1);
3512    break;
3513  }
3514
3515  case OO_AmpAmp:
3516  case OO_PipePipe: {
3517    // C++ [over.operator]p23:
3518    //
3519    //   There also exist candidate operator functions of the form
3520    //
3521    //        bool        operator!(bool);            [ABOVE]
3522    //        bool        operator&&(bool, bool);
3523    //        bool        operator||(bool, bool);
3524    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3525    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3526                        /*IsAssignmentOperator=*/false,
3527                        /*NumContextualBoolArguments=*/2);
3528    break;
3529  }
3530
3531  case OO_Subscript:
3532    // C++ [over.built]p13:
3533    //
3534    //   For every cv-qualified or cv-unqualified object type T there
3535    //   exist candidate operator functions of the form
3536    //
3537    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3538    //        T&         operator[](T*, ptrdiff_t);
3539    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3540    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3541    //        T&         operator[](ptrdiff_t, T*);
3542    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3543         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3544      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3545      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3546      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3547
3548      // T& operator[](T*, ptrdiff_t)
3549      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3550
3551      // T& operator[](ptrdiff_t, T*);
3552      ParamTypes[0] = ParamTypes[1];
3553      ParamTypes[1] = *Ptr;
3554      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3555    }
3556    break;
3557
3558  case OO_ArrowStar:
3559    // FIXME: No support for pointer-to-members yet.
3560    break;
3561
3562  case OO_Conditional:
3563    // Note that we don't consider the first argument, since it has been
3564    // contextually converted to bool long ago. The candidates below are
3565    // therefore added as binary.
3566    //
3567    // C++ [over.built]p24:
3568    //   For every type T, where T is a pointer or pointer-to-member type,
3569    //   there exist candidate operator functions of the form
3570    //
3571    //        T        operator?(bool, T, T);
3572    //
3573    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3574         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3575      QualType ParamTypes[2] = { *Ptr, *Ptr };
3576      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3577    }
3578    for (BuiltinCandidateTypeSet::iterator Ptr =
3579           CandidateTypes.member_pointer_begin(),
3580         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3581      QualType ParamTypes[2] = { *Ptr, *Ptr };
3582      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3583    }
3584    goto Conditional;
3585  }
3586}
3587
3588/// \brief Add function candidates found via argument-dependent lookup
3589/// to the set of overloading candidates.
3590///
3591/// This routine performs argument-dependent name lookup based on the
3592/// given function name (which may also be an operator name) and adds
3593/// all of the overload candidates found by ADL to the overload
3594/// candidate set (C++ [basic.lookup.argdep]).
3595void
3596Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3597                                           Expr **Args, unsigned NumArgs,
3598                                           OverloadCandidateSet& CandidateSet) {
3599  FunctionSet Functions;
3600
3601  // Record all of the function candidates that we've already
3602  // added to the overload set, so that we don't add those same
3603  // candidates a second time.
3604  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3605                                   CandEnd = CandidateSet.end();
3606       Cand != CandEnd; ++Cand)
3607    if (Cand->Function) {
3608      Functions.insert(Cand->Function);
3609      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3610        Functions.insert(FunTmpl);
3611    }
3612
3613  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3614
3615  // Erase all of the candidates we already knew about.
3616  // FIXME: This is suboptimal. Is there a better way?
3617  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3618                                   CandEnd = CandidateSet.end();
3619       Cand != CandEnd; ++Cand)
3620    if (Cand->Function) {
3621      Functions.erase(Cand->Function);
3622      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3623        Functions.erase(FunTmpl);
3624    }
3625
3626  // For each of the ADL candidates we found, add it to the overload
3627  // set.
3628  for (FunctionSet::iterator Func = Functions.begin(),
3629                          FuncEnd = Functions.end();
3630       Func != FuncEnd; ++Func) {
3631    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3632      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3633    else
3634      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3635                                   /*FIXME: explicit args */false, 0, 0,
3636                                   Args, NumArgs, CandidateSet);
3637  }
3638}
3639
3640/// isBetterOverloadCandidate - Determines whether the first overload
3641/// candidate is a better candidate than the second (C++ 13.3.3p1).
3642bool
3643Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3644                                const OverloadCandidate& Cand2)
3645{
3646  // Define viable functions to be better candidates than non-viable
3647  // functions.
3648  if (!Cand2.Viable)
3649    return Cand1.Viable;
3650  else if (!Cand1.Viable)
3651    return false;
3652
3653  // C++ [over.match.best]p1:
3654  //
3655  //   -- if F is a static member function, ICS1(F) is defined such
3656  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3657  //      any function G, and, symmetrically, ICS1(G) is neither
3658  //      better nor worse than ICS1(F).
3659  unsigned StartArg = 0;
3660  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3661    StartArg = 1;
3662
3663  // C++ [over.match.best]p1:
3664  //   A viable function F1 is defined to be a better function than another
3665  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3666  //   conversion sequence than ICSi(F2), and then...
3667  unsigned NumArgs = Cand1.Conversions.size();
3668  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3669  bool HasBetterConversion = false;
3670  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3671    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3672                                               Cand2.Conversions[ArgIdx])) {
3673    case ImplicitConversionSequence::Better:
3674      // Cand1 has a better conversion sequence.
3675      HasBetterConversion = true;
3676      break;
3677
3678    case ImplicitConversionSequence::Worse:
3679      // Cand1 can't be better than Cand2.
3680      return false;
3681
3682    case ImplicitConversionSequence::Indistinguishable:
3683      // Do nothing.
3684      break;
3685    }
3686  }
3687
3688  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3689  //       ICSj(F2), or, if not that,
3690  if (HasBetterConversion)
3691    return true;
3692
3693  //     - F1 is a non-template function and F2 is a function template
3694  //       specialization, or, if not that,
3695  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3696      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3697    return true;
3698
3699  //   -- F1 and F2 are function template specializations, and the function
3700  //      template for F1 is more specialized than the template for F2
3701  //      according to the partial ordering rules described in 14.5.5.2, or,
3702  //      if not that,
3703  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3704      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3705    if (FunctionTemplateDecl *BetterTemplate
3706          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
3707                                       Cand2.Function->getPrimaryTemplate(),
3708                                       true))
3709      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
3710
3711  //   -- the context is an initialization by user-defined conversion
3712  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3713  //      from the return type of F1 to the destination type (i.e.,
3714  //      the type of the entity being initialized) is a better
3715  //      conversion sequence than the standard conversion sequence
3716  //      from the return type of F2 to the destination type.
3717  if (Cand1.Function && Cand2.Function &&
3718      isa<CXXConversionDecl>(Cand1.Function) &&
3719      isa<CXXConversionDecl>(Cand2.Function)) {
3720    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3721                                               Cand2.FinalConversion)) {
3722    case ImplicitConversionSequence::Better:
3723      // Cand1 has a better conversion sequence.
3724      return true;
3725
3726    case ImplicitConversionSequence::Worse:
3727      // Cand1 can't be better than Cand2.
3728      return false;
3729
3730    case ImplicitConversionSequence::Indistinguishable:
3731      // Do nothing
3732      break;
3733    }
3734  }
3735
3736  return false;
3737}
3738
3739/// \brief Computes the best viable function (C++ 13.3.3)
3740/// within an overload candidate set.
3741///
3742/// \param CandidateSet the set of candidate functions.
3743///
3744/// \param Loc the location of the function name (or operator symbol) for
3745/// which overload resolution occurs.
3746///
3747/// \param Best f overload resolution was successful or found a deleted
3748/// function, Best points to the candidate function found.
3749///
3750/// \returns The result of overload resolution.
3751Sema::OverloadingResult
3752Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3753                         SourceLocation Loc,
3754                         OverloadCandidateSet::iterator& Best)
3755{
3756  // Find the best viable function.
3757  Best = CandidateSet.end();
3758  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3759       Cand != CandidateSet.end(); ++Cand) {
3760    if (Cand->Viable) {
3761      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3762        Best = Cand;
3763    }
3764  }
3765
3766  // If we didn't find any viable functions, abort.
3767  if (Best == CandidateSet.end())
3768    return OR_No_Viable_Function;
3769
3770  // Make sure that this function is better than every other viable
3771  // function. If not, we have an ambiguity.
3772  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3773       Cand != CandidateSet.end(); ++Cand) {
3774    if (Cand->Viable &&
3775        Cand != Best &&
3776        !isBetterOverloadCandidate(*Best, *Cand)) {
3777      Best = CandidateSet.end();
3778      return OR_Ambiguous;
3779    }
3780  }
3781
3782  // Best is the best viable function.
3783  if (Best->Function &&
3784      (Best->Function->isDeleted() ||
3785       Best->Function->getAttr<UnavailableAttr>()))
3786    return OR_Deleted;
3787
3788  // C++ [basic.def.odr]p2:
3789  //   An overloaded function is used if it is selected by overload resolution
3790  //   when referred to from a potentially-evaluated expression. [Note: this
3791  //   covers calls to named functions (5.2.2), operator overloading
3792  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3793  //   placement new (5.3.4), as well as non-default initialization (8.5).
3794  if (Best->Function)
3795    MarkDeclarationReferenced(Loc, Best->Function);
3796  return OR_Success;
3797}
3798
3799/// PrintOverloadCandidates - When overload resolution fails, prints
3800/// diagnostic messages containing the candidates in the candidate
3801/// set. If OnlyViable is true, only viable candidates will be printed.
3802void
3803Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3804                              bool OnlyViable)
3805{
3806  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3807                             LastCand = CandidateSet.end();
3808  for (; Cand != LastCand; ++Cand) {
3809    if (Cand->Viable || !OnlyViable) {
3810      if (Cand->Function) {
3811        if (Cand->Function->isDeleted() ||
3812            Cand->Function->getAttr<UnavailableAttr>()) {
3813          // Deleted or "unavailable" function.
3814          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3815            << Cand->Function->isDeleted();
3816        } else {
3817          // Normal function
3818          // FIXME: Give a better reason!
3819          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3820        }
3821      } else if (Cand->IsSurrogate) {
3822        // Desugar the type of the surrogate down to a function type,
3823        // retaining as many typedefs as possible while still showing
3824        // the function type (and, therefore, its parameter types).
3825        QualType FnType = Cand->Surrogate->getConversionType();
3826        bool isLValueReference = false;
3827        bool isRValueReference = false;
3828        bool isPointer = false;
3829        if (const LValueReferenceType *FnTypeRef =
3830              FnType->getAs<LValueReferenceType>()) {
3831          FnType = FnTypeRef->getPointeeType();
3832          isLValueReference = true;
3833        } else if (const RValueReferenceType *FnTypeRef =
3834                     FnType->getAs<RValueReferenceType>()) {
3835          FnType = FnTypeRef->getPointeeType();
3836          isRValueReference = true;
3837        }
3838        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3839          FnType = FnTypePtr->getPointeeType();
3840          isPointer = true;
3841        }
3842        // Desugar down to a function type.
3843        FnType = QualType(FnType->getAsFunctionType(), 0);
3844        // Reconstruct the pointer/reference as appropriate.
3845        if (isPointer) FnType = Context.getPointerType(FnType);
3846        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3847        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3848
3849        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3850          << FnType;
3851      } else {
3852        // FIXME: We need to get the identifier in here
3853        // FIXME: Do we want the error message to point at the operator?
3854        // (built-ins won't have a location)
3855        QualType FnType
3856          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3857                                    Cand->BuiltinTypes.ParamTypes,
3858                                    Cand->Conversions.size(),
3859                                    false, 0);
3860
3861        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3862      }
3863    }
3864  }
3865}
3866
3867/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3868/// an overloaded function (C++ [over.over]), where @p From is an
3869/// expression with overloaded function type and @p ToType is the type
3870/// we're trying to resolve to. For example:
3871///
3872/// @code
3873/// int f(double);
3874/// int f(int);
3875///
3876/// int (*pfd)(double) = f; // selects f(double)
3877/// @endcode
3878///
3879/// This routine returns the resulting FunctionDecl if it could be
3880/// resolved, and NULL otherwise. When @p Complain is true, this
3881/// routine will emit diagnostics if there is an error.
3882FunctionDecl *
3883Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3884                                         bool Complain) {
3885  QualType FunctionType = ToType;
3886  bool IsMember = false;
3887  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3888    FunctionType = ToTypePtr->getPointeeType();
3889  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3890    FunctionType = ToTypeRef->getPointeeType();
3891  else if (const MemberPointerType *MemTypePtr =
3892                    ToType->getAs<MemberPointerType>()) {
3893    FunctionType = MemTypePtr->getPointeeType();
3894    IsMember = true;
3895  }
3896
3897  // We only look at pointers or references to functions.
3898  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3899  if (!FunctionType->isFunctionType())
3900    return 0;
3901
3902  // Find the actual overloaded function declaration.
3903  OverloadedFunctionDecl *Ovl = 0;
3904
3905  // C++ [over.over]p1:
3906  //   [...] [Note: any redundant set of parentheses surrounding the
3907  //   overloaded function name is ignored (5.1). ]
3908  Expr *OvlExpr = From->IgnoreParens();
3909
3910  // C++ [over.over]p1:
3911  //   [...] The overloaded function name can be preceded by the &
3912  //   operator.
3913  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3914    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3915      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3916  }
3917
3918  // Try to dig out the overloaded function.
3919  FunctionTemplateDecl *FunctionTemplate = 0;
3920  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3921    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3922    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3923  }
3924
3925  // If there's no overloaded function declaration or function template,
3926  // we're done.
3927  if (!Ovl && !FunctionTemplate)
3928    return 0;
3929
3930  OverloadIterator Fun;
3931  if (Ovl)
3932    Fun = Ovl;
3933  else
3934    Fun = FunctionTemplate;
3935
3936  // Look through all of the overloaded functions, searching for one
3937  // whose type matches exactly.
3938  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3939
3940  bool FoundNonTemplateFunction = false;
3941  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3942    // C++ [over.over]p3:
3943    //   Non-member functions and static member functions match
3944    //   targets of type "pointer-to-function" or "reference-to-function."
3945    //   Nonstatic member functions match targets of
3946    //   type "pointer-to-member-function."
3947    // Note that according to DR 247, the containing class does not matter.
3948
3949    if (FunctionTemplateDecl *FunctionTemplate
3950          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3951      if (CXXMethodDecl *Method
3952            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3953        // Skip non-static function templates when converting to pointer, and
3954        // static when converting to member pointer.
3955        if (Method->isStatic() == IsMember)
3956          continue;
3957      } else if (IsMember)
3958        continue;
3959
3960      // C++ [over.over]p2:
3961      //   If the name is a function template, template argument deduction is
3962      //   done (14.8.2.2), and if the argument deduction succeeds, the
3963      //   resulting template argument list is used to generate a single
3964      //   function template specialization, which is added to the set of
3965      //   overloaded functions considered.
3966      FunctionDecl *Specialization = 0;
3967      TemplateDeductionInfo Info(Context);
3968      if (TemplateDeductionResult Result
3969            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3970                                      /*FIXME:*/0, /*FIXME:*/0,
3971                                      FunctionType, Specialization, Info)) {
3972        // FIXME: make a note of the failed deduction for diagnostics.
3973        (void)Result;
3974      } else {
3975        assert(FunctionType
3976                 == Context.getCanonicalType(Specialization->getType()));
3977        Matches.insert(
3978                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
3979      }
3980    }
3981
3982    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3983      // Skip non-static functions when converting to pointer, and static
3984      // when converting to member pointer.
3985      if (Method->isStatic() == IsMember)
3986        continue;
3987    } else if (IsMember)
3988      continue;
3989
3990    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3991      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3992        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
3993        FoundNonTemplateFunction = true;
3994      }
3995    }
3996  }
3997
3998  // If there were 0 or 1 matches, we're done.
3999  if (Matches.empty())
4000    return 0;
4001  else if (Matches.size() == 1)
4002    return *Matches.begin();
4003
4004  // C++ [over.over]p4:
4005  //   If more than one function is selected, [...]
4006  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4007  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4008  if (FoundNonTemplateFunction) {
4009    //   [...] any function template specializations in the set are
4010    //   eliminated if the set also contains a non-template function, [...]
4011    for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4012      if ((*M)->getPrimaryTemplate() == 0)
4013        RemainingMatches.push_back(*M);
4014  } else {
4015    //   [...] and any given function template specialization F1 is
4016    //   eliminated if the set contains a second function template
4017    //   specialization whose function template is more specialized
4018    //   than the function template of F1 according to the partial
4019    //   ordering rules of 14.5.5.2.
4020
4021    // The algorithm specified above is quadratic. We instead use a
4022    // two-pass algorithm (similar to the one used to identify the
4023    // best viable function in an overload set) that identifies the
4024    // best function template (if it exists).
4025    MatchIter Best = Matches.begin();
4026    MatchIter M = Best, MEnd = Matches.end();
4027    // Find the most specialized function.
4028    for (++M; M != MEnd; ++M)
4029      if (getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4030                                     (*Best)->getPrimaryTemplate(),
4031                                     false)
4032            == (*M)->getPrimaryTemplate())
4033        Best = M;
4034
4035    // Determine whether this function template is more specialized
4036    // that all of the others.
4037    bool Ambiguous = false;
4038    for (M = Matches.begin(); M != MEnd; ++M) {
4039      if (M != Best &&
4040          getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4041                                     (*Best)->getPrimaryTemplate(),
4042                                     false)
4043           != (*Best)->getPrimaryTemplate()) {
4044        Ambiguous = true;
4045        break;
4046      }
4047    }
4048
4049    // If one function template was more specialized than all of the
4050    // others, return it.
4051    if (!Ambiguous)
4052      return *Best;
4053
4054    // We could not find a most-specialized function template, which
4055    // is equivalent to having a set of function templates with more
4056    // than one such template. So, we place all of the function
4057    // templates into the set of remaining matches and produce a
4058    // diagnostic below. FIXME: we could perform the quadratic
4059    // algorithm here, pruning the result set to limit the number of
4060    // candidates output later.
4061     RemainingMatches.append(Matches.begin(), Matches.end());
4062  }
4063
4064  // [...] After such eliminations, if any, there shall remain exactly one
4065  // selected function.
4066  if (RemainingMatches.size() == 1)
4067    return RemainingMatches.front();
4068
4069  // FIXME: We should probably return the same thing that BestViableFunction
4070  // returns (even if we issue the diagnostics here).
4071  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4072    << RemainingMatches[0]->getDeclName();
4073  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4074    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4075  return 0;
4076}
4077
4078/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4079/// (which eventually refers to the declaration Func) and the call
4080/// arguments Args/NumArgs, attempt to resolve the function call down
4081/// to a specific function. If overload resolution succeeds, returns
4082/// the function declaration produced by overload
4083/// resolution. Otherwise, emits diagnostics, deletes all of the
4084/// arguments and Fn, and returns NULL.
4085FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4086                                            DeclarationName UnqualifiedName,
4087                                            bool HasExplicitTemplateArgs,
4088                                 const TemplateArgument *ExplicitTemplateArgs,
4089                                            unsigned NumExplicitTemplateArgs,
4090                                            SourceLocation LParenLoc,
4091                                            Expr **Args, unsigned NumArgs,
4092                                            SourceLocation *CommaLocs,
4093                                            SourceLocation RParenLoc,
4094                                            bool &ArgumentDependentLookup) {
4095  OverloadCandidateSet CandidateSet;
4096
4097  // Add the functions denoted by Callee to the set of candidate
4098  // functions. While we're doing so, track whether argument-dependent
4099  // lookup still applies, per:
4100  //
4101  // C++0x [basic.lookup.argdep]p3:
4102  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4103  //   and let Y be the lookup set produced by argument dependent
4104  //   lookup (defined as follows). If X contains
4105  //
4106  //     -- a declaration of a class member, or
4107  //
4108  //     -- a block-scope function declaration that is not a
4109  //        using-declaration, or
4110  //
4111  //     -- a declaration that is neither a function or a function
4112  //        template
4113  //
4114  //   then Y is empty.
4115  if (OverloadedFunctionDecl *Ovl
4116        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
4117    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4118                                                FuncEnd = Ovl->function_end();
4119         Func != FuncEnd; ++Func) {
4120      DeclContext *Ctx = 0;
4121      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
4122        if (HasExplicitTemplateArgs)
4123          continue;
4124
4125        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
4126        Ctx = FunDecl->getDeclContext();
4127      } else {
4128        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
4129        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
4130                                     ExplicitTemplateArgs,
4131                                     NumExplicitTemplateArgs,
4132                                     Args, NumArgs, CandidateSet);
4133        Ctx = FunTmpl->getDeclContext();
4134      }
4135
4136
4137      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
4138        ArgumentDependentLookup = false;
4139    }
4140  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
4141    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4142    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
4143
4144    if (Func->getDeclContext()->isRecord() ||
4145        Func->getDeclContext()->isFunctionOrMethod())
4146      ArgumentDependentLookup = false;
4147  } else if (FunctionTemplateDecl *FuncTemplate
4148               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
4149    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4150                                 ExplicitTemplateArgs,
4151                                 NumExplicitTemplateArgs,
4152                                 Args, NumArgs, CandidateSet);
4153
4154    if (FuncTemplate->getDeclContext()->isRecord())
4155      ArgumentDependentLookup = false;
4156  }
4157
4158  if (Callee)
4159    UnqualifiedName = Callee->getDeclName();
4160
4161  // FIXME: Pass explicit template arguments through for ADL
4162  if (ArgumentDependentLookup)
4163    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4164                                         CandidateSet);
4165
4166  OverloadCandidateSet::iterator Best;
4167  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4168  case OR_Success:
4169    return Best->Function;
4170
4171  case OR_No_Viable_Function:
4172    Diag(Fn->getSourceRange().getBegin(),
4173         diag::err_ovl_no_viable_function_in_call)
4174      << UnqualifiedName << Fn->getSourceRange();
4175    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4176    break;
4177
4178  case OR_Ambiguous:
4179    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4180      << UnqualifiedName << Fn->getSourceRange();
4181    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4182    break;
4183
4184  case OR_Deleted:
4185    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4186      << Best->Function->isDeleted()
4187      << UnqualifiedName
4188      << Fn->getSourceRange();
4189    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4190    break;
4191  }
4192
4193  // Overload resolution failed. Destroy all of the subexpressions and
4194  // return NULL.
4195  Fn->Destroy(Context);
4196  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4197    Args[Arg]->Destroy(Context);
4198  return 0;
4199}
4200
4201/// \brief Create a unary operation that may resolve to an overloaded
4202/// operator.
4203///
4204/// \param OpLoc The location of the operator itself (e.g., '*').
4205///
4206/// \param OpcIn The UnaryOperator::Opcode that describes this
4207/// operator.
4208///
4209/// \param Functions The set of non-member functions that will be
4210/// considered by overload resolution. The caller needs to build this
4211/// set based on the context using, e.g.,
4212/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4213/// set should not contain any member functions; those will be added
4214/// by CreateOverloadedUnaryOp().
4215///
4216/// \param input The input argument.
4217Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4218                                                     unsigned OpcIn,
4219                                                     FunctionSet &Functions,
4220                                                     ExprArg input) {
4221  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4222  Expr *Input = (Expr *)input.get();
4223
4224  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4225  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4226  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4227
4228  Expr *Args[2] = { Input, 0 };
4229  unsigned NumArgs = 1;
4230
4231  // For post-increment and post-decrement, add the implicit '0' as
4232  // the second argument, so that we know this is a post-increment or
4233  // post-decrement.
4234  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4235    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4236    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4237                                           SourceLocation());
4238    NumArgs = 2;
4239  }
4240
4241  if (Input->isTypeDependent()) {
4242    OverloadedFunctionDecl *Overloads
4243      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4244    for (FunctionSet::iterator Func = Functions.begin(),
4245                            FuncEnd = Functions.end();
4246         Func != FuncEnd; ++Func)
4247      Overloads->addOverload(*Func);
4248
4249    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4250                                                OpLoc, false, false);
4251
4252    input.release();
4253    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4254                                                   &Args[0], NumArgs,
4255                                                   Context.DependentTy,
4256                                                   OpLoc));
4257  }
4258
4259  // Build an empty overload set.
4260  OverloadCandidateSet CandidateSet;
4261
4262  // Add the candidates from the given function set.
4263  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4264
4265  // Add operator candidates that are member functions.
4266  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4267
4268  // Add builtin operator candidates.
4269  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4270
4271  // Perform overload resolution.
4272  OverloadCandidateSet::iterator Best;
4273  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4274  case OR_Success: {
4275    // We found a built-in operator or an overloaded operator.
4276    FunctionDecl *FnDecl = Best->Function;
4277
4278    if (FnDecl) {
4279      // We matched an overloaded operator. Build a call to that
4280      // operator.
4281
4282      // Convert the arguments.
4283      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4284        if (PerformObjectArgumentInitialization(Input, Method))
4285          return ExprError();
4286      } else {
4287        // Convert the arguments.
4288        if (PerformCopyInitialization(Input,
4289                                      FnDecl->getParamDecl(0)->getType(),
4290                                      "passing"))
4291          return ExprError();
4292      }
4293
4294      // Determine the result type
4295      QualType ResultTy
4296        = FnDecl->getType()->getAsFunctionType()->getResultType();
4297      ResultTy = ResultTy.getNonReferenceType();
4298
4299      // Build the actual expression node.
4300      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4301                                               SourceLocation());
4302      UsualUnaryConversions(FnExpr);
4303
4304      input.release();
4305
4306      Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4307                                                   &Input, 1, ResultTy, OpLoc);
4308      return MaybeBindToTemporary(CE);
4309    } else {
4310      // We matched a built-in operator. Convert the arguments, then
4311      // break out so that we will build the appropriate built-in
4312      // operator node.
4313        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4314                                      Best->Conversions[0], "passing"))
4315          return ExprError();
4316
4317        break;
4318      }
4319    }
4320
4321    case OR_No_Viable_Function:
4322      // No viable function; fall through to handling this as a
4323      // built-in operator, which will produce an error message for us.
4324      break;
4325
4326    case OR_Ambiguous:
4327      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4328          << UnaryOperator::getOpcodeStr(Opc)
4329          << Input->getSourceRange();
4330      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4331      return ExprError();
4332
4333    case OR_Deleted:
4334      Diag(OpLoc, diag::err_ovl_deleted_oper)
4335        << Best->Function->isDeleted()
4336        << UnaryOperator::getOpcodeStr(Opc)
4337        << Input->getSourceRange();
4338      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4339      return ExprError();
4340    }
4341
4342  // Either we found no viable overloaded operator or we matched a
4343  // built-in operator. In either case, fall through to trying to
4344  // build a built-in operation.
4345  input.release();
4346  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4347}
4348
4349/// \brief Create a binary operation that may resolve to an overloaded
4350/// operator.
4351///
4352/// \param OpLoc The location of the operator itself (e.g., '+').
4353///
4354/// \param OpcIn The BinaryOperator::Opcode that describes this
4355/// operator.
4356///
4357/// \param Functions The set of non-member functions that will be
4358/// considered by overload resolution. The caller needs to build this
4359/// set based on the context using, e.g.,
4360/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4361/// set should not contain any member functions; those will be added
4362/// by CreateOverloadedBinOp().
4363///
4364/// \param LHS Left-hand argument.
4365/// \param RHS Right-hand argument.
4366Sema::OwningExprResult
4367Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4368                            unsigned OpcIn,
4369                            FunctionSet &Functions,
4370                            Expr *LHS, Expr *RHS) {
4371  Expr *Args[2] = { LHS, RHS };
4372  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4373
4374  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4375  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4376  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4377
4378  // If either side is type-dependent, create an appropriate dependent
4379  // expression.
4380  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4381    // .* cannot be overloaded.
4382    if (Opc == BinaryOperator::PtrMemD)
4383      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4384                                                Context.DependentTy, OpLoc));
4385
4386    OverloadedFunctionDecl *Overloads
4387      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4388    for (FunctionSet::iterator Func = Functions.begin(),
4389                            FuncEnd = Functions.end();
4390         Func != FuncEnd; ++Func)
4391      Overloads->addOverload(*Func);
4392
4393    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4394                                                OpLoc, false, false);
4395
4396    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4397                                                   Args, 2,
4398                                                   Context.DependentTy,
4399                                                   OpLoc));
4400  }
4401
4402  // If this is the .* operator, which is not overloadable, just
4403  // create a built-in binary operator.
4404  if (Opc == BinaryOperator::PtrMemD)
4405    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4406
4407  // If this is one of the assignment operators, we only perform
4408  // overload resolution if the left-hand side is a class or
4409  // enumeration type (C++ [expr.ass]p3).
4410  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4411      !Args[0]->getType()->isOverloadableType())
4412    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4413
4414  // Build an empty overload set.
4415  OverloadCandidateSet CandidateSet;
4416
4417  // Add the candidates from the given function set.
4418  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4419
4420  // Add operator candidates that are member functions.
4421  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4422
4423  // Add builtin operator candidates.
4424  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4425
4426  // Perform overload resolution.
4427  OverloadCandidateSet::iterator Best;
4428  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4429    case OR_Success: {
4430      // We found a built-in operator or an overloaded operator.
4431      FunctionDecl *FnDecl = Best->Function;
4432
4433      if (FnDecl) {
4434        // We matched an overloaded operator. Build a call to that
4435        // operator.
4436
4437        // Convert the arguments.
4438        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4439          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4440              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4441                                        "passing"))
4442            return ExprError();
4443        } else {
4444          // Convert the arguments.
4445          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4446                                        "passing") ||
4447              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4448                                        "passing"))
4449            return ExprError();
4450        }
4451
4452        // Determine the result type
4453        QualType ResultTy
4454          = FnDecl->getType()->getAsFunctionType()->getResultType();
4455        ResultTy = ResultTy.getNonReferenceType();
4456
4457        // Build the actual expression node.
4458        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4459                                                 OpLoc);
4460        UsualUnaryConversions(FnExpr);
4461
4462        Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4463                                                     Args, 2, ResultTy, OpLoc);
4464        return MaybeBindToTemporary(CE);
4465      } else {
4466        // We matched a built-in operator. Convert the arguments, then
4467        // break out so that we will build the appropriate built-in
4468        // operator node.
4469        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4470                                      Best->Conversions[0], "passing") ||
4471            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4472                                      Best->Conversions[1], "passing"))
4473          return ExprError();
4474
4475        break;
4476      }
4477    }
4478
4479    case OR_No_Viable_Function:
4480      // For class as left operand for assignment or compound assigment operator
4481      // do not fall through to handling in built-in, but report that no overloaded
4482      // assignment operator found
4483      if (Args[0]->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4484        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4485             << BinaryOperator::getOpcodeStr(Opc)
4486             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4487        return ExprError();
4488      }
4489      // No viable function; fall through to handling this as a
4490      // built-in operator, which will produce an error message for us.
4491      break;
4492
4493    case OR_Ambiguous:
4494      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4495          << BinaryOperator::getOpcodeStr(Opc)
4496          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4497      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4498      return ExprError();
4499
4500    case OR_Deleted:
4501      Diag(OpLoc, diag::err_ovl_deleted_oper)
4502        << Best->Function->isDeleted()
4503        << BinaryOperator::getOpcodeStr(Opc)
4504        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4505      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4506      return ExprError();
4507    }
4508
4509  // Either we found no viable overloaded operator or we matched a
4510  // built-in operator. In either case, try to build a built-in
4511  // operation.
4512  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4513}
4514
4515/// BuildCallToMemberFunction - Build a call to a member
4516/// function. MemExpr is the expression that refers to the member
4517/// function (and includes the object parameter), Args/NumArgs are the
4518/// arguments to the function call (not including the object
4519/// parameter). The caller needs to validate that the member
4520/// expression refers to a member function or an overloaded member
4521/// function.
4522Sema::ExprResult
4523Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4524                                SourceLocation LParenLoc, Expr **Args,
4525                                unsigned NumArgs, SourceLocation *CommaLocs,
4526                                SourceLocation RParenLoc) {
4527  // Dig out the member expression. This holds both the object
4528  // argument and the member function we're referring to.
4529  MemberExpr *MemExpr = 0;
4530  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4531    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4532  else
4533    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4534  assert(MemExpr && "Building member call without member expression");
4535
4536  // Extract the object argument.
4537  Expr *ObjectArg = MemExpr->getBase();
4538
4539  CXXMethodDecl *Method = 0;
4540  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4541      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
4542    // Add overload candidates
4543    OverloadCandidateSet CandidateSet;
4544    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4545
4546    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
4547         Func != FuncEnd; ++Func) {
4548      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
4549        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4550                           /*SuppressUserConversions=*/false);
4551      else
4552        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4553                                   /*FIXME:*/false, /*FIXME:*/0,
4554                                   /*FIXME:*/0, ObjectArg, Args, NumArgs,
4555                                   CandidateSet,
4556                                   /*SuppressUsedConversions=*/false);
4557    }
4558
4559    OverloadCandidateSet::iterator Best;
4560    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4561    case OR_Success:
4562      Method = cast<CXXMethodDecl>(Best->Function);
4563      break;
4564
4565    case OR_No_Viable_Function:
4566      Diag(MemExpr->getSourceRange().getBegin(),
4567           diag::err_ovl_no_viable_member_function_in_call)
4568        << DeclName << MemExprE->getSourceRange();
4569      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4570      // FIXME: Leaking incoming expressions!
4571      return true;
4572
4573    case OR_Ambiguous:
4574      Diag(MemExpr->getSourceRange().getBegin(),
4575           diag::err_ovl_ambiguous_member_call)
4576        << DeclName << MemExprE->getSourceRange();
4577      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4578      // FIXME: Leaking incoming expressions!
4579      return true;
4580
4581    case OR_Deleted:
4582      Diag(MemExpr->getSourceRange().getBegin(),
4583           diag::err_ovl_deleted_member_call)
4584        << Best->Function->isDeleted()
4585        << DeclName << MemExprE->getSourceRange();
4586      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4587      // FIXME: Leaking incoming expressions!
4588      return true;
4589    }
4590
4591    FixOverloadedFunctionReference(MemExpr, Method);
4592  } else {
4593    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4594  }
4595
4596  assert(Method && "Member call to something that isn't a method?");
4597  ExprOwningPtr<CXXMemberCallExpr>
4598    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4599                                                  NumArgs,
4600                                  Method->getResultType().getNonReferenceType(),
4601                                  RParenLoc));
4602
4603  // Convert the object argument (for a non-static member function call).
4604  if (!Method->isStatic() &&
4605      PerformObjectArgumentInitialization(ObjectArg, Method))
4606    return true;
4607  MemExpr->setBase(ObjectArg);
4608
4609  // Convert the rest of the arguments
4610  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4611  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4612                              RParenLoc))
4613    return true;
4614
4615  if (CheckFunctionCall(Method, TheCall.get()))
4616    return true;
4617
4618  return MaybeBindToTemporary(TheCall.release()).release();
4619}
4620
4621/// BuildCallToObjectOfClassType - Build a call to an object of class
4622/// type (C++ [over.call.object]), which can end up invoking an
4623/// overloaded function call operator (@c operator()) or performing a
4624/// user-defined conversion on the object argument.
4625Sema::ExprResult
4626Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4627                                   SourceLocation LParenLoc,
4628                                   Expr **Args, unsigned NumArgs,
4629                                   SourceLocation *CommaLocs,
4630                                   SourceLocation RParenLoc) {
4631  assert(Object->getType()->isRecordType() && "Requires object type argument");
4632  const RecordType *Record = Object->getType()->getAs<RecordType>();
4633
4634  // C++ [over.call.object]p1:
4635  //  If the primary-expression E in the function call syntax
4636  //  evaluates to a class object of type "cv T", then the set of
4637  //  candidate functions includes at least the function call
4638  //  operators of T. The function call operators of T are obtained by
4639  //  ordinary lookup of the name operator() in the context of
4640  //  (E).operator().
4641  OverloadCandidateSet CandidateSet;
4642  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4643  DeclContext::lookup_const_iterator Oper, OperEnd;
4644  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4645       Oper != OperEnd; ++Oper)
4646    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4647                       CandidateSet, /*SuppressUserConversions=*/false);
4648
4649  // C++ [over.call.object]p2:
4650  //   In addition, for each conversion function declared in T of the
4651  //   form
4652  //
4653  //        operator conversion-type-id () cv-qualifier;
4654  //
4655  //   where cv-qualifier is the same cv-qualification as, or a
4656  //   greater cv-qualification than, cv, and where conversion-type-id
4657  //   denotes the type "pointer to function of (P1,...,Pn) returning
4658  //   R", or the type "reference to pointer to function of
4659  //   (P1,...,Pn) returning R", or the type "reference to function
4660  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4661  //   is also considered as a candidate function. Similarly,
4662  //   surrogate call functions are added to the set of candidate
4663  //   functions for each conversion function declared in an
4664  //   accessible base class provided the function is not hidden
4665  //   within T by another intervening declaration.
4666
4667  if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) {
4668    // FIXME: Look in base classes for more conversion operators!
4669    OverloadedFunctionDecl *Conversions
4670      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4671    for (OverloadedFunctionDecl::function_iterator
4672           Func = Conversions->function_begin(),
4673           FuncEnd = Conversions->function_end();
4674         Func != FuncEnd; ++Func) {
4675      CXXConversionDecl *Conv;
4676      FunctionTemplateDecl *ConvTemplate;
4677      GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
4678
4679      // Skip over templated conversion functions; they aren't
4680      // surrogates.
4681      if (ConvTemplate)
4682        continue;
4683
4684      // Strip the reference type (if any) and then the pointer type (if
4685      // any) to get down to what might be a function type.
4686      QualType ConvType = Conv->getConversionType().getNonReferenceType();
4687      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4688        ConvType = ConvPtrType->getPointeeType();
4689
4690      if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4691        AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4692    }
4693  }
4694
4695  // Perform overload resolution.
4696  OverloadCandidateSet::iterator Best;
4697  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4698  case OR_Success:
4699    // Overload resolution succeeded; we'll build the appropriate call
4700    // below.
4701    break;
4702
4703  case OR_No_Viable_Function:
4704    Diag(Object->getSourceRange().getBegin(),
4705         diag::err_ovl_no_viable_object_call)
4706      << Object->getType() << Object->getSourceRange();
4707    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4708    break;
4709
4710  case OR_Ambiguous:
4711    Diag(Object->getSourceRange().getBegin(),
4712         diag::err_ovl_ambiguous_object_call)
4713      << Object->getType() << Object->getSourceRange();
4714    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4715    break;
4716
4717  case OR_Deleted:
4718    Diag(Object->getSourceRange().getBegin(),
4719         diag::err_ovl_deleted_object_call)
4720      << Best->Function->isDeleted()
4721      << Object->getType() << Object->getSourceRange();
4722    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4723    break;
4724  }
4725
4726  if (Best == CandidateSet.end()) {
4727    // We had an error; delete all of the subexpressions and return
4728    // the error.
4729    Object->Destroy(Context);
4730    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4731      Args[ArgIdx]->Destroy(Context);
4732    return true;
4733  }
4734
4735  if (Best->Function == 0) {
4736    // Since there is no function declaration, this is one of the
4737    // surrogate candidates. Dig out the conversion function.
4738    CXXConversionDecl *Conv
4739      = cast<CXXConversionDecl>(
4740                         Best->Conversions[0].UserDefined.ConversionFunction);
4741
4742    // We selected one of the surrogate functions that converts the
4743    // object parameter to a function pointer. Perform the conversion
4744    // on the object argument, then let ActOnCallExpr finish the job.
4745    // FIXME: Represent the user-defined conversion in the AST!
4746    ImpCastExprToType(Object,
4747                      Conv->getConversionType().getNonReferenceType(),
4748                      CastExpr::CK_Unknown,
4749                      Conv->getConversionType()->isLValueReferenceType());
4750    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4751                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4752                         CommaLocs, RParenLoc).release();
4753  }
4754
4755  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4756  // that calls this method, using Object for the implicit object
4757  // parameter and passing along the remaining arguments.
4758  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4759  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4760
4761  unsigned NumArgsInProto = Proto->getNumArgs();
4762  unsigned NumArgsToCheck = NumArgs;
4763
4764  // Build the full argument list for the method call (the
4765  // implicit object parameter is placed at the beginning of the
4766  // list).
4767  Expr **MethodArgs;
4768  if (NumArgs < NumArgsInProto) {
4769    NumArgsToCheck = NumArgsInProto;
4770    MethodArgs = new Expr*[NumArgsInProto + 1];
4771  } else {
4772    MethodArgs = new Expr*[NumArgs + 1];
4773  }
4774  MethodArgs[0] = Object;
4775  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4776    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4777
4778  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4779                                          SourceLocation());
4780  UsualUnaryConversions(NewFn);
4781
4782  // Once we've built TheCall, all of the expressions are properly
4783  // owned.
4784  QualType ResultTy = Method->getResultType().getNonReferenceType();
4785  ExprOwningPtr<CXXOperatorCallExpr>
4786    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4787                                                    MethodArgs, NumArgs + 1,
4788                                                    ResultTy, RParenLoc));
4789  delete [] MethodArgs;
4790
4791  // We may have default arguments. If so, we need to allocate more
4792  // slots in the call for them.
4793  if (NumArgs < NumArgsInProto)
4794    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4795  else if (NumArgs > NumArgsInProto)
4796    NumArgsToCheck = NumArgsInProto;
4797
4798  bool IsError = false;
4799
4800  // Initialize the implicit object parameter.
4801  IsError |= PerformObjectArgumentInitialization(Object, Method);
4802  TheCall->setArg(0, Object);
4803
4804
4805  // Check the argument types.
4806  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4807    Expr *Arg;
4808    if (i < NumArgs) {
4809      Arg = Args[i];
4810
4811      // Pass the argument.
4812      QualType ProtoArgType = Proto->getArgType(i);
4813      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4814    } else {
4815      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
4816    }
4817
4818    TheCall->setArg(i + 1, Arg);
4819  }
4820
4821  // If this is a variadic call, handle args passed through "...".
4822  if (Proto->isVariadic()) {
4823    // Promote the arguments (C99 6.5.2.2p7).
4824    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4825      Expr *Arg = Args[i];
4826      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4827      TheCall->setArg(i + 1, Arg);
4828    }
4829  }
4830
4831  if (IsError) return true;
4832
4833  if (CheckFunctionCall(Method, TheCall.get()))
4834    return true;
4835
4836  return MaybeBindToTemporary(TheCall.release()).release();
4837}
4838
4839/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4840///  (if one exists), where @c Base is an expression of class type and
4841/// @c Member is the name of the member we're trying to find.
4842Sema::OwningExprResult
4843Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4844  Expr *Base = static_cast<Expr *>(BaseIn.get());
4845  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4846
4847  // C++ [over.ref]p1:
4848  //
4849  //   [...] An expression x->m is interpreted as (x.operator->())->m
4850  //   for a class object x of type T if T::operator->() exists and if
4851  //   the operator is selected as the best match function by the
4852  //   overload resolution mechanism (13.3).
4853  // FIXME: look in base classes.
4854  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4855  OverloadCandidateSet CandidateSet;
4856  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
4857
4858  DeclContext::lookup_const_iterator Oper, OperEnd;
4859  for (llvm::tie(Oper, OperEnd)
4860         = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4861    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4862                       /*SuppressUserConversions=*/false);
4863
4864  // Perform overload resolution.
4865  OverloadCandidateSet::iterator Best;
4866  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4867  case OR_Success:
4868    // Overload resolution succeeded; we'll build the call below.
4869    break;
4870
4871  case OR_No_Viable_Function:
4872    if (CandidateSet.empty())
4873      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4874        << Base->getType() << Base->getSourceRange();
4875    else
4876      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4877        << "operator->" << Base->getSourceRange();
4878    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4879    return ExprError();
4880
4881  case OR_Ambiguous:
4882    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4883      << "operator->" << Base->getSourceRange();
4884    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4885    return ExprError();
4886
4887  case OR_Deleted:
4888    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4889      << Best->Function->isDeleted()
4890      << "operator->" << Base->getSourceRange();
4891    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4892    return ExprError();
4893  }
4894
4895  // Convert the object parameter.
4896  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4897  if (PerformObjectArgumentInitialization(Base, Method))
4898    return ExprError();
4899
4900  // No concerns about early exits now.
4901  BaseIn.release();
4902
4903  // Build the operator call.
4904  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4905                                           SourceLocation());
4906  UsualUnaryConversions(FnExpr);
4907  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4908                                 Method->getResultType().getNonReferenceType(),
4909                                 OpLoc);
4910  return Owned(Base);
4911}
4912
4913/// FixOverloadedFunctionReference - E is an expression that refers to
4914/// a C++ overloaded function (possibly with some parentheses and
4915/// perhaps a '&' around it). We have resolved the overloaded function
4916/// to the function declaration Fn, so patch up the expression E to
4917/// refer (possibly indirectly) to Fn.
4918void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4919  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4920    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4921    E->setType(PE->getSubExpr()->getType());
4922  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4923    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4924           "Can only take the address of an overloaded function");
4925    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4926      if (Method->isStatic()) {
4927        // Do nothing: static member functions aren't any different
4928        // from non-member functions.
4929      } else if (QualifiedDeclRefExpr *DRE
4930                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4931        // We have taken the address of a pointer to member
4932        // function. Perform the computation here so that we get the
4933        // appropriate pointer to member type.
4934        DRE->setDecl(Fn);
4935        DRE->setType(Fn->getType());
4936        QualType ClassType
4937          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4938        E->setType(Context.getMemberPointerType(Fn->getType(),
4939                                                ClassType.getTypePtr()));
4940        return;
4941      }
4942    }
4943    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4944    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4945  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4946    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4947            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4948           "Expected overloaded function or function template");
4949    DR->setDecl(Fn);
4950    E->setType(Fn->getType());
4951  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4952    MemExpr->setMemberDecl(Fn);
4953    E->setType(Fn->getType());
4954  } else {
4955    assert(false && "Invalid reference to overloaded function");
4956  }
4957}
4958
4959} // end namespace clang
4960