SemaOverload.cpp revision 29ecaba4ebe8c9a2627cf405e36473b764cc5cfd
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
451    ICS.setStandard();
452    return ICS;
453  }
454
455  if (!getLangOptions().CPlusPlus) {
456    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
457    return ICS;
458  }
459
460  OverloadCandidateSet Conversions(From->getExprLoc());
461  OverloadingResult UserDefResult
462    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
463                              !SuppressUserConversions, AllowExplicit,
464                              ForceRValue, UserCast);
465
466  if (UserDefResult == OR_Success) {
467    ICS.setUserDefined();
468    // C++ [over.ics.user]p4:
469    //   A conversion of an expression of class type to the same class
470    //   type is given Exact Match rank, and a conversion of an
471    //   expression of class type to a base class of that type is
472    //   given Conversion rank, in spite of the fact that a copy
473    //   constructor (i.e., a user-defined conversion function) is
474    //   called for those cases.
475    if (CXXConstructorDecl *Constructor
476          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
477      QualType FromCanon
478        = Context.getCanonicalType(From->getType().getUnqualifiedType());
479      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
480      if (Constructor->isCopyConstructor() &&
481          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
482        // Turn this into a "standard" conversion sequence, so that it
483        // gets ranked with standard conversion sequences.
484        ICS.setStandard();
485        ICS.Standard.setAsIdentityConversion();
486        ICS.Standard.setFromType(From->getType());
487        ICS.Standard.setAllToTypes(ToType);
488        ICS.Standard.CopyConstructor = Constructor;
489        if (ToCanon != FromCanon)
490          ICS.Standard.Second = ICK_Derived_To_Base;
491      }
492    }
493
494    // C++ [over.best.ics]p4:
495    //   However, when considering the argument of a user-defined
496    //   conversion function that is a candidate by 13.3.1.3 when
497    //   invoked for the copying of the temporary in the second step
498    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
499    //   13.3.1.6 in all cases, only standard conversion sequences and
500    //   ellipsis conversion sequences are allowed.
501    if (SuppressUserConversions && ICS.isUserDefined()) {
502      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
503    }
504  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
505    ICS.setAmbiguous();
506    ICS.Ambiguous.setFromType(From->getType());
507    ICS.Ambiguous.setToType(ToType);
508    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
509         Cand != Conversions.end(); ++Cand)
510      if (Cand->Viable)
511        ICS.Ambiguous.addConversion(Cand->Function);
512  } else {
513    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
514  }
515
516  return ICS;
517}
518
519/// \brief Determine whether the conversion from FromType to ToType is a valid
520/// conversion that strips "noreturn" off the nested function type.
521static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
522                                 QualType ToType, QualType &ResultTy) {
523  if (Context.hasSameUnqualifiedType(FromType, ToType))
524    return false;
525
526  // Strip the noreturn off the type we're converting from; noreturn can
527  // safely be removed.
528  FromType = Context.getNoReturnType(FromType, false);
529  if (!Context.hasSameUnqualifiedType(FromType, ToType))
530    return false;
531
532  ResultTy = FromType;
533  return true;
534}
535
536/// IsStandardConversion - Determines whether there is a standard
537/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
538/// expression From to the type ToType. Standard conversion sequences
539/// only consider non-class types; for conversions that involve class
540/// types, use TryImplicitConversion. If a conversion exists, SCS will
541/// contain the standard conversion sequence required to perform this
542/// conversion and this routine will return true. Otherwise, this
543/// routine will return false and the value of SCS is unspecified.
544bool
545Sema::IsStandardConversion(Expr* From, QualType ToType,
546                           bool InOverloadResolution,
547                           StandardConversionSequence &SCS) {
548  QualType FromType = From->getType();
549
550  // Standard conversions (C++ [conv])
551  SCS.setAsIdentityConversion();
552  SCS.DeprecatedStringLiteralToCharPtr = false;
553  SCS.IncompatibleObjC = false;
554  SCS.setFromType(FromType);
555  SCS.CopyConstructor = 0;
556
557  // There are no standard conversions for class types in C++, so
558  // abort early. When overloading in C, however, we do permit
559  if (FromType->isRecordType() || ToType->isRecordType()) {
560    if (getLangOptions().CPlusPlus)
561      return false;
562
563    // When we're overloading in C, we allow, as standard conversions,
564  }
565
566  // The first conversion can be an lvalue-to-rvalue conversion,
567  // array-to-pointer conversion, or function-to-pointer conversion
568  // (C++ 4p1).
569
570  // Lvalue-to-rvalue conversion (C++ 4.1):
571  //   An lvalue (3.10) of a non-function, non-array type T can be
572  //   converted to an rvalue.
573  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
574  if (argIsLvalue == Expr::LV_Valid &&
575      !FromType->isFunctionType() && !FromType->isArrayType() &&
576      Context.getCanonicalType(FromType) != Context.OverloadTy) {
577    SCS.First = ICK_Lvalue_To_Rvalue;
578
579    // If T is a non-class type, the type of the rvalue is the
580    // cv-unqualified version of T. Otherwise, the type of the rvalue
581    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
582    // just strip the qualifiers because they don't matter.
583    FromType = FromType.getUnqualifiedType();
584  } else if (FromType->isArrayType()) {
585    // Array-to-pointer conversion (C++ 4.2)
586    SCS.First = ICK_Array_To_Pointer;
587
588    // An lvalue or rvalue of type "array of N T" or "array of unknown
589    // bound of T" can be converted to an rvalue of type "pointer to
590    // T" (C++ 4.2p1).
591    FromType = Context.getArrayDecayedType(FromType);
592
593    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
594      // This conversion is deprecated. (C++ D.4).
595      SCS.DeprecatedStringLiteralToCharPtr = true;
596
597      // For the purpose of ranking in overload resolution
598      // (13.3.3.1.1), this conversion is considered an
599      // array-to-pointer conversion followed by a qualification
600      // conversion (4.4). (C++ 4.2p2)
601      SCS.Second = ICK_Identity;
602      SCS.Third = ICK_Qualification;
603      SCS.setAllToTypes(FromType);
604      return true;
605    }
606  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
607    // Function-to-pointer conversion (C++ 4.3).
608    SCS.First = ICK_Function_To_Pointer;
609
610    // An lvalue of function type T can be converted to an rvalue of
611    // type "pointer to T." The result is a pointer to the
612    // function. (C++ 4.3p1).
613    FromType = Context.getPointerType(FromType);
614  } else if (FunctionDecl *Fn
615               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
616    // Address of overloaded function (C++ [over.over]).
617    SCS.First = ICK_Function_To_Pointer;
618
619    // We were able to resolve the address of the overloaded function,
620    // so we can convert to the type of that function.
621    FromType = Fn->getType();
622    if (ToType->isLValueReferenceType())
623      FromType = Context.getLValueReferenceType(FromType);
624    else if (ToType->isRValueReferenceType())
625      FromType = Context.getRValueReferenceType(FromType);
626    else if (ToType->isMemberPointerType()) {
627      // Resolve address only succeeds if both sides are member pointers,
628      // but it doesn't have to be the same class. See DR 247.
629      // Note that this means that the type of &Derived::fn can be
630      // Ret (Base::*)(Args) if the fn overload actually found is from the
631      // base class, even if it was brought into the derived class via a
632      // using declaration. The standard isn't clear on this issue at all.
633      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
634      FromType = Context.getMemberPointerType(FromType,
635                    Context.getTypeDeclType(M->getParent()).getTypePtr());
636    } else
637      FromType = Context.getPointerType(FromType);
638  } else {
639    // We don't require any conversions for the first step.
640    SCS.First = ICK_Identity;
641  }
642  SCS.setToType(0, FromType);
643
644  // The second conversion can be an integral promotion, floating
645  // point promotion, integral conversion, floating point conversion,
646  // floating-integral conversion, pointer conversion,
647  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
648  // For overloading in C, this can also be a "compatible-type"
649  // conversion.
650  bool IncompatibleObjC = false;
651  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
652    // The unqualified versions of the types are the same: there's no
653    // conversion to do.
654    SCS.Second = ICK_Identity;
655  } else if (IsIntegralPromotion(From, FromType, ToType)) {
656    // Integral promotion (C++ 4.5).
657    SCS.Second = ICK_Integral_Promotion;
658    FromType = ToType.getUnqualifiedType();
659  } else if (IsFloatingPointPromotion(FromType, ToType)) {
660    // Floating point promotion (C++ 4.6).
661    SCS.Second = ICK_Floating_Promotion;
662    FromType = ToType.getUnqualifiedType();
663  } else if (IsComplexPromotion(FromType, ToType)) {
664    // Complex promotion (Clang extension)
665    SCS.Second = ICK_Complex_Promotion;
666    FromType = ToType.getUnqualifiedType();
667  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
668           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
669    // Integral conversions (C++ 4.7).
670    SCS.Second = ICK_Integral_Conversion;
671    FromType = ToType.getUnqualifiedType();
672  } else if (FromType->isComplexType() && ToType->isComplexType()) {
673    // Complex conversions (C99 6.3.1.6)
674    SCS.Second = ICK_Complex_Conversion;
675    FromType = ToType.getUnqualifiedType();
676  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
677             (ToType->isComplexType() && FromType->isArithmeticType())) {
678    // Complex-real conversions (C99 6.3.1.7)
679    SCS.Second = ICK_Complex_Real;
680    FromType = ToType.getUnqualifiedType();
681  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
682    // Floating point conversions (C++ 4.8).
683    SCS.Second = ICK_Floating_Conversion;
684    FromType = ToType.getUnqualifiedType();
685  } else if ((FromType->isFloatingType() &&
686              ToType->isIntegralType() && (!ToType->isBooleanType() &&
687                                           !ToType->isEnumeralType())) ||
688             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
689              ToType->isFloatingType())) {
690    // Floating-integral conversions (C++ 4.9).
691    SCS.Second = ICK_Floating_Integral;
692    FromType = ToType.getUnqualifiedType();
693  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
694                                 FromType, IncompatibleObjC)) {
695    // Pointer conversions (C++ 4.10).
696    SCS.Second = ICK_Pointer_Conversion;
697    SCS.IncompatibleObjC = IncompatibleObjC;
698  } else if (IsMemberPointerConversion(From, FromType, ToType,
699                                       InOverloadResolution, FromType)) {
700    // Pointer to member conversions (4.11).
701    SCS.Second = ICK_Pointer_Member;
702  } else if (ToType->isBooleanType() &&
703             (FromType->isArithmeticType() ||
704              FromType->isEnumeralType() ||
705              FromType->isAnyPointerType() ||
706              FromType->isBlockPointerType() ||
707              FromType->isMemberPointerType() ||
708              FromType->isNullPtrType())) {
709    // Boolean conversions (C++ 4.12).
710    SCS.Second = ICK_Boolean_Conversion;
711    FromType = Context.BoolTy;
712  } else if (!getLangOptions().CPlusPlus &&
713             Context.typesAreCompatible(ToType, FromType)) {
714    // Compatible conversions (Clang extension for C function overloading)
715    SCS.Second = ICK_Compatible_Conversion;
716  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
717    // Treat a conversion that strips "noreturn" as an identity conversion.
718    SCS.Second = ICK_NoReturn_Adjustment;
719  } else {
720    // No second conversion required.
721    SCS.Second = ICK_Identity;
722  }
723  SCS.setToType(1, FromType);
724
725  QualType CanonFrom;
726  QualType CanonTo;
727  // The third conversion can be a qualification conversion (C++ 4p1).
728  if (IsQualificationConversion(FromType, ToType)) {
729    SCS.Third = ICK_Qualification;
730    FromType = ToType;
731    CanonFrom = Context.getCanonicalType(FromType);
732    CanonTo = Context.getCanonicalType(ToType);
733  } else {
734    // No conversion required
735    SCS.Third = ICK_Identity;
736
737    // C++ [over.best.ics]p6:
738    //   [...] Any difference in top-level cv-qualification is
739    //   subsumed by the initialization itself and does not constitute
740    //   a conversion. [...]
741    CanonFrom = Context.getCanonicalType(FromType);
742    CanonTo = Context.getCanonicalType(ToType);
743    if (CanonFrom.getLocalUnqualifiedType()
744                                       == CanonTo.getLocalUnqualifiedType() &&
745        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
746      FromType = ToType;
747      CanonFrom = CanonTo;
748    }
749  }
750  SCS.setToType(2, FromType);
751
752  // If we have not converted the argument type to the parameter type,
753  // this is a bad conversion sequence.
754  if (CanonFrom != CanonTo)
755    return false;
756
757  return true;
758}
759
760/// IsIntegralPromotion - Determines whether the conversion from the
761/// expression From (whose potentially-adjusted type is FromType) to
762/// ToType is an integral promotion (C++ 4.5). If so, returns true and
763/// sets PromotedType to the promoted type.
764bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
765  const BuiltinType *To = ToType->getAs<BuiltinType>();
766  // All integers are built-in.
767  if (!To) {
768    return false;
769  }
770
771  // An rvalue of type char, signed char, unsigned char, short int, or
772  // unsigned short int can be converted to an rvalue of type int if
773  // int can represent all the values of the source type; otherwise,
774  // the source rvalue can be converted to an rvalue of type unsigned
775  // int (C++ 4.5p1).
776  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
777      !FromType->isEnumeralType()) {
778    if (// We can promote any signed, promotable integer type to an int
779        (FromType->isSignedIntegerType() ||
780         // We can promote any unsigned integer type whose size is
781         // less than int to an int.
782         (!FromType->isSignedIntegerType() &&
783          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
784      return To->getKind() == BuiltinType::Int;
785    }
786
787    return To->getKind() == BuiltinType::UInt;
788  }
789
790  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
791  // can be converted to an rvalue of the first of the following types
792  // that can represent all the values of its underlying type: int,
793  // unsigned int, long, or unsigned long (C++ 4.5p2).
794
795  // We pre-calculate the promotion type for enum types.
796  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
797    if (ToType->isIntegerType())
798      return Context.hasSameUnqualifiedType(ToType,
799                                FromEnumType->getDecl()->getPromotionType());
800
801  if (FromType->isWideCharType() && ToType->isIntegerType()) {
802    // Determine whether the type we're converting from is signed or
803    // unsigned.
804    bool FromIsSigned;
805    uint64_t FromSize = Context.getTypeSize(FromType);
806
807    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
808    FromIsSigned = true;
809
810    // The types we'll try to promote to, in the appropriate
811    // order. Try each of these types.
812    QualType PromoteTypes[6] = {
813      Context.IntTy, Context.UnsignedIntTy,
814      Context.LongTy, Context.UnsignedLongTy ,
815      Context.LongLongTy, Context.UnsignedLongLongTy
816    };
817    for (int Idx = 0; Idx < 6; ++Idx) {
818      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
819      if (FromSize < ToSize ||
820          (FromSize == ToSize &&
821           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
822        // We found the type that we can promote to. If this is the
823        // type we wanted, we have a promotion. Otherwise, no
824        // promotion.
825        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
826      }
827    }
828  }
829
830  // An rvalue for an integral bit-field (9.6) can be converted to an
831  // rvalue of type int if int can represent all the values of the
832  // bit-field; otherwise, it can be converted to unsigned int if
833  // unsigned int can represent all the values of the bit-field. If
834  // the bit-field is larger yet, no integral promotion applies to
835  // it. If the bit-field has an enumerated type, it is treated as any
836  // other value of that type for promotion purposes (C++ 4.5p3).
837  // FIXME: We should delay checking of bit-fields until we actually perform the
838  // conversion.
839  using llvm::APSInt;
840  if (From)
841    if (FieldDecl *MemberDecl = From->getBitField()) {
842      APSInt BitWidth;
843      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
844          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
845        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
846        ToSize = Context.getTypeSize(ToType);
847
848        // Are we promoting to an int from a bitfield that fits in an int?
849        if (BitWidth < ToSize ||
850            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
851          return To->getKind() == BuiltinType::Int;
852        }
853
854        // Are we promoting to an unsigned int from an unsigned bitfield
855        // that fits into an unsigned int?
856        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
857          return To->getKind() == BuiltinType::UInt;
858        }
859
860        return false;
861      }
862    }
863
864  // An rvalue of type bool can be converted to an rvalue of type int,
865  // with false becoming zero and true becoming one (C++ 4.5p4).
866  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
867    return true;
868  }
869
870  return false;
871}
872
873/// IsFloatingPointPromotion - Determines whether the conversion from
874/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
875/// returns true and sets PromotedType to the promoted type.
876bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
877  /// An rvalue of type float can be converted to an rvalue of type
878  /// double. (C++ 4.6p1).
879  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
880    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
881      if (FromBuiltin->getKind() == BuiltinType::Float &&
882          ToBuiltin->getKind() == BuiltinType::Double)
883        return true;
884
885      // C99 6.3.1.5p1:
886      //   When a float is promoted to double or long double, or a
887      //   double is promoted to long double [...].
888      if (!getLangOptions().CPlusPlus &&
889          (FromBuiltin->getKind() == BuiltinType::Float ||
890           FromBuiltin->getKind() == BuiltinType::Double) &&
891          (ToBuiltin->getKind() == BuiltinType::LongDouble))
892        return true;
893    }
894
895  return false;
896}
897
898/// \brief Determine if a conversion is a complex promotion.
899///
900/// A complex promotion is defined as a complex -> complex conversion
901/// where the conversion between the underlying real types is a
902/// floating-point or integral promotion.
903bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
904  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
905  if (!FromComplex)
906    return false;
907
908  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
909  if (!ToComplex)
910    return false;
911
912  return IsFloatingPointPromotion(FromComplex->getElementType(),
913                                  ToComplex->getElementType()) ||
914    IsIntegralPromotion(0, FromComplex->getElementType(),
915                        ToComplex->getElementType());
916}
917
918/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
919/// the pointer type FromPtr to a pointer to type ToPointee, with the
920/// same type qualifiers as FromPtr has on its pointee type. ToType,
921/// if non-empty, will be a pointer to ToType that may or may not have
922/// the right set of qualifiers on its pointee.
923static QualType
924BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
925                                   QualType ToPointee, QualType ToType,
926                                   ASTContext &Context) {
927  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
928  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
929  Qualifiers Quals = CanonFromPointee.getQualifiers();
930
931  // Exact qualifier match -> return the pointer type we're converting to.
932  if (CanonToPointee.getLocalQualifiers() == Quals) {
933    // ToType is exactly what we need. Return it.
934    if (!ToType.isNull())
935      return ToType;
936
937    // Build a pointer to ToPointee. It has the right qualifiers
938    // already.
939    return Context.getPointerType(ToPointee);
940  }
941
942  // Just build a canonical type that has the right qualifiers.
943  return Context.getPointerType(
944         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
945                                  Quals));
946}
947
948/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
949/// the FromType, which is an objective-c pointer, to ToType, which may or may
950/// not have the right set of qualifiers.
951static QualType
952BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
953                                             QualType ToType,
954                                             ASTContext &Context) {
955  QualType CanonFromType = Context.getCanonicalType(FromType);
956  QualType CanonToType = Context.getCanonicalType(ToType);
957  Qualifiers Quals = CanonFromType.getQualifiers();
958
959  // Exact qualifier match -> return the pointer type we're converting to.
960  if (CanonToType.getLocalQualifiers() == Quals)
961    return ToType;
962
963  // Just build a canonical type that has the right qualifiers.
964  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
965}
966
967static bool isNullPointerConstantForConversion(Expr *Expr,
968                                               bool InOverloadResolution,
969                                               ASTContext &Context) {
970  // Handle value-dependent integral null pointer constants correctly.
971  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
972  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
973      Expr->getType()->isIntegralType())
974    return !InOverloadResolution;
975
976  return Expr->isNullPointerConstant(Context,
977                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
978                                        : Expr::NPC_ValueDependentIsNull);
979}
980
981/// IsPointerConversion - Determines whether the conversion of the
982/// expression From, which has the (possibly adjusted) type FromType,
983/// can be converted to the type ToType via a pointer conversion (C++
984/// 4.10). If so, returns true and places the converted type (that
985/// might differ from ToType in its cv-qualifiers at some level) into
986/// ConvertedType.
987///
988/// This routine also supports conversions to and from block pointers
989/// and conversions with Objective-C's 'id', 'id<protocols...>', and
990/// pointers to interfaces. FIXME: Once we've determined the
991/// appropriate overloading rules for Objective-C, we may want to
992/// split the Objective-C checks into a different routine; however,
993/// GCC seems to consider all of these conversions to be pointer
994/// conversions, so for now they live here. IncompatibleObjC will be
995/// set if the conversion is an allowed Objective-C conversion that
996/// should result in a warning.
997bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
998                               bool InOverloadResolution,
999                               QualType& ConvertedType,
1000                               bool &IncompatibleObjC) {
1001  IncompatibleObjC = false;
1002  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1003    return true;
1004
1005  // Conversion from a null pointer constant to any Objective-C pointer type.
1006  if (ToType->isObjCObjectPointerType() &&
1007      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1008    ConvertedType = ToType;
1009    return true;
1010  }
1011
1012  // Blocks: Block pointers can be converted to void*.
1013  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1014      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1015    ConvertedType = ToType;
1016    return true;
1017  }
1018  // Blocks: A null pointer constant can be converted to a block
1019  // pointer type.
1020  if (ToType->isBlockPointerType() &&
1021      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1022    ConvertedType = ToType;
1023    return true;
1024  }
1025
1026  // If the left-hand-side is nullptr_t, the right side can be a null
1027  // pointer constant.
1028  if (ToType->isNullPtrType() &&
1029      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1030    ConvertedType = ToType;
1031    return true;
1032  }
1033
1034  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1035  if (!ToTypePtr)
1036    return false;
1037
1038  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1039  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1040    ConvertedType = ToType;
1041    return true;
1042  }
1043
1044  // Beyond this point, both types need to be pointers
1045  // , including objective-c pointers.
1046  QualType ToPointeeType = ToTypePtr->getPointeeType();
1047  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1048    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1049                                                       ToType, Context);
1050    return true;
1051
1052  }
1053  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1054  if (!FromTypePtr)
1055    return false;
1056
1057  QualType FromPointeeType = FromTypePtr->getPointeeType();
1058
1059  // An rvalue of type "pointer to cv T," where T is an object type,
1060  // can be converted to an rvalue of type "pointer to cv void" (C++
1061  // 4.10p2).
1062  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1063    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1064                                                       ToPointeeType,
1065                                                       ToType, Context);
1066    return true;
1067  }
1068
1069  // When we're overloading in C, we allow a special kind of pointer
1070  // conversion for compatible-but-not-identical pointee types.
1071  if (!getLangOptions().CPlusPlus &&
1072      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1073    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1074                                                       ToPointeeType,
1075                                                       ToType, Context);
1076    return true;
1077  }
1078
1079  // C++ [conv.ptr]p3:
1080  //
1081  //   An rvalue of type "pointer to cv D," where D is a class type,
1082  //   can be converted to an rvalue of type "pointer to cv B," where
1083  //   B is a base class (clause 10) of D. If B is an inaccessible
1084  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1085  //   necessitates this conversion is ill-formed. The result of the
1086  //   conversion is a pointer to the base class sub-object of the
1087  //   derived class object. The null pointer value is converted to
1088  //   the null pointer value of the destination type.
1089  //
1090  // Note that we do not check for ambiguity or inaccessibility
1091  // here. That is handled by CheckPointerConversion.
1092  if (getLangOptions().CPlusPlus &&
1093      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1094      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1095      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1096      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1097    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1098                                                       ToPointeeType,
1099                                                       ToType, Context);
1100    return true;
1101  }
1102
1103  return false;
1104}
1105
1106/// isObjCPointerConversion - Determines whether this is an
1107/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1108/// with the same arguments and return values.
1109bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1110                                   QualType& ConvertedType,
1111                                   bool &IncompatibleObjC) {
1112  if (!getLangOptions().ObjC1)
1113    return false;
1114
1115  // First, we handle all conversions on ObjC object pointer types.
1116  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1117  const ObjCObjectPointerType *FromObjCPtr =
1118    FromType->getAs<ObjCObjectPointerType>();
1119
1120  if (ToObjCPtr && FromObjCPtr) {
1121    // Objective C++: We're able to convert between "id" or "Class" and a
1122    // pointer to any interface (in both directions).
1123    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1124      ConvertedType = ToType;
1125      return true;
1126    }
1127    // Conversions with Objective-C's id<...>.
1128    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1129         ToObjCPtr->isObjCQualifiedIdType()) &&
1130        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1131                                                  /*compare=*/false)) {
1132      ConvertedType = ToType;
1133      return true;
1134    }
1135    // Objective C++: We're able to convert from a pointer to an
1136    // interface to a pointer to a different interface.
1137    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1138      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1139      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1140      if (getLangOptions().CPlusPlus && LHS && RHS &&
1141          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1142                                                FromObjCPtr->getPointeeType()))
1143        return false;
1144      ConvertedType = ToType;
1145      return true;
1146    }
1147
1148    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1149      // Okay: this is some kind of implicit downcast of Objective-C
1150      // interfaces, which is permitted. However, we're going to
1151      // complain about it.
1152      IncompatibleObjC = true;
1153      ConvertedType = FromType;
1154      return true;
1155    }
1156  }
1157  // Beyond this point, both types need to be C pointers or block pointers.
1158  QualType ToPointeeType;
1159  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1160    ToPointeeType = ToCPtr->getPointeeType();
1161  else if (const BlockPointerType *ToBlockPtr =
1162            ToType->getAs<BlockPointerType>()) {
1163    // Objective C++: We're able to convert from a pointer to any object
1164    // to a block pointer type.
1165    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1166      ConvertedType = ToType;
1167      return true;
1168    }
1169    ToPointeeType = ToBlockPtr->getPointeeType();
1170  }
1171  else if (FromType->getAs<BlockPointerType>() &&
1172           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1173    // Objective C++: We're able to convert from a block pointer type to a
1174    // pointer to any object.
1175    ConvertedType = ToType;
1176    return true;
1177  }
1178  else
1179    return false;
1180
1181  QualType FromPointeeType;
1182  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1183    FromPointeeType = FromCPtr->getPointeeType();
1184  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1185    FromPointeeType = FromBlockPtr->getPointeeType();
1186  else
1187    return false;
1188
1189  // If we have pointers to pointers, recursively check whether this
1190  // is an Objective-C conversion.
1191  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1192      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1193                              IncompatibleObjC)) {
1194    // We always complain about this conversion.
1195    IncompatibleObjC = true;
1196    ConvertedType = ToType;
1197    return true;
1198  }
1199  // Allow conversion of pointee being objective-c pointer to another one;
1200  // as in I* to id.
1201  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1202      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1203      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1204                              IncompatibleObjC)) {
1205    ConvertedType = ToType;
1206    return true;
1207  }
1208
1209  // If we have pointers to functions or blocks, check whether the only
1210  // differences in the argument and result types are in Objective-C
1211  // pointer conversions. If so, we permit the conversion (but
1212  // complain about it).
1213  const FunctionProtoType *FromFunctionType
1214    = FromPointeeType->getAs<FunctionProtoType>();
1215  const FunctionProtoType *ToFunctionType
1216    = ToPointeeType->getAs<FunctionProtoType>();
1217  if (FromFunctionType && ToFunctionType) {
1218    // If the function types are exactly the same, this isn't an
1219    // Objective-C pointer conversion.
1220    if (Context.getCanonicalType(FromPointeeType)
1221          == Context.getCanonicalType(ToPointeeType))
1222      return false;
1223
1224    // Perform the quick checks that will tell us whether these
1225    // function types are obviously different.
1226    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1227        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1228        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1229      return false;
1230
1231    bool HasObjCConversion = false;
1232    if (Context.getCanonicalType(FromFunctionType->getResultType())
1233          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1234      // Okay, the types match exactly. Nothing to do.
1235    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1236                                       ToFunctionType->getResultType(),
1237                                       ConvertedType, IncompatibleObjC)) {
1238      // Okay, we have an Objective-C pointer conversion.
1239      HasObjCConversion = true;
1240    } else {
1241      // Function types are too different. Abort.
1242      return false;
1243    }
1244
1245    // Check argument types.
1246    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1247         ArgIdx != NumArgs; ++ArgIdx) {
1248      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1249      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1250      if (Context.getCanonicalType(FromArgType)
1251            == Context.getCanonicalType(ToArgType)) {
1252        // Okay, the types match exactly. Nothing to do.
1253      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1254                                         ConvertedType, IncompatibleObjC)) {
1255        // Okay, we have an Objective-C pointer conversion.
1256        HasObjCConversion = true;
1257      } else {
1258        // Argument types are too different. Abort.
1259        return false;
1260      }
1261    }
1262
1263    if (HasObjCConversion) {
1264      // We had an Objective-C conversion. Allow this pointer
1265      // conversion, but complain about it.
1266      ConvertedType = ToType;
1267      IncompatibleObjC = true;
1268      return true;
1269    }
1270  }
1271
1272  return false;
1273}
1274
1275/// CheckPointerConversion - Check the pointer conversion from the
1276/// expression From to the type ToType. This routine checks for
1277/// ambiguous or inaccessible derived-to-base pointer
1278/// conversions for which IsPointerConversion has already returned
1279/// true. It returns true and produces a diagnostic if there was an
1280/// error, or returns false otherwise.
1281bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1282                                  CastExpr::CastKind &Kind,
1283                                  bool IgnoreBaseAccess) {
1284  QualType FromType = From->getType();
1285
1286  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1287    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1288      QualType FromPointeeType = FromPtrType->getPointeeType(),
1289               ToPointeeType   = ToPtrType->getPointeeType();
1290
1291      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1292          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1293        // We must have a derived-to-base conversion. Check an
1294        // ambiguous or inaccessible conversion.
1295        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1296                                         From->getExprLoc(),
1297                                         From->getSourceRange(),
1298                                         IgnoreBaseAccess))
1299          return true;
1300
1301        // The conversion was successful.
1302        Kind = CastExpr::CK_DerivedToBase;
1303      }
1304    }
1305  if (const ObjCObjectPointerType *FromPtrType =
1306        FromType->getAs<ObjCObjectPointerType>())
1307    if (const ObjCObjectPointerType *ToPtrType =
1308          ToType->getAs<ObjCObjectPointerType>()) {
1309      // Objective-C++ conversions are always okay.
1310      // FIXME: We should have a different class of conversions for the
1311      // Objective-C++ implicit conversions.
1312      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1313        return false;
1314
1315  }
1316  return false;
1317}
1318
1319/// IsMemberPointerConversion - Determines whether the conversion of the
1320/// expression From, which has the (possibly adjusted) type FromType, can be
1321/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1322/// If so, returns true and places the converted type (that might differ from
1323/// ToType in its cv-qualifiers at some level) into ConvertedType.
1324bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1325                                     QualType ToType,
1326                                     bool InOverloadResolution,
1327                                     QualType &ConvertedType) {
1328  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1329  if (!ToTypePtr)
1330    return false;
1331
1332  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1333  if (From->isNullPointerConstant(Context,
1334                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1335                                        : Expr::NPC_ValueDependentIsNull)) {
1336    ConvertedType = ToType;
1337    return true;
1338  }
1339
1340  // Otherwise, both types have to be member pointers.
1341  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1342  if (!FromTypePtr)
1343    return false;
1344
1345  // A pointer to member of B can be converted to a pointer to member of D,
1346  // where D is derived from B (C++ 4.11p2).
1347  QualType FromClass(FromTypePtr->getClass(), 0);
1348  QualType ToClass(ToTypePtr->getClass(), 0);
1349  // FIXME: What happens when these are dependent? Is this function even called?
1350
1351  if (IsDerivedFrom(ToClass, FromClass)) {
1352    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1353                                                 ToClass.getTypePtr());
1354    return true;
1355  }
1356
1357  return false;
1358}
1359
1360/// CheckMemberPointerConversion - Check the member pointer conversion from the
1361/// expression From to the type ToType. This routine checks for ambiguous or
1362/// virtual or inaccessible base-to-derived member pointer conversions
1363/// for which IsMemberPointerConversion has already returned true. It returns
1364/// true and produces a diagnostic if there was an error, or returns false
1365/// otherwise.
1366bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1367                                        CastExpr::CastKind &Kind,
1368                                        bool IgnoreBaseAccess) {
1369  QualType FromType = From->getType();
1370  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1371  if (!FromPtrType) {
1372    // This must be a null pointer to member pointer conversion
1373    assert(From->isNullPointerConstant(Context,
1374                                       Expr::NPC_ValueDependentIsNull) &&
1375           "Expr must be null pointer constant!");
1376    Kind = CastExpr::CK_NullToMemberPointer;
1377    return false;
1378  }
1379
1380  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1381  assert(ToPtrType && "No member pointer cast has a target type "
1382                      "that is not a member pointer.");
1383
1384  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1385  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1386
1387  // FIXME: What about dependent types?
1388  assert(FromClass->isRecordType() && "Pointer into non-class.");
1389  assert(ToClass->isRecordType() && "Pointer into non-class.");
1390
1391  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1392                     /*DetectVirtual=*/true);
1393  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1394  assert(DerivationOkay &&
1395         "Should not have been called if derivation isn't OK.");
1396  (void)DerivationOkay;
1397
1398  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1399                                  getUnqualifiedType())) {
1400    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1401    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1402      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1403    return true;
1404  }
1405
1406  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1407    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1408      << FromClass << ToClass << QualType(VBase, 0)
1409      << From->getSourceRange();
1410    return true;
1411  }
1412
1413  if (!IgnoreBaseAccess)
1414    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1415                         Paths.front(),
1416                         diag::err_downcast_from_inaccessible_base);
1417
1418  // Must be a base to derived member conversion.
1419  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1420  return false;
1421}
1422
1423/// IsQualificationConversion - Determines whether the conversion from
1424/// an rvalue of type FromType to ToType is a qualification conversion
1425/// (C++ 4.4).
1426bool
1427Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1428  FromType = Context.getCanonicalType(FromType);
1429  ToType = Context.getCanonicalType(ToType);
1430
1431  // If FromType and ToType are the same type, this is not a
1432  // qualification conversion.
1433  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1434    return false;
1435
1436  // (C++ 4.4p4):
1437  //   A conversion can add cv-qualifiers at levels other than the first
1438  //   in multi-level pointers, subject to the following rules: [...]
1439  bool PreviousToQualsIncludeConst = true;
1440  bool UnwrappedAnyPointer = false;
1441  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1442    // Within each iteration of the loop, we check the qualifiers to
1443    // determine if this still looks like a qualification
1444    // conversion. Then, if all is well, we unwrap one more level of
1445    // pointers or pointers-to-members and do it all again
1446    // until there are no more pointers or pointers-to-members left to
1447    // unwrap.
1448    UnwrappedAnyPointer = true;
1449
1450    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1451    //      2,j, and similarly for volatile.
1452    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1453      return false;
1454
1455    //   -- if the cv 1,j and cv 2,j are different, then const is in
1456    //      every cv for 0 < k < j.
1457    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1458        && !PreviousToQualsIncludeConst)
1459      return false;
1460
1461    // Keep track of whether all prior cv-qualifiers in the "to" type
1462    // include const.
1463    PreviousToQualsIncludeConst
1464      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1465  }
1466
1467  // We are left with FromType and ToType being the pointee types
1468  // after unwrapping the original FromType and ToType the same number
1469  // of types. If we unwrapped any pointers, and if FromType and
1470  // ToType have the same unqualified type (since we checked
1471  // qualifiers above), then this is a qualification conversion.
1472  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1473}
1474
1475/// Determines whether there is a user-defined conversion sequence
1476/// (C++ [over.ics.user]) that converts expression From to the type
1477/// ToType. If such a conversion exists, User will contain the
1478/// user-defined conversion sequence that performs such a conversion
1479/// and this routine will return true. Otherwise, this routine returns
1480/// false and User is unspecified.
1481///
1482/// \param AllowConversionFunctions true if the conversion should
1483/// consider conversion functions at all. If false, only constructors
1484/// will be considered.
1485///
1486/// \param AllowExplicit  true if the conversion should consider C++0x
1487/// "explicit" conversion functions as well as non-explicit conversion
1488/// functions (C++0x [class.conv.fct]p2).
1489///
1490/// \param ForceRValue  true if the expression should be treated as an rvalue
1491/// for overload resolution.
1492/// \param UserCast true if looking for user defined conversion for a static
1493/// cast.
1494OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1495                                          UserDefinedConversionSequence& User,
1496                                            OverloadCandidateSet& CandidateSet,
1497                                                bool AllowConversionFunctions,
1498                                                bool AllowExplicit,
1499                                                bool ForceRValue,
1500                                                bool UserCast) {
1501  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1502    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1503      // We're not going to find any constructors.
1504    } else if (CXXRecordDecl *ToRecordDecl
1505                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1506      // C++ [over.match.ctor]p1:
1507      //   When objects of class type are direct-initialized (8.5), or
1508      //   copy-initialized from an expression of the same or a
1509      //   derived class type (8.5), overload resolution selects the
1510      //   constructor. [...] For copy-initialization, the candidate
1511      //   functions are all the converting constructors (12.3.1) of
1512      //   that class. The argument list is the expression-list within
1513      //   the parentheses of the initializer.
1514      bool SuppressUserConversions = !UserCast;
1515      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1516          IsDerivedFrom(From->getType(), ToType)) {
1517        SuppressUserConversions = false;
1518        AllowConversionFunctions = false;
1519      }
1520
1521      DeclarationName ConstructorName
1522        = Context.DeclarationNames.getCXXConstructorName(
1523                          Context.getCanonicalType(ToType).getUnqualifiedType());
1524      DeclContext::lookup_iterator Con, ConEnd;
1525      for (llvm::tie(Con, ConEnd)
1526             = ToRecordDecl->lookup(ConstructorName);
1527           Con != ConEnd; ++Con) {
1528        NamedDecl *D = *Con;
1529        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1530
1531        // Find the constructor (which may be a template).
1532        CXXConstructorDecl *Constructor = 0;
1533        FunctionTemplateDecl *ConstructorTmpl
1534          = dyn_cast<FunctionTemplateDecl>(D);
1535        if (ConstructorTmpl)
1536          Constructor
1537            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1538        else
1539          Constructor = cast<CXXConstructorDecl>(D);
1540
1541        if (!Constructor->isInvalidDecl() &&
1542            Constructor->isConvertingConstructor(AllowExplicit)) {
1543          if (ConstructorTmpl)
1544            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1545                                         /*ExplicitArgs*/ 0,
1546                                         &From, 1, CandidateSet,
1547                                         SuppressUserConversions, ForceRValue);
1548          else
1549            // Allow one user-defined conversion when user specifies a
1550            // From->ToType conversion via an static cast (c-style, etc).
1551            AddOverloadCandidate(Constructor, FoundDecl,
1552                                 &From, 1, CandidateSet,
1553                                 SuppressUserConversions, ForceRValue);
1554        }
1555      }
1556    }
1557  }
1558
1559  if (!AllowConversionFunctions) {
1560    // Don't allow any conversion functions to enter the overload set.
1561  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1562                                 PDiag(0)
1563                                   << From->getSourceRange())) {
1564    // No conversion functions from incomplete types.
1565  } else if (const RecordType *FromRecordType
1566               = From->getType()->getAs<RecordType>()) {
1567    if (CXXRecordDecl *FromRecordDecl
1568         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1569      // Add all of the conversion functions as candidates.
1570      const UnresolvedSetImpl *Conversions
1571        = FromRecordDecl->getVisibleConversionFunctions();
1572      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1573             E = Conversions->end(); I != E; ++I) {
1574        DeclAccessPair FoundDecl = I.getPair();
1575        NamedDecl *D = FoundDecl.getDecl();
1576        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1577        if (isa<UsingShadowDecl>(D))
1578          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1579
1580        CXXConversionDecl *Conv;
1581        FunctionTemplateDecl *ConvTemplate;
1582        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1583          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1584        else
1585          Conv = dyn_cast<CXXConversionDecl>(*I);
1586
1587        if (AllowExplicit || !Conv->isExplicit()) {
1588          if (ConvTemplate)
1589            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1590                                           ActingContext, From, ToType,
1591                                           CandidateSet);
1592          else
1593            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1594                                   From, ToType, CandidateSet);
1595        }
1596      }
1597    }
1598  }
1599
1600  OverloadCandidateSet::iterator Best;
1601  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1602    case OR_Success:
1603      // Record the standard conversion we used and the conversion function.
1604      if (CXXConstructorDecl *Constructor
1605            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1606        // C++ [over.ics.user]p1:
1607        //   If the user-defined conversion is specified by a
1608        //   constructor (12.3.1), the initial standard conversion
1609        //   sequence converts the source type to the type required by
1610        //   the argument of the constructor.
1611        //
1612        QualType ThisType = Constructor->getThisType(Context);
1613        if (Best->Conversions[0].isEllipsis())
1614          User.EllipsisConversion = true;
1615        else {
1616          User.Before = Best->Conversions[0].Standard;
1617          User.EllipsisConversion = false;
1618        }
1619        User.ConversionFunction = Constructor;
1620        User.After.setAsIdentityConversion();
1621        User.After.setFromType(
1622          ThisType->getAs<PointerType>()->getPointeeType());
1623        User.After.setAllToTypes(ToType);
1624        return OR_Success;
1625      } else if (CXXConversionDecl *Conversion
1626                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1627        // C++ [over.ics.user]p1:
1628        //
1629        //   [...] If the user-defined conversion is specified by a
1630        //   conversion function (12.3.2), the initial standard
1631        //   conversion sequence converts the source type to the
1632        //   implicit object parameter of the conversion function.
1633        User.Before = Best->Conversions[0].Standard;
1634        User.ConversionFunction = Conversion;
1635        User.EllipsisConversion = false;
1636
1637        // C++ [over.ics.user]p2:
1638        //   The second standard conversion sequence converts the
1639        //   result of the user-defined conversion to the target type
1640        //   for the sequence. Since an implicit conversion sequence
1641        //   is an initialization, the special rules for
1642        //   initialization by user-defined conversion apply when
1643        //   selecting the best user-defined conversion for a
1644        //   user-defined conversion sequence (see 13.3.3 and
1645        //   13.3.3.1).
1646        User.After = Best->FinalConversion;
1647        return OR_Success;
1648      } else {
1649        assert(false && "Not a constructor or conversion function?");
1650        return OR_No_Viable_Function;
1651      }
1652
1653    case OR_No_Viable_Function:
1654      return OR_No_Viable_Function;
1655    case OR_Deleted:
1656      // No conversion here! We're done.
1657      return OR_Deleted;
1658
1659    case OR_Ambiguous:
1660      return OR_Ambiguous;
1661    }
1662
1663  return OR_No_Viable_Function;
1664}
1665
1666bool
1667Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1668  ImplicitConversionSequence ICS;
1669  OverloadCandidateSet CandidateSet(From->getExprLoc());
1670  OverloadingResult OvResult =
1671    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1672                            CandidateSet, true, false, false);
1673  if (OvResult == OR_Ambiguous)
1674    Diag(From->getSourceRange().getBegin(),
1675         diag::err_typecheck_ambiguous_condition)
1676          << From->getType() << ToType << From->getSourceRange();
1677  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1678    Diag(From->getSourceRange().getBegin(),
1679         diag::err_typecheck_nonviable_condition)
1680    << From->getType() << ToType << From->getSourceRange();
1681  else
1682    return false;
1683  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1684  return true;
1685}
1686
1687/// CompareImplicitConversionSequences - Compare two implicit
1688/// conversion sequences to determine whether one is better than the
1689/// other or if they are indistinguishable (C++ 13.3.3.2).
1690ImplicitConversionSequence::CompareKind
1691Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1692                                         const ImplicitConversionSequence& ICS2)
1693{
1694  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1695  // conversion sequences (as defined in 13.3.3.1)
1696  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1697  //      conversion sequence than a user-defined conversion sequence or
1698  //      an ellipsis conversion sequence, and
1699  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1700  //      conversion sequence than an ellipsis conversion sequence
1701  //      (13.3.3.1.3).
1702  //
1703  // C++0x [over.best.ics]p10:
1704  //   For the purpose of ranking implicit conversion sequences as
1705  //   described in 13.3.3.2, the ambiguous conversion sequence is
1706  //   treated as a user-defined sequence that is indistinguishable
1707  //   from any other user-defined conversion sequence.
1708  if (ICS1.getKind() < ICS2.getKind()) {
1709    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1710      return ImplicitConversionSequence::Better;
1711  } else if (ICS2.getKind() < ICS1.getKind()) {
1712    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1713      return ImplicitConversionSequence::Worse;
1714  }
1715
1716  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1717    return ImplicitConversionSequence::Indistinguishable;
1718
1719  // Two implicit conversion sequences of the same form are
1720  // indistinguishable conversion sequences unless one of the
1721  // following rules apply: (C++ 13.3.3.2p3):
1722  if (ICS1.isStandard())
1723    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1724  else if (ICS1.isUserDefined()) {
1725    // User-defined conversion sequence U1 is a better conversion
1726    // sequence than another user-defined conversion sequence U2 if
1727    // they contain the same user-defined conversion function or
1728    // constructor and if the second standard conversion sequence of
1729    // U1 is better than the second standard conversion sequence of
1730    // U2 (C++ 13.3.3.2p3).
1731    if (ICS1.UserDefined.ConversionFunction ==
1732          ICS2.UserDefined.ConversionFunction)
1733      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1734                                                ICS2.UserDefined.After);
1735  }
1736
1737  return ImplicitConversionSequence::Indistinguishable;
1738}
1739
1740// Per 13.3.3.2p3, compare the given standard conversion sequences to
1741// determine if one is a proper subset of the other.
1742static ImplicitConversionSequence::CompareKind
1743compareStandardConversionSubsets(ASTContext &Context,
1744                                 const StandardConversionSequence& SCS1,
1745                                 const StandardConversionSequence& SCS2) {
1746  ImplicitConversionSequence::CompareKind Result
1747    = ImplicitConversionSequence::Indistinguishable;
1748
1749  if (SCS1.Second != SCS2.Second) {
1750    if (SCS1.Second == ICK_Identity)
1751      Result = ImplicitConversionSequence::Better;
1752    else if (SCS2.Second == ICK_Identity)
1753      Result = ImplicitConversionSequence::Worse;
1754    else
1755      return ImplicitConversionSequence::Indistinguishable;
1756  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1757    return ImplicitConversionSequence::Indistinguishable;
1758
1759  if (SCS1.Third == SCS2.Third) {
1760    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1761                             : ImplicitConversionSequence::Indistinguishable;
1762  }
1763
1764  if (SCS1.Third == ICK_Identity)
1765    return Result == ImplicitConversionSequence::Worse
1766             ? ImplicitConversionSequence::Indistinguishable
1767             : ImplicitConversionSequence::Better;
1768
1769  if (SCS2.Third == ICK_Identity)
1770    return Result == ImplicitConversionSequence::Better
1771             ? ImplicitConversionSequence::Indistinguishable
1772             : ImplicitConversionSequence::Worse;
1773
1774  return ImplicitConversionSequence::Indistinguishable;
1775}
1776
1777/// CompareStandardConversionSequences - Compare two standard
1778/// conversion sequences to determine whether one is better than the
1779/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1780ImplicitConversionSequence::CompareKind
1781Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1782                                         const StandardConversionSequence& SCS2)
1783{
1784  // Standard conversion sequence S1 is a better conversion sequence
1785  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1786
1787  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1788  //     sequences in the canonical form defined by 13.3.3.1.1,
1789  //     excluding any Lvalue Transformation; the identity conversion
1790  //     sequence is considered to be a subsequence of any
1791  //     non-identity conversion sequence) or, if not that,
1792  if (ImplicitConversionSequence::CompareKind CK
1793        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1794    return CK;
1795
1796  //  -- the rank of S1 is better than the rank of S2 (by the rules
1797  //     defined below), or, if not that,
1798  ImplicitConversionRank Rank1 = SCS1.getRank();
1799  ImplicitConversionRank Rank2 = SCS2.getRank();
1800  if (Rank1 < Rank2)
1801    return ImplicitConversionSequence::Better;
1802  else if (Rank2 < Rank1)
1803    return ImplicitConversionSequence::Worse;
1804
1805  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1806  // are indistinguishable unless one of the following rules
1807  // applies:
1808
1809  //   A conversion that is not a conversion of a pointer, or
1810  //   pointer to member, to bool is better than another conversion
1811  //   that is such a conversion.
1812  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1813    return SCS2.isPointerConversionToBool()
1814             ? ImplicitConversionSequence::Better
1815             : ImplicitConversionSequence::Worse;
1816
1817  // C++ [over.ics.rank]p4b2:
1818  //
1819  //   If class B is derived directly or indirectly from class A,
1820  //   conversion of B* to A* is better than conversion of B* to
1821  //   void*, and conversion of A* to void* is better than conversion
1822  //   of B* to void*.
1823  bool SCS1ConvertsToVoid
1824    = SCS1.isPointerConversionToVoidPointer(Context);
1825  bool SCS2ConvertsToVoid
1826    = SCS2.isPointerConversionToVoidPointer(Context);
1827  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1828    // Exactly one of the conversion sequences is a conversion to
1829    // a void pointer; it's the worse conversion.
1830    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1831                              : ImplicitConversionSequence::Worse;
1832  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1833    // Neither conversion sequence converts to a void pointer; compare
1834    // their derived-to-base conversions.
1835    if (ImplicitConversionSequence::CompareKind DerivedCK
1836          = CompareDerivedToBaseConversions(SCS1, SCS2))
1837      return DerivedCK;
1838  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1839    // Both conversion sequences are conversions to void
1840    // pointers. Compare the source types to determine if there's an
1841    // inheritance relationship in their sources.
1842    QualType FromType1 = SCS1.getFromType();
1843    QualType FromType2 = SCS2.getFromType();
1844
1845    // Adjust the types we're converting from via the array-to-pointer
1846    // conversion, if we need to.
1847    if (SCS1.First == ICK_Array_To_Pointer)
1848      FromType1 = Context.getArrayDecayedType(FromType1);
1849    if (SCS2.First == ICK_Array_To_Pointer)
1850      FromType2 = Context.getArrayDecayedType(FromType2);
1851
1852    QualType FromPointee1
1853      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1854    QualType FromPointee2
1855      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1856
1857    if (IsDerivedFrom(FromPointee2, FromPointee1))
1858      return ImplicitConversionSequence::Better;
1859    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1860      return ImplicitConversionSequence::Worse;
1861
1862    // Objective-C++: If one interface is more specific than the
1863    // other, it is the better one.
1864    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1865    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1866    if (FromIface1 && FromIface1) {
1867      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1868        return ImplicitConversionSequence::Better;
1869      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1870        return ImplicitConversionSequence::Worse;
1871    }
1872  }
1873
1874  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1875  // bullet 3).
1876  if (ImplicitConversionSequence::CompareKind QualCK
1877        = CompareQualificationConversions(SCS1, SCS2))
1878    return QualCK;
1879
1880  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1881    // C++0x [over.ics.rank]p3b4:
1882    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1883    //      implicit object parameter of a non-static member function declared
1884    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1885    //      rvalue and S2 binds an lvalue reference.
1886    // FIXME: We don't know if we're dealing with the implicit object parameter,
1887    // or if the member function in this case has a ref qualifier.
1888    // (Of course, we don't have ref qualifiers yet.)
1889    if (SCS1.RRefBinding != SCS2.RRefBinding)
1890      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1891                              : ImplicitConversionSequence::Worse;
1892
1893    // C++ [over.ics.rank]p3b4:
1894    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1895    //      which the references refer are the same type except for
1896    //      top-level cv-qualifiers, and the type to which the reference
1897    //      initialized by S2 refers is more cv-qualified than the type
1898    //      to which the reference initialized by S1 refers.
1899    QualType T1 = SCS1.getToType(2);
1900    QualType T2 = SCS2.getToType(2);
1901    T1 = Context.getCanonicalType(T1);
1902    T2 = Context.getCanonicalType(T2);
1903    Qualifiers T1Quals, T2Quals;
1904    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1905    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1906    if (UnqualT1 == UnqualT2) {
1907      // If the type is an array type, promote the element qualifiers to the type
1908      // for comparison.
1909      if (isa<ArrayType>(T1) && T1Quals)
1910        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1911      if (isa<ArrayType>(T2) && T2Quals)
1912        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1913      if (T2.isMoreQualifiedThan(T1))
1914        return ImplicitConversionSequence::Better;
1915      else if (T1.isMoreQualifiedThan(T2))
1916        return ImplicitConversionSequence::Worse;
1917    }
1918  }
1919
1920  return ImplicitConversionSequence::Indistinguishable;
1921}
1922
1923/// CompareQualificationConversions - Compares two standard conversion
1924/// sequences to determine whether they can be ranked based on their
1925/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1926ImplicitConversionSequence::CompareKind
1927Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1928                                      const StandardConversionSequence& SCS2) {
1929  // C++ 13.3.3.2p3:
1930  //  -- S1 and S2 differ only in their qualification conversion and
1931  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1932  //     cv-qualification signature of type T1 is a proper subset of
1933  //     the cv-qualification signature of type T2, and S1 is not the
1934  //     deprecated string literal array-to-pointer conversion (4.2).
1935  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1936      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1937    return ImplicitConversionSequence::Indistinguishable;
1938
1939  // FIXME: the example in the standard doesn't use a qualification
1940  // conversion (!)
1941  QualType T1 = SCS1.getToType(2);
1942  QualType T2 = SCS2.getToType(2);
1943  T1 = Context.getCanonicalType(T1);
1944  T2 = Context.getCanonicalType(T2);
1945  Qualifiers T1Quals, T2Quals;
1946  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1947  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1948
1949  // If the types are the same, we won't learn anything by unwrapped
1950  // them.
1951  if (UnqualT1 == UnqualT2)
1952    return ImplicitConversionSequence::Indistinguishable;
1953
1954  // If the type is an array type, promote the element qualifiers to the type
1955  // for comparison.
1956  if (isa<ArrayType>(T1) && T1Quals)
1957    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1958  if (isa<ArrayType>(T2) && T2Quals)
1959    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1960
1961  ImplicitConversionSequence::CompareKind Result
1962    = ImplicitConversionSequence::Indistinguishable;
1963  while (UnwrapSimilarPointerTypes(T1, T2)) {
1964    // Within each iteration of the loop, we check the qualifiers to
1965    // determine if this still looks like a qualification
1966    // conversion. Then, if all is well, we unwrap one more level of
1967    // pointers or pointers-to-members and do it all again
1968    // until there are no more pointers or pointers-to-members left
1969    // to unwrap. This essentially mimics what
1970    // IsQualificationConversion does, but here we're checking for a
1971    // strict subset of qualifiers.
1972    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1973      // The qualifiers are the same, so this doesn't tell us anything
1974      // about how the sequences rank.
1975      ;
1976    else if (T2.isMoreQualifiedThan(T1)) {
1977      // T1 has fewer qualifiers, so it could be the better sequence.
1978      if (Result == ImplicitConversionSequence::Worse)
1979        // Neither has qualifiers that are a subset of the other's
1980        // qualifiers.
1981        return ImplicitConversionSequence::Indistinguishable;
1982
1983      Result = ImplicitConversionSequence::Better;
1984    } else if (T1.isMoreQualifiedThan(T2)) {
1985      // T2 has fewer qualifiers, so it could be the better sequence.
1986      if (Result == ImplicitConversionSequence::Better)
1987        // Neither has qualifiers that are a subset of the other's
1988        // qualifiers.
1989        return ImplicitConversionSequence::Indistinguishable;
1990
1991      Result = ImplicitConversionSequence::Worse;
1992    } else {
1993      // Qualifiers are disjoint.
1994      return ImplicitConversionSequence::Indistinguishable;
1995    }
1996
1997    // If the types after this point are equivalent, we're done.
1998    if (Context.hasSameUnqualifiedType(T1, T2))
1999      break;
2000  }
2001
2002  // Check that the winning standard conversion sequence isn't using
2003  // the deprecated string literal array to pointer conversion.
2004  switch (Result) {
2005  case ImplicitConversionSequence::Better:
2006    if (SCS1.DeprecatedStringLiteralToCharPtr)
2007      Result = ImplicitConversionSequence::Indistinguishable;
2008    break;
2009
2010  case ImplicitConversionSequence::Indistinguishable:
2011    break;
2012
2013  case ImplicitConversionSequence::Worse:
2014    if (SCS2.DeprecatedStringLiteralToCharPtr)
2015      Result = ImplicitConversionSequence::Indistinguishable;
2016    break;
2017  }
2018
2019  return Result;
2020}
2021
2022/// CompareDerivedToBaseConversions - Compares two standard conversion
2023/// sequences to determine whether they can be ranked based on their
2024/// various kinds of derived-to-base conversions (C++
2025/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2026/// conversions between Objective-C interface types.
2027ImplicitConversionSequence::CompareKind
2028Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2029                                      const StandardConversionSequence& SCS2) {
2030  QualType FromType1 = SCS1.getFromType();
2031  QualType ToType1 = SCS1.getToType(1);
2032  QualType FromType2 = SCS2.getFromType();
2033  QualType ToType2 = SCS2.getToType(1);
2034
2035  // Adjust the types we're converting from via the array-to-pointer
2036  // conversion, if we need to.
2037  if (SCS1.First == ICK_Array_To_Pointer)
2038    FromType1 = Context.getArrayDecayedType(FromType1);
2039  if (SCS2.First == ICK_Array_To_Pointer)
2040    FromType2 = Context.getArrayDecayedType(FromType2);
2041
2042  // Canonicalize all of the types.
2043  FromType1 = Context.getCanonicalType(FromType1);
2044  ToType1 = Context.getCanonicalType(ToType1);
2045  FromType2 = Context.getCanonicalType(FromType2);
2046  ToType2 = Context.getCanonicalType(ToType2);
2047
2048  // C++ [over.ics.rank]p4b3:
2049  //
2050  //   If class B is derived directly or indirectly from class A and
2051  //   class C is derived directly or indirectly from B,
2052  //
2053  // For Objective-C, we let A, B, and C also be Objective-C
2054  // interfaces.
2055
2056  // Compare based on pointer conversions.
2057  if (SCS1.Second == ICK_Pointer_Conversion &&
2058      SCS2.Second == ICK_Pointer_Conversion &&
2059      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2060      FromType1->isPointerType() && FromType2->isPointerType() &&
2061      ToType1->isPointerType() && ToType2->isPointerType()) {
2062    QualType FromPointee1
2063      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2064    QualType ToPointee1
2065      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2066    QualType FromPointee2
2067      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2068    QualType ToPointee2
2069      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2070
2071    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2072    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2073    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2074    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2075
2076    //   -- conversion of C* to B* is better than conversion of C* to A*,
2077    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2078      if (IsDerivedFrom(ToPointee1, ToPointee2))
2079        return ImplicitConversionSequence::Better;
2080      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2081        return ImplicitConversionSequence::Worse;
2082
2083      if (ToIface1 && ToIface2) {
2084        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2085          return ImplicitConversionSequence::Better;
2086        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2087          return ImplicitConversionSequence::Worse;
2088      }
2089    }
2090
2091    //   -- conversion of B* to A* is better than conversion of C* to A*,
2092    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2093      if (IsDerivedFrom(FromPointee2, FromPointee1))
2094        return ImplicitConversionSequence::Better;
2095      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2096        return ImplicitConversionSequence::Worse;
2097
2098      if (FromIface1 && FromIface2) {
2099        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2100          return ImplicitConversionSequence::Better;
2101        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2102          return ImplicitConversionSequence::Worse;
2103      }
2104    }
2105  }
2106
2107  // Ranking of member-pointer types.
2108  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2109      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2110      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2111    const MemberPointerType * FromMemPointer1 =
2112                                        FromType1->getAs<MemberPointerType>();
2113    const MemberPointerType * ToMemPointer1 =
2114                                          ToType1->getAs<MemberPointerType>();
2115    const MemberPointerType * FromMemPointer2 =
2116                                          FromType2->getAs<MemberPointerType>();
2117    const MemberPointerType * ToMemPointer2 =
2118                                          ToType2->getAs<MemberPointerType>();
2119    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2120    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2121    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2122    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2123    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2124    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2125    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2126    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2127    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2128    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2129      if (IsDerivedFrom(ToPointee1, ToPointee2))
2130        return ImplicitConversionSequence::Worse;
2131      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2132        return ImplicitConversionSequence::Better;
2133    }
2134    // conversion of B::* to C::* is better than conversion of A::* to C::*
2135    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2136      if (IsDerivedFrom(FromPointee1, FromPointee2))
2137        return ImplicitConversionSequence::Better;
2138      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2139        return ImplicitConversionSequence::Worse;
2140    }
2141  }
2142
2143  if ((SCS1.ReferenceBinding || SCS1.CopyConstructor) &&
2144      (SCS2.ReferenceBinding || SCS2.CopyConstructor) &&
2145      SCS1.Second == ICK_Derived_To_Base) {
2146    //   -- conversion of C to B is better than conversion of C to A,
2147    //   -- binding of an expression of type C to a reference of type
2148    //      B& is better than binding an expression of type C to a
2149    //      reference of type A&,
2150    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2151        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2152      if (IsDerivedFrom(ToType1, ToType2))
2153        return ImplicitConversionSequence::Better;
2154      else if (IsDerivedFrom(ToType2, ToType1))
2155        return ImplicitConversionSequence::Worse;
2156    }
2157
2158    //   -- conversion of B to A is better than conversion of C to A.
2159    //   -- binding of an expression of type B to a reference of type
2160    //      A& is better than binding an expression of type C to a
2161    //      reference of type A&,
2162    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2163        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2164      if (IsDerivedFrom(FromType2, FromType1))
2165        return ImplicitConversionSequence::Better;
2166      else if (IsDerivedFrom(FromType1, FromType2))
2167        return ImplicitConversionSequence::Worse;
2168    }
2169  }
2170
2171  return ImplicitConversionSequence::Indistinguishable;
2172}
2173
2174/// TryCopyInitialization - Try to copy-initialize a value of type
2175/// ToType from the expression From. Return the implicit conversion
2176/// sequence required to pass this argument, which may be a bad
2177/// conversion sequence (meaning that the argument cannot be passed to
2178/// a parameter of this type). If @p SuppressUserConversions, then we
2179/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2180/// then we treat @p From as an rvalue, even if it is an lvalue.
2181ImplicitConversionSequence
2182Sema::TryCopyInitialization(Expr *From, QualType ToType,
2183                            bool SuppressUserConversions, bool ForceRValue,
2184                            bool InOverloadResolution) {
2185  if (ToType->isReferenceType()) {
2186    ImplicitConversionSequence ICS;
2187    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
2188    CheckReferenceInit(From, ToType,
2189                       /*FIXME:*/From->getLocStart(),
2190                       SuppressUserConversions,
2191                       /*AllowExplicit=*/false,
2192                       ForceRValue,
2193                       &ICS);
2194    return ICS;
2195  } else {
2196    return TryImplicitConversion(From, ToType,
2197                                 SuppressUserConversions,
2198                                 /*AllowExplicit=*/false,
2199                                 ForceRValue,
2200                                 InOverloadResolution);
2201  }
2202}
2203
2204/// TryObjectArgumentInitialization - Try to initialize the object
2205/// parameter of the given member function (@c Method) from the
2206/// expression @p From.
2207ImplicitConversionSequence
2208Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2209                                      CXXMethodDecl *Method,
2210                                      CXXRecordDecl *ActingContext) {
2211  QualType ClassType = Context.getTypeDeclType(ActingContext);
2212  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2213  //                 const volatile object.
2214  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2215    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2216  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2217
2218  // Set up the conversion sequence as a "bad" conversion, to allow us
2219  // to exit early.
2220  ImplicitConversionSequence ICS;
2221
2222  // We need to have an object of class type.
2223  QualType FromType = OrigFromType;
2224  if (const PointerType *PT = FromType->getAs<PointerType>())
2225    FromType = PT->getPointeeType();
2226
2227  assert(FromType->isRecordType());
2228
2229  // The implicit object parameter is has the type "reference to cv X",
2230  // where X is the class of which the function is a member
2231  // (C++ [over.match.funcs]p4). However, when finding an implicit
2232  // conversion sequence for the argument, we are not allowed to
2233  // create temporaries or perform user-defined conversions
2234  // (C++ [over.match.funcs]p5). We perform a simplified version of
2235  // reference binding here, that allows class rvalues to bind to
2236  // non-constant references.
2237
2238  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2239  // with the implicit object parameter (C++ [over.match.funcs]p5).
2240  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2241  if (ImplicitParamType.getCVRQualifiers()
2242                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2243      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2244    ICS.setBad(BadConversionSequence::bad_qualifiers,
2245               OrigFromType, ImplicitParamType);
2246    return ICS;
2247  }
2248
2249  // Check that we have either the same type or a derived type. It
2250  // affects the conversion rank.
2251  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2252  ImplicitConversionKind SecondKind;
2253  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2254    SecondKind = ICK_Identity;
2255  } else if (IsDerivedFrom(FromType, ClassType))
2256    SecondKind = ICK_Derived_To_Base;
2257  else {
2258    ICS.setBad(BadConversionSequence::unrelated_class,
2259               FromType, ImplicitParamType);
2260    return ICS;
2261  }
2262
2263  // Success. Mark this as a reference binding.
2264  ICS.setStandard();
2265  ICS.Standard.setAsIdentityConversion();
2266  ICS.Standard.Second = SecondKind;
2267  ICS.Standard.setFromType(FromType);
2268  ICS.Standard.setAllToTypes(ImplicitParamType);
2269  ICS.Standard.ReferenceBinding = true;
2270  ICS.Standard.DirectBinding = true;
2271  ICS.Standard.RRefBinding = false;
2272  return ICS;
2273}
2274
2275/// PerformObjectArgumentInitialization - Perform initialization of
2276/// the implicit object parameter for the given Method with the given
2277/// expression.
2278bool
2279Sema::PerformObjectArgumentInitialization(Expr *&From,
2280                                          NestedNameSpecifier *Qualifier,
2281                                          CXXMethodDecl *Method) {
2282  QualType FromRecordType, DestType;
2283  QualType ImplicitParamRecordType  =
2284    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2285
2286  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2287    FromRecordType = PT->getPointeeType();
2288    DestType = Method->getThisType(Context);
2289  } else {
2290    FromRecordType = From->getType();
2291    DestType = ImplicitParamRecordType;
2292  }
2293
2294  // Note that we always use the true parent context when performing
2295  // the actual argument initialization.
2296  ImplicitConversionSequence ICS
2297    = TryObjectArgumentInitialization(From->getType(), Method,
2298                                      Method->getParent());
2299  if (ICS.isBad())
2300    return Diag(From->getSourceRange().getBegin(),
2301                diag::err_implicit_object_parameter_init)
2302       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2303
2304  if (ICS.Standard.Second == ICK_Derived_To_Base)
2305    return PerformObjectMemberConversion(From, Qualifier, Method);
2306
2307  if (!Context.hasSameType(From->getType(), DestType))
2308    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2309                      /*isLvalue=*/!From->getType()->getAs<PointerType>());
2310  return false;
2311}
2312
2313/// TryContextuallyConvertToBool - Attempt to contextually convert the
2314/// expression From to bool (C++0x [conv]p3).
2315ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2316  return TryImplicitConversion(From, Context.BoolTy,
2317                               // FIXME: Are these flags correct?
2318                               /*SuppressUserConversions=*/false,
2319                               /*AllowExplicit=*/true,
2320                               /*ForceRValue=*/false,
2321                               /*InOverloadResolution=*/false);
2322}
2323
2324/// PerformContextuallyConvertToBool - Perform a contextual conversion
2325/// of the expression From to bool (C++0x [conv]p3).
2326bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2327  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2328  if (!ICS.isBad())
2329    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2330
2331  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2332    return  Diag(From->getSourceRange().getBegin(),
2333                 diag::err_typecheck_bool_condition)
2334                  << From->getType() << From->getSourceRange();
2335  return true;
2336}
2337
2338/// AddOverloadCandidate - Adds the given function to the set of
2339/// candidate functions, using the given function call arguments.  If
2340/// @p SuppressUserConversions, then don't allow user-defined
2341/// conversions via constructors or conversion operators.
2342/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2343/// hacky way to implement the overloading rules for elidable copy
2344/// initialization in C++0x (C++0x 12.8p15).
2345///
2346/// \para PartialOverloading true if we are performing "partial" overloading
2347/// based on an incomplete set of function arguments. This feature is used by
2348/// code completion.
2349void
2350Sema::AddOverloadCandidate(FunctionDecl *Function,
2351                           DeclAccessPair FoundDecl,
2352                           Expr **Args, unsigned NumArgs,
2353                           OverloadCandidateSet& CandidateSet,
2354                           bool SuppressUserConversions,
2355                           bool ForceRValue,
2356                           bool PartialOverloading) {
2357  const FunctionProtoType* Proto
2358    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2359  assert(Proto && "Functions without a prototype cannot be overloaded");
2360  assert(!Function->getDescribedFunctionTemplate() &&
2361         "Use AddTemplateOverloadCandidate for function templates");
2362
2363  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2364    if (!isa<CXXConstructorDecl>(Method)) {
2365      // If we get here, it's because we're calling a member function
2366      // that is named without a member access expression (e.g.,
2367      // "this->f") that was either written explicitly or created
2368      // implicitly. This can happen with a qualified call to a member
2369      // function, e.g., X::f(). We use an empty type for the implied
2370      // object argument (C++ [over.call.func]p3), and the acting context
2371      // is irrelevant.
2372      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2373                         QualType(), Args, NumArgs, CandidateSet,
2374                         SuppressUserConversions, ForceRValue);
2375      return;
2376    }
2377    // We treat a constructor like a non-member function, since its object
2378    // argument doesn't participate in overload resolution.
2379  }
2380
2381  if (!CandidateSet.isNewCandidate(Function))
2382    return;
2383
2384  // Overload resolution is always an unevaluated context.
2385  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2386
2387  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2388    // C++ [class.copy]p3:
2389    //   A member function template is never instantiated to perform the copy
2390    //   of a class object to an object of its class type.
2391    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2392    if (NumArgs == 1 &&
2393        Constructor->isCopyConstructorLikeSpecialization() &&
2394        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2395         IsDerivedFrom(Args[0]->getType(), ClassType)))
2396      return;
2397  }
2398
2399  // Add this candidate
2400  CandidateSet.push_back(OverloadCandidate());
2401  OverloadCandidate& Candidate = CandidateSet.back();
2402  Candidate.FoundDecl = FoundDecl;
2403  Candidate.Function = Function;
2404  Candidate.Viable = true;
2405  Candidate.IsSurrogate = false;
2406  Candidate.IgnoreObjectArgument = false;
2407
2408  unsigned NumArgsInProto = Proto->getNumArgs();
2409
2410  // (C++ 13.3.2p2): A candidate function having fewer than m
2411  // parameters is viable only if it has an ellipsis in its parameter
2412  // list (8.3.5).
2413  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2414      !Proto->isVariadic()) {
2415    Candidate.Viable = false;
2416    Candidate.FailureKind = ovl_fail_too_many_arguments;
2417    return;
2418  }
2419
2420  // (C++ 13.3.2p2): A candidate function having more than m parameters
2421  // is viable only if the (m+1)st parameter has a default argument
2422  // (8.3.6). For the purposes of overload resolution, the
2423  // parameter list is truncated on the right, so that there are
2424  // exactly m parameters.
2425  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2426  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2427    // Not enough arguments.
2428    Candidate.Viable = false;
2429    Candidate.FailureKind = ovl_fail_too_few_arguments;
2430    return;
2431  }
2432
2433  // Determine the implicit conversion sequences for each of the
2434  // arguments.
2435  Candidate.Conversions.resize(NumArgs);
2436  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2437    if (ArgIdx < NumArgsInProto) {
2438      // (C++ 13.3.2p3): for F to be a viable function, there shall
2439      // exist for each argument an implicit conversion sequence
2440      // (13.3.3.1) that converts that argument to the corresponding
2441      // parameter of F.
2442      QualType ParamType = Proto->getArgType(ArgIdx);
2443      Candidate.Conversions[ArgIdx]
2444        = TryCopyInitialization(Args[ArgIdx], ParamType,
2445                                SuppressUserConversions, ForceRValue,
2446                                /*InOverloadResolution=*/true);
2447      if (Candidate.Conversions[ArgIdx].isBad()) {
2448        Candidate.Viable = false;
2449        Candidate.FailureKind = ovl_fail_bad_conversion;
2450        break;
2451      }
2452    } else {
2453      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2454      // argument for which there is no corresponding parameter is
2455      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2456      Candidate.Conversions[ArgIdx].setEllipsis();
2457    }
2458  }
2459}
2460
2461/// \brief Add all of the function declarations in the given function set to
2462/// the overload canddiate set.
2463void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2464                                 Expr **Args, unsigned NumArgs,
2465                                 OverloadCandidateSet& CandidateSet,
2466                                 bool SuppressUserConversions) {
2467  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2468    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2469    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2470      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2471        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2472                           cast<CXXMethodDecl>(FD)->getParent(),
2473                           Args[0]->getType(), Args + 1, NumArgs - 1,
2474                           CandidateSet, SuppressUserConversions);
2475      else
2476        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2477                             SuppressUserConversions);
2478    } else {
2479      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2480      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2481          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2482        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2483                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2484                                   /*FIXME: explicit args */ 0,
2485                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2486                                   CandidateSet,
2487                                   SuppressUserConversions);
2488      else
2489        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2490                                     /*FIXME: explicit args */ 0,
2491                                     Args, NumArgs, CandidateSet,
2492                                     SuppressUserConversions);
2493    }
2494  }
2495}
2496
2497/// AddMethodCandidate - Adds a named decl (which is some kind of
2498/// method) as a method candidate to the given overload set.
2499void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2500                              QualType ObjectType,
2501                              Expr **Args, unsigned NumArgs,
2502                              OverloadCandidateSet& CandidateSet,
2503                              bool SuppressUserConversions, bool ForceRValue) {
2504  NamedDecl *Decl = FoundDecl.getDecl();
2505  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2506
2507  if (isa<UsingShadowDecl>(Decl))
2508    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2509
2510  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2511    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2512           "Expected a member function template");
2513    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2514                               /*ExplicitArgs*/ 0,
2515                               ObjectType, Args, NumArgs,
2516                               CandidateSet,
2517                               SuppressUserConversions,
2518                               ForceRValue);
2519  } else {
2520    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2521                       ObjectType, Args, NumArgs,
2522                       CandidateSet, SuppressUserConversions, ForceRValue);
2523  }
2524}
2525
2526/// AddMethodCandidate - Adds the given C++ member function to the set
2527/// of candidate functions, using the given function call arguments
2528/// and the object argument (@c Object). For example, in a call
2529/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2530/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2531/// allow user-defined conversions via constructors or conversion
2532/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2533/// a slightly hacky way to implement the overloading rules for elidable copy
2534/// initialization in C++0x (C++0x 12.8p15).
2535void
2536Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2537                         CXXRecordDecl *ActingContext, QualType ObjectType,
2538                         Expr **Args, unsigned NumArgs,
2539                         OverloadCandidateSet& CandidateSet,
2540                         bool SuppressUserConversions, bool ForceRValue) {
2541  const FunctionProtoType* Proto
2542    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2543  assert(Proto && "Methods without a prototype cannot be overloaded");
2544  assert(!isa<CXXConstructorDecl>(Method) &&
2545         "Use AddOverloadCandidate for constructors");
2546
2547  if (!CandidateSet.isNewCandidate(Method))
2548    return;
2549
2550  // Overload resolution is always an unevaluated context.
2551  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2552
2553  // Add this candidate
2554  CandidateSet.push_back(OverloadCandidate());
2555  OverloadCandidate& Candidate = CandidateSet.back();
2556  Candidate.FoundDecl = FoundDecl;
2557  Candidate.Function = Method;
2558  Candidate.IsSurrogate = false;
2559  Candidate.IgnoreObjectArgument = false;
2560
2561  unsigned NumArgsInProto = Proto->getNumArgs();
2562
2563  // (C++ 13.3.2p2): A candidate function having fewer than m
2564  // parameters is viable only if it has an ellipsis in its parameter
2565  // list (8.3.5).
2566  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2567    Candidate.Viable = false;
2568    Candidate.FailureKind = ovl_fail_too_many_arguments;
2569    return;
2570  }
2571
2572  // (C++ 13.3.2p2): A candidate function having more than m parameters
2573  // is viable only if the (m+1)st parameter has a default argument
2574  // (8.3.6). For the purposes of overload resolution, the
2575  // parameter list is truncated on the right, so that there are
2576  // exactly m parameters.
2577  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2578  if (NumArgs < MinRequiredArgs) {
2579    // Not enough arguments.
2580    Candidate.Viable = false;
2581    Candidate.FailureKind = ovl_fail_too_few_arguments;
2582    return;
2583  }
2584
2585  Candidate.Viable = true;
2586  Candidate.Conversions.resize(NumArgs + 1);
2587
2588  if (Method->isStatic() || ObjectType.isNull())
2589    // The implicit object argument is ignored.
2590    Candidate.IgnoreObjectArgument = true;
2591  else {
2592    // Determine the implicit conversion sequence for the object
2593    // parameter.
2594    Candidate.Conversions[0]
2595      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2596    if (Candidate.Conversions[0].isBad()) {
2597      Candidate.Viable = false;
2598      Candidate.FailureKind = ovl_fail_bad_conversion;
2599      return;
2600    }
2601  }
2602
2603  // Determine the implicit conversion sequences for each of the
2604  // arguments.
2605  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2606    if (ArgIdx < NumArgsInProto) {
2607      // (C++ 13.3.2p3): for F to be a viable function, there shall
2608      // exist for each argument an implicit conversion sequence
2609      // (13.3.3.1) that converts that argument to the corresponding
2610      // parameter of F.
2611      QualType ParamType = Proto->getArgType(ArgIdx);
2612      Candidate.Conversions[ArgIdx + 1]
2613        = TryCopyInitialization(Args[ArgIdx], ParamType,
2614                                SuppressUserConversions, ForceRValue,
2615                                /*InOverloadResolution=*/true);
2616      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2617        Candidate.Viable = false;
2618        Candidate.FailureKind = ovl_fail_bad_conversion;
2619        break;
2620      }
2621    } else {
2622      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2623      // argument for which there is no corresponding parameter is
2624      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2625      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2626    }
2627  }
2628}
2629
2630/// \brief Add a C++ member function template as a candidate to the candidate
2631/// set, using template argument deduction to produce an appropriate member
2632/// function template specialization.
2633void
2634Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2635                                 DeclAccessPair FoundDecl,
2636                                 CXXRecordDecl *ActingContext,
2637                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2638                                 QualType ObjectType,
2639                                 Expr **Args, unsigned NumArgs,
2640                                 OverloadCandidateSet& CandidateSet,
2641                                 bool SuppressUserConversions,
2642                                 bool ForceRValue) {
2643  if (!CandidateSet.isNewCandidate(MethodTmpl))
2644    return;
2645
2646  // C++ [over.match.funcs]p7:
2647  //   In each case where a candidate is a function template, candidate
2648  //   function template specializations are generated using template argument
2649  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2650  //   candidate functions in the usual way.113) A given name can refer to one
2651  //   or more function templates and also to a set of overloaded non-template
2652  //   functions. In such a case, the candidate functions generated from each
2653  //   function template are combined with the set of non-template candidate
2654  //   functions.
2655  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2656  FunctionDecl *Specialization = 0;
2657  if (TemplateDeductionResult Result
2658      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2659                                Args, NumArgs, Specialization, Info)) {
2660        // FIXME: Record what happened with template argument deduction, so
2661        // that we can give the user a beautiful diagnostic.
2662        (void)Result;
2663        return;
2664      }
2665
2666  // Add the function template specialization produced by template argument
2667  // deduction as a candidate.
2668  assert(Specialization && "Missing member function template specialization?");
2669  assert(isa<CXXMethodDecl>(Specialization) &&
2670         "Specialization is not a member function?");
2671  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
2672                     ActingContext, ObjectType, Args, NumArgs,
2673                     CandidateSet, SuppressUserConversions, ForceRValue);
2674}
2675
2676/// \brief Add a C++ function template specialization as a candidate
2677/// in the candidate set, using template argument deduction to produce
2678/// an appropriate function template specialization.
2679void
2680Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2681                                   DeclAccessPair FoundDecl,
2682                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2683                                   Expr **Args, unsigned NumArgs,
2684                                   OverloadCandidateSet& CandidateSet,
2685                                   bool SuppressUserConversions,
2686                                   bool ForceRValue) {
2687  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2688    return;
2689
2690  // C++ [over.match.funcs]p7:
2691  //   In each case where a candidate is a function template, candidate
2692  //   function template specializations are generated using template argument
2693  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2694  //   candidate functions in the usual way.113) A given name can refer to one
2695  //   or more function templates and also to a set of overloaded non-template
2696  //   functions. In such a case, the candidate functions generated from each
2697  //   function template are combined with the set of non-template candidate
2698  //   functions.
2699  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2700  FunctionDecl *Specialization = 0;
2701  if (TemplateDeductionResult Result
2702        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2703                                  Args, NumArgs, Specialization, Info)) {
2704    CandidateSet.push_back(OverloadCandidate());
2705    OverloadCandidate &Candidate = CandidateSet.back();
2706    Candidate.FoundDecl = FoundDecl;
2707    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2708    Candidate.Viable = false;
2709    Candidate.FailureKind = ovl_fail_bad_deduction;
2710    Candidate.IsSurrogate = false;
2711    Candidate.IgnoreObjectArgument = false;
2712
2713    // TODO: record more information about failed template arguments
2714    Candidate.DeductionFailure.Result = Result;
2715    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
2716    return;
2717  }
2718
2719  // Add the function template specialization produced by template argument
2720  // deduction as a candidate.
2721  assert(Specialization && "Missing function template specialization?");
2722  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
2723                       SuppressUserConversions, ForceRValue);
2724}
2725
2726/// AddConversionCandidate - Add a C++ conversion function as a
2727/// candidate in the candidate set (C++ [over.match.conv],
2728/// C++ [over.match.copy]). From is the expression we're converting from,
2729/// and ToType is the type that we're eventually trying to convert to
2730/// (which may or may not be the same type as the type that the
2731/// conversion function produces).
2732void
2733Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2734                             DeclAccessPair FoundDecl,
2735                             CXXRecordDecl *ActingContext,
2736                             Expr *From, QualType ToType,
2737                             OverloadCandidateSet& CandidateSet) {
2738  assert(!Conversion->getDescribedFunctionTemplate() &&
2739         "Conversion function templates use AddTemplateConversionCandidate");
2740
2741  if (!CandidateSet.isNewCandidate(Conversion))
2742    return;
2743
2744  // Overload resolution is always an unevaluated context.
2745  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2746
2747  // Add this candidate
2748  CandidateSet.push_back(OverloadCandidate());
2749  OverloadCandidate& Candidate = CandidateSet.back();
2750  Candidate.FoundDecl = FoundDecl;
2751  Candidate.Function = Conversion;
2752  Candidate.IsSurrogate = false;
2753  Candidate.IgnoreObjectArgument = false;
2754  Candidate.FinalConversion.setAsIdentityConversion();
2755  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2756  Candidate.FinalConversion.setAllToTypes(ToType);
2757
2758  // Determine the implicit conversion sequence for the implicit
2759  // object parameter.
2760  Candidate.Viable = true;
2761  Candidate.Conversions.resize(1);
2762  Candidate.Conversions[0]
2763    = TryObjectArgumentInitialization(From->getType(), Conversion,
2764                                      ActingContext);
2765  // Conversion functions to a different type in the base class is visible in
2766  // the derived class.  So, a derived to base conversion should not participate
2767  // in overload resolution.
2768  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2769    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2770  if (Candidate.Conversions[0].isBad()) {
2771    Candidate.Viable = false;
2772    Candidate.FailureKind = ovl_fail_bad_conversion;
2773    return;
2774  }
2775
2776  // We won't go through a user-define type conversion function to convert a
2777  // derived to base as such conversions are given Conversion Rank. They only
2778  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2779  QualType FromCanon
2780    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2781  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2782  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2783    Candidate.Viable = false;
2784    Candidate.FailureKind = ovl_fail_trivial_conversion;
2785    return;
2786  }
2787
2788
2789  // To determine what the conversion from the result of calling the
2790  // conversion function to the type we're eventually trying to
2791  // convert to (ToType), we need to synthesize a call to the
2792  // conversion function and attempt copy initialization from it. This
2793  // makes sure that we get the right semantics with respect to
2794  // lvalues/rvalues and the type. Fortunately, we can allocate this
2795  // call on the stack and we don't need its arguments to be
2796  // well-formed.
2797  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2798                            From->getLocStart());
2799  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2800                                CastExpr::CK_FunctionToPointerDecay,
2801                                &ConversionRef, false);
2802
2803  // Note that it is safe to allocate CallExpr on the stack here because
2804  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2805  // allocator).
2806  CallExpr Call(Context, &ConversionFn, 0, 0,
2807                Conversion->getConversionType().getNonReferenceType(),
2808                From->getLocStart());
2809  ImplicitConversionSequence ICS =
2810    TryCopyInitialization(&Call, ToType,
2811                          /*SuppressUserConversions=*/true,
2812                          /*ForceRValue=*/false,
2813                          /*InOverloadResolution=*/false);
2814
2815  switch (ICS.getKind()) {
2816  case ImplicitConversionSequence::StandardConversion:
2817    Candidate.FinalConversion = ICS.Standard;
2818    break;
2819
2820  case ImplicitConversionSequence::BadConversion:
2821    Candidate.Viable = false;
2822    Candidate.FailureKind = ovl_fail_bad_final_conversion;
2823    break;
2824
2825  default:
2826    assert(false &&
2827           "Can only end up with a standard conversion sequence or failure");
2828  }
2829}
2830
2831/// \brief Adds a conversion function template specialization
2832/// candidate to the overload set, using template argument deduction
2833/// to deduce the template arguments of the conversion function
2834/// template from the type that we are converting to (C++
2835/// [temp.deduct.conv]).
2836void
2837Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2838                                     DeclAccessPair FoundDecl,
2839                                     CXXRecordDecl *ActingDC,
2840                                     Expr *From, QualType ToType,
2841                                     OverloadCandidateSet &CandidateSet) {
2842  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2843         "Only conversion function templates permitted here");
2844
2845  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2846    return;
2847
2848  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
2849  CXXConversionDecl *Specialization = 0;
2850  if (TemplateDeductionResult Result
2851        = DeduceTemplateArguments(FunctionTemplate, ToType,
2852                                  Specialization, Info)) {
2853    // FIXME: Record what happened with template argument deduction, so
2854    // that we can give the user a beautiful diagnostic.
2855    (void)Result;
2856    return;
2857  }
2858
2859  // Add the conversion function template specialization produced by
2860  // template argument deduction as a candidate.
2861  assert(Specialization && "Missing function template specialization?");
2862  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
2863                         CandidateSet);
2864}
2865
2866/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2867/// converts the given @c Object to a function pointer via the
2868/// conversion function @c Conversion, and then attempts to call it
2869/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2870/// the type of function that we'll eventually be calling.
2871void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2872                                 DeclAccessPair FoundDecl,
2873                                 CXXRecordDecl *ActingContext,
2874                                 const FunctionProtoType *Proto,
2875                                 QualType ObjectType,
2876                                 Expr **Args, unsigned NumArgs,
2877                                 OverloadCandidateSet& CandidateSet) {
2878  if (!CandidateSet.isNewCandidate(Conversion))
2879    return;
2880
2881  // Overload resolution is always an unevaluated context.
2882  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2883
2884  CandidateSet.push_back(OverloadCandidate());
2885  OverloadCandidate& Candidate = CandidateSet.back();
2886  Candidate.FoundDecl = FoundDecl;
2887  Candidate.Function = 0;
2888  Candidate.Surrogate = Conversion;
2889  Candidate.Viable = true;
2890  Candidate.IsSurrogate = true;
2891  Candidate.IgnoreObjectArgument = false;
2892  Candidate.Conversions.resize(NumArgs + 1);
2893
2894  // Determine the implicit conversion sequence for the implicit
2895  // object parameter.
2896  ImplicitConversionSequence ObjectInit
2897    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2898  if (ObjectInit.isBad()) {
2899    Candidate.Viable = false;
2900    Candidate.FailureKind = ovl_fail_bad_conversion;
2901    Candidate.Conversions[0] = ObjectInit;
2902    return;
2903  }
2904
2905  // The first conversion is actually a user-defined conversion whose
2906  // first conversion is ObjectInit's standard conversion (which is
2907  // effectively a reference binding). Record it as such.
2908  Candidate.Conversions[0].setUserDefined();
2909  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2910  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2911  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2912  Candidate.Conversions[0].UserDefined.After
2913    = Candidate.Conversions[0].UserDefined.Before;
2914  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2915
2916  // Find the
2917  unsigned NumArgsInProto = Proto->getNumArgs();
2918
2919  // (C++ 13.3.2p2): A candidate function having fewer than m
2920  // parameters is viable only if it has an ellipsis in its parameter
2921  // list (8.3.5).
2922  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2923    Candidate.Viable = false;
2924    Candidate.FailureKind = ovl_fail_too_many_arguments;
2925    return;
2926  }
2927
2928  // Function types don't have any default arguments, so just check if
2929  // we have enough arguments.
2930  if (NumArgs < NumArgsInProto) {
2931    // Not enough arguments.
2932    Candidate.Viable = false;
2933    Candidate.FailureKind = ovl_fail_too_few_arguments;
2934    return;
2935  }
2936
2937  // Determine the implicit conversion sequences for each of the
2938  // arguments.
2939  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2940    if (ArgIdx < NumArgsInProto) {
2941      // (C++ 13.3.2p3): for F to be a viable function, there shall
2942      // exist for each argument an implicit conversion sequence
2943      // (13.3.3.1) that converts that argument to the corresponding
2944      // parameter of F.
2945      QualType ParamType = Proto->getArgType(ArgIdx);
2946      Candidate.Conversions[ArgIdx + 1]
2947        = TryCopyInitialization(Args[ArgIdx], ParamType,
2948                                /*SuppressUserConversions=*/false,
2949                                /*ForceRValue=*/false,
2950                                /*InOverloadResolution=*/false);
2951      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2952        Candidate.Viable = false;
2953        Candidate.FailureKind = ovl_fail_bad_conversion;
2954        break;
2955      }
2956    } else {
2957      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2958      // argument for which there is no corresponding parameter is
2959      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2960      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2961    }
2962  }
2963}
2964
2965// FIXME: This will eventually be removed, once we've migrated all of the
2966// operator overloading logic over to the scheme used by binary operators, which
2967// works for template instantiation.
2968void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2969                                 SourceLocation OpLoc,
2970                                 Expr **Args, unsigned NumArgs,
2971                                 OverloadCandidateSet& CandidateSet,
2972                                 SourceRange OpRange) {
2973  UnresolvedSet<16> Fns;
2974
2975  QualType T1 = Args[0]->getType();
2976  QualType T2;
2977  if (NumArgs > 1)
2978    T2 = Args[1]->getType();
2979
2980  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2981  if (S)
2982    LookupOverloadedOperatorName(Op, S, T1, T2, Fns);
2983  AddFunctionCandidates(Fns, Args, NumArgs, CandidateSet, false);
2984  AddArgumentDependentLookupCandidates(OpName, false, Args, NumArgs, 0,
2985                                       CandidateSet);
2986  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2987  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2988}
2989
2990/// \brief Add overload candidates for overloaded operators that are
2991/// member functions.
2992///
2993/// Add the overloaded operator candidates that are member functions
2994/// for the operator Op that was used in an operator expression such
2995/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2996/// CandidateSet will store the added overload candidates. (C++
2997/// [over.match.oper]).
2998void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2999                                       SourceLocation OpLoc,
3000                                       Expr **Args, unsigned NumArgs,
3001                                       OverloadCandidateSet& CandidateSet,
3002                                       SourceRange OpRange) {
3003  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3004
3005  // C++ [over.match.oper]p3:
3006  //   For a unary operator @ with an operand of a type whose
3007  //   cv-unqualified version is T1, and for a binary operator @ with
3008  //   a left operand of a type whose cv-unqualified version is T1 and
3009  //   a right operand of a type whose cv-unqualified version is T2,
3010  //   three sets of candidate functions, designated member
3011  //   candidates, non-member candidates and built-in candidates, are
3012  //   constructed as follows:
3013  QualType T1 = Args[0]->getType();
3014  QualType T2;
3015  if (NumArgs > 1)
3016    T2 = Args[1]->getType();
3017
3018  //     -- If T1 is a class type, the set of member candidates is the
3019  //        result of the qualified lookup of T1::operator@
3020  //        (13.3.1.1.1); otherwise, the set of member candidates is
3021  //        empty.
3022  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3023    // Complete the type if it can be completed. Otherwise, we're done.
3024    if (RequireCompleteType(OpLoc, T1, PDiag()))
3025      return;
3026
3027    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3028    LookupQualifiedName(Operators, T1Rec->getDecl());
3029    Operators.suppressDiagnostics();
3030
3031    for (LookupResult::iterator Oper = Operators.begin(),
3032                             OperEnd = Operators.end();
3033         Oper != OperEnd;
3034         ++Oper)
3035      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3036                         Args + 1, NumArgs - 1, CandidateSet,
3037                         /* SuppressUserConversions = */ false);
3038  }
3039}
3040
3041/// AddBuiltinCandidate - Add a candidate for a built-in
3042/// operator. ResultTy and ParamTys are the result and parameter types
3043/// of the built-in candidate, respectively. Args and NumArgs are the
3044/// arguments being passed to the candidate. IsAssignmentOperator
3045/// should be true when this built-in candidate is an assignment
3046/// operator. NumContextualBoolArguments is the number of arguments
3047/// (at the beginning of the argument list) that will be contextually
3048/// converted to bool.
3049void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3050                               Expr **Args, unsigned NumArgs,
3051                               OverloadCandidateSet& CandidateSet,
3052                               bool IsAssignmentOperator,
3053                               unsigned NumContextualBoolArguments) {
3054  // Overload resolution is always an unevaluated context.
3055  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3056
3057  // Add this candidate
3058  CandidateSet.push_back(OverloadCandidate());
3059  OverloadCandidate& Candidate = CandidateSet.back();
3060  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3061  Candidate.Function = 0;
3062  Candidate.IsSurrogate = false;
3063  Candidate.IgnoreObjectArgument = false;
3064  Candidate.BuiltinTypes.ResultTy = ResultTy;
3065  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3066    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3067
3068  // Determine the implicit conversion sequences for each of the
3069  // arguments.
3070  Candidate.Viable = true;
3071  Candidate.Conversions.resize(NumArgs);
3072  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3073    // C++ [over.match.oper]p4:
3074    //   For the built-in assignment operators, conversions of the
3075    //   left operand are restricted as follows:
3076    //     -- no temporaries are introduced to hold the left operand, and
3077    //     -- no user-defined conversions are applied to the left
3078    //        operand to achieve a type match with the left-most
3079    //        parameter of a built-in candidate.
3080    //
3081    // We block these conversions by turning off user-defined
3082    // conversions, since that is the only way that initialization of
3083    // a reference to a non-class type can occur from something that
3084    // is not of the same type.
3085    if (ArgIdx < NumContextualBoolArguments) {
3086      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3087             "Contextual conversion to bool requires bool type");
3088      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3089    } else {
3090      Candidate.Conversions[ArgIdx]
3091        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3092                                ArgIdx == 0 && IsAssignmentOperator,
3093                                /*ForceRValue=*/false,
3094                                /*InOverloadResolution=*/false);
3095    }
3096    if (Candidate.Conversions[ArgIdx].isBad()) {
3097      Candidate.Viable = false;
3098      Candidate.FailureKind = ovl_fail_bad_conversion;
3099      break;
3100    }
3101  }
3102}
3103
3104/// BuiltinCandidateTypeSet - A set of types that will be used for the
3105/// candidate operator functions for built-in operators (C++
3106/// [over.built]). The types are separated into pointer types and
3107/// enumeration types.
3108class BuiltinCandidateTypeSet  {
3109  /// TypeSet - A set of types.
3110  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3111
3112  /// PointerTypes - The set of pointer types that will be used in the
3113  /// built-in candidates.
3114  TypeSet PointerTypes;
3115
3116  /// MemberPointerTypes - The set of member pointer types that will be
3117  /// used in the built-in candidates.
3118  TypeSet MemberPointerTypes;
3119
3120  /// EnumerationTypes - The set of enumeration types that will be
3121  /// used in the built-in candidates.
3122  TypeSet EnumerationTypes;
3123
3124  /// Sema - The semantic analysis instance where we are building the
3125  /// candidate type set.
3126  Sema &SemaRef;
3127
3128  /// Context - The AST context in which we will build the type sets.
3129  ASTContext &Context;
3130
3131  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3132                                               const Qualifiers &VisibleQuals);
3133  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3134
3135public:
3136  /// iterator - Iterates through the types that are part of the set.
3137  typedef TypeSet::iterator iterator;
3138
3139  BuiltinCandidateTypeSet(Sema &SemaRef)
3140    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3141
3142  void AddTypesConvertedFrom(QualType Ty,
3143                             SourceLocation Loc,
3144                             bool AllowUserConversions,
3145                             bool AllowExplicitConversions,
3146                             const Qualifiers &VisibleTypeConversionsQuals);
3147
3148  /// pointer_begin - First pointer type found;
3149  iterator pointer_begin() { return PointerTypes.begin(); }
3150
3151  /// pointer_end - Past the last pointer type found;
3152  iterator pointer_end() { return PointerTypes.end(); }
3153
3154  /// member_pointer_begin - First member pointer type found;
3155  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3156
3157  /// member_pointer_end - Past the last member pointer type found;
3158  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3159
3160  /// enumeration_begin - First enumeration type found;
3161  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3162
3163  /// enumeration_end - Past the last enumeration type found;
3164  iterator enumeration_end() { return EnumerationTypes.end(); }
3165};
3166
3167/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3168/// the set of pointer types along with any more-qualified variants of
3169/// that type. For example, if @p Ty is "int const *", this routine
3170/// will add "int const *", "int const volatile *", "int const
3171/// restrict *", and "int const volatile restrict *" to the set of
3172/// pointer types. Returns true if the add of @p Ty itself succeeded,
3173/// false otherwise.
3174///
3175/// FIXME: what to do about extended qualifiers?
3176bool
3177BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3178                                             const Qualifiers &VisibleQuals) {
3179
3180  // Insert this type.
3181  if (!PointerTypes.insert(Ty))
3182    return false;
3183
3184  const PointerType *PointerTy = Ty->getAs<PointerType>();
3185  assert(PointerTy && "type was not a pointer type!");
3186
3187  QualType PointeeTy = PointerTy->getPointeeType();
3188  // Don't add qualified variants of arrays. For one, they're not allowed
3189  // (the qualifier would sink to the element type), and for another, the
3190  // only overload situation where it matters is subscript or pointer +- int,
3191  // and those shouldn't have qualifier variants anyway.
3192  if (PointeeTy->isArrayType())
3193    return true;
3194  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3195  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3196    BaseCVR = Array->getElementType().getCVRQualifiers();
3197  bool hasVolatile = VisibleQuals.hasVolatile();
3198  bool hasRestrict = VisibleQuals.hasRestrict();
3199
3200  // Iterate through all strict supersets of BaseCVR.
3201  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3202    if ((CVR | BaseCVR) != CVR) continue;
3203    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3204    // in the types.
3205    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3206    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3207    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3208    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3209  }
3210
3211  return true;
3212}
3213
3214/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3215/// to the set of pointer types along with any more-qualified variants of
3216/// that type. For example, if @p Ty is "int const *", this routine
3217/// will add "int const *", "int const volatile *", "int const
3218/// restrict *", and "int const volatile restrict *" to the set of
3219/// pointer types. Returns true if the add of @p Ty itself succeeded,
3220/// false otherwise.
3221///
3222/// FIXME: what to do about extended qualifiers?
3223bool
3224BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3225    QualType Ty) {
3226  // Insert this type.
3227  if (!MemberPointerTypes.insert(Ty))
3228    return false;
3229
3230  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3231  assert(PointerTy && "type was not a member pointer type!");
3232
3233  QualType PointeeTy = PointerTy->getPointeeType();
3234  // Don't add qualified variants of arrays. For one, they're not allowed
3235  // (the qualifier would sink to the element type), and for another, the
3236  // only overload situation where it matters is subscript or pointer +- int,
3237  // and those shouldn't have qualifier variants anyway.
3238  if (PointeeTy->isArrayType())
3239    return true;
3240  const Type *ClassTy = PointerTy->getClass();
3241
3242  // Iterate through all strict supersets of the pointee type's CVR
3243  // qualifiers.
3244  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3245  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3246    if ((CVR | BaseCVR) != CVR) continue;
3247
3248    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3249    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3250  }
3251
3252  return true;
3253}
3254
3255/// AddTypesConvertedFrom - Add each of the types to which the type @p
3256/// Ty can be implicit converted to the given set of @p Types. We're
3257/// primarily interested in pointer types and enumeration types. We also
3258/// take member pointer types, for the conditional operator.
3259/// AllowUserConversions is true if we should look at the conversion
3260/// functions of a class type, and AllowExplicitConversions if we
3261/// should also include the explicit conversion functions of a class
3262/// type.
3263void
3264BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3265                                               SourceLocation Loc,
3266                                               bool AllowUserConversions,
3267                                               bool AllowExplicitConversions,
3268                                               const Qualifiers &VisibleQuals) {
3269  // Only deal with canonical types.
3270  Ty = Context.getCanonicalType(Ty);
3271
3272  // Look through reference types; they aren't part of the type of an
3273  // expression for the purposes of conversions.
3274  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3275    Ty = RefTy->getPointeeType();
3276
3277  // We don't care about qualifiers on the type.
3278  Ty = Ty.getLocalUnqualifiedType();
3279
3280  // If we're dealing with an array type, decay to the pointer.
3281  if (Ty->isArrayType())
3282    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3283
3284  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3285    QualType PointeeTy = PointerTy->getPointeeType();
3286
3287    // Insert our type, and its more-qualified variants, into the set
3288    // of types.
3289    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3290      return;
3291  } else if (Ty->isMemberPointerType()) {
3292    // Member pointers are far easier, since the pointee can't be converted.
3293    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3294      return;
3295  } else if (Ty->isEnumeralType()) {
3296    EnumerationTypes.insert(Ty);
3297  } else if (AllowUserConversions) {
3298    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3299      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3300        // No conversion functions in incomplete types.
3301        return;
3302      }
3303
3304      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3305      const UnresolvedSetImpl *Conversions
3306        = ClassDecl->getVisibleConversionFunctions();
3307      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3308             E = Conversions->end(); I != E; ++I) {
3309
3310        // Skip conversion function templates; they don't tell us anything
3311        // about which builtin types we can convert to.
3312        if (isa<FunctionTemplateDecl>(*I))
3313          continue;
3314
3315        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3316        if (AllowExplicitConversions || !Conv->isExplicit()) {
3317          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3318                                VisibleQuals);
3319        }
3320      }
3321    }
3322  }
3323}
3324
3325/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3326/// the volatile- and non-volatile-qualified assignment operators for the
3327/// given type to the candidate set.
3328static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3329                                                   QualType T,
3330                                                   Expr **Args,
3331                                                   unsigned NumArgs,
3332                                    OverloadCandidateSet &CandidateSet) {
3333  QualType ParamTypes[2];
3334
3335  // T& operator=(T&, T)
3336  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3337  ParamTypes[1] = T;
3338  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3339                        /*IsAssignmentOperator=*/true);
3340
3341  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3342    // volatile T& operator=(volatile T&, T)
3343    ParamTypes[0]
3344      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3345    ParamTypes[1] = T;
3346    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3347                          /*IsAssignmentOperator=*/true);
3348  }
3349}
3350
3351/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3352/// if any, found in visible type conversion functions found in ArgExpr's type.
3353static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3354    Qualifiers VRQuals;
3355    const RecordType *TyRec;
3356    if (const MemberPointerType *RHSMPType =
3357        ArgExpr->getType()->getAs<MemberPointerType>())
3358      TyRec = cast<RecordType>(RHSMPType->getClass());
3359    else
3360      TyRec = ArgExpr->getType()->getAs<RecordType>();
3361    if (!TyRec) {
3362      // Just to be safe, assume the worst case.
3363      VRQuals.addVolatile();
3364      VRQuals.addRestrict();
3365      return VRQuals;
3366    }
3367
3368    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3369    if (!ClassDecl->hasDefinition())
3370      return VRQuals;
3371
3372    const UnresolvedSetImpl *Conversions =
3373      ClassDecl->getVisibleConversionFunctions();
3374
3375    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3376           E = Conversions->end(); I != E; ++I) {
3377      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3378        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3379        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3380          CanTy = ResTypeRef->getPointeeType();
3381        // Need to go down the pointer/mempointer chain and add qualifiers
3382        // as see them.
3383        bool done = false;
3384        while (!done) {
3385          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3386            CanTy = ResTypePtr->getPointeeType();
3387          else if (const MemberPointerType *ResTypeMPtr =
3388                CanTy->getAs<MemberPointerType>())
3389            CanTy = ResTypeMPtr->getPointeeType();
3390          else
3391            done = true;
3392          if (CanTy.isVolatileQualified())
3393            VRQuals.addVolatile();
3394          if (CanTy.isRestrictQualified())
3395            VRQuals.addRestrict();
3396          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3397            return VRQuals;
3398        }
3399      }
3400    }
3401    return VRQuals;
3402}
3403
3404/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3405/// operator overloads to the candidate set (C++ [over.built]), based
3406/// on the operator @p Op and the arguments given. For example, if the
3407/// operator is a binary '+', this routine might add "int
3408/// operator+(int, int)" to cover integer addition.
3409void
3410Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3411                                   SourceLocation OpLoc,
3412                                   Expr **Args, unsigned NumArgs,
3413                                   OverloadCandidateSet& CandidateSet) {
3414  // The set of "promoted arithmetic types", which are the arithmetic
3415  // types are that preserved by promotion (C++ [over.built]p2). Note
3416  // that the first few of these types are the promoted integral
3417  // types; these types need to be first.
3418  // FIXME: What about complex?
3419  const unsigned FirstIntegralType = 0;
3420  const unsigned LastIntegralType = 13;
3421  const unsigned FirstPromotedIntegralType = 7,
3422                 LastPromotedIntegralType = 13;
3423  const unsigned FirstPromotedArithmeticType = 7,
3424                 LastPromotedArithmeticType = 16;
3425  const unsigned NumArithmeticTypes = 16;
3426  QualType ArithmeticTypes[NumArithmeticTypes] = {
3427    Context.BoolTy, Context.CharTy, Context.WCharTy,
3428// FIXME:   Context.Char16Ty, Context.Char32Ty,
3429    Context.SignedCharTy, Context.ShortTy,
3430    Context.UnsignedCharTy, Context.UnsignedShortTy,
3431    Context.IntTy, Context.LongTy, Context.LongLongTy,
3432    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3433    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3434  };
3435  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3436         "Invalid first promoted integral type");
3437  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3438           == Context.UnsignedLongLongTy &&
3439         "Invalid last promoted integral type");
3440  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3441         "Invalid first promoted arithmetic type");
3442  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3443            == Context.LongDoubleTy &&
3444         "Invalid last promoted arithmetic type");
3445
3446  // Find all of the types that the arguments can convert to, but only
3447  // if the operator we're looking at has built-in operator candidates
3448  // that make use of these types.
3449  Qualifiers VisibleTypeConversionsQuals;
3450  VisibleTypeConversionsQuals.addConst();
3451  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3452    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3453
3454  BuiltinCandidateTypeSet CandidateTypes(*this);
3455  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3456      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3457      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3458      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3459      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3460      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3461    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3462      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3463                                           OpLoc,
3464                                           true,
3465                                           (Op == OO_Exclaim ||
3466                                            Op == OO_AmpAmp ||
3467                                            Op == OO_PipePipe),
3468                                           VisibleTypeConversionsQuals);
3469  }
3470
3471  bool isComparison = false;
3472  switch (Op) {
3473  case OO_None:
3474  case NUM_OVERLOADED_OPERATORS:
3475    assert(false && "Expected an overloaded operator");
3476    break;
3477
3478  case OO_Star: // '*' is either unary or binary
3479    if (NumArgs == 1)
3480      goto UnaryStar;
3481    else
3482      goto BinaryStar;
3483    break;
3484
3485  case OO_Plus: // '+' is either unary or binary
3486    if (NumArgs == 1)
3487      goto UnaryPlus;
3488    else
3489      goto BinaryPlus;
3490    break;
3491
3492  case OO_Minus: // '-' is either unary or binary
3493    if (NumArgs == 1)
3494      goto UnaryMinus;
3495    else
3496      goto BinaryMinus;
3497    break;
3498
3499  case OO_Amp: // '&' is either unary or binary
3500    if (NumArgs == 1)
3501      goto UnaryAmp;
3502    else
3503      goto BinaryAmp;
3504
3505  case OO_PlusPlus:
3506  case OO_MinusMinus:
3507    // C++ [over.built]p3:
3508    //
3509    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3510    //   is either volatile or empty, there exist candidate operator
3511    //   functions of the form
3512    //
3513    //       VQ T&      operator++(VQ T&);
3514    //       T          operator++(VQ T&, int);
3515    //
3516    // C++ [over.built]p4:
3517    //
3518    //   For every pair (T, VQ), where T is an arithmetic type other
3519    //   than bool, and VQ is either volatile or empty, there exist
3520    //   candidate operator functions of the form
3521    //
3522    //       VQ T&      operator--(VQ T&);
3523    //       T          operator--(VQ T&, int);
3524    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3525         Arith < NumArithmeticTypes; ++Arith) {
3526      QualType ArithTy = ArithmeticTypes[Arith];
3527      QualType ParamTypes[2]
3528        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3529
3530      // Non-volatile version.
3531      if (NumArgs == 1)
3532        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3533      else
3534        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3535      // heuristic to reduce number of builtin candidates in the set.
3536      // Add volatile version only if there are conversions to a volatile type.
3537      if (VisibleTypeConversionsQuals.hasVolatile()) {
3538        // Volatile version
3539        ParamTypes[0]
3540          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3541        if (NumArgs == 1)
3542          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3543        else
3544          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3545      }
3546    }
3547
3548    // C++ [over.built]p5:
3549    //
3550    //   For every pair (T, VQ), where T is a cv-qualified or
3551    //   cv-unqualified object type, and VQ is either volatile or
3552    //   empty, there exist candidate operator functions of the form
3553    //
3554    //       T*VQ&      operator++(T*VQ&);
3555    //       T*VQ&      operator--(T*VQ&);
3556    //       T*         operator++(T*VQ&, int);
3557    //       T*         operator--(T*VQ&, int);
3558    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3559         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3560      // Skip pointer types that aren't pointers to object types.
3561      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3562        continue;
3563
3564      QualType ParamTypes[2] = {
3565        Context.getLValueReferenceType(*Ptr), Context.IntTy
3566      };
3567
3568      // Without volatile
3569      if (NumArgs == 1)
3570        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3571      else
3572        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3573
3574      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3575          VisibleTypeConversionsQuals.hasVolatile()) {
3576        // With volatile
3577        ParamTypes[0]
3578          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3579        if (NumArgs == 1)
3580          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3581        else
3582          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3583      }
3584    }
3585    break;
3586
3587  UnaryStar:
3588    // C++ [over.built]p6:
3589    //   For every cv-qualified or cv-unqualified object type T, there
3590    //   exist candidate operator functions of the form
3591    //
3592    //       T&         operator*(T*);
3593    //
3594    // C++ [over.built]p7:
3595    //   For every function type T, there exist candidate operator
3596    //   functions of the form
3597    //       T&         operator*(T*);
3598    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3599         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3600      QualType ParamTy = *Ptr;
3601      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3602      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3603                          &ParamTy, Args, 1, CandidateSet);
3604    }
3605    break;
3606
3607  UnaryPlus:
3608    // C++ [over.built]p8:
3609    //   For every type T, there exist candidate operator functions of
3610    //   the form
3611    //
3612    //       T*         operator+(T*);
3613    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3614         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3615      QualType ParamTy = *Ptr;
3616      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3617    }
3618
3619    // Fall through
3620
3621  UnaryMinus:
3622    // C++ [over.built]p9:
3623    //  For every promoted arithmetic type T, there exist candidate
3624    //  operator functions of the form
3625    //
3626    //       T         operator+(T);
3627    //       T         operator-(T);
3628    for (unsigned Arith = FirstPromotedArithmeticType;
3629         Arith < LastPromotedArithmeticType; ++Arith) {
3630      QualType ArithTy = ArithmeticTypes[Arith];
3631      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3632    }
3633    break;
3634
3635  case OO_Tilde:
3636    // C++ [over.built]p10:
3637    //   For every promoted integral type T, there exist candidate
3638    //   operator functions of the form
3639    //
3640    //        T         operator~(T);
3641    for (unsigned Int = FirstPromotedIntegralType;
3642         Int < LastPromotedIntegralType; ++Int) {
3643      QualType IntTy = ArithmeticTypes[Int];
3644      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3645    }
3646    break;
3647
3648  case OO_New:
3649  case OO_Delete:
3650  case OO_Array_New:
3651  case OO_Array_Delete:
3652  case OO_Call:
3653    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3654    break;
3655
3656  case OO_Comma:
3657  UnaryAmp:
3658  case OO_Arrow:
3659    // C++ [over.match.oper]p3:
3660    //   -- For the operator ',', the unary operator '&', or the
3661    //      operator '->', the built-in candidates set is empty.
3662    break;
3663
3664  case OO_EqualEqual:
3665  case OO_ExclaimEqual:
3666    // C++ [over.match.oper]p16:
3667    //   For every pointer to member type T, there exist candidate operator
3668    //   functions of the form
3669    //
3670    //        bool operator==(T,T);
3671    //        bool operator!=(T,T);
3672    for (BuiltinCandidateTypeSet::iterator
3673           MemPtr = CandidateTypes.member_pointer_begin(),
3674           MemPtrEnd = CandidateTypes.member_pointer_end();
3675         MemPtr != MemPtrEnd;
3676         ++MemPtr) {
3677      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3678      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3679    }
3680
3681    // Fall through
3682
3683  case OO_Less:
3684  case OO_Greater:
3685  case OO_LessEqual:
3686  case OO_GreaterEqual:
3687    // C++ [over.built]p15:
3688    //
3689    //   For every pointer or enumeration type T, there exist
3690    //   candidate operator functions of the form
3691    //
3692    //        bool       operator<(T, T);
3693    //        bool       operator>(T, T);
3694    //        bool       operator<=(T, T);
3695    //        bool       operator>=(T, T);
3696    //        bool       operator==(T, T);
3697    //        bool       operator!=(T, T);
3698    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3699         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3700      QualType ParamTypes[2] = { *Ptr, *Ptr };
3701      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3702    }
3703    for (BuiltinCandidateTypeSet::iterator Enum
3704           = CandidateTypes.enumeration_begin();
3705         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3706      QualType ParamTypes[2] = { *Enum, *Enum };
3707      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3708    }
3709
3710    // Fall through.
3711    isComparison = true;
3712
3713  BinaryPlus:
3714  BinaryMinus:
3715    if (!isComparison) {
3716      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3717
3718      // C++ [over.built]p13:
3719      //
3720      //   For every cv-qualified or cv-unqualified object type T
3721      //   there exist candidate operator functions of the form
3722      //
3723      //      T*         operator+(T*, ptrdiff_t);
3724      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3725      //      T*         operator-(T*, ptrdiff_t);
3726      //      T*         operator+(ptrdiff_t, T*);
3727      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3728      //
3729      // C++ [over.built]p14:
3730      //
3731      //   For every T, where T is a pointer to object type, there
3732      //   exist candidate operator functions of the form
3733      //
3734      //      ptrdiff_t  operator-(T, T);
3735      for (BuiltinCandidateTypeSet::iterator Ptr
3736             = CandidateTypes.pointer_begin();
3737           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3738        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3739
3740        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3741        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3742
3743        if (Op == OO_Plus) {
3744          // T* operator+(ptrdiff_t, T*);
3745          ParamTypes[0] = ParamTypes[1];
3746          ParamTypes[1] = *Ptr;
3747          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3748        } else {
3749          // ptrdiff_t operator-(T, T);
3750          ParamTypes[1] = *Ptr;
3751          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3752                              Args, 2, CandidateSet);
3753        }
3754      }
3755    }
3756    // Fall through
3757
3758  case OO_Slash:
3759  BinaryStar:
3760  Conditional:
3761    // C++ [over.built]p12:
3762    //
3763    //   For every pair of promoted arithmetic types L and R, there
3764    //   exist candidate operator functions of the form
3765    //
3766    //        LR         operator*(L, R);
3767    //        LR         operator/(L, R);
3768    //        LR         operator+(L, R);
3769    //        LR         operator-(L, R);
3770    //        bool       operator<(L, R);
3771    //        bool       operator>(L, R);
3772    //        bool       operator<=(L, R);
3773    //        bool       operator>=(L, R);
3774    //        bool       operator==(L, R);
3775    //        bool       operator!=(L, R);
3776    //
3777    //   where LR is the result of the usual arithmetic conversions
3778    //   between types L and R.
3779    //
3780    // C++ [over.built]p24:
3781    //
3782    //   For every pair of promoted arithmetic types L and R, there exist
3783    //   candidate operator functions of the form
3784    //
3785    //        LR       operator?(bool, L, R);
3786    //
3787    //   where LR is the result of the usual arithmetic conversions
3788    //   between types L and R.
3789    // Our candidates ignore the first parameter.
3790    for (unsigned Left = FirstPromotedArithmeticType;
3791         Left < LastPromotedArithmeticType; ++Left) {
3792      for (unsigned Right = FirstPromotedArithmeticType;
3793           Right < LastPromotedArithmeticType; ++Right) {
3794        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3795        QualType Result
3796          = isComparison
3797          ? Context.BoolTy
3798          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3799        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3800      }
3801    }
3802    break;
3803
3804  case OO_Percent:
3805  BinaryAmp:
3806  case OO_Caret:
3807  case OO_Pipe:
3808  case OO_LessLess:
3809  case OO_GreaterGreater:
3810    // C++ [over.built]p17:
3811    //
3812    //   For every pair of promoted integral types L and R, there
3813    //   exist candidate operator functions of the form
3814    //
3815    //      LR         operator%(L, R);
3816    //      LR         operator&(L, R);
3817    //      LR         operator^(L, R);
3818    //      LR         operator|(L, R);
3819    //      L          operator<<(L, R);
3820    //      L          operator>>(L, R);
3821    //
3822    //   where LR is the result of the usual arithmetic conversions
3823    //   between types L and R.
3824    for (unsigned Left = FirstPromotedIntegralType;
3825         Left < LastPromotedIntegralType; ++Left) {
3826      for (unsigned Right = FirstPromotedIntegralType;
3827           Right < LastPromotedIntegralType; ++Right) {
3828        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3829        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3830            ? LandR[0]
3831            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3832        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3833      }
3834    }
3835    break;
3836
3837  case OO_Equal:
3838    // C++ [over.built]p20:
3839    //
3840    //   For every pair (T, VQ), where T is an enumeration or
3841    //   pointer to member type and VQ is either volatile or
3842    //   empty, there exist candidate operator functions of the form
3843    //
3844    //        VQ T&      operator=(VQ T&, T);
3845    for (BuiltinCandidateTypeSet::iterator
3846           Enum = CandidateTypes.enumeration_begin(),
3847           EnumEnd = CandidateTypes.enumeration_end();
3848         Enum != EnumEnd; ++Enum)
3849      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3850                                             CandidateSet);
3851    for (BuiltinCandidateTypeSet::iterator
3852           MemPtr = CandidateTypes.member_pointer_begin(),
3853         MemPtrEnd = CandidateTypes.member_pointer_end();
3854         MemPtr != MemPtrEnd; ++MemPtr)
3855      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3856                                             CandidateSet);
3857      // Fall through.
3858
3859  case OO_PlusEqual:
3860  case OO_MinusEqual:
3861    // C++ [over.built]p19:
3862    //
3863    //   For every pair (T, VQ), where T is any type and VQ is either
3864    //   volatile or empty, there exist candidate operator functions
3865    //   of the form
3866    //
3867    //        T*VQ&      operator=(T*VQ&, T*);
3868    //
3869    // C++ [over.built]p21:
3870    //
3871    //   For every pair (T, VQ), where T is a cv-qualified or
3872    //   cv-unqualified object type and VQ is either volatile or
3873    //   empty, there exist candidate operator functions of the form
3874    //
3875    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3876    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3877    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3878         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3879      QualType ParamTypes[2];
3880      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3881
3882      // non-volatile version
3883      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3884      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3885                          /*IsAssigmentOperator=*/Op == OO_Equal);
3886
3887      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3888          VisibleTypeConversionsQuals.hasVolatile()) {
3889        // volatile version
3890        ParamTypes[0]
3891          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3892        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3893                            /*IsAssigmentOperator=*/Op == OO_Equal);
3894      }
3895    }
3896    // Fall through.
3897
3898  case OO_StarEqual:
3899  case OO_SlashEqual:
3900    // C++ [over.built]p18:
3901    //
3902    //   For every triple (L, VQ, R), where L is an arithmetic type,
3903    //   VQ is either volatile or empty, and R is a promoted
3904    //   arithmetic type, there exist candidate operator functions of
3905    //   the form
3906    //
3907    //        VQ L&      operator=(VQ L&, R);
3908    //        VQ L&      operator*=(VQ L&, R);
3909    //        VQ L&      operator/=(VQ L&, R);
3910    //        VQ L&      operator+=(VQ L&, R);
3911    //        VQ L&      operator-=(VQ L&, R);
3912    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3913      for (unsigned Right = FirstPromotedArithmeticType;
3914           Right < LastPromotedArithmeticType; ++Right) {
3915        QualType ParamTypes[2];
3916        ParamTypes[1] = ArithmeticTypes[Right];
3917
3918        // Add this built-in operator as a candidate (VQ is empty).
3919        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3920        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3921                            /*IsAssigmentOperator=*/Op == OO_Equal);
3922
3923        // Add this built-in operator as a candidate (VQ is 'volatile').
3924        if (VisibleTypeConversionsQuals.hasVolatile()) {
3925          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3926          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3927          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3928                              /*IsAssigmentOperator=*/Op == OO_Equal);
3929        }
3930      }
3931    }
3932    break;
3933
3934  case OO_PercentEqual:
3935  case OO_LessLessEqual:
3936  case OO_GreaterGreaterEqual:
3937  case OO_AmpEqual:
3938  case OO_CaretEqual:
3939  case OO_PipeEqual:
3940    // C++ [over.built]p22:
3941    //
3942    //   For every triple (L, VQ, R), where L is an integral type, VQ
3943    //   is either volatile or empty, and R is a promoted integral
3944    //   type, there exist candidate operator functions of the form
3945    //
3946    //        VQ L&       operator%=(VQ L&, R);
3947    //        VQ L&       operator<<=(VQ L&, R);
3948    //        VQ L&       operator>>=(VQ L&, R);
3949    //        VQ L&       operator&=(VQ L&, R);
3950    //        VQ L&       operator^=(VQ L&, R);
3951    //        VQ L&       operator|=(VQ L&, R);
3952    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3953      for (unsigned Right = FirstPromotedIntegralType;
3954           Right < LastPromotedIntegralType; ++Right) {
3955        QualType ParamTypes[2];
3956        ParamTypes[1] = ArithmeticTypes[Right];
3957
3958        // Add this built-in operator as a candidate (VQ is empty).
3959        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3960        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3961        if (VisibleTypeConversionsQuals.hasVolatile()) {
3962          // Add this built-in operator as a candidate (VQ is 'volatile').
3963          ParamTypes[0] = ArithmeticTypes[Left];
3964          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3965          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3966          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3967        }
3968      }
3969    }
3970    break;
3971
3972  case OO_Exclaim: {
3973    // C++ [over.operator]p23:
3974    //
3975    //   There also exist candidate operator functions of the form
3976    //
3977    //        bool        operator!(bool);
3978    //        bool        operator&&(bool, bool);     [BELOW]
3979    //        bool        operator||(bool, bool);     [BELOW]
3980    QualType ParamTy = Context.BoolTy;
3981    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3982                        /*IsAssignmentOperator=*/false,
3983                        /*NumContextualBoolArguments=*/1);
3984    break;
3985  }
3986
3987  case OO_AmpAmp:
3988  case OO_PipePipe: {
3989    // C++ [over.operator]p23:
3990    //
3991    //   There also exist candidate operator functions of the form
3992    //
3993    //        bool        operator!(bool);            [ABOVE]
3994    //        bool        operator&&(bool, bool);
3995    //        bool        operator||(bool, bool);
3996    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3997    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3998                        /*IsAssignmentOperator=*/false,
3999                        /*NumContextualBoolArguments=*/2);
4000    break;
4001  }
4002
4003  case OO_Subscript:
4004    // C++ [over.built]p13:
4005    //
4006    //   For every cv-qualified or cv-unqualified object type T there
4007    //   exist candidate operator functions of the form
4008    //
4009    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4010    //        T&         operator[](T*, ptrdiff_t);
4011    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4012    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4013    //        T&         operator[](ptrdiff_t, T*);
4014    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4015         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4016      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4017      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4018      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4019
4020      // T& operator[](T*, ptrdiff_t)
4021      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4022
4023      // T& operator[](ptrdiff_t, T*);
4024      ParamTypes[0] = ParamTypes[1];
4025      ParamTypes[1] = *Ptr;
4026      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4027    }
4028    break;
4029
4030  case OO_ArrowStar:
4031    // C++ [over.built]p11:
4032    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4033    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4034    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4035    //    there exist candidate operator functions of the form
4036    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4037    //    where CV12 is the union of CV1 and CV2.
4038    {
4039      for (BuiltinCandidateTypeSet::iterator Ptr =
4040             CandidateTypes.pointer_begin();
4041           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4042        QualType C1Ty = (*Ptr);
4043        QualType C1;
4044        QualifierCollector Q1;
4045        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4046          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4047          if (!isa<RecordType>(C1))
4048            continue;
4049          // heuristic to reduce number of builtin candidates in the set.
4050          // Add volatile/restrict version only if there are conversions to a
4051          // volatile/restrict type.
4052          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4053            continue;
4054          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4055            continue;
4056        }
4057        for (BuiltinCandidateTypeSet::iterator
4058             MemPtr = CandidateTypes.member_pointer_begin(),
4059             MemPtrEnd = CandidateTypes.member_pointer_end();
4060             MemPtr != MemPtrEnd; ++MemPtr) {
4061          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4062          QualType C2 = QualType(mptr->getClass(), 0);
4063          C2 = C2.getUnqualifiedType();
4064          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4065            break;
4066          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4067          // build CV12 T&
4068          QualType T = mptr->getPointeeType();
4069          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4070              T.isVolatileQualified())
4071            continue;
4072          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4073              T.isRestrictQualified())
4074            continue;
4075          T = Q1.apply(T);
4076          QualType ResultTy = Context.getLValueReferenceType(T);
4077          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4078        }
4079      }
4080    }
4081    break;
4082
4083  case OO_Conditional:
4084    // Note that we don't consider the first argument, since it has been
4085    // contextually converted to bool long ago. The candidates below are
4086    // therefore added as binary.
4087    //
4088    // C++ [over.built]p24:
4089    //   For every type T, where T is a pointer or pointer-to-member type,
4090    //   there exist candidate operator functions of the form
4091    //
4092    //        T        operator?(bool, T, T);
4093    //
4094    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4095         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4096      QualType ParamTypes[2] = { *Ptr, *Ptr };
4097      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4098    }
4099    for (BuiltinCandidateTypeSet::iterator Ptr =
4100           CandidateTypes.member_pointer_begin(),
4101         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4102      QualType ParamTypes[2] = { *Ptr, *Ptr };
4103      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4104    }
4105    goto Conditional;
4106  }
4107}
4108
4109/// \brief Add function candidates found via argument-dependent lookup
4110/// to the set of overloading candidates.
4111///
4112/// This routine performs argument-dependent name lookup based on the
4113/// given function name (which may also be an operator name) and adds
4114/// all of the overload candidates found by ADL to the overload
4115/// candidate set (C++ [basic.lookup.argdep]).
4116void
4117Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4118                                           bool Operator,
4119                                           Expr **Args, unsigned NumArgs,
4120                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4121                                           OverloadCandidateSet& CandidateSet,
4122                                           bool PartialOverloading) {
4123  ADLResult Fns;
4124
4125  // FIXME: This approach for uniquing ADL results (and removing
4126  // redundant candidates from the set) relies on pointer-equality,
4127  // which means we need to key off the canonical decl.  However,
4128  // always going back to the canonical decl might not get us the
4129  // right set of default arguments.  What default arguments are
4130  // we supposed to consider on ADL candidates, anyway?
4131
4132  // FIXME: Pass in the explicit template arguments?
4133  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4134
4135  // Erase all of the candidates we already knew about.
4136  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4137                                   CandEnd = CandidateSet.end();
4138       Cand != CandEnd; ++Cand)
4139    if (Cand->Function) {
4140      Fns.erase(Cand->Function);
4141      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4142        Fns.erase(FunTmpl);
4143    }
4144
4145  // For each of the ADL candidates we found, add it to the overload
4146  // set.
4147  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4148    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4149    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4150      if (ExplicitTemplateArgs)
4151        continue;
4152
4153      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4154                           false, false, PartialOverloading);
4155    } else
4156      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4157                                   FoundDecl, ExplicitTemplateArgs,
4158                                   Args, NumArgs, CandidateSet);
4159  }
4160}
4161
4162/// isBetterOverloadCandidate - Determines whether the first overload
4163/// candidate is a better candidate than the second (C++ 13.3.3p1).
4164bool
4165Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4166                                const OverloadCandidate& Cand2,
4167                                SourceLocation Loc) {
4168  // Define viable functions to be better candidates than non-viable
4169  // functions.
4170  if (!Cand2.Viable)
4171    return Cand1.Viable;
4172  else if (!Cand1.Viable)
4173    return false;
4174
4175  // C++ [over.match.best]p1:
4176  //
4177  //   -- if F is a static member function, ICS1(F) is defined such
4178  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4179  //      any function G, and, symmetrically, ICS1(G) is neither
4180  //      better nor worse than ICS1(F).
4181  unsigned StartArg = 0;
4182  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4183    StartArg = 1;
4184
4185  // C++ [over.match.best]p1:
4186  //   A viable function F1 is defined to be a better function than another
4187  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4188  //   conversion sequence than ICSi(F2), and then...
4189  unsigned NumArgs = Cand1.Conversions.size();
4190  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4191  bool HasBetterConversion = false;
4192  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4193    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4194                                               Cand2.Conversions[ArgIdx])) {
4195    case ImplicitConversionSequence::Better:
4196      // Cand1 has a better conversion sequence.
4197      HasBetterConversion = true;
4198      break;
4199
4200    case ImplicitConversionSequence::Worse:
4201      // Cand1 can't be better than Cand2.
4202      return false;
4203
4204    case ImplicitConversionSequence::Indistinguishable:
4205      // Do nothing.
4206      break;
4207    }
4208  }
4209
4210  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4211  //       ICSj(F2), or, if not that,
4212  if (HasBetterConversion)
4213    return true;
4214
4215  //     - F1 is a non-template function and F2 is a function template
4216  //       specialization, or, if not that,
4217  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4218      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4219    return true;
4220
4221  //   -- F1 and F2 are function template specializations, and the function
4222  //      template for F1 is more specialized than the template for F2
4223  //      according to the partial ordering rules described in 14.5.5.2, or,
4224  //      if not that,
4225  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4226      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4227    if (FunctionTemplateDecl *BetterTemplate
4228          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4229                                       Cand2.Function->getPrimaryTemplate(),
4230                                       Loc,
4231                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4232                                                             : TPOC_Call))
4233      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4234
4235  //   -- the context is an initialization by user-defined conversion
4236  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4237  //      from the return type of F1 to the destination type (i.e.,
4238  //      the type of the entity being initialized) is a better
4239  //      conversion sequence than the standard conversion sequence
4240  //      from the return type of F2 to the destination type.
4241  if (Cand1.Function && Cand2.Function &&
4242      isa<CXXConversionDecl>(Cand1.Function) &&
4243      isa<CXXConversionDecl>(Cand2.Function)) {
4244    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4245                                               Cand2.FinalConversion)) {
4246    case ImplicitConversionSequence::Better:
4247      // Cand1 has a better conversion sequence.
4248      return true;
4249
4250    case ImplicitConversionSequence::Worse:
4251      // Cand1 can't be better than Cand2.
4252      return false;
4253
4254    case ImplicitConversionSequence::Indistinguishable:
4255      // Do nothing
4256      break;
4257    }
4258  }
4259
4260  return false;
4261}
4262
4263/// \brief Computes the best viable function (C++ 13.3.3)
4264/// within an overload candidate set.
4265///
4266/// \param CandidateSet the set of candidate functions.
4267///
4268/// \param Loc the location of the function name (or operator symbol) for
4269/// which overload resolution occurs.
4270///
4271/// \param Best f overload resolution was successful or found a deleted
4272/// function, Best points to the candidate function found.
4273///
4274/// \returns The result of overload resolution.
4275OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4276                                           SourceLocation Loc,
4277                                        OverloadCandidateSet::iterator& Best) {
4278  // Find the best viable function.
4279  Best = CandidateSet.end();
4280  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4281       Cand != CandidateSet.end(); ++Cand) {
4282    if (Cand->Viable) {
4283      if (Best == CandidateSet.end() ||
4284          isBetterOverloadCandidate(*Cand, *Best, Loc))
4285        Best = Cand;
4286    }
4287  }
4288
4289  // If we didn't find any viable functions, abort.
4290  if (Best == CandidateSet.end())
4291    return OR_No_Viable_Function;
4292
4293  // Make sure that this function is better than every other viable
4294  // function. If not, we have an ambiguity.
4295  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4296       Cand != CandidateSet.end(); ++Cand) {
4297    if (Cand->Viable &&
4298        Cand != Best &&
4299        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4300      Best = CandidateSet.end();
4301      return OR_Ambiguous;
4302    }
4303  }
4304
4305  // Best is the best viable function.
4306  if (Best->Function &&
4307      (Best->Function->isDeleted() ||
4308       Best->Function->getAttr<UnavailableAttr>()))
4309    return OR_Deleted;
4310
4311  // C++ [basic.def.odr]p2:
4312  //   An overloaded function is used if it is selected by overload resolution
4313  //   when referred to from a potentially-evaluated expression. [Note: this
4314  //   covers calls to named functions (5.2.2), operator overloading
4315  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4316  //   placement new (5.3.4), as well as non-default initialization (8.5).
4317  if (Best->Function)
4318    MarkDeclarationReferenced(Loc, Best->Function);
4319  return OR_Success;
4320}
4321
4322namespace {
4323
4324enum OverloadCandidateKind {
4325  oc_function,
4326  oc_method,
4327  oc_constructor,
4328  oc_function_template,
4329  oc_method_template,
4330  oc_constructor_template,
4331  oc_implicit_default_constructor,
4332  oc_implicit_copy_constructor,
4333  oc_implicit_copy_assignment
4334};
4335
4336OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4337                                                FunctionDecl *Fn,
4338                                                std::string &Description) {
4339  bool isTemplate = false;
4340
4341  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4342    isTemplate = true;
4343    Description = S.getTemplateArgumentBindingsText(
4344      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4345  }
4346
4347  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4348    if (!Ctor->isImplicit())
4349      return isTemplate ? oc_constructor_template : oc_constructor;
4350
4351    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4352                                     : oc_implicit_default_constructor;
4353  }
4354
4355  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4356    // This actually gets spelled 'candidate function' for now, but
4357    // it doesn't hurt to split it out.
4358    if (!Meth->isImplicit())
4359      return isTemplate ? oc_method_template : oc_method;
4360
4361    assert(Meth->isCopyAssignment()
4362           && "implicit method is not copy assignment operator?");
4363    return oc_implicit_copy_assignment;
4364  }
4365
4366  return isTemplate ? oc_function_template : oc_function;
4367}
4368
4369} // end anonymous namespace
4370
4371// Notes the location of an overload candidate.
4372void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4373  std::string FnDesc;
4374  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4375  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4376    << (unsigned) K << FnDesc;
4377}
4378
4379/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4380/// "lead" diagnostic; it will be given two arguments, the source and
4381/// target types of the conversion.
4382void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4383                                       SourceLocation CaretLoc,
4384                                       const PartialDiagnostic &PDiag) {
4385  Diag(CaretLoc, PDiag)
4386    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4387  for (AmbiguousConversionSequence::const_iterator
4388         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4389    NoteOverloadCandidate(*I);
4390  }
4391}
4392
4393namespace {
4394
4395void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4396  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4397  assert(Conv.isBad());
4398  assert(Cand->Function && "for now, candidate must be a function");
4399  FunctionDecl *Fn = Cand->Function;
4400
4401  // There's a conversion slot for the object argument if this is a
4402  // non-constructor method.  Note that 'I' corresponds the
4403  // conversion-slot index.
4404  bool isObjectArgument = false;
4405  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4406    if (I == 0)
4407      isObjectArgument = true;
4408    else
4409      I--;
4410  }
4411
4412  std::string FnDesc;
4413  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4414
4415  Expr *FromExpr = Conv.Bad.FromExpr;
4416  QualType FromTy = Conv.Bad.getFromType();
4417  QualType ToTy = Conv.Bad.getToType();
4418
4419  if (FromTy == S.Context.OverloadTy) {
4420    assert(FromExpr && "overload set argument came from implicit argument?");
4421    Expr *E = FromExpr->IgnoreParens();
4422    if (isa<UnaryOperator>(E))
4423      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4424    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4425
4426    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4427      << (unsigned) FnKind << FnDesc
4428      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4429      << ToTy << Name << I+1;
4430    return;
4431  }
4432
4433  // Do some hand-waving analysis to see if the non-viability is due
4434  // to a qualifier mismatch.
4435  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4436  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4437  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4438    CToTy = RT->getPointeeType();
4439  else {
4440    // TODO: detect and diagnose the full richness of const mismatches.
4441    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4442      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4443        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4444  }
4445
4446  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4447      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4448    // It is dumb that we have to do this here.
4449    while (isa<ArrayType>(CFromTy))
4450      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4451    while (isa<ArrayType>(CToTy))
4452      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4453
4454    Qualifiers FromQs = CFromTy.getQualifiers();
4455    Qualifiers ToQs = CToTy.getQualifiers();
4456
4457    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4458      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4459        << (unsigned) FnKind << FnDesc
4460        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4461        << FromTy
4462        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4463        << (unsigned) isObjectArgument << I+1;
4464      return;
4465    }
4466
4467    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4468    assert(CVR && "unexpected qualifiers mismatch");
4469
4470    if (isObjectArgument) {
4471      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4472        << (unsigned) FnKind << FnDesc
4473        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4474        << FromTy << (CVR - 1);
4475    } else {
4476      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4477        << (unsigned) FnKind << FnDesc
4478        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4479        << FromTy << (CVR - 1) << I+1;
4480    }
4481    return;
4482  }
4483
4484  // Diagnose references or pointers to incomplete types differently,
4485  // since it's far from impossible that the incompleteness triggered
4486  // the failure.
4487  QualType TempFromTy = FromTy.getNonReferenceType();
4488  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4489    TempFromTy = PTy->getPointeeType();
4490  if (TempFromTy->isIncompleteType()) {
4491    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4492      << (unsigned) FnKind << FnDesc
4493      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4494      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4495    return;
4496  }
4497
4498  // TODO: specialize more based on the kind of mismatch
4499  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4500    << (unsigned) FnKind << FnDesc
4501    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4502    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4503}
4504
4505void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4506                           unsigned NumFormalArgs) {
4507  // TODO: treat calls to a missing default constructor as a special case
4508
4509  FunctionDecl *Fn = Cand->Function;
4510  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4511
4512  unsigned MinParams = Fn->getMinRequiredArguments();
4513
4514  // at least / at most / exactly
4515  unsigned mode, modeCount;
4516  if (NumFormalArgs < MinParams) {
4517    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4518    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4519      mode = 0; // "at least"
4520    else
4521      mode = 2; // "exactly"
4522    modeCount = MinParams;
4523  } else {
4524    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4525    if (MinParams != FnTy->getNumArgs())
4526      mode = 1; // "at most"
4527    else
4528      mode = 2; // "exactly"
4529    modeCount = FnTy->getNumArgs();
4530  }
4531
4532  std::string Description;
4533  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4534
4535  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4536    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4537}
4538
4539/// Diagnose a failed template-argument deduction.
4540void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4541                          Expr **Args, unsigned NumArgs) {
4542  FunctionDecl *Fn = Cand->Function; // pattern
4543
4544  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4545                                   Cand->DeductionFailure.TemplateParameter);
4546
4547  switch (Cand->DeductionFailure.Result) {
4548  case Sema::TDK_Success:
4549    llvm_unreachable("TDK_success while diagnosing bad deduction");
4550
4551  case Sema::TDK_Incomplete: {
4552    NamedDecl *ParamD;
4553    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4554    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4555    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4556    assert(ParamD && "no parameter found for incomplete deduction result");
4557    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4558      << ParamD->getDeclName();
4559    return;
4560  }
4561
4562  // TODO: diagnose these individually, then kill off
4563  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4564  case Sema::TDK_InstantiationDepth:
4565  case Sema::TDK_Inconsistent:
4566  case Sema::TDK_InconsistentQuals:
4567  case Sema::TDK_SubstitutionFailure:
4568  case Sema::TDK_NonDeducedMismatch:
4569  case Sema::TDK_TooManyArguments:
4570  case Sema::TDK_TooFewArguments:
4571  case Sema::TDK_InvalidExplicitArguments:
4572  case Sema::TDK_FailedOverloadResolution:
4573    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4574    return;
4575  }
4576}
4577
4578/// Generates a 'note' diagnostic for an overload candidate.  We've
4579/// already generated a primary error at the call site.
4580///
4581/// It really does need to be a single diagnostic with its caret
4582/// pointed at the candidate declaration.  Yes, this creates some
4583/// major challenges of technical writing.  Yes, this makes pointing
4584/// out problems with specific arguments quite awkward.  It's still
4585/// better than generating twenty screens of text for every failed
4586/// overload.
4587///
4588/// It would be great to be able to express per-candidate problems
4589/// more richly for those diagnostic clients that cared, but we'd
4590/// still have to be just as careful with the default diagnostics.
4591void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4592                           Expr **Args, unsigned NumArgs) {
4593  FunctionDecl *Fn = Cand->Function;
4594
4595  // Note deleted candidates, but only if they're viable.
4596  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4597    std::string FnDesc;
4598    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4599
4600    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4601      << FnKind << FnDesc << Fn->isDeleted();
4602    return;
4603  }
4604
4605  // We don't really have anything else to say about viable candidates.
4606  if (Cand->Viable) {
4607    S.NoteOverloadCandidate(Fn);
4608    return;
4609  }
4610
4611  switch (Cand->FailureKind) {
4612  case ovl_fail_too_many_arguments:
4613  case ovl_fail_too_few_arguments:
4614    return DiagnoseArityMismatch(S, Cand, NumArgs);
4615
4616  case ovl_fail_bad_deduction:
4617    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4618
4619  case ovl_fail_trivial_conversion:
4620  case ovl_fail_bad_final_conversion:
4621    return S.NoteOverloadCandidate(Fn);
4622
4623  case ovl_fail_bad_conversion: {
4624    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4625    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4626      if (Cand->Conversions[I].isBad())
4627        return DiagnoseBadConversion(S, Cand, I);
4628
4629    // FIXME: this currently happens when we're called from SemaInit
4630    // when user-conversion overload fails.  Figure out how to handle
4631    // those conditions and diagnose them well.
4632    return S.NoteOverloadCandidate(Fn);
4633  }
4634  }
4635}
4636
4637void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4638  // Desugar the type of the surrogate down to a function type,
4639  // retaining as many typedefs as possible while still showing
4640  // the function type (and, therefore, its parameter types).
4641  QualType FnType = Cand->Surrogate->getConversionType();
4642  bool isLValueReference = false;
4643  bool isRValueReference = false;
4644  bool isPointer = false;
4645  if (const LValueReferenceType *FnTypeRef =
4646        FnType->getAs<LValueReferenceType>()) {
4647    FnType = FnTypeRef->getPointeeType();
4648    isLValueReference = true;
4649  } else if (const RValueReferenceType *FnTypeRef =
4650               FnType->getAs<RValueReferenceType>()) {
4651    FnType = FnTypeRef->getPointeeType();
4652    isRValueReference = true;
4653  }
4654  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4655    FnType = FnTypePtr->getPointeeType();
4656    isPointer = true;
4657  }
4658  // Desugar down to a function type.
4659  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4660  // Reconstruct the pointer/reference as appropriate.
4661  if (isPointer) FnType = S.Context.getPointerType(FnType);
4662  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4663  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4664
4665  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4666    << FnType;
4667}
4668
4669void NoteBuiltinOperatorCandidate(Sema &S,
4670                                  const char *Opc,
4671                                  SourceLocation OpLoc,
4672                                  OverloadCandidate *Cand) {
4673  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4674  std::string TypeStr("operator");
4675  TypeStr += Opc;
4676  TypeStr += "(";
4677  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4678  if (Cand->Conversions.size() == 1) {
4679    TypeStr += ")";
4680    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4681  } else {
4682    TypeStr += ", ";
4683    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4684    TypeStr += ")";
4685    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4686  }
4687}
4688
4689void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4690                                  OverloadCandidate *Cand) {
4691  unsigned NoOperands = Cand->Conversions.size();
4692  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4693    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4694    if (ICS.isBad()) break; // all meaningless after first invalid
4695    if (!ICS.isAmbiguous()) continue;
4696
4697    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4698                              PDiag(diag::note_ambiguous_type_conversion));
4699  }
4700}
4701
4702SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4703  if (Cand->Function)
4704    return Cand->Function->getLocation();
4705  if (Cand->IsSurrogate)
4706    return Cand->Surrogate->getLocation();
4707  return SourceLocation();
4708}
4709
4710struct CompareOverloadCandidatesForDisplay {
4711  Sema &S;
4712  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4713
4714  bool operator()(const OverloadCandidate *L,
4715                  const OverloadCandidate *R) {
4716    // Fast-path this check.
4717    if (L == R) return false;
4718
4719    // Order first by viability.
4720    if (L->Viable) {
4721      if (!R->Viable) return true;
4722
4723      // TODO: introduce a tri-valued comparison for overload
4724      // candidates.  Would be more worthwhile if we had a sort
4725      // that could exploit it.
4726      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
4727      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
4728    } else if (R->Viable)
4729      return false;
4730
4731    assert(L->Viable == R->Viable);
4732
4733    // Criteria by which we can sort non-viable candidates:
4734    if (!L->Viable) {
4735      // 1. Arity mismatches come after other candidates.
4736      if (L->FailureKind == ovl_fail_too_many_arguments ||
4737          L->FailureKind == ovl_fail_too_few_arguments)
4738        return false;
4739      if (R->FailureKind == ovl_fail_too_many_arguments ||
4740          R->FailureKind == ovl_fail_too_few_arguments)
4741        return true;
4742
4743      // 2. Bad conversions come first and are ordered by the number
4744      // of bad conversions and quality of good conversions.
4745      if (L->FailureKind == ovl_fail_bad_conversion) {
4746        if (R->FailureKind != ovl_fail_bad_conversion)
4747          return true;
4748
4749        // If there's any ordering between the defined conversions...
4750        // FIXME: this might not be transitive.
4751        assert(L->Conversions.size() == R->Conversions.size());
4752
4753        int leftBetter = 0;
4754        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
4755        for (unsigned E = L->Conversions.size(); I != E; ++I) {
4756          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
4757                                                       R->Conversions[I])) {
4758          case ImplicitConversionSequence::Better:
4759            leftBetter++;
4760            break;
4761
4762          case ImplicitConversionSequence::Worse:
4763            leftBetter--;
4764            break;
4765
4766          case ImplicitConversionSequence::Indistinguishable:
4767            break;
4768          }
4769        }
4770        if (leftBetter > 0) return true;
4771        if (leftBetter < 0) return false;
4772
4773      } else if (R->FailureKind == ovl_fail_bad_conversion)
4774        return false;
4775
4776      // TODO: others?
4777    }
4778
4779    // Sort everything else by location.
4780    SourceLocation LLoc = GetLocationForCandidate(L);
4781    SourceLocation RLoc = GetLocationForCandidate(R);
4782
4783    // Put candidates without locations (e.g. builtins) at the end.
4784    if (LLoc.isInvalid()) return false;
4785    if (RLoc.isInvalid()) return true;
4786
4787    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4788  }
4789};
4790
4791/// CompleteNonViableCandidate - Normally, overload resolution only
4792/// computes up to the first
4793void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
4794                                Expr **Args, unsigned NumArgs) {
4795  assert(!Cand->Viable);
4796
4797  // Don't do anything on failures other than bad conversion.
4798  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
4799
4800  // Skip forward to the first bad conversion.
4801  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
4802  unsigned ConvCount = Cand->Conversions.size();
4803  while (true) {
4804    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
4805    ConvIdx++;
4806    if (Cand->Conversions[ConvIdx - 1].isBad())
4807      break;
4808  }
4809
4810  if (ConvIdx == ConvCount)
4811    return;
4812
4813  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
4814         "remaining conversion is initialized?");
4815
4816  // FIXME: these should probably be preserved from the overload
4817  // operation somehow.
4818  bool SuppressUserConversions = false;
4819  bool ForceRValue = false;
4820
4821  const FunctionProtoType* Proto;
4822  unsigned ArgIdx = ConvIdx;
4823
4824  if (Cand->IsSurrogate) {
4825    QualType ConvType
4826      = Cand->Surrogate->getConversionType().getNonReferenceType();
4827    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4828      ConvType = ConvPtrType->getPointeeType();
4829    Proto = ConvType->getAs<FunctionProtoType>();
4830    ArgIdx--;
4831  } else if (Cand->Function) {
4832    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
4833    if (isa<CXXMethodDecl>(Cand->Function) &&
4834        !isa<CXXConstructorDecl>(Cand->Function))
4835      ArgIdx--;
4836  } else {
4837    // Builtin binary operator with a bad first conversion.
4838    assert(ConvCount <= 3);
4839    for (; ConvIdx != ConvCount; ++ConvIdx)
4840      Cand->Conversions[ConvIdx]
4841        = S.TryCopyInitialization(Args[ConvIdx],
4842                                  Cand->BuiltinTypes.ParamTypes[ConvIdx],
4843                                  SuppressUserConversions, ForceRValue,
4844                                  /*InOverloadResolution*/ true);
4845    return;
4846  }
4847
4848  // Fill in the rest of the conversions.
4849  unsigned NumArgsInProto = Proto->getNumArgs();
4850  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
4851    if (ArgIdx < NumArgsInProto)
4852      Cand->Conversions[ConvIdx]
4853        = S.TryCopyInitialization(Args[ArgIdx], Proto->getArgType(ArgIdx),
4854                                  SuppressUserConversions, ForceRValue,
4855                                  /*InOverloadResolution=*/true);
4856    else
4857      Cand->Conversions[ConvIdx].setEllipsis();
4858  }
4859}
4860
4861} // end anonymous namespace
4862
4863/// PrintOverloadCandidates - When overload resolution fails, prints
4864/// diagnostic messages containing the candidates in the candidate
4865/// set.
4866void
4867Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4868                              OverloadCandidateDisplayKind OCD,
4869                              Expr **Args, unsigned NumArgs,
4870                              const char *Opc,
4871                              SourceLocation OpLoc) {
4872  // Sort the candidates by viability and position.  Sorting directly would
4873  // be prohibitive, so we make a set of pointers and sort those.
4874  llvm::SmallVector<OverloadCandidate*, 32> Cands;
4875  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4876  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4877                                  LastCand = CandidateSet.end();
4878       Cand != LastCand; ++Cand) {
4879    if (Cand->Viable)
4880      Cands.push_back(Cand);
4881    else if (OCD == OCD_AllCandidates) {
4882      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
4883      Cands.push_back(Cand);
4884    }
4885  }
4886
4887  std::sort(Cands.begin(), Cands.end(),
4888            CompareOverloadCandidatesForDisplay(*this));
4889
4890  bool ReportedAmbiguousConversions = false;
4891
4892  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4893  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4894    OverloadCandidate *Cand = *I;
4895
4896    if (Cand->Function)
4897      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4898    else if (Cand->IsSurrogate)
4899      NoteSurrogateCandidate(*this, Cand);
4900
4901    // This a builtin candidate.  We do not, in general, want to list
4902    // every possible builtin candidate.
4903    else if (Cand->Viable) {
4904      // Generally we only see ambiguities including viable builtin
4905      // operators if overload resolution got screwed up by an
4906      // ambiguous user-defined conversion.
4907      //
4908      // FIXME: It's quite possible for different conversions to see
4909      // different ambiguities, though.
4910      if (!ReportedAmbiguousConversions) {
4911        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4912        ReportedAmbiguousConversions = true;
4913      }
4914
4915      // If this is a viable builtin, print it.
4916      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4917    }
4918  }
4919}
4920
4921static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
4922  if (isa<UnresolvedLookupExpr>(E))
4923    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
4924
4925  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
4926}
4927
4928/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4929/// an overloaded function (C++ [over.over]), where @p From is an
4930/// expression with overloaded function type and @p ToType is the type
4931/// we're trying to resolve to. For example:
4932///
4933/// @code
4934/// int f(double);
4935/// int f(int);
4936///
4937/// int (*pfd)(double) = f; // selects f(double)
4938/// @endcode
4939///
4940/// This routine returns the resulting FunctionDecl if it could be
4941/// resolved, and NULL otherwise. When @p Complain is true, this
4942/// routine will emit diagnostics if there is an error.
4943FunctionDecl *
4944Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4945                                         bool Complain) {
4946  QualType FunctionType = ToType;
4947  bool IsMember = false;
4948  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4949    FunctionType = ToTypePtr->getPointeeType();
4950  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4951    FunctionType = ToTypeRef->getPointeeType();
4952  else if (const MemberPointerType *MemTypePtr =
4953                    ToType->getAs<MemberPointerType>()) {
4954    FunctionType = MemTypePtr->getPointeeType();
4955    IsMember = true;
4956  }
4957
4958  // We only look at pointers or references to functions.
4959  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4960  if (!FunctionType->isFunctionType())
4961    return 0;
4962
4963  // Find the actual overloaded function declaration.
4964  if (From->getType() != Context.OverloadTy)
4965    return 0;
4966
4967  // C++ [over.over]p1:
4968  //   [...] [Note: any redundant set of parentheses surrounding the
4969  //   overloaded function name is ignored (5.1). ]
4970  // C++ [over.over]p1:
4971  //   [...] The overloaded function name can be preceded by the &
4972  //   operator.
4973  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
4974  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
4975  if (OvlExpr->hasExplicitTemplateArgs()) {
4976    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
4977    ExplicitTemplateArgs = &ETABuffer;
4978  }
4979
4980  // Look through all of the overloaded functions, searching for one
4981  // whose type matches exactly.
4982  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
4983  bool FoundNonTemplateFunction = false;
4984  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
4985         E = OvlExpr->decls_end(); I != E; ++I) {
4986    // Look through any using declarations to find the underlying function.
4987    NamedDecl *Fn = (*I)->getUnderlyingDecl();
4988
4989    // C++ [over.over]p3:
4990    //   Non-member functions and static member functions match
4991    //   targets of type "pointer-to-function" or "reference-to-function."
4992    //   Nonstatic member functions match targets of
4993    //   type "pointer-to-member-function."
4994    // Note that according to DR 247, the containing class does not matter.
4995
4996    if (FunctionTemplateDecl *FunctionTemplate
4997          = dyn_cast<FunctionTemplateDecl>(Fn)) {
4998      if (CXXMethodDecl *Method
4999            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5000        // Skip non-static function templates when converting to pointer, and
5001        // static when converting to member pointer.
5002        if (Method->isStatic() == IsMember)
5003          continue;
5004      } else if (IsMember)
5005        continue;
5006
5007      // C++ [over.over]p2:
5008      //   If the name is a function template, template argument deduction is
5009      //   done (14.8.2.2), and if the argument deduction succeeds, the
5010      //   resulting template argument list is used to generate a single
5011      //   function template specialization, which is added to the set of
5012      //   overloaded functions considered.
5013      // FIXME: We don't really want to build the specialization here, do we?
5014      FunctionDecl *Specialization = 0;
5015      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5016      if (TemplateDeductionResult Result
5017            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5018                                      FunctionType, Specialization, Info)) {
5019        // FIXME: make a note of the failed deduction for diagnostics.
5020        (void)Result;
5021      } else {
5022        // FIXME: If the match isn't exact, shouldn't we just drop this as
5023        // a candidate? Find a testcase before changing the code.
5024        assert(FunctionType
5025                 == Context.getCanonicalType(Specialization->getType()));
5026        Matches.push_back(std::make_pair(I.getPair(),
5027                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5028      }
5029
5030      continue;
5031    }
5032
5033    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5034      // Skip non-static functions when converting to pointer, and static
5035      // when converting to member pointer.
5036      if (Method->isStatic() == IsMember)
5037        continue;
5038
5039      // If we have explicit template arguments, skip non-templates.
5040      if (OvlExpr->hasExplicitTemplateArgs())
5041        continue;
5042    } else if (IsMember)
5043      continue;
5044
5045    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5046      QualType ResultTy;
5047      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5048          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5049                               ResultTy)) {
5050        Matches.push_back(std::make_pair(I.getPair(),
5051                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5052        FoundNonTemplateFunction = true;
5053      }
5054    }
5055  }
5056
5057  // If there were 0 or 1 matches, we're done.
5058  if (Matches.empty())
5059    return 0;
5060  else if (Matches.size() == 1) {
5061    FunctionDecl *Result = Matches[0].second;
5062    MarkDeclarationReferenced(From->getLocStart(), Result);
5063    if (Complain)
5064      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5065    return Result;
5066  }
5067
5068  // C++ [over.over]p4:
5069  //   If more than one function is selected, [...]
5070  if (!FoundNonTemplateFunction) {
5071    //   [...] and any given function template specialization F1 is
5072    //   eliminated if the set contains a second function template
5073    //   specialization whose function template is more specialized
5074    //   than the function template of F1 according to the partial
5075    //   ordering rules of 14.5.5.2.
5076
5077    // The algorithm specified above is quadratic. We instead use a
5078    // two-pass algorithm (similar to the one used to identify the
5079    // best viable function in an overload set) that identifies the
5080    // best function template (if it exists).
5081
5082    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5083    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5084      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5085
5086    UnresolvedSetIterator Result =
5087        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5088                           TPOC_Other, From->getLocStart(),
5089                           PDiag(),
5090                           PDiag(diag::err_addr_ovl_ambiguous)
5091                               << Matches[0].second->getDeclName(),
5092                           PDiag(diag::note_ovl_candidate)
5093                               << (unsigned) oc_function_template);
5094    assert(Result != MatchesCopy.end() && "no most-specialized template");
5095    MarkDeclarationReferenced(From->getLocStart(), *Result);
5096    if (Complain) {
5097      DeclAccessPair FoundDecl = Matches[Result - MatchesCopy.begin()].first;
5098      CheckUnresolvedAccess(*this, OvlExpr, FoundDecl);
5099    }
5100    return cast<FunctionDecl>(*Result);
5101  }
5102
5103  //   [...] any function template specializations in the set are
5104  //   eliminated if the set also contains a non-template function, [...]
5105  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5106    if (Matches[I].second->getPrimaryTemplate() == 0)
5107      ++I;
5108    else {
5109      Matches[I] = Matches[--N];
5110      Matches.set_size(N);
5111    }
5112  }
5113
5114  // [...] After such eliminations, if any, there shall remain exactly one
5115  // selected function.
5116  if (Matches.size() == 1) {
5117    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5118    if (Complain)
5119      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5120    return cast<FunctionDecl>(Matches[0].second);
5121  }
5122
5123  // FIXME: We should probably return the same thing that BestViableFunction
5124  // returns (even if we issue the diagnostics here).
5125  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5126    << Matches[0].second->getDeclName();
5127  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5128    NoteOverloadCandidate(Matches[I].second);
5129  return 0;
5130}
5131
5132/// \brief Given an expression that refers to an overloaded function, try to
5133/// resolve that overloaded function expression down to a single function.
5134///
5135/// This routine can only resolve template-ids that refer to a single function
5136/// template, where that template-id refers to a single template whose template
5137/// arguments are either provided by the template-id or have defaults,
5138/// as described in C++0x [temp.arg.explicit]p3.
5139FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5140  // C++ [over.over]p1:
5141  //   [...] [Note: any redundant set of parentheses surrounding the
5142  //   overloaded function name is ignored (5.1). ]
5143  // C++ [over.over]p1:
5144  //   [...] The overloaded function name can be preceded by the &
5145  //   operator.
5146
5147  if (From->getType() != Context.OverloadTy)
5148    return 0;
5149
5150  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5151
5152  // If we didn't actually find any template-ids, we're done.
5153  if (!OvlExpr->hasExplicitTemplateArgs())
5154    return 0;
5155
5156  TemplateArgumentListInfo ExplicitTemplateArgs;
5157  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5158
5159  // Look through all of the overloaded functions, searching for one
5160  // whose type matches exactly.
5161  FunctionDecl *Matched = 0;
5162  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5163         E = OvlExpr->decls_end(); I != E; ++I) {
5164    // C++0x [temp.arg.explicit]p3:
5165    //   [...] In contexts where deduction is done and fails, or in contexts
5166    //   where deduction is not done, if a template argument list is
5167    //   specified and it, along with any default template arguments,
5168    //   identifies a single function template specialization, then the
5169    //   template-id is an lvalue for the function template specialization.
5170    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5171
5172    // C++ [over.over]p2:
5173    //   If the name is a function template, template argument deduction is
5174    //   done (14.8.2.2), and if the argument deduction succeeds, the
5175    //   resulting template argument list is used to generate a single
5176    //   function template specialization, which is added to the set of
5177    //   overloaded functions considered.
5178    FunctionDecl *Specialization = 0;
5179    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5180    if (TemplateDeductionResult Result
5181          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5182                                    Specialization, Info)) {
5183      // FIXME: make a note of the failed deduction for diagnostics.
5184      (void)Result;
5185      continue;
5186    }
5187
5188    // Multiple matches; we can't resolve to a single declaration.
5189    if (Matched)
5190      return 0;
5191
5192    Matched = Specialization;
5193  }
5194
5195  return Matched;
5196}
5197
5198/// \brief Add a single candidate to the overload set.
5199static void AddOverloadedCallCandidate(Sema &S,
5200                                       DeclAccessPair FoundDecl,
5201                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5202                                       Expr **Args, unsigned NumArgs,
5203                                       OverloadCandidateSet &CandidateSet,
5204                                       bool PartialOverloading) {
5205  NamedDecl *Callee = FoundDecl.getDecl();
5206  if (isa<UsingShadowDecl>(Callee))
5207    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5208
5209  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5210    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5211    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5212                           false, false, PartialOverloading);
5213    return;
5214  }
5215
5216  if (FunctionTemplateDecl *FuncTemplate
5217      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5218    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5219                                   ExplicitTemplateArgs,
5220                                   Args, NumArgs, CandidateSet);
5221    return;
5222  }
5223
5224  assert(false && "unhandled case in overloaded call candidate");
5225
5226  // do nothing?
5227}
5228
5229/// \brief Add the overload candidates named by callee and/or found by argument
5230/// dependent lookup to the given overload set.
5231void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5232                                       Expr **Args, unsigned NumArgs,
5233                                       OverloadCandidateSet &CandidateSet,
5234                                       bool PartialOverloading) {
5235
5236#ifndef NDEBUG
5237  // Verify that ArgumentDependentLookup is consistent with the rules
5238  // in C++0x [basic.lookup.argdep]p3:
5239  //
5240  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5241  //   and let Y be the lookup set produced by argument dependent
5242  //   lookup (defined as follows). If X contains
5243  //
5244  //     -- a declaration of a class member, or
5245  //
5246  //     -- a block-scope function declaration that is not a
5247  //        using-declaration, or
5248  //
5249  //     -- a declaration that is neither a function or a function
5250  //        template
5251  //
5252  //   then Y is empty.
5253
5254  if (ULE->requiresADL()) {
5255    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5256           E = ULE->decls_end(); I != E; ++I) {
5257      assert(!(*I)->getDeclContext()->isRecord());
5258      assert(isa<UsingShadowDecl>(*I) ||
5259             !(*I)->getDeclContext()->isFunctionOrMethod());
5260      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5261    }
5262  }
5263#endif
5264
5265  // It would be nice to avoid this copy.
5266  TemplateArgumentListInfo TABuffer;
5267  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5268  if (ULE->hasExplicitTemplateArgs()) {
5269    ULE->copyTemplateArgumentsInto(TABuffer);
5270    ExplicitTemplateArgs = &TABuffer;
5271  }
5272
5273  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5274         E = ULE->decls_end(); I != E; ++I)
5275    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5276                               Args, NumArgs, CandidateSet,
5277                               PartialOverloading);
5278
5279  if (ULE->requiresADL())
5280    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5281                                         Args, NumArgs,
5282                                         ExplicitTemplateArgs,
5283                                         CandidateSet,
5284                                         PartialOverloading);
5285}
5286
5287static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5288                                      Expr **Args, unsigned NumArgs) {
5289  Fn->Destroy(SemaRef.Context);
5290  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5291    Args[Arg]->Destroy(SemaRef.Context);
5292  return SemaRef.ExprError();
5293}
5294
5295/// Attempts to recover from a call where no functions were found.
5296///
5297/// Returns true if new candidates were found.
5298static Sema::OwningExprResult
5299BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5300                      UnresolvedLookupExpr *ULE,
5301                      SourceLocation LParenLoc,
5302                      Expr **Args, unsigned NumArgs,
5303                      SourceLocation *CommaLocs,
5304                      SourceLocation RParenLoc) {
5305
5306  CXXScopeSpec SS;
5307  if (ULE->getQualifier()) {
5308    SS.setScopeRep(ULE->getQualifier());
5309    SS.setRange(ULE->getQualifierRange());
5310  }
5311
5312  TemplateArgumentListInfo TABuffer;
5313  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5314  if (ULE->hasExplicitTemplateArgs()) {
5315    ULE->copyTemplateArgumentsInto(TABuffer);
5316    ExplicitTemplateArgs = &TABuffer;
5317  }
5318
5319  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5320                 Sema::LookupOrdinaryName);
5321  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5322    return Destroy(SemaRef, Fn, Args, NumArgs);
5323
5324  assert(!R.empty() && "lookup results empty despite recovery");
5325
5326  // Build an implicit member call if appropriate.  Just drop the
5327  // casts and such from the call, we don't really care.
5328  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5329  if ((*R.begin())->isCXXClassMember())
5330    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5331  else if (ExplicitTemplateArgs)
5332    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5333  else
5334    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5335
5336  if (NewFn.isInvalid())
5337    return Destroy(SemaRef, Fn, Args, NumArgs);
5338
5339  Fn->Destroy(SemaRef.Context);
5340
5341  // This shouldn't cause an infinite loop because we're giving it
5342  // an expression with non-empty lookup results, which should never
5343  // end up here.
5344  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5345                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5346                               CommaLocs, RParenLoc);
5347}
5348
5349/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5350/// (which eventually refers to the declaration Func) and the call
5351/// arguments Args/NumArgs, attempt to resolve the function call down
5352/// to a specific function. If overload resolution succeeds, returns
5353/// the function declaration produced by overload
5354/// resolution. Otherwise, emits diagnostics, deletes all of the
5355/// arguments and Fn, and returns NULL.
5356Sema::OwningExprResult
5357Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5358                              SourceLocation LParenLoc,
5359                              Expr **Args, unsigned NumArgs,
5360                              SourceLocation *CommaLocs,
5361                              SourceLocation RParenLoc) {
5362#ifndef NDEBUG
5363  if (ULE->requiresADL()) {
5364    // To do ADL, we must have found an unqualified name.
5365    assert(!ULE->getQualifier() && "qualified name with ADL");
5366
5367    // We don't perform ADL for implicit declarations of builtins.
5368    // Verify that this was correctly set up.
5369    FunctionDecl *F;
5370    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5371        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5372        F->getBuiltinID() && F->isImplicit())
5373      assert(0 && "performing ADL for builtin");
5374
5375    // We don't perform ADL in C.
5376    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5377  }
5378#endif
5379
5380  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5381
5382  // Add the functions denoted by the callee to the set of candidate
5383  // functions, including those from argument-dependent lookup.
5384  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5385
5386  // If we found nothing, try to recover.
5387  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5388  // bailout out if it fails.
5389  if (CandidateSet.empty())
5390    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5391                                 CommaLocs, RParenLoc);
5392
5393  OverloadCandidateSet::iterator Best;
5394  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5395  case OR_Success: {
5396    FunctionDecl *FDecl = Best->Function;
5397    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5398    Fn = FixOverloadedFunctionReference(Fn, FDecl);
5399    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5400  }
5401
5402  case OR_No_Viable_Function:
5403    Diag(Fn->getSourceRange().getBegin(),
5404         diag::err_ovl_no_viable_function_in_call)
5405      << ULE->getName() << Fn->getSourceRange();
5406    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5407    break;
5408
5409  case OR_Ambiguous:
5410    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5411      << ULE->getName() << Fn->getSourceRange();
5412    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5413    break;
5414
5415  case OR_Deleted:
5416    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5417      << Best->Function->isDeleted()
5418      << ULE->getName()
5419      << Fn->getSourceRange();
5420    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5421    break;
5422  }
5423
5424  // Overload resolution failed. Destroy all of the subexpressions and
5425  // return NULL.
5426  Fn->Destroy(Context);
5427  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5428    Args[Arg]->Destroy(Context);
5429  return ExprError();
5430}
5431
5432static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5433  return Functions.size() > 1 ||
5434    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5435}
5436
5437/// \brief Create a unary operation that may resolve to an overloaded
5438/// operator.
5439///
5440/// \param OpLoc The location of the operator itself (e.g., '*').
5441///
5442/// \param OpcIn The UnaryOperator::Opcode that describes this
5443/// operator.
5444///
5445/// \param Functions The set of non-member functions that will be
5446/// considered by overload resolution. The caller needs to build this
5447/// set based on the context using, e.g.,
5448/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5449/// set should not contain any member functions; those will be added
5450/// by CreateOverloadedUnaryOp().
5451///
5452/// \param input The input argument.
5453Sema::OwningExprResult
5454Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5455                              const UnresolvedSetImpl &Fns,
5456                              ExprArg input) {
5457  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5458  Expr *Input = (Expr *)input.get();
5459
5460  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5461  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5462  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5463
5464  Expr *Args[2] = { Input, 0 };
5465  unsigned NumArgs = 1;
5466
5467  // For post-increment and post-decrement, add the implicit '0' as
5468  // the second argument, so that we know this is a post-increment or
5469  // post-decrement.
5470  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5471    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5472    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5473                                           SourceLocation());
5474    NumArgs = 2;
5475  }
5476
5477  if (Input->isTypeDependent()) {
5478    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5479    UnresolvedLookupExpr *Fn
5480      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5481                                     0, SourceRange(), OpName, OpLoc,
5482                                     /*ADL*/ true, IsOverloaded(Fns));
5483    Fn->addDecls(Fns.begin(), Fns.end());
5484
5485    input.release();
5486    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5487                                                   &Args[0], NumArgs,
5488                                                   Context.DependentTy,
5489                                                   OpLoc));
5490  }
5491
5492  // Build an empty overload set.
5493  OverloadCandidateSet CandidateSet(OpLoc);
5494
5495  // Add the candidates from the given function set.
5496  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5497
5498  // Add operator candidates that are member functions.
5499  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5500
5501  // Add candidates from ADL.
5502  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5503                                       Args, NumArgs,
5504                                       /*ExplicitTemplateArgs*/ 0,
5505                                       CandidateSet);
5506
5507  // Add builtin operator candidates.
5508  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5509
5510  // Perform overload resolution.
5511  OverloadCandidateSet::iterator Best;
5512  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5513  case OR_Success: {
5514    // We found a built-in operator or an overloaded operator.
5515    FunctionDecl *FnDecl = Best->Function;
5516
5517    if (FnDecl) {
5518      // We matched an overloaded operator. Build a call to that
5519      // operator.
5520
5521      // Convert the arguments.
5522      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5523        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5524
5525        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, Method))
5526          return ExprError();
5527      } else {
5528        // Convert the arguments.
5529        OwningExprResult InputInit
5530          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5531                                                      FnDecl->getParamDecl(0)),
5532                                      SourceLocation(),
5533                                      move(input));
5534        if (InputInit.isInvalid())
5535          return ExprError();
5536
5537        input = move(InputInit);
5538        Input = (Expr *)input.get();
5539      }
5540
5541      // Determine the result type
5542      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5543
5544      // Build the actual expression node.
5545      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5546                                               SourceLocation());
5547      UsualUnaryConversions(FnExpr);
5548
5549      input.release();
5550      Args[0] = Input;
5551      ExprOwningPtr<CallExpr> TheCall(this,
5552        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5553                                          Args, NumArgs, ResultTy, OpLoc));
5554
5555      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5556                              FnDecl))
5557        return ExprError();
5558
5559      return MaybeBindToTemporary(TheCall.release());
5560    } else {
5561      // We matched a built-in operator. Convert the arguments, then
5562      // break out so that we will build the appropriate built-in
5563      // operator node.
5564        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5565                                      Best->Conversions[0], AA_Passing))
5566          return ExprError();
5567
5568        break;
5569      }
5570    }
5571
5572    case OR_No_Viable_Function:
5573      // No viable function; fall through to handling this as a
5574      // built-in operator, which will produce an error message for us.
5575      break;
5576
5577    case OR_Ambiguous:
5578      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5579          << UnaryOperator::getOpcodeStr(Opc)
5580          << Input->getSourceRange();
5581      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5582                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5583      return ExprError();
5584
5585    case OR_Deleted:
5586      Diag(OpLoc, diag::err_ovl_deleted_oper)
5587        << Best->Function->isDeleted()
5588        << UnaryOperator::getOpcodeStr(Opc)
5589        << Input->getSourceRange();
5590      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5591      return ExprError();
5592    }
5593
5594  // Either we found no viable overloaded operator or we matched a
5595  // built-in operator. In either case, fall through to trying to
5596  // build a built-in operation.
5597  input.release();
5598  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5599}
5600
5601/// \brief Create a binary operation that may resolve to an overloaded
5602/// operator.
5603///
5604/// \param OpLoc The location of the operator itself (e.g., '+').
5605///
5606/// \param OpcIn The BinaryOperator::Opcode that describes this
5607/// operator.
5608///
5609/// \param Functions The set of non-member functions that will be
5610/// considered by overload resolution. The caller needs to build this
5611/// set based on the context using, e.g.,
5612/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5613/// set should not contain any member functions; those will be added
5614/// by CreateOverloadedBinOp().
5615///
5616/// \param LHS Left-hand argument.
5617/// \param RHS Right-hand argument.
5618Sema::OwningExprResult
5619Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5620                            unsigned OpcIn,
5621                            const UnresolvedSetImpl &Fns,
5622                            Expr *LHS, Expr *RHS) {
5623  Expr *Args[2] = { LHS, RHS };
5624  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5625
5626  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5627  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5628  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5629
5630  // If either side is type-dependent, create an appropriate dependent
5631  // expression.
5632  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5633    if (Fns.empty()) {
5634      // If there are no functions to store, just build a dependent
5635      // BinaryOperator or CompoundAssignment.
5636      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5637        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5638                                                  Context.DependentTy, OpLoc));
5639
5640      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5641                                                        Context.DependentTy,
5642                                                        Context.DependentTy,
5643                                                        Context.DependentTy,
5644                                                        OpLoc));
5645    }
5646
5647    // FIXME: save results of ADL from here?
5648    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5649    UnresolvedLookupExpr *Fn
5650      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5651                                     0, SourceRange(), OpName, OpLoc,
5652                                     /*ADL*/ true, IsOverloaded(Fns));
5653
5654    Fn->addDecls(Fns.begin(), Fns.end());
5655    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5656                                                   Args, 2,
5657                                                   Context.DependentTy,
5658                                                   OpLoc));
5659  }
5660
5661  // If this is the .* operator, which is not overloadable, just
5662  // create a built-in binary operator.
5663  if (Opc == BinaryOperator::PtrMemD)
5664    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5665
5666  // If this is the assignment operator, we only perform overload resolution
5667  // if the left-hand side is a class or enumeration type. This is actually
5668  // a hack. The standard requires that we do overload resolution between the
5669  // various built-in candidates, but as DR507 points out, this can lead to
5670  // problems. So we do it this way, which pretty much follows what GCC does.
5671  // Note that we go the traditional code path for compound assignment forms.
5672  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5673    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5674
5675  // Build an empty overload set.
5676  OverloadCandidateSet CandidateSet(OpLoc);
5677
5678  // Add the candidates from the given function set.
5679  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
5680
5681  // Add operator candidates that are member functions.
5682  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5683
5684  // Add candidates from ADL.
5685  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5686                                       Args, 2,
5687                                       /*ExplicitTemplateArgs*/ 0,
5688                                       CandidateSet);
5689
5690  // Add builtin operator candidates.
5691  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5692
5693  // Perform overload resolution.
5694  OverloadCandidateSet::iterator Best;
5695  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5696    case OR_Success: {
5697      // We found a built-in operator or an overloaded operator.
5698      FunctionDecl *FnDecl = Best->Function;
5699
5700      if (FnDecl) {
5701        // We matched an overloaded operator. Build a call to that
5702        // operator.
5703
5704        // Convert the arguments.
5705        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5706          // Best->Access is only meaningful for class members.
5707          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
5708
5709          OwningExprResult Arg1
5710            = PerformCopyInitialization(
5711                                        InitializedEntity::InitializeParameter(
5712                                                        FnDecl->getParamDecl(0)),
5713                                        SourceLocation(),
5714                                        Owned(Args[1]));
5715          if (Arg1.isInvalid())
5716            return ExprError();
5717
5718          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
5719                                                  Method))
5720            return ExprError();
5721
5722          Args[1] = RHS = Arg1.takeAs<Expr>();
5723        } else {
5724          // Convert the arguments.
5725          OwningExprResult Arg0
5726            = PerformCopyInitialization(
5727                                        InitializedEntity::InitializeParameter(
5728                                                        FnDecl->getParamDecl(0)),
5729                                        SourceLocation(),
5730                                        Owned(Args[0]));
5731          if (Arg0.isInvalid())
5732            return ExprError();
5733
5734          OwningExprResult Arg1
5735            = PerformCopyInitialization(
5736                                        InitializedEntity::InitializeParameter(
5737                                                        FnDecl->getParamDecl(1)),
5738                                        SourceLocation(),
5739                                        Owned(Args[1]));
5740          if (Arg1.isInvalid())
5741            return ExprError();
5742          Args[0] = LHS = Arg0.takeAs<Expr>();
5743          Args[1] = RHS = Arg1.takeAs<Expr>();
5744        }
5745
5746        // Determine the result type
5747        QualType ResultTy
5748          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5749        ResultTy = ResultTy.getNonReferenceType();
5750
5751        // Build the actual expression node.
5752        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5753                                                 OpLoc);
5754        UsualUnaryConversions(FnExpr);
5755
5756        ExprOwningPtr<CXXOperatorCallExpr>
5757          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5758                                                          Args, 2, ResultTy,
5759                                                          OpLoc));
5760
5761        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5762                                FnDecl))
5763          return ExprError();
5764
5765        return MaybeBindToTemporary(TheCall.release());
5766      } else {
5767        // We matched a built-in operator. Convert the arguments, then
5768        // break out so that we will build the appropriate built-in
5769        // operator node.
5770        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5771                                      Best->Conversions[0], AA_Passing) ||
5772            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5773                                      Best->Conversions[1], AA_Passing))
5774          return ExprError();
5775
5776        break;
5777      }
5778    }
5779
5780    case OR_No_Viable_Function: {
5781      // C++ [over.match.oper]p9:
5782      //   If the operator is the operator , [...] and there are no
5783      //   viable functions, then the operator is assumed to be the
5784      //   built-in operator and interpreted according to clause 5.
5785      if (Opc == BinaryOperator::Comma)
5786        break;
5787
5788      // For class as left operand for assignment or compound assigment operator
5789      // do not fall through to handling in built-in, but report that no overloaded
5790      // assignment operator found
5791      OwningExprResult Result = ExprError();
5792      if (Args[0]->getType()->isRecordType() &&
5793          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5794        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5795             << BinaryOperator::getOpcodeStr(Opc)
5796             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5797      } else {
5798        // No viable function; try to create a built-in operation, which will
5799        // produce an error. Then, show the non-viable candidates.
5800        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5801      }
5802      assert(Result.isInvalid() &&
5803             "C++ binary operator overloading is missing candidates!");
5804      if (Result.isInvalid())
5805        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5806                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5807      return move(Result);
5808    }
5809
5810    case OR_Ambiguous:
5811      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5812          << BinaryOperator::getOpcodeStr(Opc)
5813          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5814      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5815                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5816      return ExprError();
5817
5818    case OR_Deleted:
5819      Diag(OpLoc, diag::err_ovl_deleted_oper)
5820        << Best->Function->isDeleted()
5821        << BinaryOperator::getOpcodeStr(Opc)
5822        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5823      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5824      return ExprError();
5825  }
5826
5827  // We matched a built-in operator; build it.
5828  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5829}
5830
5831Action::OwningExprResult
5832Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5833                                         SourceLocation RLoc,
5834                                         ExprArg Base, ExprArg Idx) {
5835  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5836                    static_cast<Expr*>(Idx.get()) };
5837  DeclarationName OpName =
5838      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5839
5840  // If either side is type-dependent, create an appropriate dependent
5841  // expression.
5842  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5843
5844    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5845    UnresolvedLookupExpr *Fn
5846      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5847                                     0, SourceRange(), OpName, LLoc,
5848                                     /*ADL*/ true, /*Overloaded*/ false);
5849    // Can't add any actual overloads yet
5850
5851    Base.release();
5852    Idx.release();
5853    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5854                                                   Args, 2,
5855                                                   Context.DependentTy,
5856                                                   RLoc));
5857  }
5858
5859  // Build an empty overload set.
5860  OverloadCandidateSet CandidateSet(LLoc);
5861
5862  // Subscript can only be overloaded as a member function.
5863
5864  // Add operator candidates that are member functions.
5865  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5866
5867  // Add builtin operator candidates.
5868  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5869
5870  // Perform overload resolution.
5871  OverloadCandidateSet::iterator Best;
5872  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5873    case OR_Success: {
5874      // We found a built-in operator or an overloaded operator.
5875      FunctionDecl *FnDecl = Best->Function;
5876
5877      if (FnDecl) {
5878        // We matched an overloaded operator. Build a call to that
5879        // operator.
5880
5881        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
5882
5883        // Convert the arguments.
5884        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5885        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
5886                                                Method))
5887          return ExprError();
5888
5889        // Convert the arguments.
5890        OwningExprResult InputInit
5891          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5892                                                      FnDecl->getParamDecl(0)),
5893                                      SourceLocation(),
5894                                      Owned(Args[1]));
5895        if (InputInit.isInvalid())
5896          return ExprError();
5897
5898        Args[1] = InputInit.takeAs<Expr>();
5899
5900        // Determine the result type
5901        QualType ResultTy
5902          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5903        ResultTy = ResultTy.getNonReferenceType();
5904
5905        // Build the actual expression node.
5906        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5907                                                 LLoc);
5908        UsualUnaryConversions(FnExpr);
5909
5910        Base.release();
5911        Idx.release();
5912        ExprOwningPtr<CXXOperatorCallExpr>
5913          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5914                                                          FnExpr, Args, 2,
5915                                                          ResultTy, RLoc));
5916
5917        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5918                                FnDecl))
5919          return ExprError();
5920
5921        return MaybeBindToTemporary(TheCall.release());
5922      } else {
5923        // We matched a built-in operator. Convert the arguments, then
5924        // break out so that we will build the appropriate built-in
5925        // operator node.
5926        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5927                                      Best->Conversions[0], AA_Passing) ||
5928            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5929                                      Best->Conversions[1], AA_Passing))
5930          return ExprError();
5931
5932        break;
5933      }
5934    }
5935
5936    case OR_No_Viable_Function: {
5937      if (CandidateSet.empty())
5938        Diag(LLoc, diag::err_ovl_no_oper)
5939          << Args[0]->getType() << /*subscript*/ 0
5940          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5941      else
5942        Diag(LLoc, diag::err_ovl_no_viable_subscript)
5943          << Args[0]->getType()
5944          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5945      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5946                              "[]", LLoc);
5947      return ExprError();
5948    }
5949
5950    case OR_Ambiguous:
5951      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5952          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5953      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5954                              "[]", LLoc);
5955      return ExprError();
5956
5957    case OR_Deleted:
5958      Diag(LLoc, diag::err_ovl_deleted_oper)
5959        << Best->Function->isDeleted() << "[]"
5960        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5961      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5962                              "[]", LLoc);
5963      return ExprError();
5964    }
5965
5966  // We matched a built-in operator; build it.
5967  Base.release();
5968  Idx.release();
5969  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5970                                         Owned(Args[1]), RLoc);
5971}
5972
5973/// BuildCallToMemberFunction - Build a call to a member
5974/// function. MemExpr is the expression that refers to the member
5975/// function (and includes the object parameter), Args/NumArgs are the
5976/// arguments to the function call (not including the object
5977/// parameter). The caller needs to validate that the member
5978/// expression refers to a member function or an overloaded member
5979/// function.
5980Sema::OwningExprResult
5981Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5982                                SourceLocation LParenLoc, Expr **Args,
5983                                unsigned NumArgs, SourceLocation *CommaLocs,
5984                                SourceLocation RParenLoc) {
5985  // Dig out the member expression. This holds both the object
5986  // argument and the member function we're referring to.
5987  Expr *NakedMemExpr = MemExprE->IgnoreParens();
5988
5989  MemberExpr *MemExpr;
5990  CXXMethodDecl *Method = 0;
5991  NestedNameSpecifier *Qualifier = 0;
5992  if (isa<MemberExpr>(NakedMemExpr)) {
5993    MemExpr = cast<MemberExpr>(NakedMemExpr);
5994    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5995    Qualifier = MemExpr->getQualifier();
5996  } else {
5997    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
5998    Qualifier = UnresExpr->getQualifier();
5999
6000    QualType ObjectType = UnresExpr->getBaseType();
6001
6002    // Add overload candidates
6003    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6004
6005    // FIXME: avoid copy.
6006    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6007    if (UnresExpr->hasExplicitTemplateArgs()) {
6008      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6009      TemplateArgs = &TemplateArgsBuffer;
6010    }
6011
6012    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6013           E = UnresExpr->decls_end(); I != E; ++I) {
6014
6015      NamedDecl *Func = *I;
6016      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6017      if (isa<UsingShadowDecl>(Func))
6018        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6019
6020      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6021        // If explicit template arguments were provided, we can't call a
6022        // non-template member function.
6023        if (TemplateArgs)
6024          continue;
6025
6026        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6027                           Args, NumArgs,
6028                           CandidateSet, /*SuppressUserConversions=*/false);
6029      } else {
6030        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6031                                   I.getPair(), ActingDC, TemplateArgs,
6032                                   ObjectType, Args, NumArgs,
6033                                   CandidateSet,
6034                                   /*SuppressUsedConversions=*/false);
6035      }
6036    }
6037
6038    DeclarationName DeclName = UnresExpr->getMemberName();
6039
6040    OverloadCandidateSet::iterator Best;
6041    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6042    case OR_Success:
6043      Method = cast<CXXMethodDecl>(Best->Function);
6044      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6045      break;
6046
6047    case OR_No_Viable_Function:
6048      Diag(UnresExpr->getMemberLoc(),
6049           diag::err_ovl_no_viable_member_function_in_call)
6050        << DeclName << MemExprE->getSourceRange();
6051      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6052      // FIXME: Leaking incoming expressions!
6053      return ExprError();
6054
6055    case OR_Ambiguous:
6056      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6057        << DeclName << MemExprE->getSourceRange();
6058      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6059      // FIXME: Leaking incoming expressions!
6060      return ExprError();
6061
6062    case OR_Deleted:
6063      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6064        << Best->Function->isDeleted()
6065        << DeclName << MemExprE->getSourceRange();
6066      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6067      // FIXME: Leaking incoming expressions!
6068      return ExprError();
6069    }
6070
6071    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
6072
6073    // If overload resolution picked a static member, build a
6074    // non-member call based on that function.
6075    if (Method->isStatic()) {
6076      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6077                                   Args, NumArgs, RParenLoc);
6078    }
6079
6080    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6081  }
6082
6083  assert(Method && "Member call to something that isn't a method?");
6084  ExprOwningPtr<CXXMemberCallExpr>
6085    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6086                                                  NumArgs,
6087                                  Method->getResultType().getNonReferenceType(),
6088                                  RParenLoc));
6089
6090  // Check for a valid return type.
6091  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6092                          TheCall.get(), Method))
6093    return ExprError();
6094
6095  // Convert the object argument (for a non-static member function call).
6096  Expr *ObjectArg = MemExpr->getBase();
6097  if (!Method->isStatic() &&
6098      PerformObjectArgumentInitialization(ObjectArg, Qualifier, Method))
6099    return ExprError();
6100  MemExpr->setBase(ObjectArg);
6101
6102  // Convert the rest of the arguments
6103  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6104  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6105                              RParenLoc))
6106    return ExprError();
6107
6108  if (CheckFunctionCall(Method, TheCall.get()))
6109    return ExprError();
6110
6111  return MaybeBindToTemporary(TheCall.release());
6112}
6113
6114/// BuildCallToObjectOfClassType - Build a call to an object of class
6115/// type (C++ [over.call.object]), which can end up invoking an
6116/// overloaded function call operator (@c operator()) or performing a
6117/// user-defined conversion on the object argument.
6118Sema::ExprResult
6119Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6120                                   SourceLocation LParenLoc,
6121                                   Expr **Args, unsigned NumArgs,
6122                                   SourceLocation *CommaLocs,
6123                                   SourceLocation RParenLoc) {
6124  assert(Object->getType()->isRecordType() && "Requires object type argument");
6125  const RecordType *Record = Object->getType()->getAs<RecordType>();
6126
6127  // C++ [over.call.object]p1:
6128  //  If the primary-expression E in the function call syntax
6129  //  evaluates to a class object of type "cv T", then the set of
6130  //  candidate functions includes at least the function call
6131  //  operators of T. The function call operators of T are obtained by
6132  //  ordinary lookup of the name operator() in the context of
6133  //  (E).operator().
6134  OverloadCandidateSet CandidateSet(LParenLoc);
6135  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6136
6137  if (RequireCompleteType(LParenLoc, Object->getType(),
6138                          PartialDiagnostic(diag::err_incomplete_object_call)
6139                          << Object->getSourceRange()))
6140    return true;
6141
6142  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6143  LookupQualifiedName(R, Record->getDecl());
6144  R.suppressDiagnostics();
6145
6146  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6147       Oper != OperEnd; ++Oper) {
6148    AddMethodCandidate(Oper.getPair(), Object->getType(),
6149                       Args, NumArgs, CandidateSet,
6150                       /*SuppressUserConversions=*/ false);
6151  }
6152
6153  // C++ [over.call.object]p2:
6154  //   In addition, for each conversion function declared in T of the
6155  //   form
6156  //
6157  //        operator conversion-type-id () cv-qualifier;
6158  //
6159  //   where cv-qualifier is the same cv-qualification as, or a
6160  //   greater cv-qualification than, cv, and where conversion-type-id
6161  //   denotes the type "pointer to function of (P1,...,Pn) returning
6162  //   R", or the type "reference to pointer to function of
6163  //   (P1,...,Pn) returning R", or the type "reference to function
6164  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6165  //   is also considered as a candidate function. Similarly,
6166  //   surrogate call functions are added to the set of candidate
6167  //   functions for each conversion function declared in an
6168  //   accessible base class provided the function is not hidden
6169  //   within T by another intervening declaration.
6170  const UnresolvedSetImpl *Conversions
6171    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6172  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6173         E = Conversions->end(); I != E; ++I) {
6174    NamedDecl *D = *I;
6175    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6176    if (isa<UsingShadowDecl>(D))
6177      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6178
6179    // Skip over templated conversion functions; they aren't
6180    // surrogates.
6181    if (isa<FunctionTemplateDecl>(D))
6182      continue;
6183
6184    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6185
6186    // Strip the reference type (if any) and then the pointer type (if
6187    // any) to get down to what might be a function type.
6188    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6189    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6190      ConvType = ConvPtrType->getPointeeType();
6191
6192    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6193      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6194                            Object->getType(), Args, NumArgs,
6195                            CandidateSet);
6196  }
6197
6198  // Perform overload resolution.
6199  OverloadCandidateSet::iterator Best;
6200  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6201  case OR_Success:
6202    // Overload resolution succeeded; we'll build the appropriate call
6203    // below.
6204    break;
6205
6206  case OR_No_Viable_Function:
6207    if (CandidateSet.empty())
6208      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6209        << Object->getType() << /*call*/ 1
6210        << Object->getSourceRange();
6211    else
6212      Diag(Object->getSourceRange().getBegin(),
6213           diag::err_ovl_no_viable_object_call)
6214        << Object->getType() << Object->getSourceRange();
6215    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6216    break;
6217
6218  case OR_Ambiguous:
6219    Diag(Object->getSourceRange().getBegin(),
6220         diag::err_ovl_ambiguous_object_call)
6221      << Object->getType() << Object->getSourceRange();
6222    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6223    break;
6224
6225  case OR_Deleted:
6226    Diag(Object->getSourceRange().getBegin(),
6227         diag::err_ovl_deleted_object_call)
6228      << Best->Function->isDeleted()
6229      << Object->getType() << Object->getSourceRange();
6230    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6231    break;
6232  }
6233
6234  if (Best == CandidateSet.end()) {
6235    // We had an error; delete all of the subexpressions and return
6236    // the error.
6237    Object->Destroy(Context);
6238    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6239      Args[ArgIdx]->Destroy(Context);
6240    return true;
6241  }
6242
6243  if (Best->Function == 0) {
6244    // Since there is no function declaration, this is one of the
6245    // surrogate candidates. Dig out the conversion function.
6246    CXXConversionDecl *Conv
6247      = cast<CXXConversionDecl>(
6248                         Best->Conversions[0].UserDefined.ConversionFunction);
6249
6250    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6251
6252    // We selected one of the surrogate functions that converts the
6253    // object parameter to a function pointer. Perform the conversion
6254    // on the object argument, then let ActOnCallExpr finish the job.
6255
6256    // Create an implicit member expr to refer to the conversion operator.
6257    // and then call it.
6258    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
6259
6260    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6261                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6262                         CommaLocs, RParenLoc).release();
6263  }
6264
6265  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6266
6267  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6268  // that calls this method, using Object for the implicit object
6269  // parameter and passing along the remaining arguments.
6270  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6271  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6272
6273  unsigned NumArgsInProto = Proto->getNumArgs();
6274  unsigned NumArgsToCheck = NumArgs;
6275
6276  // Build the full argument list for the method call (the
6277  // implicit object parameter is placed at the beginning of the
6278  // list).
6279  Expr **MethodArgs;
6280  if (NumArgs < NumArgsInProto) {
6281    NumArgsToCheck = NumArgsInProto;
6282    MethodArgs = new Expr*[NumArgsInProto + 1];
6283  } else {
6284    MethodArgs = new Expr*[NumArgs + 1];
6285  }
6286  MethodArgs[0] = Object;
6287  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6288    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6289
6290  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6291                                          SourceLocation());
6292  UsualUnaryConversions(NewFn);
6293
6294  // Once we've built TheCall, all of the expressions are properly
6295  // owned.
6296  QualType ResultTy = Method->getResultType().getNonReferenceType();
6297  ExprOwningPtr<CXXOperatorCallExpr>
6298    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6299                                                    MethodArgs, NumArgs + 1,
6300                                                    ResultTy, RParenLoc));
6301  delete [] MethodArgs;
6302
6303  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6304                          Method))
6305    return true;
6306
6307  // We may have default arguments. If so, we need to allocate more
6308  // slots in the call for them.
6309  if (NumArgs < NumArgsInProto)
6310    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6311  else if (NumArgs > NumArgsInProto)
6312    NumArgsToCheck = NumArgsInProto;
6313
6314  bool IsError = false;
6315
6316  // Initialize the implicit object parameter.
6317  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6318                                                 Method);
6319  TheCall->setArg(0, Object);
6320
6321
6322  // Check the argument types.
6323  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6324    Expr *Arg;
6325    if (i < NumArgs) {
6326      Arg = Args[i];
6327
6328      // Pass the argument.
6329
6330      OwningExprResult InputInit
6331        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6332                                                    Method->getParamDecl(i)),
6333                                    SourceLocation(), Owned(Arg));
6334
6335      IsError |= InputInit.isInvalid();
6336      Arg = InputInit.takeAs<Expr>();
6337    } else {
6338      OwningExprResult DefArg
6339        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6340      if (DefArg.isInvalid()) {
6341        IsError = true;
6342        break;
6343      }
6344
6345      Arg = DefArg.takeAs<Expr>();
6346    }
6347
6348    TheCall->setArg(i + 1, Arg);
6349  }
6350
6351  // If this is a variadic call, handle args passed through "...".
6352  if (Proto->isVariadic()) {
6353    // Promote the arguments (C99 6.5.2.2p7).
6354    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6355      Expr *Arg = Args[i];
6356      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6357      TheCall->setArg(i + 1, Arg);
6358    }
6359  }
6360
6361  if (IsError) return true;
6362
6363  if (CheckFunctionCall(Method, TheCall.get()))
6364    return true;
6365
6366  return MaybeBindToTemporary(TheCall.release()).release();
6367}
6368
6369/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6370///  (if one exists), where @c Base is an expression of class type and
6371/// @c Member is the name of the member we're trying to find.
6372Sema::OwningExprResult
6373Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6374  Expr *Base = static_cast<Expr *>(BaseIn.get());
6375  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6376
6377  SourceLocation Loc = Base->getExprLoc();
6378
6379  // C++ [over.ref]p1:
6380  //
6381  //   [...] An expression x->m is interpreted as (x.operator->())->m
6382  //   for a class object x of type T if T::operator->() exists and if
6383  //   the operator is selected as the best match function by the
6384  //   overload resolution mechanism (13.3).
6385  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6386  OverloadCandidateSet CandidateSet(Loc);
6387  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6388
6389  if (RequireCompleteType(Loc, Base->getType(),
6390                          PDiag(diag::err_typecheck_incomplete_tag)
6391                            << Base->getSourceRange()))
6392    return ExprError();
6393
6394  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6395  LookupQualifiedName(R, BaseRecord->getDecl());
6396  R.suppressDiagnostics();
6397
6398  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6399       Oper != OperEnd; ++Oper) {
6400    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6401                       /*SuppressUserConversions=*/false);
6402  }
6403
6404  // Perform overload resolution.
6405  OverloadCandidateSet::iterator Best;
6406  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6407  case OR_Success:
6408    // Overload resolution succeeded; we'll build the call below.
6409    break;
6410
6411  case OR_No_Viable_Function:
6412    if (CandidateSet.empty())
6413      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6414        << Base->getType() << Base->getSourceRange();
6415    else
6416      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6417        << "operator->" << Base->getSourceRange();
6418    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6419    return ExprError();
6420
6421  case OR_Ambiguous:
6422    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6423      << "->" << Base->getSourceRange();
6424    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6425    return ExprError();
6426
6427  case OR_Deleted:
6428    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6429      << Best->Function->isDeleted()
6430      << "->" << Base->getSourceRange();
6431    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6432    return ExprError();
6433  }
6434
6435  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6436
6437  // Convert the object parameter.
6438  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6439  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, Method))
6440    return ExprError();
6441
6442  // No concerns about early exits now.
6443  BaseIn.release();
6444
6445  // Build the operator call.
6446  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6447                                           SourceLocation());
6448  UsualUnaryConversions(FnExpr);
6449
6450  QualType ResultTy = Method->getResultType().getNonReferenceType();
6451  ExprOwningPtr<CXXOperatorCallExpr>
6452    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6453                                                    &Base, 1, ResultTy, OpLoc));
6454
6455  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6456                          Method))
6457          return ExprError();
6458  return move(TheCall);
6459}
6460
6461/// FixOverloadedFunctionReference - E is an expression that refers to
6462/// a C++ overloaded function (possibly with some parentheses and
6463/// perhaps a '&' around it). We have resolved the overloaded function
6464/// to the function declaration Fn, so patch up the expression E to
6465/// refer (possibly indirectly) to Fn. Returns the new expr.
6466Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
6467  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6468    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
6469    if (SubExpr == PE->getSubExpr())
6470      return PE->Retain();
6471
6472    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6473  }
6474
6475  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6476    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
6477    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6478                               SubExpr->getType()) &&
6479           "Implicit cast type cannot be determined from overload");
6480    if (SubExpr == ICE->getSubExpr())
6481      return ICE->Retain();
6482
6483    return new (Context) ImplicitCastExpr(ICE->getType(),
6484                                          ICE->getCastKind(),
6485                                          SubExpr,
6486                                          ICE->isLvalueCast());
6487  }
6488
6489  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6490    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6491           "Can only take the address of an overloaded function");
6492    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6493      if (Method->isStatic()) {
6494        // Do nothing: static member functions aren't any different
6495        // from non-member functions.
6496      } else {
6497        // Fix the sub expression, which really has to be an
6498        // UnresolvedLookupExpr holding an overloaded member function
6499        // or template.
6500        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6501        if (SubExpr == UnOp->getSubExpr())
6502          return UnOp->Retain();
6503
6504        assert(isa<DeclRefExpr>(SubExpr)
6505               && "fixed to something other than a decl ref");
6506        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6507               && "fixed to a member ref with no nested name qualifier");
6508
6509        // We have taken the address of a pointer to member
6510        // function. Perform the computation here so that we get the
6511        // appropriate pointer to member type.
6512        QualType ClassType
6513          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6514        QualType MemPtrType
6515          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6516
6517        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6518                                           MemPtrType, UnOp->getOperatorLoc());
6519      }
6520    }
6521    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6522    if (SubExpr == UnOp->getSubExpr())
6523      return UnOp->Retain();
6524
6525    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6526                                     Context.getPointerType(SubExpr->getType()),
6527                                       UnOp->getOperatorLoc());
6528  }
6529
6530  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6531    // FIXME: avoid copy.
6532    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6533    if (ULE->hasExplicitTemplateArgs()) {
6534      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6535      TemplateArgs = &TemplateArgsBuffer;
6536    }
6537
6538    return DeclRefExpr::Create(Context,
6539                               ULE->getQualifier(),
6540                               ULE->getQualifierRange(),
6541                               Fn,
6542                               ULE->getNameLoc(),
6543                               Fn->getType(),
6544                               TemplateArgs);
6545  }
6546
6547  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6548    // FIXME: avoid copy.
6549    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6550    if (MemExpr->hasExplicitTemplateArgs()) {
6551      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6552      TemplateArgs = &TemplateArgsBuffer;
6553    }
6554
6555    Expr *Base;
6556
6557    // If we're filling in
6558    if (MemExpr->isImplicitAccess()) {
6559      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6560        return DeclRefExpr::Create(Context,
6561                                   MemExpr->getQualifier(),
6562                                   MemExpr->getQualifierRange(),
6563                                   Fn,
6564                                   MemExpr->getMemberLoc(),
6565                                   Fn->getType(),
6566                                   TemplateArgs);
6567      } else {
6568        SourceLocation Loc = MemExpr->getMemberLoc();
6569        if (MemExpr->getQualifier())
6570          Loc = MemExpr->getQualifierRange().getBegin();
6571        Base = new (Context) CXXThisExpr(Loc,
6572                                         MemExpr->getBaseType(),
6573                                         /*isImplicit=*/true);
6574      }
6575    } else
6576      Base = MemExpr->getBase()->Retain();
6577
6578    return MemberExpr::Create(Context, Base,
6579                              MemExpr->isArrow(),
6580                              MemExpr->getQualifier(),
6581                              MemExpr->getQualifierRange(),
6582                              Fn,
6583                              MemExpr->getMemberLoc(),
6584                              TemplateArgs,
6585                              Fn->getType());
6586  }
6587
6588  assert(false && "Invalid reference to overloaded function");
6589  return E->Retain();
6590}
6591
6592Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6593                                                            FunctionDecl *Fn) {
6594  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
6595}
6596
6597} // end namespace clang
6598