SemaOverload.cpp revision 2c9a03f3b249e4d9d76eadf758a33142adc4d0a4
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static Expr *
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn,
41                      SourceLocation Loc = SourceLocation()) {
42  Expr *E = new (S.Context) DeclRefExpr(Fn, Fn->getType(), VK_LValue, Loc);
43  S.DefaultFunctionArrayConversion(E);
44  return E;
45}
46
47static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
48                                 bool InOverloadResolution,
49                                 StandardConversionSequence &SCS);
50static OverloadingResult
51IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
52                        UserDefinedConversionSequence& User,
53                        OverloadCandidateSet& Conversions,
54                        bool AllowExplicit);
55
56
57static ImplicitConversionSequence::CompareKind
58CompareStandardConversionSequences(Sema &S,
59                                   const StandardConversionSequence& SCS1,
60                                   const StandardConversionSequence& SCS2);
61
62static ImplicitConversionSequence::CompareKind
63CompareQualificationConversions(Sema &S,
64                                const StandardConversionSequence& SCS1,
65                                const StandardConversionSequence& SCS2);
66
67static ImplicitConversionSequence::CompareKind
68CompareDerivedToBaseConversions(Sema &S,
69                                const StandardConversionSequence& SCS1,
70                                const StandardConversionSequence& SCS2);
71
72
73
74/// GetConversionCategory - Retrieve the implicit conversion
75/// category corresponding to the given implicit conversion kind.
76ImplicitConversionCategory
77GetConversionCategory(ImplicitConversionKind Kind) {
78  static const ImplicitConversionCategory
79    Category[(int)ICK_Num_Conversion_Kinds] = {
80    ICC_Identity,
81    ICC_Lvalue_Transformation,
82    ICC_Lvalue_Transformation,
83    ICC_Lvalue_Transformation,
84    ICC_Identity,
85    ICC_Qualification_Adjustment,
86    ICC_Promotion,
87    ICC_Promotion,
88    ICC_Promotion,
89    ICC_Conversion,
90    ICC_Conversion,
91    ICC_Conversion,
92    ICC_Conversion,
93    ICC_Conversion,
94    ICC_Conversion,
95    ICC_Conversion,
96    ICC_Conversion,
97    ICC_Conversion,
98    ICC_Conversion,
99    ICC_Conversion,
100    ICC_Conversion
101  };
102  return Category[(int)Kind];
103}
104
105/// GetConversionRank - Retrieve the implicit conversion rank
106/// corresponding to the given implicit conversion kind.
107ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
108  static const ImplicitConversionRank
109    Rank[(int)ICK_Num_Conversion_Kinds] = {
110    ICR_Exact_Match,
111    ICR_Exact_Match,
112    ICR_Exact_Match,
113    ICR_Exact_Match,
114    ICR_Exact_Match,
115    ICR_Exact_Match,
116    ICR_Promotion,
117    ICR_Promotion,
118    ICR_Promotion,
119    ICR_Conversion,
120    ICR_Conversion,
121    ICR_Conversion,
122    ICR_Conversion,
123    ICR_Conversion,
124    ICR_Conversion,
125    ICR_Conversion,
126    ICR_Conversion,
127    ICR_Conversion,
128    ICR_Conversion,
129    ICR_Conversion,
130    ICR_Complex_Real_Conversion
131  };
132  return Rank[(int)Kind];
133}
134
135/// GetImplicitConversionName - Return the name of this kind of
136/// implicit conversion.
137const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
138  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
139    "No conversion",
140    "Lvalue-to-rvalue",
141    "Array-to-pointer",
142    "Function-to-pointer",
143    "Noreturn adjustment",
144    "Qualification",
145    "Integral promotion",
146    "Floating point promotion",
147    "Complex promotion",
148    "Integral conversion",
149    "Floating conversion",
150    "Complex conversion",
151    "Floating-integral conversion",
152    "Pointer conversion",
153    "Pointer-to-member conversion",
154    "Boolean conversion",
155    "Compatible-types conversion",
156    "Derived-to-base conversion",
157    "Vector conversion",
158    "Vector splat",
159    "Complex-real conversion"
160  };
161  return Name[Kind];
162}
163
164/// StandardConversionSequence - Set the standard conversion
165/// sequence to the identity conversion.
166void StandardConversionSequence::setAsIdentityConversion() {
167  First = ICK_Identity;
168  Second = ICK_Identity;
169  Third = ICK_Identity;
170  DeprecatedStringLiteralToCharPtr = false;
171  ReferenceBinding = false;
172  DirectBinding = false;
173  IsLvalueReference = true;
174  BindsToFunctionLvalue = false;
175  BindsToRvalue = false;
176  CopyConstructor = 0;
177}
178
179/// getRank - Retrieve the rank of this standard conversion sequence
180/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
181/// implicit conversions.
182ImplicitConversionRank StandardConversionSequence::getRank() const {
183  ImplicitConversionRank Rank = ICR_Exact_Match;
184  if  (GetConversionRank(First) > Rank)
185    Rank = GetConversionRank(First);
186  if  (GetConversionRank(Second) > Rank)
187    Rank = GetConversionRank(Second);
188  if  (GetConversionRank(Third) > Rank)
189    Rank = GetConversionRank(Third);
190  return Rank;
191}
192
193/// isPointerConversionToBool - Determines whether this conversion is
194/// a conversion of a pointer or pointer-to-member to bool. This is
195/// used as part of the ranking of standard conversion sequences
196/// (C++ 13.3.3.2p4).
197bool StandardConversionSequence::isPointerConversionToBool() const {
198  // Note that FromType has not necessarily been transformed by the
199  // array-to-pointer or function-to-pointer implicit conversions, so
200  // check for their presence as well as checking whether FromType is
201  // a pointer.
202  if (getToType(1)->isBooleanType() &&
203      (getFromType()->isPointerType() ||
204       getFromType()->isObjCObjectPointerType() ||
205       getFromType()->isBlockPointerType() ||
206       getFromType()->isNullPtrType() ||
207       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
208    return true;
209
210  return false;
211}
212
213/// isPointerConversionToVoidPointer - Determines whether this
214/// conversion is a conversion of a pointer to a void pointer. This is
215/// used as part of the ranking of standard conversion sequences (C++
216/// 13.3.3.2p4).
217bool
218StandardConversionSequence::
219isPointerConversionToVoidPointer(ASTContext& Context) const {
220  QualType FromType = getFromType();
221  QualType ToType = getToType(1);
222
223  // Note that FromType has not necessarily been transformed by the
224  // array-to-pointer implicit conversion, so check for its presence
225  // and redo the conversion to get a pointer.
226  if (First == ICK_Array_To_Pointer)
227    FromType = Context.getArrayDecayedType(FromType);
228
229  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
230    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
231      return ToPtrType->getPointeeType()->isVoidType();
232
233  return false;
234}
235
236/// DebugPrint - Print this standard conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void StandardConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  bool PrintedSomething = false;
241  if (First != ICK_Identity) {
242    OS << GetImplicitConversionName(First);
243    PrintedSomething = true;
244  }
245
246  if (Second != ICK_Identity) {
247    if (PrintedSomething) {
248      OS << " -> ";
249    }
250    OS << GetImplicitConversionName(Second);
251
252    if (CopyConstructor) {
253      OS << " (by copy constructor)";
254    } else if (DirectBinding) {
255      OS << " (direct reference binding)";
256    } else if (ReferenceBinding) {
257      OS << " (reference binding)";
258    }
259    PrintedSomething = true;
260  }
261
262  if (Third != ICK_Identity) {
263    if (PrintedSomething) {
264      OS << " -> ";
265    }
266    OS << GetImplicitConversionName(Third);
267    PrintedSomething = true;
268  }
269
270  if (!PrintedSomething) {
271    OS << "No conversions required";
272  }
273}
274
275/// DebugPrint - Print this user-defined conversion sequence to standard
276/// error. Useful for debugging overloading issues.
277void UserDefinedConversionSequence::DebugPrint() const {
278  llvm::raw_ostream &OS = llvm::errs();
279  if (Before.First || Before.Second || Before.Third) {
280    Before.DebugPrint();
281    OS << " -> ";
282  }
283  OS << '\'' << ConversionFunction << '\'';
284  if (After.First || After.Second || After.Third) {
285    OS << " -> ";
286    After.DebugPrint();
287  }
288}
289
290/// DebugPrint - Print this implicit conversion sequence to standard
291/// error. Useful for debugging overloading issues.
292void ImplicitConversionSequence::DebugPrint() const {
293  llvm::raw_ostream &OS = llvm::errs();
294  switch (ConversionKind) {
295  case StandardConversion:
296    OS << "Standard conversion: ";
297    Standard.DebugPrint();
298    break;
299  case UserDefinedConversion:
300    OS << "User-defined conversion: ";
301    UserDefined.DebugPrint();
302    break;
303  case EllipsisConversion:
304    OS << "Ellipsis conversion";
305    break;
306  case AmbiguousConversion:
307    OS << "Ambiguous conversion";
308    break;
309  case BadConversion:
310    OS << "Bad conversion";
311    break;
312  }
313
314  OS << "\n";
315}
316
317void AmbiguousConversionSequence::construct() {
318  new (&conversions()) ConversionSet();
319}
320
321void AmbiguousConversionSequence::destruct() {
322  conversions().~ConversionSet();
323}
324
325void
326AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
327  FromTypePtr = O.FromTypePtr;
328  ToTypePtr = O.ToTypePtr;
329  new (&conversions()) ConversionSet(O.conversions());
330}
331
332namespace {
333  // Structure used by OverloadCandidate::DeductionFailureInfo to store
334  // template parameter and template argument information.
335  struct DFIParamWithArguments {
336    TemplateParameter Param;
337    TemplateArgument FirstArg;
338    TemplateArgument SecondArg;
339  };
340}
341
342/// \brief Convert from Sema's representation of template deduction information
343/// to the form used in overload-candidate information.
344OverloadCandidate::DeductionFailureInfo
345static MakeDeductionFailureInfo(ASTContext &Context,
346                                Sema::TemplateDeductionResult TDK,
347                                TemplateDeductionInfo &Info) {
348  OverloadCandidate::DeductionFailureInfo Result;
349  Result.Result = static_cast<unsigned>(TDK);
350  Result.Data = 0;
351  switch (TDK) {
352  case Sema::TDK_Success:
353  case Sema::TDK_InstantiationDepth:
354  case Sema::TDK_TooManyArguments:
355  case Sema::TDK_TooFewArguments:
356    break;
357
358  case Sema::TDK_Incomplete:
359  case Sema::TDK_InvalidExplicitArguments:
360    Result.Data = Info.Param.getOpaqueValue();
361    break;
362
363  case Sema::TDK_Inconsistent:
364  case Sema::TDK_Underqualified: {
365    // FIXME: Should allocate from normal heap so that we can free this later.
366    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
367    Saved->Param = Info.Param;
368    Saved->FirstArg = Info.FirstArg;
369    Saved->SecondArg = Info.SecondArg;
370    Result.Data = Saved;
371    break;
372  }
373
374  case Sema::TDK_SubstitutionFailure:
375    Result.Data = Info.take();
376    break;
377
378  case Sema::TDK_NonDeducedMismatch:
379  case Sema::TDK_FailedOverloadResolution:
380    break;
381  }
382
383  return Result;
384}
385
386void OverloadCandidate::DeductionFailureInfo::Destroy() {
387  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
388  case Sema::TDK_Success:
389  case Sema::TDK_InstantiationDepth:
390  case Sema::TDK_Incomplete:
391  case Sema::TDK_TooManyArguments:
392  case Sema::TDK_TooFewArguments:
393  case Sema::TDK_InvalidExplicitArguments:
394    break;
395
396  case Sema::TDK_Inconsistent:
397  case Sema::TDK_Underqualified:
398    // FIXME: Destroy the data?
399    Data = 0;
400    break;
401
402  case Sema::TDK_SubstitutionFailure:
403    // FIXME: Destroy the template arugment list?
404    Data = 0;
405    break;
406
407  // Unhandled
408  case Sema::TDK_NonDeducedMismatch:
409  case Sema::TDK_FailedOverloadResolution:
410    break;
411  }
412}
413
414TemplateParameter
415OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
416  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
417  case Sema::TDK_Success:
418  case Sema::TDK_InstantiationDepth:
419  case Sema::TDK_TooManyArguments:
420  case Sema::TDK_TooFewArguments:
421  case Sema::TDK_SubstitutionFailure:
422    return TemplateParameter();
423
424  case Sema::TDK_Incomplete:
425  case Sema::TDK_InvalidExplicitArguments:
426    return TemplateParameter::getFromOpaqueValue(Data);
427
428  case Sema::TDK_Inconsistent:
429  case Sema::TDK_Underqualified:
430    return static_cast<DFIParamWithArguments*>(Data)->Param;
431
432  // Unhandled
433  case Sema::TDK_NonDeducedMismatch:
434  case Sema::TDK_FailedOverloadResolution:
435    break;
436  }
437
438  return TemplateParameter();
439}
440
441TemplateArgumentList *
442OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
443  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
444    case Sema::TDK_Success:
445    case Sema::TDK_InstantiationDepth:
446    case Sema::TDK_TooManyArguments:
447    case Sema::TDK_TooFewArguments:
448    case Sema::TDK_Incomplete:
449    case Sema::TDK_InvalidExplicitArguments:
450    case Sema::TDK_Inconsistent:
451    case Sema::TDK_Underqualified:
452      return 0;
453
454    case Sema::TDK_SubstitutionFailure:
455      return static_cast<TemplateArgumentList*>(Data);
456
457    // Unhandled
458    case Sema::TDK_NonDeducedMismatch:
459    case Sema::TDK_FailedOverloadResolution:
460      break;
461  }
462
463  return 0;
464}
465
466const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
467  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
468  case Sema::TDK_Success:
469  case Sema::TDK_InstantiationDepth:
470  case Sema::TDK_Incomplete:
471  case Sema::TDK_TooManyArguments:
472  case Sema::TDK_TooFewArguments:
473  case Sema::TDK_InvalidExplicitArguments:
474  case Sema::TDK_SubstitutionFailure:
475    return 0;
476
477  case Sema::TDK_Inconsistent:
478  case Sema::TDK_Underqualified:
479    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
480
481  // Unhandled
482  case Sema::TDK_NonDeducedMismatch:
483  case Sema::TDK_FailedOverloadResolution:
484    break;
485  }
486
487  return 0;
488}
489
490const TemplateArgument *
491OverloadCandidate::DeductionFailureInfo::getSecondArg() {
492  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
493  case Sema::TDK_Success:
494  case Sema::TDK_InstantiationDepth:
495  case Sema::TDK_Incomplete:
496  case Sema::TDK_TooManyArguments:
497  case Sema::TDK_TooFewArguments:
498  case Sema::TDK_InvalidExplicitArguments:
499  case Sema::TDK_SubstitutionFailure:
500    return 0;
501
502  case Sema::TDK_Inconsistent:
503  case Sema::TDK_Underqualified:
504    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
505
506  // Unhandled
507  case Sema::TDK_NonDeducedMismatch:
508  case Sema::TDK_FailedOverloadResolution:
509    break;
510  }
511
512  return 0;
513}
514
515void OverloadCandidateSet::clear() {
516  inherited::clear();
517  Functions.clear();
518}
519
520// IsOverload - Determine whether the given New declaration is an
521// overload of the declarations in Old. This routine returns false if
522// New and Old cannot be overloaded, e.g., if New has the same
523// signature as some function in Old (C++ 1.3.10) or if the Old
524// declarations aren't functions (or function templates) at all. When
525// it does return false, MatchedDecl will point to the decl that New
526// cannot be overloaded with.  This decl may be a UsingShadowDecl on
527// top of the underlying declaration.
528//
529// Example: Given the following input:
530//
531//   void f(int, float); // #1
532//   void f(int, int); // #2
533//   int f(int, int); // #3
534//
535// When we process #1, there is no previous declaration of "f",
536// so IsOverload will not be used.
537//
538// When we process #2, Old contains only the FunctionDecl for #1.  By
539// comparing the parameter types, we see that #1 and #2 are overloaded
540// (since they have different signatures), so this routine returns
541// false; MatchedDecl is unchanged.
542//
543// When we process #3, Old is an overload set containing #1 and #2. We
544// compare the signatures of #3 to #1 (they're overloaded, so we do
545// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
546// identical (return types of functions are not part of the
547// signature), IsOverload returns false and MatchedDecl will be set to
548// point to the FunctionDecl for #2.
549//
550// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
551// into a class by a using declaration.  The rules for whether to hide
552// shadow declarations ignore some properties which otherwise figure
553// into a function template's signature.
554Sema::OverloadKind
555Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
556                    NamedDecl *&Match, bool NewIsUsingDecl) {
557  for (LookupResult::iterator I = Old.begin(), E = Old.end();
558         I != E; ++I) {
559    NamedDecl *OldD = *I;
560
561    bool OldIsUsingDecl = false;
562    if (isa<UsingShadowDecl>(OldD)) {
563      OldIsUsingDecl = true;
564
565      // We can always introduce two using declarations into the same
566      // context, even if they have identical signatures.
567      if (NewIsUsingDecl) continue;
568
569      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
570    }
571
572    // If either declaration was introduced by a using declaration,
573    // we'll need to use slightly different rules for matching.
574    // Essentially, these rules are the normal rules, except that
575    // function templates hide function templates with different
576    // return types or template parameter lists.
577    bool UseMemberUsingDeclRules =
578      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
579
580    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
581      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
582        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
583          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
584          continue;
585        }
586
587        Match = *I;
588        return Ovl_Match;
589      }
590    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
591      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
592        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
593          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
594          continue;
595        }
596
597        Match = *I;
598        return Ovl_Match;
599      }
600    } else if (isa<UsingDecl>(OldD)) {
601      // We can overload with these, which can show up when doing
602      // redeclaration checks for UsingDecls.
603      assert(Old.getLookupKind() == LookupUsingDeclName);
604    } else if (isa<TagDecl>(OldD)) {
605      // We can always overload with tags by hiding them.
606    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
607      // Optimistically assume that an unresolved using decl will
608      // overload; if it doesn't, we'll have to diagnose during
609      // template instantiation.
610    } else {
611      // (C++ 13p1):
612      //   Only function declarations can be overloaded; object and type
613      //   declarations cannot be overloaded.
614      Match = *I;
615      return Ovl_NonFunction;
616    }
617  }
618
619  return Ovl_Overload;
620}
621
622bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
623                      bool UseUsingDeclRules) {
624  // If both of the functions are extern "C", then they are not
625  // overloads.
626  if (Old->isExternC() && New->isExternC())
627    return false;
628
629  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
630  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
631
632  // C++ [temp.fct]p2:
633  //   A function template can be overloaded with other function templates
634  //   and with normal (non-template) functions.
635  if ((OldTemplate == 0) != (NewTemplate == 0))
636    return true;
637
638  // Is the function New an overload of the function Old?
639  QualType OldQType = Context.getCanonicalType(Old->getType());
640  QualType NewQType = Context.getCanonicalType(New->getType());
641
642  // Compare the signatures (C++ 1.3.10) of the two functions to
643  // determine whether they are overloads. If we find any mismatch
644  // in the signature, they are overloads.
645
646  // If either of these functions is a K&R-style function (no
647  // prototype), then we consider them to have matching signatures.
648  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
649      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
650    return false;
651
652  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
653  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
654
655  // The signature of a function includes the types of its
656  // parameters (C++ 1.3.10), which includes the presence or absence
657  // of the ellipsis; see C++ DR 357).
658  if (OldQType != NewQType &&
659      (OldType->getNumArgs() != NewType->getNumArgs() ||
660       OldType->isVariadic() != NewType->isVariadic() ||
661       !FunctionArgTypesAreEqual(OldType, NewType)))
662    return true;
663
664  // C++ [temp.over.link]p4:
665  //   The signature of a function template consists of its function
666  //   signature, its return type and its template parameter list. The names
667  //   of the template parameters are significant only for establishing the
668  //   relationship between the template parameters and the rest of the
669  //   signature.
670  //
671  // We check the return type and template parameter lists for function
672  // templates first; the remaining checks follow.
673  //
674  // However, we don't consider either of these when deciding whether
675  // a member introduced by a shadow declaration is hidden.
676  if (!UseUsingDeclRules && NewTemplate &&
677      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
678                                       OldTemplate->getTemplateParameters(),
679                                       false, TPL_TemplateMatch) ||
680       OldType->getResultType() != NewType->getResultType()))
681    return true;
682
683  // If the function is a class member, its signature includes the
684  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
685  //
686  // As part of this, also check whether one of the member functions
687  // is static, in which case they are not overloads (C++
688  // 13.1p2). While not part of the definition of the signature,
689  // this check is important to determine whether these functions
690  // can be overloaded.
691  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
692  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
693  if (OldMethod && NewMethod &&
694      !OldMethod->isStatic() && !NewMethod->isStatic() &&
695      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
696       OldMethod->getRefQualifier() != NewMethod->getRefQualifier()))
697    return true;
698
699  // The signatures match; this is not an overload.
700  return false;
701}
702
703/// TryImplicitConversion - Attempt to perform an implicit conversion
704/// from the given expression (Expr) to the given type (ToType). This
705/// function returns an implicit conversion sequence that can be used
706/// to perform the initialization. Given
707///
708///   void f(float f);
709///   void g(int i) { f(i); }
710///
711/// this routine would produce an implicit conversion sequence to
712/// describe the initialization of f from i, which will be a standard
713/// conversion sequence containing an lvalue-to-rvalue conversion (C++
714/// 4.1) followed by a floating-integral conversion (C++ 4.9).
715//
716/// Note that this routine only determines how the conversion can be
717/// performed; it does not actually perform the conversion. As such,
718/// it will not produce any diagnostics if no conversion is available,
719/// but will instead return an implicit conversion sequence of kind
720/// "BadConversion".
721///
722/// If @p SuppressUserConversions, then user-defined conversions are
723/// not permitted.
724/// If @p AllowExplicit, then explicit user-defined conversions are
725/// permitted.
726static ImplicitConversionSequence
727TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
728                      bool SuppressUserConversions,
729                      bool AllowExplicit,
730                      bool InOverloadResolution) {
731  ImplicitConversionSequence ICS;
732  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
733                           ICS.Standard)) {
734    ICS.setStandard();
735    return ICS;
736  }
737
738  if (!S.getLangOptions().CPlusPlus) {
739    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
740    return ICS;
741  }
742
743  // C++ [over.ics.user]p4:
744  //   A conversion of an expression of class type to the same class
745  //   type is given Exact Match rank, and a conversion of an
746  //   expression of class type to a base class of that type is
747  //   given Conversion rank, in spite of the fact that a copy/move
748  //   constructor (i.e., a user-defined conversion function) is
749  //   called for those cases.
750  QualType FromType = From->getType();
751  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
752      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
753       S.IsDerivedFrom(FromType, ToType))) {
754    ICS.setStandard();
755    ICS.Standard.setAsIdentityConversion();
756    ICS.Standard.setFromType(FromType);
757    ICS.Standard.setAllToTypes(ToType);
758
759    // We don't actually check at this point whether there is a valid
760    // copy/move constructor, since overloading just assumes that it
761    // exists. When we actually perform initialization, we'll find the
762    // appropriate constructor to copy the returned object, if needed.
763    ICS.Standard.CopyConstructor = 0;
764
765    // Determine whether this is considered a derived-to-base conversion.
766    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
767      ICS.Standard.Second = ICK_Derived_To_Base;
768
769    return ICS;
770  }
771
772  if (SuppressUserConversions) {
773    // We're not in the case above, so there is no conversion that
774    // we can perform.
775    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
776    return ICS;
777  }
778
779  // Attempt user-defined conversion.
780  OverloadCandidateSet Conversions(From->getExprLoc());
781  OverloadingResult UserDefResult
782    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
783                              AllowExplicit);
784
785  if (UserDefResult == OR_Success) {
786    ICS.setUserDefined();
787    // C++ [over.ics.user]p4:
788    //   A conversion of an expression of class type to the same class
789    //   type is given Exact Match rank, and a conversion of an
790    //   expression of class type to a base class of that type is
791    //   given Conversion rank, in spite of the fact that a copy
792    //   constructor (i.e., a user-defined conversion function) is
793    //   called for those cases.
794    if (CXXConstructorDecl *Constructor
795          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
796      QualType FromCanon
797        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
798      QualType ToCanon
799        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
800      if (Constructor->isCopyConstructor() &&
801          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
802        // Turn this into a "standard" conversion sequence, so that it
803        // gets ranked with standard conversion sequences.
804        ICS.setStandard();
805        ICS.Standard.setAsIdentityConversion();
806        ICS.Standard.setFromType(From->getType());
807        ICS.Standard.setAllToTypes(ToType);
808        ICS.Standard.CopyConstructor = Constructor;
809        if (ToCanon != FromCanon)
810          ICS.Standard.Second = ICK_Derived_To_Base;
811      }
812    }
813
814    // C++ [over.best.ics]p4:
815    //   However, when considering the argument of a user-defined
816    //   conversion function that is a candidate by 13.3.1.3 when
817    //   invoked for the copying of the temporary in the second step
818    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
819    //   13.3.1.6 in all cases, only standard conversion sequences and
820    //   ellipsis conversion sequences are allowed.
821    if (SuppressUserConversions && ICS.isUserDefined()) {
822      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
823    }
824  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
825    ICS.setAmbiguous();
826    ICS.Ambiguous.setFromType(From->getType());
827    ICS.Ambiguous.setToType(ToType);
828    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
829         Cand != Conversions.end(); ++Cand)
830      if (Cand->Viable)
831        ICS.Ambiguous.addConversion(Cand->Function);
832  } else {
833    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
834  }
835
836  return ICS;
837}
838
839bool Sema::TryImplicitConversion(InitializationSequence &Sequence,
840                                 const InitializedEntity &Entity,
841                                 Expr *Initializer,
842                                 bool SuppressUserConversions,
843                                 bool AllowExplicitConversions,
844                                 bool InOverloadResolution) {
845  ImplicitConversionSequence ICS
846    = clang::TryImplicitConversion(*this, Initializer, Entity.getType(),
847                                   SuppressUserConversions,
848                                   AllowExplicitConversions,
849                                   InOverloadResolution);
850  if (ICS.isBad()) return true;
851
852  // Perform the actual conversion.
853  Sequence.AddConversionSequenceStep(ICS, Entity.getType());
854  return false;
855}
856
857/// PerformImplicitConversion - Perform an implicit conversion of the
858/// expression From to the type ToType. Returns true if there was an
859/// error, false otherwise. The expression From is replaced with the
860/// converted expression. Flavor is the kind of conversion we're
861/// performing, used in the error message. If @p AllowExplicit,
862/// explicit user-defined conversions are permitted.
863bool
864Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
865                                AssignmentAction Action, bool AllowExplicit) {
866  ImplicitConversionSequence ICS;
867  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
868}
869
870bool
871Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
872                                AssignmentAction Action, bool AllowExplicit,
873                                ImplicitConversionSequence& ICS) {
874  ICS = clang::TryImplicitConversion(*this, From, ToType,
875                                     /*SuppressUserConversions=*/false,
876                                     AllowExplicit,
877                                     /*InOverloadResolution=*/false);
878  return PerformImplicitConversion(From, ToType, ICS, Action);
879}
880
881/// \brief Determine whether the conversion from FromType to ToType is a valid
882/// conversion that strips "noreturn" off the nested function type.
883static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
884                                 QualType ToType, QualType &ResultTy) {
885  if (Context.hasSameUnqualifiedType(FromType, ToType))
886    return false;
887
888  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
889  // where F adds one of the following at most once:
890  //   - a pointer
891  //   - a member pointer
892  //   - a block pointer
893  CanQualType CanTo = Context.getCanonicalType(ToType);
894  CanQualType CanFrom = Context.getCanonicalType(FromType);
895  Type::TypeClass TyClass = CanTo->getTypeClass();
896  if (TyClass != CanFrom->getTypeClass()) return false;
897  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
898    if (TyClass == Type::Pointer) {
899      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
900      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
901    } else if (TyClass == Type::BlockPointer) {
902      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
903      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
904    } else if (TyClass == Type::MemberPointer) {
905      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
906      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
907    } else {
908      return false;
909    }
910
911    TyClass = CanTo->getTypeClass();
912    if (TyClass != CanFrom->getTypeClass()) return false;
913    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
914      return false;
915  }
916
917  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
918  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
919  if (!EInfo.getNoReturn()) return false;
920
921  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
922  assert(QualType(FromFn, 0).isCanonical());
923  if (QualType(FromFn, 0) != CanTo) return false;
924
925  ResultTy = ToType;
926  return true;
927}
928
929/// \brief Determine whether the conversion from FromType to ToType is a valid
930/// vector conversion.
931///
932/// \param ICK Will be set to the vector conversion kind, if this is a vector
933/// conversion.
934static bool IsVectorConversion(ASTContext &Context, QualType FromType,
935                               QualType ToType, ImplicitConversionKind &ICK) {
936  // We need at least one of these types to be a vector type to have a vector
937  // conversion.
938  if (!ToType->isVectorType() && !FromType->isVectorType())
939    return false;
940
941  // Identical types require no conversions.
942  if (Context.hasSameUnqualifiedType(FromType, ToType))
943    return false;
944
945  // There are no conversions between extended vector types, only identity.
946  if (ToType->isExtVectorType()) {
947    // There are no conversions between extended vector types other than the
948    // identity conversion.
949    if (FromType->isExtVectorType())
950      return false;
951
952    // Vector splat from any arithmetic type to a vector.
953    if (FromType->isArithmeticType()) {
954      ICK = ICK_Vector_Splat;
955      return true;
956    }
957  }
958
959  // We can perform the conversion between vector types in the following cases:
960  // 1)vector types are equivalent AltiVec and GCC vector types
961  // 2)lax vector conversions are permitted and the vector types are of the
962  //   same size
963  if (ToType->isVectorType() && FromType->isVectorType()) {
964    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
965        (Context.getLangOptions().LaxVectorConversions &&
966         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
967      ICK = ICK_Vector_Conversion;
968      return true;
969    }
970  }
971
972  return false;
973}
974
975/// IsStandardConversion - Determines whether there is a standard
976/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
977/// expression From to the type ToType. Standard conversion sequences
978/// only consider non-class types; for conversions that involve class
979/// types, use TryImplicitConversion. If a conversion exists, SCS will
980/// contain the standard conversion sequence required to perform this
981/// conversion and this routine will return true. Otherwise, this
982/// routine will return false and the value of SCS is unspecified.
983static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
984                                 bool InOverloadResolution,
985                                 StandardConversionSequence &SCS) {
986  QualType FromType = From->getType();
987
988  // Standard conversions (C++ [conv])
989  SCS.setAsIdentityConversion();
990  SCS.DeprecatedStringLiteralToCharPtr = false;
991  SCS.IncompatibleObjC = false;
992  SCS.setFromType(FromType);
993  SCS.CopyConstructor = 0;
994
995  // There are no standard conversions for class types in C++, so
996  // abort early. When overloading in C, however, we do permit
997  if (FromType->isRecordType() || ToType->isRecordType()) {
998    if (S.getLangOptions().CPlusPlus)
999      return false;
1000
1001    // When we're overloading in C, we allow, as standard conversions,
1002  }
1003
1004  // The first conversion can be an lvalue-to-rvalue conversion,
1005  // array-to-pointer conversion, or function-to-pointer conversion
1006  // (C++ 4p1).
1007
1008  if (FromType == S.Context.OverloadTy) {
1009    DeclAccessPair AccessPair;
1010    if (FunctionDecl *Fn
1011          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1012                                                 AccessPair)) {
1013      // We were able to resolve the address of the overloaded function,
1014      // so we can convert to the type of that function.
1015      FromType = Fn->getType();
1016      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
1017        if (!Method->isStatic()) {
1018          const Type *ClassType
1019            = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1020          FromType = S.Context.getMemberPointerType(FromType, ClassType);
1021        }
1022      }
1023
1024      // If the "from" expression takes the address of the overloaded
1025      // function, update the type of the resulting expression accordingly.
1026      if (FromType->getAs<FunctionType>())
1027        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
1028          if (UnOp->getOpcode() == UO_AddrOf)
1029            FromType = S.Context.getPointerType(FromType);
1030
1031      // Check that we've computed the proper type after overload resolution.
1032      assert(S.Context.hasSameType(FromType,
1033            S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1034    } else {
1035      return false;
1036    }
1037  }
1038  // Lvalue-to-rvalue conversion (C++ 4.1):
1039  //   An lvalue (3.10) of a non-function, non-array type T can be
1040  //   converted to an rvalue.
1041  bool argIsLValue = From->isLValue();
1042  if (argIsLValue &&
1043      !FromType->isFunctionType() && !FromType->isArrayType() &&
1044      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1045    SCS.First = ICK_Lvalue_To_Rvalue;
1046
1047    // If T is a non-class type, the type of the rvalue is the
1048    // cv-unqualified version of T. Otherwise, the type of the rvalue
1049    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1050    // just strip the qualifiers because they don't matter.
1051    FromType = FromType.getUnqualifiedType();
1052  } else if (FromType->isArrayType()) {
1053    // Array-to-pointer conversion (C++ 4.2)
1054    SCS.First = ICK_Array_To_Pointer;
1055
1056    // An lvalue or rvalue of type "array of N T" or "array of unknown
1057    // bound of T" can be converted to an rvalue of type "pointer to
1058    // T" (C++ 4.2p1).
1059    FromType = S.Context.getArrayDecayedType(FromType);
1060
1061    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1062      // This conversion is deprecated. (C++ D.4).
1063      SCS.DeprecatedStringLiteralToCharPtr = true;
1064
1065      // For the purpose of ranking in overload resolution
1066      // (13.3.3.1.1), this conversion is considered an
1067      // array-to-pointer conversion followed by a qualification
1068      // conversion (4.4). (C++ 4.2p2)
1069      SCS.Second = ICK_Identity;
1070      SCS.Third = ICK_Qualification;
1071      SCS.setAllToTypes(FromType);
1072      return true;
1073    }
1074  } else if (FromType->isFunctionType() && argIsLValue) {
1075    // Function-to-pointer conversion (C++ 4.3).
1076    SCS.First = ICK_Function_To_Pointer;
1077
1078    // An lvalue of function type T can be converted to an rvalue of
1079    // type "pointer to T." The result is a pointer to the
1080    // function. (C++ 4.3p1).
1081    FromType = S.Context.getPointerType(FromType);
1082  } else {
1083    // We don't require any conversions for the first step.
1084    SCS.First = ICK_Identity;
1085  }
1086  SCS.setToType(0, FromType);
1087
1088  // The second conversion can be an integral promotion, floating
1089  // point promotion, integral conversion, floating point conversion,
1090  // floating-integral conversion, pointer conversion,
1091  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1092  // For overloading in C, this can also be a "compatible-type"
1093  // conversion.
1094  bool IncompatibleObjC = false;
1095  ImplicitConversionKind SecondICK = ICK_Identity;
1096  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1097    // The unqualified versions of the types are the same: there's no
1098    // conversion to do.
1099    SCS.Second = ICK_Identity;
1100  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1101    // Integral promotion (C++ 4.5).
1102    SCS.Second = ICK_Integral_Promotion;
1103    FromType = ToType.getUnqualifiedType();
1104  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1105    // Floating point promotion (C++ 4.6).
1106    SCS.Second = ICK_Floating_Promotion;
1107    FromType = ToType.getUnqualifiedType();
1108  } else if (S.IsComplexPromotion(FromType, ToType)) {
1109    // Complex promotion (Clang extension)
1110    SCS.Second = ICK_Complex_Promotion;
1111    FromType = ToType.getUnqualifiedType();
1112  } else if (ToType->isBooleanType() &&
1113             (FromType->isArithmeticType() ||
1114              FromType->isAnyPointerType() ||
1115              FromType->isBlockPointerType() ||
1116              FromType->isMemberPointerType() ||
1117              FromType->isNullPtrType())) {
1118    // Boolean conversions (C++ 4.12).
1119    SCS.Second = ICK_Boolean_Conversion;
1120    FromType = S.Context.BoolTy;
1121  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1122             ToType->isIntegralType(S.Context)) {
1123    // Integral conversions (C++ 4.7).
1124    SCS.Second = ICK_Integral_Conversion;
1125    FromType = ToType.getUnqualifiedType();
1126  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1127    // Complex conversions (C99 6.3.1.6)
1128    SCS.Second = ICK_Complex_Conversion;
1129    FromType = ToType.getUnqualifiedType();
1130  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1131             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1132    // Complex-real conversions (C99 6.3.1.7)
1133    SCS.Second = ICK_Complex_Real;
1134    FromType = ToType.getUnqualifiedType();
1135  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1136    // Floating point conversions (C++ 4.8).
1137    SCS.Second = ICK_Floating_Conversion;
1138    FromType = ToType.getUnqualifiedType();
1139  } else if ((FromType->isRealFloatingType() &&
1140              ToType->isIntegralType(S.Context)) ||
1141             (FromType->isIntegralOrUnscopedEnumerationType() &&
1142              ToType->isRealFloatingType())) {
1143    // Floating-integral conversions (C++ 4.9).
1144    SCS.Second = ICK_Floating_Integral;
1145    FromType = ToType.getUnqualifiedType();
1146  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1147                                   FromType, IncompatibleObjC)) {
1148    // Pointer conversions (C++ 4.10).
1149    SCS.Second = ICK_Pointer_Conversion;
1150    SCS.IncompatibleObjC = IncompatibleObjC;
1151  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1152                                         InOverloadResolution, FromType)) {
1153    // Pointer to member conversions (4.11).
1154    SCS.Second = ICK_Pointer_Member;
1155  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1156    SCS.Second = SecondICK;
1157    FromType = ToType.getUnqualifiedType();
1158  } else if (!S.getLangOptions().CPlusPlus &&
1159             S.Context.typesAreCompatible(ToType, FromType)) {
1160    // Compatible conversions (Clang extension for C function overloading)
1161    SCS.Second = ICK_Compatible_Conversion;
1162    FromType = ToType.getUnqualifiedType();
1163  } else if (IsNoReturnConversion(S.Context, FromType, ToType, FromType)) {
1164    // Treat a conversion that strips "noreturn" as an identity conversion.
1165    SCS.Second = ICK_NoReturn_Adjustment;
1166  } else {
1167    // No second conversion required.
1168    SCS.Second = ICK_Identity;
1169  }
1170  SCS.setToType(1, FromType);
1171
1172  QualType CanonFrom;
1173  QualType CanonTo;
1174  // The third conversion can be a qualification conversion (C++ 4p1).
1175  if (S.IsQualificationConversion(FromType, ToType)) {
1176    SCS.Third = ICK_Qualification;
1177    FromType = ToType;
1178    CanonFrom = S.Context.getCanonicalType(FromType);
1179    CanonTo = S.Context.getCanonicalType(ToType);
1180  } else {
1181    // No conversion required
1182    SCS.Third = ICK_Identity;
1183
1184    // C++ [over.best.ics]p6:
1185    //   [...] Any difference in top-level cv-qualification is
1186    //   subsumed by the initialization itself and does not constitute
1187    //   a conversion. [...]
1188    CanonFrom = S.Context.getCanonicalType(FromType);
1189    CanonTo = S.Context.getCanonicalType(ToType);
1190    if (CanonFrom.getLocalUnqualifiedType()
1191                                       == CanonTo.getLocalUnqualifiedType() &&
1192        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1193         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
1194      FromType = ToType;
1195      CanonFrom = CanonTo;
1196    }
1197  }
1198  SCS.setToType(2, FromType);
1199
1200  // If we have not converted the argument type to the parameter type,
1201  // this is a bad conversion sequence.
1202  if (CanonFrom != CanonTo)
1203    return false;
1204
1205  return true;
1206}
1207
1208/// IsIntegralPromotion - Determines whether the conversion from the
1209/// expression From (whose potentially-adjusted type is FromType) to
1210/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1211/// sets PromotedType to the promoted type.
1212bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1213  const BuiltinType *To = ToType->getAs<BuiltinType>();
1214  // All integers are built-in.
1215  if (!To) {
1216    return false;
1217  }
1218
1219  // An rvalue of type char, signed char, unsigned char, short int, or
1220  // unsigned short int can be converted to an rvalue of type int if
1221  // int can represent all the values of the source type; otherwise,
1222  // the source rvalue can be converted to an rvalue of type unsigned
1223  // int (C++ 4.5p1).
1224  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1225      !FromType->isEnumeralType()) {
1226    if (// We can promote any signed, promotable integer type to an int
1227        (FromType->isSignedIntegerType() ||
1228         // We can promote any unsigned integer type whose size is
1229         // less than int to an int.
1230         (!FromType->isSignedIntegerType() &&
1231          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1232      return To->getKind() == BuiltinType::Int;
1233    }
1234
1235    return To->getKind() == BuiltinType::UInt;
1236  }
1237
1238  // C++0x [conv.prom]p3:
1239  //   A prvalue of an unscoped enumeration type whose underlying type is not
1240  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1241  //   following types that can represent all the values of the enumeration
1242  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1243  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1244  //   long long int. If none of the types in that list can represent all the
1245  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1246  //   type can be converted to an rvalue a prvalue of the extended integer type
1247  //   with lowest integer conversion rank (4.13) greater than the rank of long
1248  //   long in which all the values of the enumeration can be represented. If
1249  //   there are two such extended types, the signed one is chosen.
1250  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1251    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1252    // provided for a scoped enumeration.
1253    if (FromEnumType->getDecl()->isScoped())
1254      return false;
1255
1256    // We have already pre-calculated the promotion type, so this is trivial.
1257    if (ToType->isIntegerType() &&
1258        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1259      return Context.hasSameUnqualifiedType(ToType,
1260                                FromEnumType->getDecl()->getPromotionType());
1261  }
1262
1263  // C++0x [conv.prom]p2:
1264  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1265  //   to an rvalue a prvalue of the first of the following types that can
1266  //   represent all the values of its underlying type: int, unsigned int,
1267  //   long int, unsigned long int, long long int, or unsigned long long int.
1268  //   If none of the types in that list can represent all the values of its
1269  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1270  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1271  //   type.
1272  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1273      ToType->isIntegerType()) {
1274    // Determine whether the type we're converting from is signed or
1275    // unsigned.
1276    bool FromIsSigned;
1277    uint64_t FromSize = Context.getTypeSize(FromType);
1278
1279    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1280    FromIsSigned = true;
1281
1282    // The types we'll try to promote to, in the appropriate
1283    // order. Try each of these types.
1284    QualType PromoteTypes[6] = {
1285      Context.IntTy, Context.UnsignedIntTy,
1286      Context.LongTy, Context.UnsignedLongTy ,
1287      Context.LongLongTy, Context.UnsignedLongLongTy
1288    };
1289    for (int Idx = 0; Idx < 6; ++Idx) {
1290      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1291      if (FromSize < ToSize ||
1292          (FromSize == ToSize &&
1293           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1294        // We found the type that we can promote to. If this is the
1295        // type we wanted, we have a promotion. Otherwise, no
1296        // promotion.
1297        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1298      }
1299    }
1300  }
1301
1302  // An rvalue for an integral bit-field (9.6) can be converted to an
1303  // rvalue of type int if int can represent all the values of the
1304  // bit-field; otherwise, it can be converted to unsigned int if
1305  // unsigned int can represent all the values of the bit-field. If
1306  // the bit-field is larger yet, no integral promotion applies to
1307  // it. If the bit-field has an enumerated type, it is treated as any
1308  // other value of that type for promotion purposes (C++ 4.5p3).
1309  // FIXME: We should delay checking of bit-fields until we actually perform the
1310  // conversion.
1311  using llvm::APSInt;
1312  if (From)
1313    if (FieldDecl *MemberDecl = From->getBitField()) {
1314      APSInt BitWidth;
1315      if (FromType->isIntegralType(Context) &&
1316          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1317        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1318        ToSize = Context.getTypeSize(ToType);
1319
1320        // Are we promoting to an int from a bitfield that fits in an int?
1321        if (BitWidth < ToSize ||
1322            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1323          return To->getKind() == BuiltinType::Int;
1324        }
1325
1326        // Are we promoting to an unsigned int from an unsigned bitfield
1327        // that fits into an unsigned int?
1328        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1329          return To->getKind() == BuiltinType::UInt;
1330        }
1331
1332        return false;
1333      }
1334    }
1335
1336  // An rvalue of type bool can be converted to an rvalue of type int,
1337  // with false becoming zero and true becoming one (C++ 4.5p4).
1338  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1339    return true;
1340  }
1341
1342  return false;
1343}
1344
1345/// IsFloatingPointPromotion - Determines whether the conversion from
1346/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1347/// returns true and sets PromotedType to the promoted type.
1348bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1349  /// An rvalue of type float can be converted to an rvalue of type
1350  /// double. (C++ 4.6p1).
1351  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1352    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1353      if (FromBuiltin->getKind() == BuiltinType::Float &&
1354          ToBuiltin->getKind() == BuiltinType::Double)
1355        return true;
1356
1357      // C99 6.3.1.5p1:
1358      //   When a float is promoted to double or long double, or a
1359      //   double is promoted to long double [...].
1360      if (!getLangOptions().CPlusPlus &&
1361          (FromBuiltin->getKind() == BuiltinType::Float ||
1362           FromBuiltin->getKind() == BuiltinType::Double) &&
1363          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1364        return true;
1365    }
1366
1367  return false;
1368}
1369
1370/// \brief Determine if a conversion is a complex promotion.
1371///
1372/// A complex promotion is defined as a complex -> complex conversion
1373/// where the conversion between the underlying real types is a
1374/// floating-point or integral promotion.
1375bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1376  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1377  if (!FromComplex)
1378    return false;
1379
1380  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1381  if (!ToComplex)
1382    return false;
1383
1384  return IsFloatingPointPromotion(FromComplex->getElementType(),
1385                                  ToComplex->getElementType()) ||
1386    IsIntegralPromotion(0, FromComplex->getElementType(),
1387                        ToComplex->getElementType());
1388}
1389
1390/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1391/// the pointer type FromPtr to a pointer to type ToPointee, with the
1392/// same type qualifiers as FromPtr has on its pointee type. ToType,
1393/// if non-empty, will be a pointer to ToType that may or may not have
1394/// the right set of qualifiers on its pointee.
1395static QualType
1396BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1397                                   QualType ToPointee, QualType ToType,
1398                                   ASTContext &Context) {
1399  assert((FromPtr->getTypeClass() == Type::Pointer ||
1400          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1401         "Invalid similarly-qualified pointer type");
1402
1403  /// \brief Conversions to 'id' subsume cv-qualifier conversions.
1404  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1405    return ToType.getUnqualifiedType();
1406
1407  QualType CanonFromPointee
1408    = Context.getCanonicalType(FromPtr->getPointeeType());
1409  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1410  Qualifiers Quals = CanonFromPointee.getQualifiers();
1411
1412  // Exact qualifier match -> return the pointer type we're converting to.
1413  if (CanonToPointee.getLocalQualifiers() == Quals) {
1414    // ToType is exactly what we need. Return it.
1415    if (!ToType.isNull())
1416      return ToType.getUnqualifiedType();
1417
1418    // Build a pointer to ToPointee. It has the right qualifiers
1419    // already.
1420    if (isa<ObjCObjectPointerType>(ToType))
1421      return Context.getObjCObjectPointerType(ToPointee);
1422    return Context.getPointerType(ToPointee);
1423  }
1424
1425  // Just build a canonical type that has the right qualifiers.
1426  QualType QualifiedCanonToPointee
1427    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1428
1429  if (isa<ObjCObjectPointerType>(ToType))
1430    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1431  return Context.getPointerType(QualifiedCanonToPointee);
1432}
1433
1434static bool isNullPointerConstantForConversion(Expr *Expr,
1435                                               bool InOverloadResolution,
1436                                               ASTContext &Context) {
1437  // Handle value-dependent integral null pointer constants correctly.
1438  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1439  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1440      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1441    return !InOverloadResolution;
1442
1443  return Expr->isNullPointerConstant(Context,
1444                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1445                                        : Expr::NPC_ValueDependentIsNull);
1446}
1447
1448/// IsPointerConversion - Determines whether the conversion of the
1449/// expression From, which has the (possibly adjusted) type FromType,
1450/// can be converted to the type ToType via a pointer conversion (C++
1451/// 4.10). If so, returns true and places the converted type (that
1452/// might differ from ToType in its cv-qualifiers at some level) into
1453/// ConvertedType.
1454///
1455/// This routine also supports conversions to and from block pointers
1456/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1457/// pointers to interfaces. FIXME: Once we've determined the
1458/// appropriate overloading rules for Objective-C, we may want to
1459/// split the Objective-C checks into a different routine; however,
1460/// GCC seems to consider all of these conversions to be pointer
1461/// conversions, so for now they live here. IncompatibleObjC will be
1462/// set if the conversion is an allowed Objective-C conversion that
1463/// should result in a warning.
1464bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1465                               bool InOverloadResolution,
1466                               QualType& ConvertedType,
1467                               bool &IncompatibleObjC) {
1468  IncompatibleObjC = false;
1469  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1470                              IncompatibleObjC))
1471    return true;
1472
1473  // Conversion from a null pointer constant to any Objective-C pointer type.
1474  if (ToType->isObjCObjectPointerType() &&
1475      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1476    ConvertedType = ToType;
1477    return true;
1478  }
1479
1480  // Blocks: Block pointers can be converted to void*.
1481  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1482      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1483    ConvertedType = ToType;
1484    return true;
1485  }
1486  // Blocks: A null pointer constant can be converted to a block
1487  // pointer type.
1488  if (ToType->isBlockPointerType() &&
1489      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1490    ConvertedType = ToType;
1491    return true;
1492  }
1493
1494  // If the left-hand-side is nullptr_t, the right side can be a null
1495  // pointer constant.
1496  if (ToType->isNullPtrType() &&
1497      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1498    ConvertedType = ToType;
1499    return true;
1500  }
1501
1502  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1503  if (!ToTypePtr)
1504    return false;
1505
1506  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1507  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1508    ConvertedType = ToType;
1509    return true;
1510  }
1511
1512  // Beyond this point, both types need to be pointers
1513  // , including objective-c pointers.
1514  QualType ToPointeeType = ToTypePtr->getPointeeType();
1515  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1516    ConvertedType = BuildSimilarlyQualifiedPointerType(
1517                                      FromType->getAs<ObjCObjectPointerType>(),
1518                                                       ToPointeeType,
1519                                                       ToType, Context);
1520    return true;
1521  }
1522  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1523  if (!FromTypePtr)
1524    return false;
1525
1526  QualType FromPointeeType = FromTypePtr->getPointeeType();
1527
1528  // If the unqualified pointee types are the same, this can't be a
1529  // pointer conversion, so don't do all of the work below.
1530  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1531    return false;
1532
1533  // An rvalue of type "pointer to cv T," where T is an object type,
1534  // can be converted to an rvalue of type "pointer to cv void" (C++
1535  // 4.10p2).
1536  if (FromPointeeType->isIncompleteOrObjectType() &&
1537      ToPointeeType->isVoidType()) {
1538    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1539                                                       ToPointeeType,
1540                                                       ToType, Context);
1541    return true;
1542  }
1543
1544  // When we're overloading in C, we allow a special kind of pointer
1545  // conversion for compatible-but-not-identical pointee types.
1546  if (!getLangOptions().CPlusPlus &&
1547      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1548    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1549                                                       ToPointeeType,
1550                                                       ToType, Context);
1551    return true;
1552  }
1553
1554  // C++ [conv.ptr]p3:
1555  //
1556  //   An rvalue of type "pointer to cv D," where D is a class type,
1557  //   can be converted to an rvalue of type "pointer to cv B," where
1558  //   B is a base class (clause 10) of D. If B is an inaccessible
1559  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1560  //   necessitates this conversion is ill-formed. The result of the
1561  //   conversion is a pointer to the base class sub-object of the
1562  //   derived class object. The null pointer value is converted to
1563  //   the null pointer value of the destination type.
1564  //
1565  // Note that we do not check for ambiguity or inaccessibility
1566  // here. That is handled by CheckPointerConversion.
1567  if (getLangOptions().CPlusPlus &&
1568      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1569      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1570      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1571      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1572    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1573                                                       ToPointeeType,
1574                                                       ToType, Context);
1575    return true;
1576  }
1577
1578  return false;
1579}
1580
1581/// isObjCPointerConversion - Determines whether this is an
1582/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1583/// with the same arguments and return values.
1584bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1585                                   QualType& ConvertedType,
1586                                   bool &IncompatibleObjC) {
1587  if (!getLangOptions().ObjC1)
1588    return false;
1589
1590  // First, we handle all conversions on ObjC object pointer types.
1591  const ObjCObjectPointerType* ToObjCPtr =
1592    ToType->getAs<ObjCObjectPointerType>();
1593  const ObjCObjectPointerType *FromObjCPtr =
1594    FromType->getAs<ObjCObjectPointerType>();
1595
1596  if (ToObjCPtr && FromObjCPtr) {
1597    // If the pointee types are the same (ignoring qualifications),
1598    // then this is not a pointer conversion.
1599    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1600                                       FromObjCPtr->getPointeeType()))
1601      return false;
1602
1603    // Objective C++: We're able to convert between "id" or "Class" and a
1604    // pointer to any interface (in both directions).
1605    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1606      ConvertedType = ToType;
1607      return true;
1608    }
1609    // Conversions with Objective-C's id<...>.
1610    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1611         ToObjCPtr->isObjCQualifiedIdType()) &&
1612        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1613                                                  /*compare=*/false)) {
1614      ConvertedType = ToType;
1615      return true;
1616    }
1617    // Objective C++: We're able to convert from a pointer to an
1618    // interface to a pointer to a different interface.
1619    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1620      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1621      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1622      if (getLangOptions().CPlusPlus && LHS && RHS &&
1623          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1624                                                FromObjCPtr->getPointeeType()))
1625        return false;
1626      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1627                                                   ToObjCPtr->getPointeeType(),
1628                                                         ToType, Context);
1629      return true;
1630    }
1631
1632    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1633      // Okay: this is some kind of implicit downcast of Objective-C
1634      // interfaces, which is permitted. However, we're going to
1635      // complain about it.
1636      IncompatibleObjC = true;
1637      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1638                                                   ToObjCPtr->getPointeeType(),
1639                                                         ToType, Context);
1640      return true;
1641    }
1642  }
1643  // Beyond this point, both types need to be C pointers or block pointers.
1644  QualType ToPointeeType;
1645  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1646    ToPointeeType = ToCPtr->getPointeeType();
1647  else if (const BlockPointerType *ToBlockPtr =
1648            ToType->getAs<BlockPointerType>()) {
1649    // Objective C++: We're able to convert from a pointer to any object
1650    // to a block pointer type.
1651    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1652      ConvertedType = ToType;
1653      return true;
1654    }
1655    ToPointeeType = ToBlockPtr->getPointeeType();
1656  }
1657  else if (FromType->getAs<BlockPointerType>() &&
1658           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1659    // Objective C++: We're able to convert from a block pointer type to a
1660    // pointer to any object.
1661    ConvertedType = ToType;
1662    return true;
1663  }
1664  else
1665    return false;
1666
1667  QualType FromPointeeType;
1668  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1669    FromPointeeType = FromCPtr->getPointeeType();
1670  else if (const BlockPointerType *FromBlockPtr =
1671           FromType->getAs<BlockPointerType>())
1672    FromPointeeType = FromBlockPtr->getPointeeType();
1673  else
1674    return false;
1675
1676  // If we have pointers to pointers, recursively check whether this
1677  // is an Objective-C conversion.
1678  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1679      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1680                              IncompatibleObjC)) {
1681    // We always complain about this conversion.
1682    IncompatibleObjC = true;
1683    ConvertedType = Context.getPointerType(ConvertedType);
1684    return true;
1685  }
1686  // Allow conversion of pointee being objective-c pointer to another one;
1687  // as in I* to id.
1688  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1689      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1690      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1691                              IncompatibleObjC)) {
1692    ConvertedType = Context.getPointerType(ConvertedType);
1693    return true;
1694  }
1695
1696  // If we have pointers to functions or blocks, check whether the only
1697  // differences in the argument and result types are in Objective-C
1698  // pointer conversions. If so, we permit the conversion (but
1699  // complain about it).
1700  const FunctionProtoType *FromFunctionType
1701    = FromPointeeType->getAs<FunctionProtoType>();
1702  const FunctionProtoType *ToFunctionType
1703    = ToPointeeType->getAs<FunctionProtoType>();
1704  if (FromFunctionType && ToFunctionType) {
1705    // If the function types are exactly the same, this isn't an
1706    // Objective-C pointer conversion.
1707    if (Context.getCanonicalType(FromPointeeType)
1708          == Context.getCanonicalType(ToPointeeType))
1709      return false;
1710
1711    // Perform the quick checks that will tell us whether these
1712    // function types are obviously different.
1713    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1714        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1715        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1716      return false;
1717
1718    bool HasObjCConversion = false;
1719    if (Context.getCanonicalType(FromFunctionType->getResultType())
1720          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1721      // Okay, the types match exactly. Nothing to do.
1722    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1723                                       ToFunctionType->getResultType(),
1724                                       ConvertedType, IncompatibleObjC)) {
1725      // Okay, we have an Objective-C pointer conversion.
1726      HasObjCConversion = true;
1727    } else {
1728      // Function types are too different. Abort.
1729      return false;
1730    }
1731
1732    // Check argument types.
1733    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1734         ArgIdx != NumArgs; ++ArgIdx) {
1735      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1736      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1737      if (Context.getCanonicalType(FromArgType)
1738            == Context.getCanonicalType(ToArgType)) {
1739        // Okay, the types match exactly. Nothing to do.
1740      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1741                                         ConvertedType, IncompatibleObjC)) {
1742        // Okay, we have an Objective-C pointer conversion.
1743        HasObjCConversion = true;
1744      } else {
1745        // Argument types are too different. Abort.
1746        return false;
1747      }
1748    }
1749
1750    if (HasObjCConversion) {
1751      // We had an Objective-C conversion. Allow this pointer
1752      // conversion, but complain about it.
1753      ConvertedType = ToType;
1754      IncompatibleObjC = true;
1755      return true;
1756    }
1757  }
1758
1759  return false;
1760}
1761
1762/// FunctionArgTypesAreEqual - This routine checks two function proto types
1763/// for equlity of their argument types. Caller has already checked that
1764/// they have same number of arguments. This routine assumes that Objective-C
1765/// pointer types which only differ in their protocol qualifiers are equal.
1766bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
1767                                    const FunctionProtoType *NewType) {
1768  if (!getLangOptions().ObjC1)
1769    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1770                      NewType->arg_type_begin());
1771
1772  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1773       N = NewType->arg_type_begin(),
1774       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1775    QualType ToType = (*O);
1776    QualType FromType = (*N);
1777    if (ToType != FromType) {
1778      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1779        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1780          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1781               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1782              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1783               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1784            continue;
1785      }
1786      else if (const ObjCObjectPointerType *PTTo =
1787                 ToType->getAs<ObjCObjectPointerType>()) {
1788        if (const ObjCObjectPointerType *PTFr =
1789              FromType->getAs<ObjCObjectPointerType>())
1790          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1791            continue;
1792      }
1793      return false;
1794    }
1795  }
1796  return true;
1797}
1798
1799/// CheckPointerConversion - Check the pointer conversion from the
1800/// expression From to the type ToType. This routine checks for
1801/// ambiguous or inaccessible derived-to-base pointer
1802/// conversions for which IsPointerConversion has already returned
1803/// true. It returns true and produces a diagnostic if there was an
1804/// error, or returns false otherwise.
1805bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1806                                  CastKind &Kind,
1807                                  CXXCastPath& BasePath,
1808                                  bool IgnoreBaseAccess) {
1809  QualType FromType = From->getType();
1810  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
1811
1812  Kind = CK_BitCast;
1813
1814  if (CXXBoolLiteralExpr* LitBool
1815                          = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens()))
1816    if (!IsCStyleOrFunctionalCast && LitBool->getValue() == false)
1817      Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false)
1818        << ToType;
1819
1820  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1821    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1822      QualType FromPointeeType = FromPtrType->getPointeeType(),
1823               ToPointeeType   = ToPtrType->getPointeeType();
1824
1825      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1826          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1827        // We must have a derived-to-base conversion. Check an
1828        // ambiguous or inaccessible conversion.
1829        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1830                                         From->getExprLoc(),
1831                                         From->getSourceRange(), &BasePath,
1832                                         IgnoreBaseAccess))
1833          return true;
1834
1835        // The conversion was successful.
1836        Kind = CK_DerivedToBase;
1837      }
1838    }
1839  if (const ObjCObjectPointerType *FromPtrType =
1840        FromType->getAs<ObjCObjectPointerType>()) {
1841    if (const ObjCObjectPointerType *ToPtrType =
1842          ToType->getAs<ObjCObjectPointerType>()) {
1843      // Objective-C++ conversions are always okay.
1844      // FIXME: We should have a different class of conversions for the
1845      // Objective-C++ implicit conversions.
1846      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1847        return false;
1848    }
1849  }
1850
1851  // We shouldn't fall into this case unless it's valid for other
1852  // reasons.
1853  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1854    Kind = CK_NullToPointer;
1855
1856  return false;
1857}
1858
1859/// IsMemberPointerConversion - Determines whether the conversion of the
1860/// expression From, which has the (possibly adjusted) type FromType, can be
1861/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1862/// If so, returns true and places the converted type (that might differ from
1863/// ToType in its cv-qualifiers at some level) into ConvertedType.
1864bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1865                                     QualType ToType,
1866                                     bool InOverloadResolution,
1867                                     QualType &ConvertedType) {
1868  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1869  if (!ToTypePtr)
1870    return false;
1871
1872  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1873  if (From->isNullPointerConstant(Context,
1874                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1875                                        : Expr::NPC_ValueDependentIsNull)) {
1876    ConvertedType = ToType;
1877    return true;
1878  }
1879
1880  // Otherwise, both types have to be member pointers.
1881  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1882  if (!FromTypePtr)
1883    return false;
1884
1885  // A pointer to member of B can be converted to a pointer to member of D,
1886  // where D is derived from B (C++ 4.11p2).
1887  QualType FromClass(FromTypePtr->getClass(), 0);
1888  QualType ToClass(ToTypePtr->getClass(), 0);
1889
1890  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
1891      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
1892      IsDerivedFrom(ToClass, FromClass)) {
1893    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1894                                                 ToClass.getTypePtr());
1895    return true;
1896  }
1897
1898  return false;
1899}
1900
1901/// CheckMemberPointerConversion - Check the member pointer conversion from the
1902/// expression From to the type ToType. This routine checks for ambiguous or
1903/// virtual or inaccessible base-to-derived member pointer conversions
1904/// for which IsMemberPointerConversion has already returned true. It returns
1905/// true and produces a diagnostic if there was an error, or returns false
1906/// otherwise.
1907bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1908                                        CastKind &Kind,
1909                                        CXXCastPath &BasePath,
1910                                        bool IgnoreBaseAccess) {
1911  QualType FromType = From->getType();
1912  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1913  if (!FromPtrType) {
1914    // This must be a null pointer to member pointer conversion
1915    assert(From->isNullPointerConstant(Context,
1916                                       Expr::NPC_ValueDependentIsNull) &&
1917           "Expr must be null pointer constant!");
1918    Kind = CK_NullToMemberPointer;
1919    return false;
1920  }
1921
1922  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1923  assert(ToPtrType && "No member pointer cast has a target type "
1924                      "that is not a member pointer.");
1925
1926  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1927  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1928
1929  // FIXME: What about dependent types?
1930  assert(FromClass->isRecordType() && "Pointer into non-class.");
1931  assert(ToClass->isRecordType() && "Pointer into non-class.");
1932
1933  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1934                     /*DetectVirtual=*/true);
1935  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1936  assert(DerivationOkay &&
1937         "Should not have been called if derivation isn't OK.");
1938  (void)DerivationOkay;
1939
1940  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1941                                  getUnqualifiedType())) {
1942    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1943    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1944      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1945    return true;
1946  }
1947
1948  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1949    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1950      << FromClass << ToClass << QualType(VBase, 0)
1951      << From->getSourceRange();
1952    return true;
1953  }
1954
1955  if (!IgnoreBaseAccess)
1956    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1957                         Paths.front(),
1958                         diag::err_downcast_from_inaccessible_base);
1959
1960  // Must be a base to derived member conversion.
1961  BuildBasePathArray(Paths, BasePath);
1962  Kind = CK_BaseToDerivedMemberPointer;
1963  return false;
1964}
1965
1966/// IsQualificationConversion - Determines whether the conversion from
1967/// an rvalue of type FromType to ToType is a qualification conversion
1968/// (C++ 4.4).
1969bool
1970Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1971  FromType = Context.getCanonicalType(FromType);
1972  ToType = Context.getCanonicalType(ToType);
1973
1974  // If FromType and ToType are the same type, this is not a
1975  // qualification conversion.
1976  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1977    return false;
1978
1979  // (C++ 4.4p4):
1980  //   A conversion can add cv-qualifiers at levels other than the first
1981  //   in multi-level pointers, subject to the following rules: [...]
1982  bool PreviousToQualsIncludeConst = true;
1983  bool UnwrappedAnyPointer = false;
1984  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
1985    // Within each iteration of the loop, we check the qualifiers to
1986    // determine if this still looks like a qualification
1987    // conversion. Then, if all is well, we unwrap one more level of
1988    // pointers or pointers-to-members and do it all again
1989    // until there are no more pointers or pointers-to-members left to
1990    // unwrap.
1991    UnwrappedAnyPointer = true;
1992
1993    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1994    //      2,j, and similarly for volatile.
1995    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1996      return false;
1997
1998    //   -- if the cv 1,j and cv 2,j are different, then const is in
1999    //      every cv for 0 < k < j.
2000    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
2001        && !PreviousToQualsIncludeConst)
2002      return false;
2003
2004    // Keep track of whether all prior cv-qualifiers in the "to" type
2005    // include const.
2006    PreviousToQualsIncludeConst
2007      = PreviousToQualsIncludeConst && ToType.isConstQualified();
2008  }
2009
2010  // We are left with FromType and ToType being the pointee types
2011  // after unwrapping the original FromType and ToType the same number
2012  // of types. If we unwrapped any pointers, and if FromType and
2013  // ToType have the same unqualified type (since we checked
2014  // qualifiers above), then this is a qualification conversion.
2015  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2016}
2017
2018/// Determines whether there is a user-defined conversion sequence
2019/// (C++ [over.ics.user]) that converts expression From to the type
2020/// ToType. If such a conversion exists, User will contain the
2021/// user-defined conversion sequence that performs such a conversion
2022/// and this routine will return true. Otherwise, this routine returns
2023/// false and User is unspecified.
2024///
2025/// \param AllowExplicit  true if the conversion should consider C++0x
2026/// "explicit" conversion functions as well as non-explicit conversion
2027/// functions (C++0x [class.conv.fct]p2).
2028static OverloadingResult
2029IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2030                        UserDefinedConversionSequence& User,
2031                        OverloadCandidateSet& CandidateSet,
2032                        bool AllowExplicit) {
2033  // Whether we will only visit constructors.
2034  bool ConstructorsOnly = false;
2035
2036  // If the type we are conversion to is a class type, enumerate its
2037  // constructors.
2038  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2039    // C++ [over.match.ctor]p1:
2040    //   When objects of class type are direct-initialized (8.5), or
2041    //   copy-initialized from an expression of the same or a
2042    //   derived class type (8.5), overload resolution selects the
2043    //   constructor. [...] For copy-initialization, the candidate
2044    //   functions are all the converting constructors (12.3.1) of
2045    //   that class. The argument list is the expression-list within
2046    //   the parentheses of the initializer.
2047    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2048        (From->getType()->getAs<RecordType>() &&
2049         S.IsDerivedFrom(From->getType(), ToType)))
2050      ConstructorsOnly = true;
2051
2052    if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) {
2053      // We're not going to find any constructors.
2054    } else if (CXXRecordDecl *ToRecordDecl
2055                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2056      DeclContext::lookup_iterator Con, ConEnd;
2057      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2058           Con != ConEnd; ++Con) {
2059        NamedDecl *D = *Con;
2060        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2061
2062        // Find the constructor (which may be a template).
2063        CXXConstructorDecl *Constructor = 0;
2064        FunctionTemplateDecl *ConstructorTmpl
2065          = dyn_cast<FunctionTemplateDecl>(D);
2066        if (ConstructorTmpl)
2067          Constructor
2068            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2069        else
2070          Constructor = cast<CXXConstructorDecl>(D);
2071
2072        if (!Constructor->isInvalidDecl() &&
2073            Constructor->isConvertingConstructor(AllowExplicit)) {
2074          if (ConstructorTmpl)
2075            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2076                                           /*ExplicitArgs*/ 0,
2077                                           &From, 1, CandidateSet,
2078                                           /*SuppressUserConversions=*/
2079                                             !ConstructorsOnly);
2080          else
2081            // Allow one user-defined conversion when user specifies a
2082            // From->ToType conversion via an static cast (c-style, etc).
2083            S.AddOverloadCandidate(Constructor, FoundDecl,
2084                                   &From, 1, CandidateSet,
2085                                   /*SuppressUserConversions=*/
2086                                     !ConstructorsOnly);
2087        }
2088      }
2089    }
2090  }
2091
2092  // Enumerate conversion functions, if we're allowed to.
2093  if (ConstructorsOnly) {
2094  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2095                                   S.PDiag(0) << From->getSourceRange())) {
2096    // No conversion functions from incomplete types.
2097  } else if (const RecordType *FromRecordType
2098                                   = From->getType()->getAs<RecordType>()) {
2099    if (CXXRecordDecl *FromRecordDecl
2100         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2101      // Add all of the conversion functions as candidates.
2102      const UnresolvedSetImpl *Conversions
2103        = FromRecordDecl->getVisibleConversionFunctions();
2104      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2105             E = Conversions->end(); I != E; ++I) {
2106        DeclAccessPair FoundDecl = I.getPair();
2107        NamedDecl *D = FoundDecl.getDecl();
2108        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2109        if (isa<UsingShadowDecl>(D))
2110          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2111
2112        CXXConversionDecl *Conv;
2113        FunctionTemplateDecl *ConvTemplate;
2114        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2115          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2116        else
2117          Conv = cast<CXXConversionDecl>(D);
2118
2119        if (AllowExplicit || !Conv->isExplicit()) {
2120          if (ConvTemplate)
2121            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2122                                             ActingContext, From, ToType,
2123                                             CandidateSet);
2124          else
2125            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2126                                     From, ToType, CandidateSet);
2127        }
2128      }
2129    }
2130  }
2131
2132  OverloadCandidateSet::iterator Best;
2133  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2134  case OR_Success:
2135    // Record the standard conversion we used and the conversion function.
2136    if (CXXConstructorDecl *Constructor
2137          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2138      // C++ [over.ics.user]p1:
2139      //   If the user-defined conversion is specified by a
2140      //   constructor (12.3.1), the initial standard conversion
2141      //   sequence converts the source type to the type required by
2142      //   the argument of the constructor.
2143      //
2144      QualType ThisType = Constructor->getThisType(S.Context);
2145      if (Best->Conversions[0].isEllipsis())
2146        User.EllipsisConversion = true;
2147      else {
2148        User.Before = Best->Conversions[0].Standard;
2149        User.EllipsisConversion = false;
2150      }
2151      User.ConversionFunction = Constructor;
2152      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2153      User.After.setAsIdentityConversion();
2154      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2155      User.After.setAllToTypes(ToType);
2156      return OR_Success;
2157    } else if (CXXConversionDecl *Conversion
2158                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2159      // C++ [over.ics.user]p1:
2160      //
2161      //   [...] If the user-defined conversion is specified by a
2162      //   conversion function (12.3.2), the initial standard
2163      //   conversion sequence converts the source type to the
2164      //   implicit object parameter of the conversion function.
2165      User.Before = Best->Conversions[0].Standard;
2166      User.ConversionFunction = Conversion;
2167      User.FoundConversionFunction = Best->FoundDecl.getDecl();
2168      User.EllipsisConversion = false;
2169
2170      // C++ [over.ics.user]p2:
2171      //   The second standard conversion sequence converts the
2172      //   result of the user-defined conversion to the target type
2173      //   for the sequence. Since an implicit conversion sequence
2174      //   is an initialization, the special rules for
2175      //   initialization by user-defined conversion apply when
2176      //   selecting the best user-defined conversion for a
2177      //   user-defined conversion sequence (see 13.3.3 and
2178      //   13.3.3.1).
2179      User.After = Best->FinalConversion;
2180      return OR_Success;
2181    } else {
2182      llvm_unreachable("Not a constructor or conversion function?");
2183      return OR_No_Viable_Function;
2184    }
2185
2186  case OR_No_Viable_Function:
2187    return OR_No_Viable_Function;
2188  case OR_Deleted:
2189    // No conversion here! We're done.
2190    return OR_Deleted;
2191
2192  case OR_Ambiguous:
2193    return OR_Ambiguous;
2194  }
2195
2196  return OR_No_Viable_Function;
2197}
2198
2199bool
2200Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2201  ImplicitConversionSequence ICS;
2202  OverloadCandidateSet CandidateSet(From->getExprLoc());
2203  OverloadingResult OvResult =
2204    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2205                            CandidateSet, false);
2206  if (OvResult == OR_Ambiguous)
2207    Diag(From->getSourceRange().getBegin(),
2208         diag::err_typecheck_ambiguous_condition)
2209          << From->getType() << ToType << From->getSourceRange();
2210  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2211    Diag(From->getSourceRange().getBegin(),
2212         diag::err_typecheck_nonviable_condition)
2213    << From->getType() << ToType << From->getSourceRange();
2214  else
2215    return false;
2216  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2217  return true;
2218}
2219
2220/// CompareImplicitConversionSequences - Compare two implicit
2221/// conversion sequences to determine whether one is better than the
2222/// other or if they are indistinguishable (C++ 13.3.3.2).
2223static ImplicitConversionSequence::CompareKind
2224CompareImplicitConversionSequences(Sema &S,
2225                                   const ImplicitConversionSequence& ICS1,
2226                                   const ImplicitConversionSequence& ICS2)
2227{
2228  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2229  // conversion sequences (as defined in 13.3.3.1)
2230  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2231  //      conversion sequence than a user-defined conversion sequence or
2232  //      an ellipsis conversion sequence, and
2233  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2234  //      conversion sequence than an ellipsis conversion sequence
2235  //      (13.3.3.1.3).
2236  //
2237  // C++0x [over.best.ics]p10:
2238  //   For the purpose of ranking implicit conversion sequences as
2239  //   described in 13.3.3.2, the ambiguous conversion sequence is
2240  //   treated as a user-defined sequence that is indistinguishable
2241  //   from any other user-defined conversion sequence.
2242  if (ICS1.getKindRank() < ICS2.getKindRank())
2243    return ImplicitConversionSequence::Better;
2244  else if (ICS2.getKindRank() < ICS1.getKindRank())
2245    return ImplicitConversionSequence::Worse;
2246
2247  // The following checks require both conversion sequences to be of
2248  // the same kind.
2249  if (ICS1.getKind() != ICS2.getKind())
2250    return ImplicitConversionSequence::Indistinguishable;
2251
2252  // Two implicit conversion sequences of the same form are
2253  // indistinguishable conversion sequences unless one of the
2254  // following rules apply: (C++ 13.3.3.2p3):
2255  if (ICS1.isStandard())
2256    return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
2257  else if (ICS1.isUserDefined()) {
2258    // User-defined conversion sequence U1 is a better conversion
2259    // sequence than another user-defined conversion sequence U2 if
2260    // they contain the same user-defined conversion function or
2261    // constructor and if the second standard conversion sequence of
2262    // U1 is better than the second standard conversion sequence of
2263    // U2 (C++ 13.3.3.2p3).
2264    if (ICS1.UserDefined.ConversionFunction ==
2265          ICS2.UserDefined.ConversionFunction)
2266      return CompareStandardConversionSequences(S,
2267                                                ICS1.UserDefined.After,
2268                                                ICS2.UserDefined.After);
2269  }
2270
2271  return ImplicitConversionSequence::Indistinguishable;
2272}
2273
2274static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2275  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2276    Qualifiers Quals;
2277    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2278    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2279  }
2280
2281  return Context.hasSameUnqualifiedType(T1, T2);
2282}
2283
2284// Per 13.3.3.2p3, compare the given standard conversion sequences to
2285// determine if one is a proper subset of the other.
2286static ImplicitConversionSequence::CompareKind
2287compareStandardConversionSubsets(ASTContext &Context,
2288                                 const StandardConversionSequence& SCS1,
2289                                 const StandardConversionSequence& SCS2) {
2290  ImplicitConversionSequence::CompareKind Result
2291    = ImplicitConversionSequence::Indistinguishable;
2292
2293  // the identity conversion sequence is considered to be a subsequence of
2294  // any non-identity conversion sequence
2295  if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
2296    if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2297      return ImplicitConversionSequence::Better;
2298    else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2299      return ImplicitConversionSequence::Worse;
2300  }
2301
2302  if (SCS1.Second != SCS2.Second) {
2303    if (SCS1.Second == ICK_Identity)
2304      Result = ImplicitConversionSequence::Better;
2305    else if (SCS2.Second == ICK_Identity)
2306      Result = ImplicitConversionSequence::Worse;
2307    else
2308      return ImplicitConversionSequence::Indistinguishable;
2309  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2310    return ImplicitConversionSequence::Indistinguishable;
2311
2312  if (SCS1.Third == SCS2.Third) {
2313    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2314                             : ImplicitConversionSequence::Indistinguishable;
2315  }
2316
2317  if (SCS1.Third == ICK_Identity)
2318    return Result == ImplicitConversionSequence::Worse
2319             ? ImplicitConversionSequence::Indistinguishable
2320             : ImplicitConversionSequence::Better;
2321
2322  if (SCS2.Third == ICK_Identity)
2323    return Result == ImplicitConversionSequence::Better
2324             ? ImplicitConversionSequence::Indistinguishable
2325             : ImplicitConversionSequence::Worse;
2326
2327  return ImplicitConversionSequence::Indistinguishable;
2328}
2329
2330/// \brief Determine whether one of the given reference bindings is better
2331/// than the other based on what kind of bindings they are.
2332static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
2333                                       const StandardConversionSequence &SCS2) {
2334  // C++0x [over.ics.rank]p3b4:
2335  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2336  //      implicit object parameter of a non-static member function declared
2337  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
2338  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
2339  //      lvalue reference to a function lvalue and S2 binds an rvalue
2340  //      reference*.
2341  //
2342  // FIXME: Rvalue references. We're going rogue with the above edits,
2343  // because the semantics in the current C++0x working paper (N3225 at the
2344  // time of this writing) break the standard definition of std::forward
2345  // and std::reference_wrapper when dealing with references to functions.
2346  // Proposed wording changes submitted to CWG for consideration.
2347  //
2348  // Note: neither of these conditions will evalute true for the implicit
2349  // object parameter, because we don't set either BindsToRvalue or
2350  // BindsToFunctionLvalue when computing the conversion sequence for the
2351  // implicit object parameter.
2352  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
2353          SCS2.IsLvalueReference) ||
2354         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
2355          !SCS2.IsLvalueReference);
2356}
2357
2358/// CompareStandardConversionSequences - Compare two standard
2359/// conversion sequences to determine whether one is better than the
2360/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2361static ImplicitConversionSequence::CompareKind
2362CompareStandardConversionSequences(Sema &S,
2363                                   const StandardConversionSequence& SCS1,
2364                                   const StandardConversionSequence& SCS2)
2365{
2366  // Standard conversion sequence S1 is a better conversion sequence
2367  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2368
2369  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2370  //     sequences in the canonical form defined by 13.3.3.1.1,
2371  //     excluding any Lvalue Transformation; the identity conversion
2372  //     sequence is considered to be a subsequence of any
2373  //     non-identity conversion sequence) or, if not that,
2374  if (ImplicitConversionSequence::CompareKind CK
2375        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2376    return CK;
2377
2378  //  -- the rank of S1 is better than the rank of S2 (by the rules
2379  //     defined below), or, if not that,
2380  ImplicitConversionRank Rank1 = SCS1.getRank();
2381  ImplicitConversionRank Rank2 = SCS2.getRank();
2382  if (Rank1 < Rank2)
2383    return ImplicitConversionSequence::Better;
2384  else if (Rank2 < Rank1)
2385    return ImplicitConversionSequence::Worse;
2386
2387  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2388  // are indistinguishable unless one of the following rules
2389  // applies:
2390
2391  //   A conversion that is not a conversion of a pointer, or
2392  //   pointer to member, to bool is better than another conversion
2393  //   that is such a conversion.
2394  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2395    return SCS2.isPointerConversionToBool()
2396             ? ImplicitConversionSequence::Better
2397             : ImplicitConversionSequence::Worse;
2398
2399  // C++ [over.ics.rank]p4b2:
2400  //
2401  //   If class B is derived directly or indirectly from class A,
2402  //   conversion of B* to A* is better than conversion of B* to
2403  //   void*, and conversion of A* to void* is better than conversion
2404  //   of B* to void*.
2405  bool SCS1ConvertsToVoid
2406    = SCS1.isPointerConversionToVoidPointer(S.Context);
2407  bool SCS2ConvertsToVoid
2408    = SCS2.isPointerConversionToVoidPointer(S.Context);
2409  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2410    // Exactly one of the conversion sequences is a conversion to
2411    // a void pointer; it's the worse conversion.
2412    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2413                              : ImplicitConversionSequence::Worse;
2414  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2415    // Neither conversion sequence converts to a void pointer; compare
2416    // their derived-to-base conversions.
2417    if (ImplicitConversionSequence::CompareKind DerivedCK
2418          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2419      return DerivedCK;
2420  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2421    // Both conversion sequences are conversions to void
2422    // pointers. Compare the source types to determine if there's an
2423    // inheritance relationship in their sources.
2424    QualType FromType1 = SCS1.getFromType();
2425    QualType FromType2 = SCS2.getFromType();
2426
2427    // Adjust the types we're converting from via the array-to-pointer
2428    // conversion, if we need to.
2429    if (SCS1.First == ICK_Array_To_Pointer)
2430      FromType1 = S.Context.getArrayDecayedType(FromType1);
2431    if (SCS2.First == ICK_Array_To_Pointer)
2432      FromType2 = S.Context.getArrayDecayedType(FromType2);
2433
2434    QualType FromPointee1
2435      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2436    QualType FromPointee2
2437      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2438
2439    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2440      return ImplicitConversionSequence::Better;
2441    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2442      return ImplicitConversionSequence::Worse;
2443
2444    // Objective-C++: If one interface is more specific than the
2445    // other, it is the better one.
2446    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2447    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2448    if (FromIface1 && FromIface1) {
2449      if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2450        return ImplicitConversionSequence::Better;
2451      else if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2452        return ImplicitConversionSequence::Worse;
2453    }
2454  }
2455
2456  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2457  // bullet 3).
2458  if (ImplicitConversionSequence::CompareKind QualCK
2459        = CompareQualificationConversions(S, SCS1, SCS2))
2460    return QualCK;
2461
2462  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2463    // Check for a better reference binding based on the kind of bindings.
2464    if (isBetterReferenceBindingKind(SCS1, SCS2))
2465      return ImplicitConversionSequence::Better;
2466    else if (isBetterReferenceBindingKind(SCS2, SCS1))
2467      return ImplicitConversionSequence::Worse;
2468
2469    // C++ [over.ics.rank]p3b4:
2470    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2471    //      which the references refer are the same type except for
2472    //      top-level cv-qualifiers, and the type to which the reference
2473    //      initialized by S2 refers is more cv-qualified than the type
2474    //      to which the reference initialized by S1 refers.
2475    QualType T1 = SCS1.getToType(2);
2476    QualType T2 = SCS2.getToType(2);
2477    T1 = S.Context.getCanonicalType(T1);
2478    T2 = S.Context.getCanonicalType(T2);
2479    Qualifiers T1Quals, T2Quals;
2480    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2481    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2482    if (UnqualT1 == UnqualT2) {
2483      // If the type is an array type, promote the element qualifiers to the
2484      // type for comparison.
2485      if (isa<ArrayType>(T1) && T1Quals)
2486        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2487      if (isa<ArrayType>(T2) && T2Quals)
2488        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2489      if (T2.isMoreQualifiedThan(T1))
2490        return ImplicitConversionSequence::Better;
2491      else if (T1.isMoreQualifiedThan(T2))
2492        return ImplicitConversionSequence::Worse;
2493    }
2494  }
2495
2496  return ImplicitConversionSequence::Indistinguishable;
2497}
2498
2499/// CompareQualificationConversions - Compares two standard conversion
2500/// sequences to determine whether they can be ranked based on their
2501/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2502ImplicitConversionSequence::CompareKind
2503CompareQualificationConversions(Sema &S,
2504                                const StandardConversionSequence& SCS1,
2505                                const StandardConversionSequence& SCS2) {
2506  // C++ 13.3.3.2p3:
2507  //  -- S1 and S2 differ only in their qualification conversion and
2508  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2509  //     cv-qualification signature of type T1 is a proper subset of
2510  //     the cv-qualification signature of type T2, and S1 is not the
2511  //     deprecated string literal array-to-pointer conversion (4.2).
2512  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2513      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2514    return ImplicitConversionSequence::Indistinguishable;
2515
2516  // FIXME: the example in the standard doesn't use a qualification
2517  // conversion (!)
2518  QualType T1 = SCS1.getToType(2);
2519  QualType T2 = SCS2.getToType(2);
2520  T1 = S.Context.getCanonicalType(T1);
2521  T2 = S.Context.getCanonicalType(T2);
2522  Qualifiers T1Quals, T2Quals;
2523  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2524  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2525
2526  // If the types are the same, we won't learn anything by unwrapped
2527  // them.
2528  if (UnqualT1 == UnqualT2)
2529    return ImplicitConversionSequence::Indistinguishable;
2530
2531  // If the type is an array type, promote the element qualifiers to the type
2532  // for comparison.
2533  if (isa<ArrayType>(T1) && T1Quals)
2534    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2535  if (isa<ArrayType>(T2) && T2Quals)
2536    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2537
2538  ImplicitConversionSequence::CompareKind Result
2539    = ImplicitConversionSequence::Indistinguishable;
2540  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
2541    // Within each iteration of the loop, we check the qualifiers to
2542    // determine if this still looks like a qualification
2543    // conversion. Then, if all is well, we unwrap one more level of
2544    // pointers or pointers-to-members and do it all again
2545    // until there are no more pointers or pointers-to-members left
2546    // to unwrap. This essentially mimics what
2547    // IsQualificationConversion does, but here we're checking for a
2548    // strict subset of qualifiers.
2549    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2550      // The qualifiers are the same, so this doesn't tell us anything
2551      // about how the sequences rank.
2552      ;
2553    else if (T2.isMoreQualifiedThan(T1)) {
2554      // T1 has fewer qualifiers, so it could be the better sequence.
2555      if (Result == ImplicitConversionSequence::Worse)
2556        // Neither has qualifiers that are a subset of the other's
2557        // qualifiers.
2558        return ImplicitConversionSequence::Indistinguishable;
2559
2560      Result = ImplicitConversionSequence::Better;
2561    } else if (T1.isMoreQualifiedThan(T2)) {
2562      // T2 has fewer qualifiers, so it could be the better sequence.
2563      if (Result == ImplicitConversionSequence::Better)
2564        // Neither has qualifiers that are a subset of the other's
2565        // qualifiers.
2566        return ImplicitConversionSequence::Indistinguishable;
2567
2568      Result = ImplicitConversionSequence::Worse;
2569    } else {
2570      // Qualifiers are disjoint.
2571      return ImplicitConversionSequence::Indistinguishable;
2572    }
2573
2574    // If the types after this point are equivalent, we're done.
2575    if (S.Context.hasSameUnqualifiedType(T1, T2))
2576      break;
2577  }
2578
2579  // Check that the winning standard conversion sequence isn't using
2580  // the deprecated string literal array to pointer conversion.
2581  switch (Result) {
2582  case ImplicitConversionSequence::Better:
2583    if (SCS1.DeprecatedStringLiteralToCharPtr)
2584      Result = ImplicitConversionSequence::Indistinguishable;
2585    break;
2586
2587  case ImplicitConversionSequence::Indistinguishable:
2588    break;
2589
2590  case ImplicitConversionSequence::Worse:
2591    if (SCS2.DeprecatedStringLiteralToCharPtr)
2592      Result = ImplicitConversionSequence::Indistinguishable;
2593    break;
2594  }
2595
2596  return Result;
2597}
2598
2599/// CompareDerivedToBaseConversions - Compares two standard conversion
2600/// sequences to determine whether they can be ranked based on their
2601/// various kinds of derived-to-base conversions (C++
2602/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2603/// conversions between Objective-C interface types.
2604ImplicitConversionSequence::CompareKind
2605CompareDerivedToBaseConversions(Sema &S,
2606                                const StandardConversionSequence& SCS1,
2607                                const StandardConversionSequence& SCS2) {
2608  QualType FromType1 = SCS1.getFromType();
2609  QualType ToType1 = SCS1.getToType(1);
2610  QualType FromType2 = SCS2.getFromType();
2611  QualType ToType2 = SCS2.getToType(1);
2612
2613  // Adjust the types we're converting from via the array-to-pointer
2614  // conversion, if we need to.
2615  if (SCS1.First == ICK_Array_To_Pointer)
2616    FromType1 = S.Context.getArrayDecayedType(FromType1);
2617  if (SCS2.First == ICK_Array_To_Pointer)
2618    FromType2 = S.Context.getArrayDecayedType(FromType2);
2619
2620  // Canonicalize all of the types.
2621  FromType1 = S.Context.getCanonicalType(FromType1);
2622  ToType1 = S.Context.getCanonicalType(ToType1);
2623  FromType2 = S.Context.getCanonicalType(FromType2);
2624  ToType2 = S.Context.getCanonicalType(ToType2);
2625
2626  // C++ [over.ics.rank]p4b3:
2627  //
2628  //   If class B is derived directly or indirectly from class A and
2629  //   class C is derived directly or indirectly from B,
2630  //
2631  // For Objective-C, we let A, B, and C also be Objective-C
2632  // interfaces.
2633
2634  // Compare based on pointer conversions.
2635  if (SCS1.Second == ICK_Pointer_Conversion &&
2636      SCS2.Second == ICK_Pointer_Conversion &&
2637      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2638      FromType1->isPointerType() && FromType2->isPointerType() &&
2639      ToType1->isPointerType() && ToType2->isPointerType()) {
2640    QualType FromPointee1
2641      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2642    QualType ToPointee1
2643      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2644    QualType FromPointee2
2645      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2646    QualType ToPointee2
2647      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2648
2649    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2650    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2651    const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
2652    const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
2653
2654    //   -- conversion of C* to B* is better than conversion of C* to A*,
2655    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2656      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2657        return ImplicitConversionSequence::Better;
2658      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2659        return ImplicitConversionSequence::Worse;
2660
2661      if (ToIface1 && ToIface2) {
2662        if (S.Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2663          return ImplicitConversionSequence::Better;
2664        else if (S.Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2665          return ImplicitConversionSequence::Worse;
2666      }
2667    }
2668
2669    //   -- conversion of B* to A* is better than conversion of C* to A*,
2670    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2671      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2672        return ImplicitConversionSequence::Better;
2673      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2674        return ImplicitConversionSequence::Worse;
2675
2676      if (FromIface1 && FromIface2) {
2677        if (S.Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2678          return ImplicitConversionSequence::Better;
2679        else if (S.Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2680          return ImplicitConversionSequence::Worse;
2681      }
2682    }
2683  }
2684
2685  // Ranking of member-pointer types.
2686  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2687      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2688      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2689    const MemberPointerType * FromMemPointer1 =
2690                                        FromType1->getAs<MemberPointerType>();
2691    const MemberPointerType * ToMemPointer1 =
2692                                          ToType1->getAs<MemberPointerType>();
2693    const MemberPointerType * FromMemPointer2 =
2694                                          FromType2->getAs<MemberPointerType>();
2695    const MemberPointerType * ToMemPointer2 =
2696                                          ToType2->getAs<MemberPointerType>();
2697    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2698    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2699    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2700    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2701    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2702    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2703    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2704    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2705    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2706    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2707      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
2708        return ImplicitConversionSequence::Worse;
2709      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
2710        return ImplicitConversionSequence::Better;
2711    }
2712    // conversion of B::* to C::* is better than conversion of A::* to C::*
2713    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2714      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2715        return ImplicitConversionSequence::Better;
2716      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2717        return ImplicitConversionSequence::Worse;
2718    }
2719  }
2720
2721  if (SCS1.Second == ICK_Derived_To_Base) {
2722    //   -- conversion of C to B is better than conversion of C to A,
2723    //   -- binding of an expression of type C to a reference of type
2724    //      B& is better than binding an expression of type C to a
2725    //      reference of type A&,
2726    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2727        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2728      if (S.IsDerivedFrom(ToType1, ToType2))
2729        return ImplicitConversionSequence::Better;
2730      else if (S.IsDerivedFrom(ToType2, ToType1))
2731        return ImplicitConversionSequence::Worse;
2732    }
2733
2734    //   -- conversion of B to A is better than conversion of C to A.
2735    //   -- binding of an expression of type B to a reference of type
2736    //      A& is better than binding an expression of type C to a
2737    //      reference of type A&,
2738    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2739        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2740      if (S.IsDerivedFrom(FromType2, FromType1))
2741        return ImplicitConversionSequence::Better;
2742      else if (S.IsDerivedFrom(FromType1, FromType2))
2743        return ImplicitConversionSequence::Worse;
2744    }
2745  }
2746
2747  return ImplicitConversionSequence::Indistinguishable;
2748}
2749
2750/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2751/// determine whether they are reference-related,
2752/// reference-compatible, reference-compatible with added
2753/// qualification, or incompatible, for use in C++ initialization by
2754/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2755/// type, and the first type (T1) is the pointee type of the reference
2756/// type being initialized.
2757Sema::ReferenceCompareResult
2758Sema::CompareReferenceRelationship(SourceLocation Loc,
2759                                   QualType OrigT1, QualType OrigT2,
2760                                   bool &DerivedToBase,
2761                                   bool &ObjCConversion) {
2762  assert(!OrigT1->isReferenceType() &&
2763    "T1 must be the pointee type of the reference type");
2764  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2765
2766  QualType T1 = Context.getCanonicalType(OrigT1);
2767  QualType T2 = Context.getCanonicalType(OrigT2);
2768  Qualifiers T1Quals, T2Quals;
2769  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2770  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2771
2772  // C++ [dcl.init.ref]p4:
2773  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2774  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2775  //   T1 is a base class of T2.
2776  DerivedToBase = false;
2777  ObjCConversion = false;
2778  if (UnqualT1 == UnqualT2) {
2779    // Nothing to do.
2780  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
2781           IsDerivedFrom(UnqualT2, UnqualT1))
2782    DerivedToBase = true;
2783  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
2784           UnqualT2->isObjCObjectOrInterfaceType() &&
2785           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
2786    ObjCConversion = true;
2787  else
2788    return Ref_Incompatible;
2789
2790  // At this point, we know that T1 and T2 are reference-related (at
2791  // least).
2792
2793  // If the type is an array type, promote the element qualifiers to the type
2794  // for comparison.
2795  if (isa<ArrayType>(T1) && T1Quals)
2796    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2797  if (isa<ArrayType>(T2) && T2Quals)
2798    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2799
2800  // C++ [dcl.init.ref]p4:
2801  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2802  //   reference-related to T2 and cv1 is the same cv-qualification
2803  //   as, or greater cv-qualification than, cv2. For purposes of
2804  //   overload resolution, cases for which cv1 is greater
2805  //   cv-qualification than cv2 are identified as
2806  //   reference-compatible with added qualification (see 13.3.3.2).
2807  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2808    return Ref_Compatible;
2809  else if (T1.isMoreQualifiedThan(T2))
2810    return Ref_Compatible_With_Added_Qualification;
2811  else
2812    return Ref_Related;
2813}
2814
2815/// \brief Look for a user-defined conversion to an value reference-compatible
2816///        with DeclType. Return true if something definite is found.
2817static bool
2818FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
2819                         QualType DeclType, SourceLocation DeclLoc,
2820                         Expr *Init, QualType T2, bool AllowRvalues,
2821                         bool AllowExplicit) {
2822  assert(T2->isRecordType() && "Can only find conversions of record types.");
2823  CXXRecordDecl *T2RecordDecl
2824    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2825
2826  OverloadCandidateSet CandidateSet(DeclLoc);
2827  const UnresolvedSetImpl *Conversions
2828    = T2RecordDecl->getVisibleConversionFunctions();
2829  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2830         E = Conversions->end(); I != E; ++I) {
2831    NamedDecl *D = *I;
2832    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2833    if (isa<UsingShadowDecl>(D))
2834      D = cast<UsingShadowDecl>(D)->getTargetDecl();
2835
2836    FunctionTemplateDecl *ConvTemplate
2837      = dyn_cast<FunctionTemplateDecl>(D);
2838    CXXConversionDecl *Conv;
2839    if (ConvTemplate)
2840      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2841    else
2842      Conv = cast<CXXConversionDecl>(D);
2843
2844    // If this is an explicit conversion, and we're not allowed to consider
2845    // explicit conversions, skip it.
2846    if (!AllowExplicit && Conv->isExplicit())
2847      continue;
2848
2849    if (AllowRvalues) {
2850      bool DerivedToBase = false;
2851      bool ObjCConversion = false;
2852      if (!ConvTemplate &&
2853          S.CompareReferenceRelationship(
2854            DeclLoc,
2855            Conv->getConversionType().getNonReferenceType()
2856              .getUnqualifiedType(),
2857            DeclType.getNonReferenceType().getUnqualifiedType(),
2858            DerivedToBase, ObjCConversion) ==
2859          Sema::Ref_Incompatible)
2860        continue;
2861    } else {
2862      // If the conversion function doesn't return a reference type,
2863      // it can't be considered for this conversion. An rvalue reference
2864      // is only acceptable if its referencee is a function type.
2865
2866      const ReferenceType *RefType =
2867        Conv->getConversionType()->getAs<ReferenceType>();
2868      if (!RefType ||
2869          (!RefType->isLValueReferenceType() &&
2870           !RefType->getPointeeType()->isFunctionType()))
2871        continue;
2872    }
2873
2874    if (ConvTemplate)
2875      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2876                                       Init, DeclType, CandidateSet);
2877    else
2878      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2879                               DeclType, CandidateSet);
2880  }
2881
2882  OverloadCandidateSet::iterator Best;
2883  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
2884  case OR_Success:
2885    // C++ [over.ics.ref]p1:
2886    //
2887    //   [...] If the parameter binds directly to the result of
2888    //   applying a conversion function to the argument
2889    //   expression, the implicit conversion sequence is a
2890    //   user-defined conversion sequence (13.3.3.1.2), with the
2891    //   second standard conversion sequence either an identity
2892    //   conversion or, if the conversion function returns an
2893    //   entity of a type that is a derived class of the parameter
2894    //   type, a derived-to-base Conversion.
2895    if (!Best->FinalConversion.DirectBinding)
2896      return false;
2897
2898    ICS.setUserDefined();
2899    ICS.UserDefined.Before = Best->Conversions[0].Standard;
2900    ICS.UserDefined.After = Best->FinalConversion;
2901    ICS.UserDefined.ConversionFunction = Best->Function;
2902    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl.getDecl();
2903    ICS.UserDefined.EllipsisConversion = false;
2904    assert(ICS.UserDefined.After.ReferenceBinding &&
2905           ICS.UserDefined.After.DirectBinding &&
2906           "Expected a direct reference binding!");
2907    return true;
2908
2909  case OR_Ambiguous:
2910    ICS.setAmbiguous();
2911    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2912         Cand != CandidateSet.end(); ++Cand)
2913      if (Cand->Viable)
2914        ICS.Ambiguous.addConversion(Cand->Function);
2915    return true;
2916
2917  case OR_No_Viable_Function:
2918  case OR_Deleted:
2919    // There was no suitable conversion, or we found a deleted
2920    // conversion; continue with other checks.
2921    return false;
2922  }
2923
2924  return false;
2925}
2926
2927/// \brief Compute an implicit conversion sequence for reference
2928/// initialization.
2929static ImplicitConversionSequence
2930TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2931                 SourceLocation DeclLoc,
2932                 bool SuppressUserConversions,
2933                 bool AllowExplicit) {
2934  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2935
2936  // Most paths end in a failed conversion.
2937  ImplicitConversionSequence ICS;
2938  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2939
2940  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2941  QualType T2 = Init->getType();
2942
2943  // If the initializer is the address of an overloaded function, try
2944  // to resolve the overloaded function. If all goes well, T2 is the
2945  // type of the resulting function.
2946  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2947    DeclAccessPair Found;
2948    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2949                                                                false, Found))
2950      T2 = Fn->getType();
2951  }
2952
2953  // Compute some basic properties of the types and the initializer.
2954  bool isRValRef = DeclType->isRValueReferenceType();
2955  bool DerivedToBase = false;
2956  bool ObjCConversion = false;
2957  Expr::Classification InitCategory = Init->Classify(S.Context);
2958  Sema::ReferenceCompareResult RefRelationship
2959    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
2960                                     ObjCConversion);
2961
2962
2963  // C++0x [dcl.init.ref]p5:
2964  //   A reference to type "cv1 T1" is initialized by an expression
2965  //   of type "cv2 T2" as follows:
2966
2967  //     -- If reference is an lvalue reference and the initializer expression
2968  if (!isRValRef) {
2969    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2970    //        reference-compatible with "cv2 T2," or
2971    //
2972    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2973    if (InitCategory.isLValue() &&
2974        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2975      // C++ [over.ics.ref]p1:
2976      //   When a parameter of reference type binds directly (8.5.3)
2977      //   to an argument expression, the implicit conversion sequence
2978      //   is the identity conversion, unless the argument expression
2979      //   has a type that is a derived class of the parameter type,
2980      //   in which case the implicit conversion sequence is a
2981      //   derived-to-base Conversion (13.3.3.1).
2982      ICS.setStandard();
2983      ICS.Standard.First = ICK_Identity;
2984      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
2985                         : ObjCConversion? ICK_Compatible_Conversion
2986                         : ICK_Identity;
2987      ICS.Standard.Third = ICK_Identity;
2988      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2989      ICS.Standard.setToType(0, T2);
2990      ICS.Standard.setToType(1, T1);
2991      ICS.Standard.setToType(2, T1);
2992      ICS.Standard.ReferenceBinding = true;
2993      ICS.Standard.DirectBinding = true;
2994      ICS.Standard.IsLvalueReference = !isRValRef;
2995      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
2996      ICS.Standard.BindsToRvalue = false;
2997      ICS.Standard.CopyConstructor = 0;
2998
2999      // Nothing more to do: the inaccessibility/ambiguity check for
3000      // derived-to-base conversions is suppressed when we're
3001      // computing the implicit conversion sequence (C++
3002      // [over.best.ics]p2).
3003      return ICS;
3004    }
3005
3006    //       -- has a class type (i.e., T2 is a class type), where T1 is
3007    //          not reference-related to T2, and can be implicitly
3008    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3009    //          is reference-compatible with "cv3 T3" 92) (this
3010    //          conversion is selected by enumerating the applicable
3011    //          conversion functions (13.3.1.6) and choosing the best
3012    //          one through overload resolution (13.3)),
3013    if (!SuppressUserConversions && T2->isRecordType() &&
3014        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3015        RefRelationship == Sema::Ref_Incompatible) {
3016      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3017                                   Init, T2, /*AllowRvalues=*/false,
3018                                   AllowExplicit))
3019        return ICS;
3020    }
3021  }
3022
3023  //     -- Otherwise, the reference shall be an lvalue reference to a
3024  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3025  //        shall be an rvalue reference.
3026  //
3027  // We actually handle one oddity of C++ [over.ics.ref] at this
3028  // point, which is that, due to p2 (which short-circuits reference
3029  // binding by only attempting a simple conversion for non-direct
3030  // bindings) and p3's strange wording, we allow a const volatile
3031  // reference to bind to an rvalue. Hence the check for the presence
3032  // of "const" rather than checking for "const" being the only
3033  // qualifier.
3034  // This is also the point where rvalue references and lvalue inits no longer
3035  // go together.
3036  if (!isRValRef && !T1.isConstQualified())
3037    return ICS;
3038
3039  //       -- If the initializer expression
3040  //
3041  //            -- is an xvalue, class prvalue, array prvalue or function
3042  //               lvalue and "cv1T1" is reference-compatible with "cv2 T2", or
3043  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3044      (InitCategory.isXValue() ||
3045      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3046      (InitCategory.isLValue() && T2->isFunctionType()))) {
3047    ICS.setStandard();
3048    ICS.Standard.First = ICK_Identity;
3049    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3050                      : ObjCConversion? ICK_Compatible_Conversion
3051                      : ICK_Identity;
3052    ICS.Standard.Third = ICK_Identity;
3053    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3054    ICS.Standard.setToType(0, T2);
3055    ICS.Standard.setToType(1, T1);
3056    ICS.Standard.setToType(2, T1);
3057    ICS.Standard.ReferenceBinding = true;
3058    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3059    // binding unless we're binding to a class prvalue.
3060    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3061    // allow the use of rvalue references in C++98/03 for the benefit of
3062    // standard library implementors; therefore, we need the xvalue check here.
3063    ICS.Standard.DirectBinding =
3064      S.getLangOptions().CPlusPlus0x ||
3065      (InitCategory.isPRValue() && !T2->isRecordType());
3066    ICS.Standard.IsLvalueReference = !isRValRef;
3067    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3068    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3069    ICS.Standard.CopyConstructor = 0;
3070    return ICS;
3071  }
3072
3073  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3074  //               reference-related to T2, and can be implicitly converted to
3075  //               an xvalue, class prvalue, or function lvalue of type
3076  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3077  //               "cv3 T3",
3078  //
3079  //          then the reference is bound to the value of the initializer
3080  //          expression in the first case and to the result of the conversion
3081  //          in the second case (or, in either case, to an appropriate base
3082  //          class subobject).
3083  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3084      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3085      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3086                               Init, T2, /*AllowRvalues=*/true,
3087                               AllowExplicit)) {
3088    // In the second case, if the reference is an rvalue reference
3089    // and the second standard conversion sequence of the
3090    // user-defined conversion sequence includes an lvalue-to-rvalue
3091    // conversion, the program is ill-formed.
3092    if (ICS.isUserDefined() && isRValRef &&
3093        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3094      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3095
3096    return ICS;
3097  }
3098
3099  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3100  //          initialized from the initializer expression using the
3101  //          rules for a non-reference copy initialization (8.5). The
3102  //          reference is then bound to the temporary. If T1 is
3103  //          reference-related to T2, cv1 must be the same
3104  //          cv-qualification as, or greater cv-qualification than,
3105  //          cv2; otherwise, the program is ill-formed.
3106  if (RefRelationship == Sema::Ref_Related) {
3107    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3108    // we would be reference-compatible or reference-compatible with
3109    // added qualification. But that wasn't the case, so the reference
3110    // initialization fails.
3111    return ICS;
3112  }
3113
3114  // If at least one of the types is a class type, the types are not
3115  // related, and we aren't allowed any user conversions, the
3116  // reference binding fails. This case is important for breaking
3117  // recursion, since TryImplicitConversion below will attempt to
3118  // create a temporary through the use of a copy constructor.
3119  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3120      (T1->isRecordType() || T2->isRecordType()))
3121    return ICS;
3122
3123  // If T1 is reference-related to T2 and the reference is an rvalue
3124  // reference, the initializer expression shall not be an lvalue.
3125  if (RefRelationship >= Sema::Ref_Related &&
3126      isRValRef && Init->Classify(S.Context).isLValue())
3127    return ICS;
3128
3129  // C++ [over.ics.ref]p2:
3130  //   When a parameter of reference type is not bound directly to
3131  //   an argument expression, the conversion sequence is the one
3132  //   required to convert the argument expression to the
3133  //   underlying type of the reference according to
3134  //   13.3.3.1. Conceptually, this conversion sequence corresponds
3135  //   to copy-initializing a temporary of the underlying type with
3136  //   the argument expression. Any difference in top-level
3137  //   cv-qualification is subsumed by the initialization itself
3138  //   and does not constitute a conversion.
3139  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3140                              /*AllowExplicit=*/false,
3141                              /*InOverloadResolution=*/false);
3142
3143  // Of course, that's still a reference binding.
3144  if (ICS.isStandard()) {
3145    ICS.Standard.ReferenceBinding = true;
3146    ICS.Standard.IsLvalueReference = !isRValRef;
3147    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3148    ICS.Standard.BindsToRvalue = true;
3149  } else if (ICS.isUserDefined()) {
3150    ICS.UserDefined.After.ReferenceBinding = true;
3151    ICS.Standard.IsLvalueReference = !isRValRef;
3152    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3153    ICS.Standard.BindsToRvalue = true;
3154  }
3155
3156  return ICS;
3157}
3158
3159/// TryCopyInitialization - Try to copy-initialize a value of type
3160/// ToType from the expression From. Return the implicit conversion
3161/// sequence required to pass this argument, which may be a bad
3162/// conversion sequence (meaning that the argument cannot be passed to
3163/// a parameter of this type). If @p SuppressUserConversions, then we
3164/// do not permit any user-defined conversion sequences.
3165static ImplicitConversionSequence
3166TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3167                      bool SuppressUserConversions,
3168                      bool InOverloadResolution) {
3169  if (ToType->isReferenceType())
3170    return TryReferenceInit(S, From, ToType,
3171                            /*FIXME:*/From->getLocStart(),
3172                            SuppressUserConversions,
3173                            /*AllowExplicit=*/false);
3174
3175  return TryImplicitConversion(S, From, ToType,
3176                               SuppressUserConversions,
3177                               /*AllowExplicit=*/false,
3178                               InOverloadResolution);
3179}
3180
3181/// TryObjectArgumentInitialization - Try to initialize the object
3182/// parameter of the given member function (@c Method) from the
3183/// expression @p From.
3184static ImplicitConversionSequence
3185TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3186                                Expr::Classification FromClassification,
3187                                CXXMethodDecl *Method,
3188                                CXXRecordDecl *ActingContext) {
3189  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3190  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3191  //                 const volatile object.
3192  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3193    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3194  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
3195
3196  // Set up the conversion sequence as a "bad" conversion, to allow us
3197  // to exit early.
3198  ImplicitConversionSequence ICS;
3199
3200  // We need to have an object of class type.
3201  QualType FromType = OrigFromType;
3202  if (const PointerType *PT = FromType->getAs<PointerType>()) {
3203    FromType = PT->getPointeeType();
3204
3205    // When we had a pointer, it's implicitly dereferenced, so we
3206    // better have an lvalue.
3207    assert(FromClassification.isLValue());
3208  }
3209
3210  assert(FromType->isRecordType());
3211
3212  // C++0x [over.match.funcs]p4:
3213  //   For non-static member functions, the type of the implicit object
3214  //   parameter is
3215  //
3216  //     — "lvalue reference to cv X" for functions declared without a
3217  //       ref-qualifier or with the & ref-qualifier
3218  //     — "rvalue reference to cv X" for functions declared with the &&
3219  //        ref-qualifier
3220  //
3221  // where X is the class of which the function is a member and cv is the
3222  // cv-qualification on the member function declaration.
3223  //
3224  // However, when finding an implicit conversion sequence for the argument, we
3225  // are not allowed to create temporaries or perform user-defined conversions
3226  // (C++ [over.match.funcs]p5). We perform a simplified version of
3227  // reference binding here, that allows class rvalues to bind to
3228  // non-constant references.
3229
3230  // First check the qualifiers.
3231  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3232  if (ImplicitParamType.getCVRQualifiers()
3233                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3234      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3235    ICS.setBad(BadConversionSequence::bad_qualifiers,
3236               OrigFromType, ImplicitParamType);
3237    return ICS;
3238  }
3239
3240  // Check that we have either the same type or a derived type. It
3241  // affects the conversion rank.
3242  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3243  ImplicitConversionKind SecondKind;
3244  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3245    SecondKind = ICK_Identity;
3246  } else if (S.IsDerivedFrom(FromType, ClassType))
3247    SecondKind = ICK_Derived_To_Base;
3248  else {
3249    ICS.setBad(BadConversionSequence::unrelated_class,
3250               FromType, ImplicitParamType);
3251    return ICS;
3252  }
3253
3254  // Check the ref-qualifier.
3255  switch (Method->getRefQualifier()) {
3256  case RQ_None:
3257    // Do nothing; we don't care about lvalueness or rvalueness.
3258    break;
3259
3260  case RQ_LValue:
3261    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
3262      // non-const lvalue reference cannot bind to an rvalue
3263      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
3264                 ImplicitParamType);
3265      return ICS;
3266    }
3267    break;
3268
3269  case RQ_RValue:
3270    if (!FromClassification.isRValue()) {
3271      // rvalue reference cannot bind to an lvalue
3272      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
3273                 ImplicitParamType);
3274      return ICS;
3275    }
3276    break;
3277  }
3278
3279  // Success. Mark this as a reference binding.
3280  ICS.setStandard();
3281  ICS.Standard.setAsIdentityConversion();
3282  ICS.Standard.Second = SecondKind;
3283  ICS.Standard.setFromType(FromType);
3284  ICS.Standard.setAllToTypes(ImplicitParamType);
3285  ICS.Standard.ReferenceBinding = true;
3286  ICS.Standard.DirectBinding = true;
3287  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
3288  ICS.Standard.BindsToFunctionLvalue = false;
3289
3290  // Note: we intentionally don't set this; see isBetterReferenceBindingKind().
3291  ICS.Standard.BindsToRvalue = false;
3292  return ICS;
3293}
3294
3295/// PerformObjectArgumentInitialization - Perform initialization of
3296/// the implicit object parameter for the given Method with the given
3297/// expression.
3298bool
3299Sema::PerformObjectArgumentInitialization(Expr *&From,
3300                                          NestedNameSpecifier *Qualifier,
3301                                          NamedDecl *FoundDecl,
3302                                          CXXMethodDecl *Method) {
3303  QualType FromRecordType, DestType;
3304  QualType ImplicitParamRecordType  =
3305    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
3306
3307  Expr::Classification FromClassification;
3308  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3309    FromRecordType = PT->getPointeeType();
3310    DestType = Method->getThisType(Context);
3311    FromClassification = Expr::Classification::makeSimpleLValue();
3312  } else {
3313    FromRecordType = From->getType();
3314    DestType = ImplicitParamRecordType;
3315    FromClassification = From->Classify(Context);
3316  }
3317
3318  // Note that we always use the true parent context when performing
3319  // the actual argument initialization.
3320  ImplicitConversionSequence ICS
3321    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
3322                                      Method, Method->getParent());
3323  if (ICS.isBad()) {
3324    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
3325      Qualifiers FromQs = FromRecordType.getQualifiers();
3326      Qualifiers ToQs = DestType.getQualifiers();
3327      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
3328      if (CVR) {
3329        Diag(From->getSourceRange().getBegin(),
3330             diag::err_member_function_call_bad_cvr)
3331          << Method->getDeclName() << FromRecordType << (CVR - 1)
3332          << From->getSourceRange();
3333        Diag(Method->getLocation(), diag::note_previous_decl)
3334          << Method->getDeclName();
3335        return true;
3336      }
3337    }
3338
3339    return Diag(From->getSourceRange().getBegin(),
3340                diag::err_implicit_object_parameter_init)
3341       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3342  }
3343
3344  if (ICS.Standard.Second == ICK_Derived_To_Base)
3345    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3346
3347  if (!Context.hasSameType(From->getType(), DestType))
3348    ImpCastExprToType(From, DestType, CK_NoOp,
3349                      From->getType()->isPointerType() ? VK_RValue : VK_LValue);
3350  return false;
3351}
3352
3353/// TryContextuallyConvertToBool - Attempt to contextually convert the
3354/// expression From to bool (C++0x [conv]p3).
3355static ImplicitConversionSequence
3356TryContextuallyConvertToBool(Sema &S, Expr *From) {
3357  // FIXME: This is pretty broken.
3358  return TryImplicitConversion(S, From, S.Context.BoolTy,
3359                               // FIXME: Are these flags correct?
3360                               /*SuppressUserConversions=*/false,
3361                               /*AllowExplicit=*/true,
3362                               /*InOverloadResolution=*/false);
3363}
3364
3365/// PerformContextuallyConvertToBool - Perform a contextual conversion
3366/// of the expression From to bool (C++0x [conv]p3).
3367bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
3368  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
3369  if (!ICS.isBad())
3370    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3371
3372  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3373    return  Diag(From->getSourceRange().getBegin(),
3374                 diag::err_typecheck_bool_condition)
3375                  << From->getType() << From->getSourceRange();
3376  return true;
3377}
3378
3379/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3380/// expression From to 'id'.
3381static ImplicitConversionSequence
3382TryContextuallyConvertToObjCId(Sema &S, Expr *From) {
3383  QualType Ty = S.Context.getObjCIdType();
3384  return TryImplicitConversion(S, From, Ty,
3385                               // FIXME: Are these flags correct?
3386                               /*SuppressUserConversions=*/false,
3387                               /*AllowExplicit=*/true,
3388                               /*InOverloadResolution=*/false);
3389}
3390
3391/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3392/// of the expression From to 'id'.
3393bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
3394  QualType Ty = Context.getObjCIdType();
3395  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(*this, From);
3396  if (!ICS.isBad())
3397    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3398  return true;
3399}
3400
3401/// \brief Attempt to convert the given expression to an integral or
3402/// enumeration type.
3403///
3404/// This routine will attempt to convert an expression of class type to an
3405/// integral or enumeration type, if that class type only has a single
3406/// conversion to an integral or enumeration type.
3407///
3408/// \param Loc The source location of the construct that requires the
3409/// conversion.
3410///
3411/// \param FromE The expression we're converting from.
3412///
3413/// \param NotIntDiag The diagnostic to be emitted if the expression does not
3414/// have integral or enumeration type.
3415///
3416/// \param IncompleteDiag The diagnostic to be emitted if the expression has
3417/// incomplete class type.
3418///
3419/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
3420/// explicit conversion function (because no implicit conversion functions
3421/// were available). This is a recovery mode.
3422///
3423/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
3424/// showing which conversion was picked.
3425///
3426/// \param AmbigDiag The diagnostic to be emitted if there is more than one
3427/// conversion function that could convert to integral or enumeration type.
3428///
3429/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
3430/// usable conversion function.
3431///
3432/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
3433/// function, which may be an extension in this case.
3434///
3435/// \returns The expression, converted to an integral or enumeration type if
3436/// successful.
3437ExprResult
3438Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
3439                                         const PartialDiagnostic &NotIntDiag,
3440                                       const PartialDiagnostic &IncompleteDiag,
3441                                     const PartialDiagnostic &ExplicitConvDiag,
3442                                     const PartialDiagnostic &ExplicitConvNote,
3443                                         const PartialDiagnostic &AmbigDiag,
3444                                         const PartialDiagnostic &AmbigNote,
3445                                         const PartialDiagnostic &ConvDiag) {
3446  // We can't perform any more checking for type-dependent expressions.
3447  if (From->isTypeDependent())
3448    return Owned(From);
3449
3450  // If the expression already has integral or enumeration type, we're golden.
3451  QualType T = From->getType();
3452  if (T->isIntegralOrEnumerationType())
3453    return Owned(From);
3454
3455  // FIXME: Check for missing '()' if T is a function type?
3456
3457  // If we don't have a class type in C++, there's no way we can get an
3458  // expression of integral or enumeration type.
3459  const RecordType *RecordTy = T->getAs<RecordType>();
3460  if (!RecordTy || !getLangOptions().CPlusPlus) {
3461    Diag(Loc, NotIntDiag)
3462      << T << From->getSourceRange();
3463    return Owned(From);
3464  }
3465
3466  // We must have a complete class type.
3467  if (RequireCompleteType(Loc, T, IncompleteDiag))
3468    return Owned(From);
3469
3470  // Look for a conversion to an integral or enumeration type.
3471  UnresolvedSet<4> ViableConversions;
3472  UnresolvedSet<4> ExplicitConversions;
3473  const UnresolvedSetImpl *Conversions
3474    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
3475
3476  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3477                                   E = Conversions->end();
3478       I != E;
3479       ++I) {
3480    if (CXXConversionDecl *Conversion
3481          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
3482      if (Conversion->getConversionType().getNonReferenceType()
3483            ->isIntegralOrEnumerationType()) {
3484        if (Conversion->isExplicit())
3485          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
3486        else
3487          ViableConversions.addDecl(I.getDecl(), I.getAccess());
3488      }
3489  }
3490
3491  switch (ViableConversions.size()) {
3492  case 0:
3493    if (ExplicitConversions.size() == 1) {
3494      DeclAccessPair Found = ExplicitConversions[0];
3495      CXXConversionDecl *Conversion
3496        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3497
3498      // The user probably meant to invoke the given explicit
3499      // conversion; use it.
3500      QualType ConvTy
3501        = Conversion->getConversionType().getNonReferenceType();
3502      std::string TypeStr;
3503      ConvTy.getAsStringInternal(TypeStr, Context.PrintingPolicy);
3504
3505      Diag(Loc, ExplicitConvDiag)
3506        << T << ConvTy
3507        << FixItHint::CreateInsertion(From->getLocStart(),
3508                                      "static_cast<" + TypeStr + ">(")
3509        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
3510                                      ")");
3511      Diag(Conversion->getLocation(), ExplicitConvNote)
3512        << ConvTy->isEnumeralType() << ConvTy;
3513
3514      // If we aren't in a SFINAE context, build a call to the
3515      // explicit conversion function.
3516      if (isSFINAEContext())
3517        return ExprError();
3518
3519      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3520      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion);
3521      if (Result.isInvalid())
3522        return ExprError();
3523
3524      From = Result.get();
3525    }
3526
3527    // We'll complain below about a non-integral condition type.
3528    break;
3529
3530  case 1: {
3531    // Apply this conversion.
3532    DeclAccessPair Found = ViableConversions[0];
3533    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
3534
3535    CXXConversionDecl *Conversion
3536      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
3537    QualType ConvTy
3538      = Conversion->getConversionType().getNonReferenceType();
3539    if (ConvDiag.getDiagID()) {
3540      if (isSFINAEContext())
3541        return ExprError();
3542
3543      Diag(Loc, ConvDiag)
3544        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
3545    }
3546
3547    ExprResult Result = BuildCXXMemberCallExpr(From, Found,
3548                          cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
3549    if (Result.isInvalid())
3550      return ExprError();
3551
3552    From = Result.get();
3553    break;
3554  }
3555
3556  default:
3557    Diag(Loc, AmbigDiag)
3558      << T << From->getSourceRange();
3559    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
3560      CXXConversionDecl *Conv
3561        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
3562      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
3563      Diag(Conv->getLocation(), AmbigNote)
3564        << ConvTy->isEnumeralType() << ConvTy;
3565    }
3566    return Owned(From);
3567  }
3568
3569  if (!From->getType()->isIntegralOrEnumerationType())
3570    Diag(Loc, NotIntDiag)
3571      << From->getType() << From->getSourceRange();
3572
3573  return Owned(From);
3574}
3575
3576/// AddOverloadCandidate - Adds the given function to the set of
3577/// candidate functions, using the given function call arguments.  If
3578/// @p SuppressUserConversions, then don't allow user-defined
3579/// conversions via constructors or conversion operators.
3580///
3581/// \para PartialOverloading true if we are performing "partial" overloading
3582/// based on an incomplete set of function arguments. This feature is used by
3583/// code completion.
3584void
3585Sema::AddOverloadCandidate(FunctionDecl *Function,
3586                           DeclAccessPair FoundDecl,
3587                           Expr **Args, unsigned NumArgs,
3588                           OverloadCandidateSet& CandidateSet,
3589                           bool SuppressUserConversions,
3590                           bool PartialOverloading) {
3591  const FunctionProtoType* Proto
3592    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
3593  assert(Proto && "Functions without a prototype cannot be overloaded");
3594  assert(!Function->getDescribedFunctionTemplate() &&
3595         "Use AddTemp∫lateOverloadCandidate for function templates");
3596
3597  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3598    if (!isa<CXXConstructorDecl>(Method)) {
3599      // If we get here, it's because we're calling a member function
3600      // that is named without a member access expression (e.g.,
3601      // "this->f") that was either written explicitly or created
3602      // implicitly. This can happen with a qualified call to a member
3603      // function, e.g., X::f(). We use an empty type for the implied
3604      // object argument (C++ [over.call.func]p3), and the acting context
3605      // is irrelevant.
3606      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
3607                         QualType(), Expr::Classification::makeSimpleLValue(),
3608                         Args, NumArgs, CandidateSet,
3609                         SuppressUserConversions);
3610      return;
3611    }
3612    // We treat a constructor like a non-member function, since its object
3613    // argument doesn't participate in overload resolution.
3614  }
3615
3616  if (!CandidateSet.isNewCandidate(Function))
3617    return;
3618
3619  // Overload resolution is always an unevaluated context.
3620  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3621
3622  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
3623    // C++ [class.copy]p3:
3624    //   A member function template is never instantiated to perform the copy
3625    //   of a class object to an object of its class type.
3626    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3627    if (NumArgs == 1 &&
3628        Constructor->isSpecializationCopyingObject() &&
3629        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3630         IsDerivedFrom(Args[0]->getType(), ClassType)))
3631      return;
3632  }
3633
3634  // Add this candidate
3635  CandidateSet.push_back(OverloadCandidate());
3636  OverloadCandidate& Candidate = CandidateSet.back();
3637  Candidate.FoundDecl = FoundDecl;
3638  Candidate.Function = Function;
3639  Candidate.Viable = true;
3640  Candidate.IsSurrogate = false;
3641  Candidate.IgnoreObjectArgument = false;
3642  Candidate.ExplicitCallArguments = NumArgs;
3643
3644  unsigned NumArgsInProto = Proto->getNumArgs();
3645
3646  // (C++ 13.3.2p2): A candidate function having fewer than m
3647  // parameters is viable only if it has an ellipsis in its parameter
3648  // list (8.3.5).
3649  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3650      !Proto->isVariadic()) {
3651    Candidate.Viable = false;
3652    Candidate.FailureKind = ovl_fail_too_many_arguments;
3653    return;
3654  }
3655
3656  // (C++ 13.3.2p2): A candidate function having more than m parameters
3657  // is viable only if the (m+1)st parameter has a default argument
3658  // (8.3.6). For the purposes of overload resolution, the
3659  // parameter list is truncated on the right, so that there are
3660  // exactly m parameters.
3661  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3662  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3663    // Not enough arguments.
3664    Candidate.Viable = false;
3665    Candidate.FailureKind = ovl_fail_too_few_arguments;
3666    return;
3667  }
3668
3669  // Determine the implicit conversion sequences for each of the
3670  // arguments.
3671  Candidate.Conversions.resize(NumArgs);
3672  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3673    if (ArgIdx < NumArgsInProto) {
3674      // (C++ 13.3.2p3): for F to be a viable function, there shall
3675      // exist for each argument an implicit conversion sequence
3676      // (13.3.3.1) that converts that argument to the corresponding
3677      // parameter of F.
3678      QualType ParamType = Proto->getArgType(ArgIdx);
3679      Candidate.Conversions[ArgIdx]
3680        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3681                                SuppressUserConversions,
3682                                /*InOverloadResolution=*/true);
3683      if (Candidate.Conversions[ArgIdx].isBad()) {
3684        Candidate.Viable = false;
3685        Candidate.FailureKind = ovl_fail_bad_conversion;
3686        break;
3687      }
3688    } else {
3689      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3690      // argument for which there is no corresponding parameter is
3691      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3692      Candidate.Conversions[ArgIdx].setEllipsis();
3693    }
3694  }
3695}
3696
3697/// \brief Add all of the function declarations in the given function set to
3698/// the overload canddiate set.
3699void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3700                                 Expr **Args, unsigned NumArgs,
3701                                 OverloadCandidateSet& CandidateSet,
3702                                 bool SuppressUserConversions) {
3703  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3704    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3705    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3706      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3707        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3708                           cast<CXXMethodDecl>(FD)->getParent(),
3709                           Args[0]->getType(), Args[0]->Classify(Context),
3710                           Args + 1, NumArgs - 1,
3711                           CandidateSet, SuppressUserConversions);
3712      else
3713        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3714                             SuppressUserConversions);
3715    } else {
3716      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3717      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3718          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3719        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3720                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3721                                   /*FIXME: explicit args */ 0,
3722                                   Args[0]->getType(),
3723                                   Args[0]->Classify(Context),
3724                                   Args + 1, NumArgs - 1,
3725                                   CandidateSet,
3726                                   SuppressUserConversions);
3727      else
3728        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3729                                     /*FIXME: explicit args */ 0,
3730                                     Args, NumArgs, CandidateSet,
3731                                     SuppressUserConversions);
3732    }
3733  }
3734}
3735
3736/// AddMethodCandidate - Adds a named decl (which is some kind of
3737/// method) as a method candidate to the given overload set.
3738void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3739                              QualType ObjectType,
3740                              Expr::Classification ObjectClassification,
3741                              Expr **Args, unsigned NumArgs,
3742                              OverloadCandidateSet& CandidateSet,
3743                              bool SuppressUserConversions) {
3744  NamedDecl *Decl = FoundDecl.getDecl();
3745  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
3746
3747  if (isa<UsingShadowDecl>(Decl))
3748    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
3749
3750  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
3751    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
3752           "Expected a member function template");
3753    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
3754                               /*ExplicitArgs*/ 0,
3755                               ObjectType, ObjectClassification, Args, NumArgs,
3756                               CandidateSet,
3757                               SuppressUserConversions);
3758  } else {
3759    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
3760                       ObjectType, ObjectClassification, Args, NumArgs,
3761                       CandidateSet, SuppressUserConversions);
3762  }
3763}
3764
3765/// AddMethodCandidate - Adds the given C++ member function to the set
3766/// of candidate functions, using the given function call arguments
3767/// and the object argument (@c Object). For example, in a call
3768/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
3769/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
3770/// allow user-defined conversions via constructors or conversion
3771/// operators.
3772void
3773Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
3774                         CXXRecordDecl *ActingContext, QualType ObjectType,
3775                         Expr::Classification ObjectClassification,
3776                         Expr **Args, unsigned NumArgs,
3777                         OverloadCandidateSet& CandidateSet,
3778                         bool SuppressUserConversions) {
3779  const FunctionProtoType* Proto
3780    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
3781  assert(Proto && "Methods without a prototype cannot be overloaded");
3782  assert(!isa<CXXConstructorDecl>(Method) &&
3783         "Use AddOverloadCandidate for constructors");
3784
3785  if (!CandidateSet.isNewCandidate(Method))
3786    return;
3787
3788  // Overload resolution is always an unevaluated context.
3789  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3790
3791  // Add this candidate
3792  CandidateSet.push_back(OverloadCandidate());
3793  OverloadCandidate& Candidate = CandidateSet.back();
3794  Candidate.FoundDecl = FoundDecl;
3795  Candidate.Function = Method;
3796  Candidate.IsSurrogate = false;
3797  Candidate.IgnoreObjectArgument = false;
3798  Candidate.ExplicitCallArguments = NumArgs;
3799
3800  unsigned NumArgsInProto = Proto->getNumArgs();
3801
3802  // (C++ 13.3.2p2): A candidate function having fewer than m
3803  // parameters is viable only if it has an ellipsis in its parameter
3804  // list (8.3.5).
3805  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3806    Candidate.Viable = false;
3807    Candidate.FailureKind = ovl_fail_too_many_arguments;
3808    return;
3809  }
3810
3811  // (C++ 13.3.2p2): A candidate function having more than m parameters
3812  // is viable only if the (m+1)st parameter has a default argument
3813  // (8.3.6). For the purposes of overload resolution, the
3814  // parameter list is truncated on the right, so that there are
3815  // exactly m parameters.
3816  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
3817  if (NumArgs < MinRequiredArgs) {
3818    // Not enough arguments.
3819    Candidate.Viable = false;
3820    Candidate.FailureKind = ovl_fail_too_few_arguments;
3821    return;
3822  }
3823
3824  Candidate.Viable = true;
3825  Candidate.Conversions.resize(NumArgs + 1);
3826
3827  if (Method->isStatic() || ObjectType.isNull())
3828    // The implicit object argument is ignored.
3829    Candidate.IgnoreObjectArgument = true;
3830  else {
3831    // Determine the implicit conversion sequence for the object
3832    // parameter.
3833    Candidate.Conversions[0]
3834      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
3835                                        Method, ActingContext);
3836    if (Candidate.Conversions[0].isBad()) {
3837      Candidate.Viable = false;
3838      Candidate.FailureKind = ovl_fail_bad_conversion;
3839      return;
3840    }
3841  }
3842
3843  // Determine the implicit conversion sequences for each of the
3844  // arguments.
3845  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3846    if (ArgIdx < NumArgsInProto) {
3847      // (C++ 13.3.2p3): for F to be a viable function, there shall
3848      // exist for each argument an implicit conversion sequence
3849      // (13.3.3.1) that converts that argument to the corresponding
3850      // parameter of F.
3851      QualType ParamType = Proto->getArgType(ArgIdx);
3852      Candidate.Conversions[ArgIdx + 1]
3853        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3854                                SuppressUserConversions,
3855                                /*InOverloadResolution=*/true);
3856      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3857        Candidate.Viable = false;
3858        Candidate.FailureKind = ovl_fail_bad_conversion;
3859        break;
3860      }
3861    } else {
3862      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3863      // argument for which there is no corresponding parameter is
3864      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3865      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3866    }
3867  }
3868}
3869
3870/// \brief Add a C++ member function template as a candidate to the candidate
3871/// set, using template argument deduction to produce an appropriate member
3872/// function template specialization.
3873void
3874Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3875                                 DeclAccessPair FoundDecl,
3876                                 CXXRecordDecl *ActingContext,
3877                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3878                                 QualType ObjectType,
3879                                 Expr::Classification ObjectClassification,
3880                                 Expr **Args, unsigned NumArgs,
3881                                 OverloadCandidateSet& CandidateSet,
3882                                 bool SuppressUserConversions) {
3883  if (!CandidateSet.isNewCandidate(MethodTmpl))
3884    return;
3885
3886  // C++ [over.match.funcs]p7:
3887  //   In each case where a candidate is a function template, candidate
3888  //   function template specializations are generated using template argument
3889  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3890  //   candidate functions in the usual way.113) A given name can refer to one
3891  //   or more function templates and also to a set of overloaded non-template
3892  //   functions. In such a case, the candidate functions generated from each
3893  //   function template are combined with the set of non-template candidate
3894  //   functions.
3895  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3896  FunctionDecl *Specialization = 0;
3897  if (TemplateDeductionResult Result
3898      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3899                                Args, NumArgs, Specialization, Info)) {
3900    CandidateSet.push_back(OverloadCandidate());
3901    OverloadCandidate &Candidate = CandidateSet.back();
3902    Candidate.FoundDecl = FoundDecl;
3903    Candidate.Function = MethodTmpl->getTemplatedDecl();
3904    Candidate.Viable = false;
3905    Candidate.FailureKind = ovl_fail_bad_deduction;
3906    Candidate.IsSurrogate = false;
3907    Candidate.IgnoreObjectArgument = false;
3908    Candidate.ExplicitCallArguments = NumArgs;
3909    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3910                                                          Info);
3911    return;
3912  }
3913
3914  // Add the function template specialization produced by template argument
3915  // deduction as a candidate.
3916  assert(Specialization && "Missing member function template specialization?");
3917  assert(isa<CXXMethodDecl>(Specialization) &&
3918         "Specialization is not a member function?");
3919  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3920                     ActingContext, ObjectType, ObjectClassification,
3921                     Args, NumArgs, CandidateSet, SuppressUserConversions);
3922}
3923
3924/// \brief Add a C++ function template specialization as a candidate
3925/// in the candidate set, using template argument deduction to produce
3926/// an appropriate function template specialization.
3927void
3928Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3929                                   DeclAccessPair FoundDecl,
3930                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3931                                   Expr **Args, unsigned NumArgs,
3932                                   OverloadCandidateSet& CandidateSet,
3933                                   bool SuppressUserConversions) {
3934  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3935    return;
3936
3937  // C++ [over.match.funcs]p7:
3938  //   In each case where a candidate is a function template, candidate
3939  //   function template specializations are generated using template argument
3940  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3941  //   candidate functions in the usual way.113) A given name can refer to one
3942  //   or more function templates and also to a set of overloaded non-template
3943  //   functions. In such a case, the candidate functions generated from each
3944  //   function template are combined with the set of non-template candidate
3945  //   functions.
3946  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3947  FunctionDecl *Specialization = 0;
3948  if (TemplateDeductionResult Result
3949        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3950                                  Args, NumArgs, Specialization, Info)) {
3951    CandidateSet.push_back(OverloadCandidate());
3952    OverloadCandidate &Candidate = CandidateSet.back();
3953    Candidate.FoundDecl = FoundDecl;
3954    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3955    Candidate.Viable = false;
3956    Candidate.FailureKind = ovl_fail_bad_deduction;
3957    Candidate.IsSurrogate = false;
3958    Candidate.IgnoreObjectArgument = false;
3959    Candidate.ExplicitCallArguments = NumArgs;
3960    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3961                                                          Info);
3962    return;
3963  }
3964
3965  // Add the function template specialization produced by template argument
3966  // deduction as a candidate.
3967  assert(Specialization && "Missing function template specialization?");
3968  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3969                       SuppressUserConversions);
3970}
3971
3972/// AddConversionCandidate - Add a C++ conversion function as a
3973/// candidate in the candidate set (C++ [over.match.conv],
3974/// C++ [over.match.copy]). From is the expression we're converting from,
3975/// and ToType is the type that we're eventually trying to convert to
3976/// (which may or may not be the same type as the type that the
3977/// conversion function produces).
3978void
3979Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3980                             DeclAccessPair FoundDecl,
3981                             CXXRecordDecl *ActingContext,
3982                             Expr *From, QualType ToType,
3983                             OverloadCandidateSet& CandidateSet) {
3984  assert(!Conversion->getDescribedFunctionTemplate() &&
3985         "Conversion function templates use AddTemplateConversionCandidate");
3986  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3987  if (!CandidateSet.isNewCandidate(Conversion))
3988    return;
3989
3990  // Overload resolution is always an unevaluated context.
3991  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
3992
3993  // Add this candidate
3994  CandidateSet.push_back(OverloadCandidate());
3995  OverloadCandidate& Candidate = CandidateSet.back();
3996  Candidate.FoundDecl = FoundDecl;
3997  Candidate.Function = Conversion;
3998  Candidate.IsSurrogate = false;
3999  Candidate.IgnoreObjectArgument = false;
4000  Candidate.FinalConversion.setAsIdentityConversion();
4001  Candidate.FinalConversion.setFromType(ConvType);
4002  Candidate.FinalConversion.setAllToTypes(ToType);
4003  Candidate.Viable = true;
4004  Candidate.Conversions.resize(1);
4005  Candidate.ExplicitCallArguments = 1;
4006
4007  // C++ [over.match.funcs]p4:
4008  //   For conversion functions, the function is considered to be a member of
4009  //   the class of the implicit implied object argument for the purpose of
4010  //   defining the type of the implicit object parameter.
4011  //
4012  // Determine the implicit conversion sequence for the implicit
4013  // object parameter.
4014  QualType ImplicitParamType = From->getType();
4015  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
4016    ImplicitParamType = FromPtrType->getPointeeType();
4017  CXXRecordDecl *ConversionContext
4018    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
4019
4020  Candidate.Conversions[0]
4021    = TryObjectArgumentInitialization(*this, From->getType(),
4022                                      From->Classify(Context),
4023                                      Conversion, ConversionContext);
4024
4025  if (Candidate.Conversions[0].isBad()) {
4026    Candidate.Viable = false;
4027    Candidate.FailureKind = ovl_fail_bad_conversion;
4028    return;
4029  }
4030
4031  // We won't go through a user-define type conversion function to convert a
4032  // derived to base as such conversions are given Conversion Rank. They only
4033  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
4034  QualType FromCanon
4035    = Context.getCanonicalType(From->getType().getUnqualifiedType());
4036  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
4037  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
4038    Candidate.Viable = false;
4039    Candidate.FailureKind = ovl_fail_trivial_conversion;
4040    return;
4041  }
4042
4043  // To determine what the conversion from the result of calling the
4044  // conversion function to the type we're eventually trying to
4045  // convert to (ToType), we need to synthesize a call to the
4046  // conversion function and attempt copy initialization from it. This
4047  // makes sure that we get the right semantics with respect to
4048  // lvalues/rvalues and the type. Fortunately, we can allocate this
4049  // call on the stack and we don't need its arguments to be
4050  // well-formed.
4051  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
4052                            VK_LValue, From->getLocStart());
4053  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
4054                                Context.getPointerType(Conversion->getType()),
4055                                CK_FunctionToPointerDecay,
4056                                &ConversionRef, VK_RValue);
4057
4058  QualType CallResultType
4059    = Conversion->getConversionType().getNonLValueExprType(Context);
4060  if (RequireCompleteType(From->getLocStart(), CallResultType, 0)) {
4061    Candidate.Viable = false;
4062    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4063    return;
4064  }
4065
4066  ExprValueKind VK = Expr::getValueKindForType(Conversion->getConversionType());
4067
4068  // Note that it is safe to allocate CallExpr on the stack here because
4069  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4070  // allocator).
4071  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4072                From->getLocStart());
4073  ImplicitConversionSequence ICS =
4074    TryCopyInitialization(*this, &Call, ToType,
4075                          /*SuppressUserConversions=*/true,
4076                          /*InOverloadResolution=*/false);
4077
4078  switch (ICS.getKind()) {
4079  case ImplicitConversionSequence::StandardConversion:
4080    Candidate.FinalConversion = ICS.Standard;
4081
4082    // C++ [over.ics.user]p3:
4083    //   If the user-defined conversion is specified by a specialization of a
4084    //   conversion function template, the second standard conversion sequence
4085    //   shall have exact match rank.
4086    if (Conversion->getPrimaryTemplate() &&
4087        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4088      Candidate.Viable = false;
4089      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4090    }
4091
4092    // C++0x [dcl.init.ref]p5:
4093    //    In the second case, if the reference is an rvalue reference and
4094    //    the second standard conversion sequence of the user-defined
4095    //    conversion sequence includes an lvalue-to-rvalue conversion, the
4096    //    program is ill-formed.
4097    if (ToType->isRValueReferenceType() &&
4098        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4099      Candidate.Viable = false;
4100      Candidate.FailureKind = ovl_fail_bad_final_conversion;
4101    }
4102    break;
4103
4104  case ImplicitConversionSequence::BadConversion:
4105    Candidate.Viable = false;
4106    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4107    break;
4108
4109  default:
4110    assert(false &&
4111           "Can only end up with a standard conversion sequence or failure");
4112  }
4113}
4114
4115/// \brief Adds a conversion function template specialization
4116/// candidate to the overload set, using template argument deduction
4117/// to deduce the template arguments of the conversion function
4118/// template from the type that we are converting to (C++
4119/// [temp.deduct.conv]).
4120void
4121Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4122                                     DeclAccessPair FoundDecl,
4123                                     CXXRecordDecl *ActingDC,
4124                                     Expr *From, QualType ToType,
4125                                     OverloadCandidateSet &CandidateSet) {
4126  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4127         "Only conversion function templates permitted here");
4128
4129  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4130    return;
4131
4132  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4133  CXXConversionDecl *Specialization = 0;
4134  if (TemplateDeductionResult Result
4135        = DeduceTemplateArguments(FunctionTemplate, ToType,
4136                                  Specialization, Info)) {
4137    CandidateSet.push_back(OverloadCandidate());
4138    OverloadCandidate &Candidate = CandidateSet.back();
4139    Candidate.FoundDecl = FoundDecl;
4140    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4141    Candidate.Viable = false;
4142    Candidate.FailureKind = ovl_fail_bad_deduction;
4143    Candidate.IsSurrogate = false;
4144    Candidate.IgnoreObjectArgument = false;
4145    Candidate.ExplicitCallArguments = 1;
4146    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4147                                                          Info);
4148    return;
4149  }
4150
4151  // Add the conversion function template specialization produced by
4152  // template argument deduction as a candidate.
4153  assert(Specialization && "Missing function template specialization?");
4154  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4155                         CandidateSet);
4156}
4157
4158/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4159/// converts the given @c Object to a function pointer via the
4160/// conversion function @c Conversion, and then attempts to call it
4161/// with the given arguments (C++ [over.call.object]p2-4). Proto is
4162/// the type of function that we'll eventually be calling.
4163void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4164                                 DeclAccessPair FoundDecl,
4165                                 CXXRecordDecl *ActingContext,
4166                                 const FunctionProtoType *Proto,
4167                                 Expr *Object,
4168                                 Expr **Args, unsigned NumArgs,
4169                                 OverloadCandidateSet& CandidateSet) {
4170  if (!CandidateSet.isNewCandidate(Conversion))
4171    return;
4172
4173  // Overload resolution is always an unevaluated context.
4174  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4175
4176  CandidateSet.push_back(OverloadCandidate());
4177  OverloadCandidate& Candidate = CandidateSet.back();
4178  Candidate.FoundDecl = FoundDecl;
4179  Candidate.Function = 0;
4180  Candidate.Surrogate = Conversion;
4181  Candidate.Viable = true;
4182  Candidate.IsSurrogate = true;
4183  Candidate.IgnoreObjectArgument = false;
4184  Candidate.Conversions.resize(NumArgs + 1);
4185  Candidate.ExplicitCallArguments = NumArgs;
4186
4187  // Determine the implicit conversion sequence for the implicit
4188  // object parameter.
4189  ImplicitConversionSequence ObjectInit
4190    = TryObjectArgumentInitialization(*this, Object->getType(),
4191                                      Object->Classify(Context),
4192                                      Conversion, ActingContext);
4193  if (ObjectInit.isBad()) {
4194    Candidate.Viable = false;
4195    Candidate.FailureKind = ovl_fail_bad_conversion;
4196    Candidate.Conversions[0] = ObjectInit;
4197    return;
4198  }
4199
4200  // The first conversion is actually a user-defined conversion whose
4201  // first conversion is ObjectInit's standard conversion (which is
4202  // effectively a reference binding). Record it as such.
4203  Candidate.Conversions[0].setUserDefined();
4204  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
4205  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
4206  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
4207  Candidate.Conversions[0].UserDefined.FoundConversionFunction
4208    = FoundDecl.getDecl();
4209  Candidate.Conversions[0].UserDefined.After
4210    = Candidate.Conversions[0].UserDefined.Before;
4211  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
4212
4213  // Find the
4214  unsigned NumArgsInProto = Proto->getNumArgs();
4215
4216  // (C++ 13.3.2p2): A candidate function having fewer than m
4217  // parameters is viable only if it has an ellipsis in its parameter
4218  // list (8.3.5).
4219  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4220    Candidate.Viable = false;
4221    Candidate.FailureKind = ovl_fail_too_many_arguments;
4222    return;
4223  }
4224
4225  // Function types don't have any default arguments, so just check if
4226  // we have enough arguments.
4227  if (NumArgs < NumArgsInProto) {
4228    // Not enough arguments.
4229    Candidate.Viable = false;
4230    Candidate.FailureKind = ovl_fail_too_few_arguments;
4231    return;
4232  }
4233
4234  // Determine the implicit conversion sequences for each of the
4235  // arguments.
4236  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4237    if (ArgIdx < NumArgsInProto) {
4238      // (C++ 13.3.2p3): for F to be a viable function, there shall
4239      // exist for each argument an implicit conversion sequence
4240      // (13.3.3.1) that converts that argument to the corresponding
4241      // parameter of F.
4242      QualType ParamType = Proto->getArgType(ArgIdx);
4243      Candidate.Conversions[ArgIdx + 1]
4244        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4245                                /*SuppressUserConversions=*/false,
4246                                /*InOverloadResolution=*/false);
4247      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4248        Candidate.Viable = false;
4249        Candidate.FailureKind = ovl_fail_bad_conversion;
4250        break;
4251      }
4252    } else {
4253      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4254      // argument for which there is no corresponding parameter is
4255      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4256      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4257    }
4258  }
4259}
4260
4261/// \brief Add overload candidates for overloaded operators that are
4262/// member functions.
4263///
4264/// Add the overloaded operator candidates that are member functions
4265/// for the operator Op that was used in an operator expression such
4266/// as "x Op y". , Args/NumArgs provides the operator arguments, and
4267/// CandidateSet will store the added overload candidates. (C++
4268/// [over.match.oper]).
4269void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
4270                                       SourceLocation OpLoc,
4271                                       Expr **Args, unsigned NumArgs,
4272                                       OverloadCandidateSet& CandidateSet,
4273                                       SourceRange OpRange) {
4274  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4275
4276  // C++ [over.match.oper]p3:
4277  //   For a unary operator @ with an operand of a type whose
4278  //   cv-unqualified version is T1, and for a binary operator @ with
4279  //   a left operand of a type whose cv-unqualified version is T1 and
4280  //   a right operand of a type whose cv-unqualified version is T2,
4281  //   three sets of candidate functions, designated member
4282  //   candidates, non-member candidates and built-in candidates, are
4283  //   constructed as follows:
4284  QualType T1 = Args[0]->getType();
4285
4286  //     -- If T1 is a class type, the set of member candidates is the
4287  //        result of the qualified lookup of T1::operator@
4288  //        (13.3.1.1.1); otherwise, the set of member candidates is
4289  //        empty.
4290  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
4291    // Complete the type if it can be completed. Otherwise, we're done.
4292    if (RequireCompleteType(OpLoc, T1, PDiag()))
4293      return;
4294
4295    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
4296    LookupQualifiedName(Operators, T1Rec->getDecl());
4297    Operators.suppressDiagnostics();
4298
4299    for (LookupResult::iterator Oper = Operators.begin(),
4300                             OperEnd = Operators.end();
4301         Oper != OperEnd;
4302         ++Oper)
4303      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
4304                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
4305                         CandidateSet,
4306                         /* SuppressUserConversions = */ false);
4307  }
4308}
4309
4310/// AddBuiltinCandidate - Add a candidate for a built-in
4311/// operator. ResultTy and ParamTys are the result and parameter types
4312/// of the built-in candidate, respectively. Args and NumArgs are the
4313/// arguments being passed to the candidate. IsAssignmentOperator
4314/// should be true when this built-in candidate is an assignment
4315/// operator. NumContextualBoolArguments is the number of arguments
4316/// (at the beginning of the argument list) that will be contextually
4317/// converted to bool.
4318void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
4319                               Expr **Args, unsigned NumArgs,
4320                               OverloadCandidateSet& CandidateSet,
4321                               bool IsAssignmentOperator,
4322                               unsigned NumContextualBoolArguments) {
4323  // Overload resolution is always an unevaluated context.
4324  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4325
4326  // Add this candidate
4327  CandidateSet.push_back(OverloadCandidate());
4328  OverloadCandidate& Candidate = CandidateSet.back();
4329  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
4330  Candidate.Function = 0;
4331  Candidate.IsSurrogate = false;
4332  Candidate.IgnoreObjectArgument = false;
4333  Candidate.BuiltinTypes.ResultTy = ResultTy;
4334  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4335    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
4336
4337  // Determine the implicit conversion sequences for each of the
4338  // arguments.
4339  Candidate.Viable = true;
4340  Candidate.Conversions.resize(NumArgs);
4341  Candidate.ExplicitCallArguments = NumArgs;
4342  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4343    // C++ [over.match.oper]p4:
4344    //   For the built-in assignment operators, conversions of the
4345    //   left operand are restricted as follows:
4346    //     -- no temporaries are introduced to hold the left operand, and
4347    //     -- no user-defined conversions are applied to the left
4348    //        operand to achieve a type match with the left-most
4349    //        parameter of a built-in candidate.
4350    //
4351    // We block these conversions by turning off user-defined
4352    // conversions, since that is the only way that initialization of
4353    // a reference to a non-class type can occur from something that
4354    // is not of the same type.
4355    if (ArgIdx < NumContextualBoolArguments) {
4356      assert(ParamTys[ArgIdx] == Context.BoolTy &&
4357             "Contextual conversion to bool requires bool type");
4358      Candidate.Conversions[ArgIdx]
4359        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
4360    } else {
4361      Candidate.Conversions[ArgIdx]
4362        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
4363                                ArgIdx == 0 && IsAssignmentOperator,
4364                                /*InOverloadResolution=*/false);
4365    }
4366    if (Candidate.Conversions[ArgIdx].isBad()) {
4367      Candidate.Viable = false;
4368      Candidate.FailureKind = ovl_fail_bad_conversion;
4369      break;
4370    }
4371  }
4372}
4373
4374/// BuiltinCandidateTypeSet - A set of types that will be used for the
4375/// candidate operator functions for built-in operators (C++
4376/// [over.built]). The types are separated into pointer types and
4377/// enumeration types.
4378class BuiltinCandidateTypeSet  {
4379  /// TypeSet - A set of types.
4380  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
4381
4382  /// PointerTypes - The set of pointer types that will be used in the
4383  /// built-in candidates.
4384  TypeSet PointerTypes;
4385
4386  /// MemberPointerTypes - The set of member pointer types that will be
4387  /// used in the built-in candidates.
4388  TypeSet MemberPointerTypes;
4389
4390  /// EnumerationTypes - The set of enumeration types that will be
4391  /// used in the built-in candidates.
4392  TypeSet EnumerationTypes;
4393
4394  /// \brief The set of vector types that will be used in the built-in
4395  /// candidates.
4396  TypeSet VectorTypes;
4397
4398  /// \brief A flag indicating non-record types are viable candidates
4399  bool HasNonRecordTypes;
4400
4401  /// \brief A flag indicating whether either arithmetic or enumeration types
4402  /// were present in the candidate set.
4403  bool HasArithmeticOrEnumeralTypes;
4404
4405  /// Sema - The semantic analysis instance where we are building the
4406  /// candidate type set.
4407  Sema &SemaRef;
4408
4409  /// Context - The AST context in which we will build the type sets.
4410  ASTContext &Context;
4411
4412  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4413                                               const Qualifiers &VisibleQuals);
4414  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
4415
4416public:
4417  /// iterator - Iterates through the types that are part of the set.
4418  typedef TypeSet::iterator iterator;
4419
4420  BuiltinCandidateTypeSet(Sema &SemaRef)
4421    : HasNonRecordTypes(false),
4422      HasArithmeticOrEnumeralTypes(false),
4423      SemaRef(SemaRef),
4424      Context(SemaRef.Context) { }
4425
4426  void AddTypesConvertedFrom(QualType Ty,
4427                             SourceLocation Loc,
4428                             bool AllowUserConversions,
4429                             bool AllowExplicitConversions,
4430                             const Qualifiers &VisibleTypeConversionsQuals);
4431
4432  /// pointer_begin - First pointer type found;
4433  iterator pointer_begin() { return PointerTypes.begin(); }
4434
4435  /// pointer_end - Past the last pointer type found;
4436  iterator pointer_end() { return PointerTypes.end(); }
4437
4438  /// member_pointer_begin - First member pointer type found;
4439  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
4440
4441  /// member_pointer_end - Past the last member pointer type found;
4442  iterator member_pointer_end() { return MemberPointerTypes.end(); }
4443
4444  /// enumeration_begin - First enumeration type found;
4445  iterator enumeration_begin() { return EnumerationTypes.begin(); }
4446
4447  /// enumeration_end - Past the last enumeration type found;
4448  iterator enumeration_end() { return EnumerationTypes.end(); }
4449
4450  iterator vector_begin() { return VectorTypes.begin(); }
4451  iterator vector_end() { return VectorTypes.end(); }
4452
4453  bool hasNonRecordTypes() { return HasNonRecordTypes; }
4454  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
4455};
4456
4457/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
4458/// the set of pointer types along with any more-qualified variants of
4459/// that type. For example, if @p Ty is "int const *", this routine
4460/// will add "int const *", "int const volatile *", "int const
4461/// restrict *", and "int const volatile restrict *" to the set of
4462/// pointer types. Returns true if the add of @p Ty itself succeeded,
4463/// false otherwise.
4464///
4465/// FIXME: what to do about extended qualifiers?
4466bool
4467BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
4468                                             const Qualifiers &VisibleQuals) {
4469
4470  // Insert this type.
4471  if (!PointerTypes.insert(Ty))
4472    return false;
4473
4474  QualType PointeeTy;
4475  const PointerType *PointerTy = Ty->getAs<PointerType>();
4476  bool buildObjCPtr = false;
4477  if (!PointerTy) {
4478    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
4479      PointeeTy = PTy->getPointeeType();
4480      buildObjCPtr = true;
4481    }
4482    else
4483      assert(false && "type was not a pointer type!");
4484  }
4485  else
4486    PointeeTy = PointerTy->getPointeeType();
4487
4488  // Don't add qualified variants of arrays. For one, they're not allowed
4489  // (the qualifier would sink to the element type), and for another, the
4490  // only overload situation where it matters is subscript or pointer +- int,
4491  // and those shouldn't have qualifier variants anyway.
4492  if (PointeeTy->isArrayType())
4493    return true;
4494  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4495  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
4496    BaseCVR = Array->getElementType().getCVRQualifiers();
4497  bool hasVolatile = VisibleQuals.hasVolatile();
4498  bool hasRestrict = VisibleQuals.hasRestrict();
4499
4500  // Iterate through all strict supersets of BaseCVR.
4501  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4502    if ((CVR | BaseCVR) != CVR) continue;
4503    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
4504    // in the types.
4505    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
4506    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
4507    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4508    if (!buildObjCPtr)
4509      PointerTypes.insert(Context.getPointerType(QPointeeTy));
4510    else
4511      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
4512  }
4513
4514  return true;
4515}
4516
4517/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
4518/// to the set of pointer types along with any more-qualified variants of
4519/// that type. For example, if @p Ty is "int const *", this routine
4520/// will add "int const *", "int const volatile *", "int const
4521/// restrict *", and "int const volatile restrict *" to the set of
4522/// pointer types. Returns true if the add of @p Ty itself succeeded,
4523/// false otherwise.
4524///
4525/// FIXME: what to do about extended qualifiers?
4526bool
4527BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
4528    QualType Ty) {
4529  // Insert this type.
4530  if (!MemberPointerTypes.insert(Ty))
4531    return false;
4532
4533  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
4534  assert(PointerTy && "type was not a member pointer type!");
4535
4536  QualType PointeeTy = PointerTy->getPointeeType();
4537  // Don't add qualified variants of arrays. For one, they're not allowed
4538  // (the qualifier would sink to the element type), and for another, the
4539  // only overload situation where it matters is subscript or pointer +- int,
4540  // and those shouldn't have qualifier variants anyway.
4541  if (PointeeTy->isArrayType())
4542    return true;
4543  const Type *ClassTy = PointerTy->getClass();
4544
4545  // Iterate through all strict supersets of the pointee type's CVR
4546  // qualifiers.
4547  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
4548  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
4549    if ((CVR | BaseCVR) != CVR) continue;
4550
4551    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
4552    MemberPointerTypes.insert(
4553      Context.getMemberPointerType(QPointeeTy, ClassTy));
4554  }
4555
4556  return true;
4557}
4558
4559/// AddTypesConvertedFrom - Add each of the types to which the type @p
4560/// Ty can be implicit converted to the given set of @p Types. We're
4561/// primarily interested in pointer types and enumeration types. We also
4562/// take member pointer types, for the conditional operator.
4563/// AllowUserConversions is true if we should look at the conversion
4564/// functions of a class type, and AllowExplicitConversions if we
4565/// should also include the explicit conversion functions of a class
4566/// type.
4567void
4568BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
4569                                               SourceLocation Loc,
4570                                               bool AllowUserConversions,
4571                                               bool AllowExplicitConversions,
4572                                               const Qualifiers &VisibleQuals) {
4573  // Only deal with canonical types.
4574  Ty = Context.getCanonicalType(Ty);
4575
4576  // Look through reference types; they aren't part of the type of an
4577  // expression for the purposes of conversions.
4578  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
4579    Ty = RefTy->getPointeeType();
4580
4581  // If we're dealing with an array type, decay to the pointer.
4582  if (Ty->isArrayType())
4583    Ty = SemaRef.Context.getArrayDecayedType(Ty);
4584
4585  // Otherwise, we don't care about qualifiers on the type.
4586  Ty = Ty.getLocalUnqualifiedType();
4587
4588  // Flag if we ever add a non-record type.
4589  const RecordType *TyRec = Ty->getAs<RecordType>();
4590  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
4591
4592  // Flag if we encounter an arithmetic type.
4593  HasArithmeticOrEnumeralTypes =
4594    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
4595
4596  if (Ty->isObjCIdType() || Ty->isObjCClassType())
4597    PointerTypes.insert(Ty);
4598  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
4599    // Insert our type, and its more-qualified variants, into the set
4600    // of types.
4601    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
4602      return;
4603  } else if (Ty->isMemberPointerType()) {
4604    // Member pointers are far easier, since the pointee can't be converted.
4605    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
4606      return;
4607  } else if (Ty->isEnumeralType()) {
4608    HasArithmeticOrEnumeralTypes = true;
4609    EnumerationTypes.insert(Ty);
4610  } else if (Ty->isVectorType()) {
4611    // We treat vector types as arithmetic types in many contexts as an
4612    // extension.
4613    HasArithmeticOrEnumeralTypes = true;
4614    VectorTypes.insert(Ty);
4615  } else if (AllowUserConversions && TyRec) {
4616    // No conversion functions in incomplete types.
4617    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
4618      return;
4619
4620    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4621    const UnresolvedSetImpl *Conversions
4622      = ClassDecl->getVisibleConversionFunctions();
4623    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4624           E = Conversions->end(); I != E; ++I) {
4625      NamedDecl *D = I.getDecl();
4626      if (isa<UsingShadowDecl>(D))
4627        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4628
4629      // Skip conversion function templates; they don't tell us anything
4630      // about which builtin types we can convert to.
4631      if (isa<FunctionTemplateDecl>(D))
4632        continue;
4633
4634      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
4635      if (AllowExplicitConversions || !Conv->isExplicit()) {
4636        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
4637                              VisibleQuals);
4638      }
4639    }
4640  }
4641}
4642
4643/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
4644/// the volatile- and non-volatile-qualified assignment operators for the
4645/// given type to the candidate set.
4646static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
4647                                                   QualType T,
4648                                                   Expr **Args,
4649                                                   unsigned NumArgs,
4650                                    OverloadCandidateSet &CandidateSet) {
4651  QualType ParamTypes[2];
4652
4653  // T& operator=(T&, T)
4654  ParamTypes[0] = S.Context.getLValueReferenceType(T);
4655  ParamTypes[1] = T;
4656  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4657                        /*IsAssignmentOperator=*/true);
4658
4659  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
4660    // volatile T& operator=(volatile T&, T)
4661    ParamTypes[0]
4662      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
4663    ParamTypes[1] = T;
4664    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4665                          /*IsAssignmentOperator=*/true);
4666  }
4667}
4668
4669/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
4670/// if any, found in visible type conversion functions found in ArgExpr's type.
4671static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
4672    Qualifiers VRQuals;
4673    const RecordType *TyRec;
4674    if (const MemberPointerType *RHSMPType =
4675        ArgExpr->getType()->getAs<MemberPointerType>())
4676      TyRec = RHSMPType->getClass()->getAs<RecordType>();
4677    else
4678      TyRec = ArgExpr->getType()->getAs<RecordType>();
4679    if (!TyRec) {
4680      // Just to be safe, assume the worst case.
4681      VRQuals.addVolatile();
4682      VRQuals.addRestrict();
4683      return VRQuals;
4684    }
4685
4686    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4687    if (!ClassDecl->hasDefinition())
4688      return VRQuals;
4689
4690    const UnresolvedSetImpl *Conversions =
4691      ClassDecl->getVisibleConversionFunctions();
4692
4693    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4694           E = Conversions->end(); I != E; ++I) {
4695      NamedDecl *D = I.getDecl();
4696      if (isa<UsingShadowDecl>(D))
4697        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4698      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
4699        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
4700        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
4701          CanTy = ResTypeRef->getPointeeType();
4702        // Need to go down the pointer/mempointer chain and add qualifiers
4703        // as see them.
4704        bool done = false;
4705        while (!done) {
4706          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
4707            CanTy = ResTypePtr->getPointeeType();
4708          else if (const MemberPointerType *ResTypeMPtr =
4709                CanTy->getAs<MemberPointerType>())
4710            CanTy = ResTypeMPtr->getPointeeType();
4711          else
4712            done = true;
4713          if (CanTy.isVolatileQualified())
4714            VRQuals.addVolatile();
4715          if (CanTy.isRestrictQualified())
4716            VRQuals.addRestrict();
4717          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
4718            return VRQuals;
4719        }
4720      }
4721    }
4722    return VRQuals;
4723}
4724
4725namespace {
4726
4727/// \brief Helper class to manage the addition of builtin operator overload
4728/// candidates. It provides shared state and utility methods used throughout
4729/// the process, as well as a helper method to add each group of builtin
4730/// operator overloads from the standard to a candidate set.
4731class BuiltinOperatorOverloadBuilder {
4732  // Common instance state available to all overload candidate addition methods.
4733  Sema &S;
4734  Expr **Args;
4735  unsigned NumArgs;
4736  Qualifiers VisibleTypeConversionsQuals;
4737  bool HasArithmeticOrEnumeralCandidateType;
4738  llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
4739  OverloadCandidateSet &CandidateSet;
4740
4741  // Define some constants used to index and iterate over the arithemetic types
4742  // provided via the getArithmeticType() method below.
4743  // The "promoted arithmetic types" are the arithmetic
4744  // types are that preserved by promotion (C++ [over.built]p2).
4745  static const unsigned FirstIntegralType = 3;
4746  static const unsigned LastIntegralType = 18;
4747  static const unsigned FirstPromotedIntegralType = 3,
4748                        LastPromotedIntegralType = 9;
4749  static const unsigned FirstPromotedArithmeticType = 0,
4750                        LastPromotedArithmeticType = 9;
4751  static const unsigned NumArithmeticTypes = 18;
4752
4753  /// \brief Get the canonical type for a given arithmetic type index.
4754  CanQualType getArithmeticType(unsigned index) {
4755    assert(index < NumArithmeticTypes);
4756    static CanQualType ASTContext::* const
4757      ArithmeticTypes[NumArithmeticTypes] = {
4758      // Start of promoted types.
4759      &ASTContext::FloatTy,
4760      &ASTContext::DoubleTy,
4761      &ASTContext::LongDoubleTy,
4762
4763      // Start of integral types.
4764      &ASTContext::IntTy,
4765      &ASTContext::LongTy,
4766      &ASTContext::LongLongTy,
4767      &ASTContext::UnsignedIntTy,
4768      &ASTContext::UnsignedLongTy,
4769      &ASTContext::UnsignedLongLongTy,
4770      // End of promoted types.
4771
4772      &ASTContext::BoolTy,
4773      &ASTContext::CharTy,
4774      &ASTContext::WCharTy,
4775      &ASTContext::Char16Ty,
4776      &ASTContext::Char32Ty,
4777      &ASTContext::SignedCharTy,
4778      &ASTContext::ShortTy,
4779      &ASTContext::UnsignedCharTy,
4780      &ASTContext::UnsignedShortTy,
4781      // End of integral types.
4782      // FIXME: What about complex?
4783    };
4784    return S.Context.*ArithmeticTypes[index];
4785  }
4786
4787  /// \brief Gets the canonical type resulting from the usual arithemetic
4788  /// converions for the given arithmetic types.
4789  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
4790    // Accelerator table for performing the usual arithmetic conversions.
4791    // The rules are basically:
4792    //   - if either is floating-point, use the wider floating-point
4793    //   - if same signedness, use the higher rank
4794    //   - if same size, use unsigned of the higher rank
4795    //   - use the larger type
4796    // These rules, together with the axiom that higher ranks are
4797    // never smaller, are sufficient to precompute all of these results
4798    // *except* when dealing with signed types of higher rank.
4799    // (we could precompute SLL x UI for all known platforms, but it's
4800    // better not to make any assumptions).
4801    enum PromotedType {
4802                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
4803    };
4804    static PromotedType ConversionsTable[LastPromotedArithmeticType]
4805                                        [LastPromotedArithmeticType] = {
4806      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
4807      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
4808      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
4809      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
4810      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
4811      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
4812      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
4813      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
4814      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
4815    };
4816
4817    assert(L < LastPromotedArithmeticType);
4818    assert(R < LastPromotedArithmeticType);
4819    int Idx = ConversionsTable[L][R];
4820
4821    // Fast path: the table gives us a concrete answer.
4822    if (Idx != Dep) return getArithmeticType(Idx);
4823
4824    // Slow path: we need to compare widths.
4825    // An invariant is that the signed type has higher rank.
4826    CanQualType LT = getArithmeticType(L),
4827                RT = getArithmeticType(R);
4828    unsigned LW = S.Context.getIntWidth(LT),
4829             RW = S.Context.getIntWidth(RT);
4830
4831    // If they're different widths, use the signed type.
4832    if (LW > RW) return LT;
4833    else if (LW < RW) return RT;
4834
4835    // Otherwise, use the unsigned type of the signed type's rank.
4836    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
4837    assert(L == SLL || R == SLL);
4838    return S.Context.UnsignedLongLongTy;
4839  }
4840
4841  /// \brief Helper method to factor out the common pattern of adding overloads
4842  /// for '++' and '--' builtin operators.
4843  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
4844                                           bool HasVolatile) {
4845    QualType ParamTypes[2] = {
4846      S.Context.getLValueReferenceType(CandidateTy),
4847      S.Context.IntTy
4848    };
4849
4850    // Non-volatile version.
4851    if (NumArgs == 1)
4852      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4853    else
4854      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
4855
4856    // Use a heuristic to reduce number of builtin candidates in the set:
4857    // add volatile version only if there are conversions to a volatile type.
4858    if (HasVolatile) {
4859      ParamTypes[0] =
4860        S.Context.getLValueReferenceType(
4861          S.Context.getVolatileType(CandidateTy));
4862      if (NumArgs == 1)
4863        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4864      else
4865        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
4866    }
4867  }
4868
4869public:
4870  BuiltinOperatorOverloadBuilder(
4871    Sema &S, Expr **Args, unsigned NumArgs,
4872    Qualifiers VisibleTypeConversionsQuals,
4873    bool HasArithmeticOrEnumeralCandidateType,
4874    llvm::SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
4875    OverloadCandidateSet &CandidateSet)
4876    : S(S), Args(Args), NumArgs(NumArgs),
4877      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
4878      HasArithmeticOrEnumeralCandidateType(
4879        HasArithmeticOrEnumeralCandidateType),
4880      CandidateTypes(CandidateTypes),
4881      CandidateSet(CandidateSet) {
4882    // Validate some of our static helper constants in debug builds.
4883    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
4884           "Invalid first promoted integral type");
4885    assert(getArithmeticType(LastPromotedIntegralType - 1)
4886             == S.Context.UnsignedLongLongTy &&
4887           "Invalid last promoted integral type");
4888    assert(getArithmeticType(FirstPromotedArithmeticType)
4889             == S.Context.FloatTy &&
4890           "Invalid first promoted arithmetic type");
4891    assert(getArithmeticType(LastPromotedArithmeticType - 1)
4892             == S.Context.UnsignedLongLongTy &&
4893           "Invalid last promoted arithmetic type");
4894  }
4895
4896  // C++ [over.built]p3:
4897  //
4898  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
4899  //   is either volatile or empty, there exist candidate operator
4900  //   functions of the form
4901  //
4902  //       VQ T&      operator++(VQ T&);
4903  //       T          operator++(VQ T&, int);
4904  //
4905  // C++ [over.built]p4:
4906  //
4907  //   For every pair (T, VQ), where T is an arithmetic type other
4908  //   than bool, and VQ is either volatile or empty, there exist
4909  //   candidate operator functions of the form
4910  //
4911  //       VQ T&      operator--(VQ T&);
4912  //       T          operator--(VQ T&, int);
4913  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
4914    if (!HasArithmeticOrEnumeralCandidateType)
4915      return;
4916
4917    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
4918         Arith < NumArithmeticTypes; ++Arith) {
4919      addPlusPlusMinusMinusStyleOverloads(
4920        getArithmeticType(Arith),
4921        VisibleTypeConversionsQuals.hasVolatile());
4922    }
4923  }
4924
4925  // C++ [over.built]p5:
4926  //
4927  //   For every pair (T, VQ), where T is a cv-qualified or
4928  //   cv-unqualified object type, and VQ is either volatile or
4929  //   empty, there exist candidate operator functions of the form
4930  //
4931  //       T*VQ&      operator++(T*VQ&);
4932  //       T*VQ&      operator--(T*VQ&);
4933  //       T*         operator++(T*VQ&, int);
4934  //       T*         operator--(T*VQ&, int);
4935  void addPlusPlusMinusMinusPointerOverloads() {
4936    for (BuiltinCandidateTypeSet::iterator
4937              Ptr = CandidateTypes[0].pointer_begin(),
4938           PtrEnd = CandidateTypes[0].pointer_end();
4939         Ptr != PtrEnd; ++Ptr) {
4940      // Skip pointer types that aren't pointers to object types.
4941      if (!(*Ptr)->getPointeeType()->isObjectType())
4942        continue;
4943
4944      addPlusPlusMinusMinusStyleOverloads(*Ptr,
4945        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4946         VisibleTypeConversionsQuals.hasVolatile()));
4947    }
4948  }
4949
4950  // C++ [over.built]p6:
4951  //   For every cv-qualified or cv-unqualified object type T, there
4952  //   exist candidate operator functions of the form
4953  //
4954  //       T&         operator*(T*);
4955  //
4956  // C++ [over.built]p7:
4957  //   For every function type T that does not have cv-qualifiers or a
4958  //   ref-qualifier, there exist candidate operator functions of the form
4959  //       T&         operator*(T*);
4960  void addUnaryStarPointerOverloads() {
4961    for (BuiltinCandidateTypeSet::iterator
4962              Ptr = CandidateTypes[0].pointer_begin(),
4963           PtrEnd = CandidateTypes[0].pointer_end();
4964         Ptr != PtrEnd; ++Ptr) {
4965      QualType ParamTy = *Ptr;
4966      QualType PointeeTy = ParamTy->getPointeeType();
4967      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
4968        continue;
4969
4970      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
4971        if (Proto->getTypeQuals() || Proto->getRefQualifier())
4972          continue;
4973
4974      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
4975                            &ParamTy, Args, 1, CandidateSet);
4976    }
4977  }
4978
4979  // C++ [over.built]p9:
4980  //  For every promoted arithmetic type T, there exist candidate
4981  //  operator functions of the form
4982  //
4983  //       T         operator+(T);
4984  //       T         operator-(T);
4985  void addUnaryPlusOrMinusArithmeticOverloads() {
4986    if (!HasArithmeticOrEnumeralCandidateType)
4987      return;
4988
4989    for (unsigned Arith = FirstPromotedArithmeticType;
4990         Arith < LastPromotedArithmeticType; ++Arith) {
4991      QualType ArithTy = getArithmeticType(Arith);
4992      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
4993    }
4994
4995    // Extension: We also add these operators for vector types.
4996    for (BuiltinCandidateTypeSet::iterator
4997              Vec = CandidateTypes[0].vector_begin(),
4998           VecEnd = CandidateTypes[0].vector_end();
4999         Vec != VecEnd; ++Vec) {
5000      QualType VecTy = *Vec;
5001      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5002    }
5003  }
5004
5005  // C++ [over.built]p8:
5006  //   For every type T, there exist candidate operator functions of
5007  //   the form
5008  //
5009  //       T*         operator+(T*);
5010  void addUnaryPlusPointerOverloads() {
5011    for (BuiltinCandidateTypeSet::iterator
5012              Ptr = CandidateTypes[0].pointer_begin(),
5013           PtrEnd = CandidateTypes[0].pointer_end();
5014         Ptr != PtrEnd; ++Ptr) {
5015      QualType ParamTy = *Ptr;
5016      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
5017    }
5018  }
5019
5020  // C++ [over.built]p10:
5021  //   For every promoted integral type T, there exist candidate
5022  //   operator functions of the form
5023  //
5024  //        T         operator~(T);
5025  void addUnaryTildePromotedIntegralOverloads() {
5026    if (!HasArithmeticOrEnumeralCandidateType)
5027      return;
5028
5029    for (unsigned Int = FirstPromotedIntegralType;
5030         Int < LastPromotedIntegralType; ++Int) {
5031      QualType IntTy = getArithmeticType(Int);
5032      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
5033    }
5034
5035    // Extension: We also add this operator for vector types.
5036    for (BuiltinCandidateTypeSet::iterator
5037              Vec = CandidateTypes[0].vector_begin(),
5038           VecEnd = CandidateTypes[0].vector_end();
5039         Vec != VecEnd; ++Vec) {
5040      QualType VecTy = *Vec;
5041      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5042    }
5043  }
5044
5045  // C++ [over.match.oper]p16:
5046  //   For every pointer to member type T, there exist candidate operator
5047  //   functions of the form
5048  //
5049  //        bool operator==(T,T);
5050  //        bool operator!=(T,T);
5051  void addEqualEqualOrNotEqualMemberPointerOverloads() {
5052    /// Set of (canonical) types that we've already handled.
5053    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5054
5055    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5056      for (BuiltinCandidateTypeSet::iterator
5057                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5058             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5059           MemPtr != MemPtrEnd;
5060           ++MemPtr) {
5061        // Don't add the same builtin candidate twice.
5062        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5063          continue;
5064
5065        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5066        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5067                              CandidateSet);
5068      }
5069    }
5070  }
5071
5072  // C++ [over.built]p15:
5073  //
5074  //   For every pointer or enumeration type T, there exist
5075  //   candidate operator functions of the form
5076  //
5077  //        bool       operator<(T, T);
5078  //        bool       operator>(T, T);
5079  //        bool       operator<=(T, T);
5080  //        bool       operator>=(T, T);
5081  //        bool       operator==(T, T);
5082  //        bool       operator!=(T, T);
5083  void addRelationalPointerOrEnumeralOverloads() {
5084    // C++ [over.built]p1:
5085    //   If there is a user-written candidate with the same name and parameter
5086    //   types as a built-in candidate operator function, the built-in operator
5087    //   function is hidden and is not included in the set of candidate
5088    //   functions.
5089    //
5090    // The text is actually in a note, but if we don't implement it then we end
5091    // up with ambiguities when the user provides an overloaded operator for
5092    // an enumeration type. Note that only enumeration types have this problem,
5093    // so we track which enumeration types we've seen operators for. Also, the
5094    // only other overloaded operator with enumeration argumenst, operator=,
5095    // cannot be overloaded for enumeration types, so this is the only place
5096    // where we must suppress candidates like this.
5097    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5098      UserDefinedBinaryOperators;
5099
5100    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5101      if (CandidateTypes[ArgIdx].enumeration_begin() !=
5102          CandidateTypes[ArgIdx].enumeration_end()) {
5103        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5104                                         CEnd = CandidateSet.end();
5105             C != CEnd; ++C) {
5106          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5107            continue;
5108
5109          QualType FirstParamType =
5110            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5111          QualType SecondParamType =
5112            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5113
5114          // Skip if either parameter isn't of enumeral type.
5115          if (!FirstParamType->isEnumeralType() ||
5116              !SecondParamType->isEnumeralType())
5117            continue;
5118
5119          // Add this operator to the set of known user-defined operators.
5120          UserDefinedBinaryOperators.insert(
5121            std::make_pair(S.Context.getCanonicalType(FirstParamType),
5122                           S.Context.getCanonicalType(SecondParamType)));
5123        }
5124      }
5125    }
5126
5127    /// Set of (canonical) types that we've already handled.
5128    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5129
5130    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5131      for (BuiltinCandidateTypeSet::iterator
5132                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5133             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5134           Ptr != PtrEnd; ++Ptr) {
5135        // Don't add the same builtin candidate twice.
5136        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5137          continue;
5138
5139        QualType ParamTypes[2] = { *Ptr, *Ptr };
5140        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5141                              CandidateSet);
5142      }
5143      for (BuiltinCandidateTypeSet::iterator
5144                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5145             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5146           Enum != EnumEnd; ++Enum) {
5147        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5148
5149        // Don't add the same builtin candidate twice, or if a user defined
5150        // candidate exists.
5151        if (!AddedTypes.insert(CanonType) ||
5152            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5153                                                            CanonType)))
5154          continue;
5155
5156        QualType ParamTypes[2] = { *Enum, *Enum };
5157        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5158                              CandidateSet);
5159      }
5160    }
5161  }
5162
5163  // C++ [over.built]p13:
5164  //
5165  //   For every cv-qualified or cv-unqualified object type T
5166  //   there exist candidate operator functions of the form
5167  //
5168  //      T*         operator+(T*, ptrdiff_t);
5169  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
5170  //      T*         operator-(T*, ptrdiff_t);
5171  //      T*         operator+(ptrdiff_t, T*);
5172  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
5173  //
5174  // C++ [over.built]p14:
5175  //
5176  //   For every T, where T is a pointer to object type, there
5177  //   exist candidate operator functions of the form
5178  //
5179  //      ptrdiff_t  operator-(T, T);
5180  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
5181    /// Set of (canonical) types that we've already handled.
5182    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5183
5184    for (int Arg = 0; Arg < 2; ++Arg) {
5185      QualType AsymetricParamTypes[2] = {
5186        S.Context.getPointerDiffType(),
5187        S.Context.getPointerDiffType(),
5188      };
5189      for (BuiltinCandidateTypeSet::iterator
5190                Ptr = CandidateTypes[Arg].pointer_begin(),
5191             PtrEnd = CandidateTypes[Arg].pointer_end();
5192           Ptr != PtrEnd; ++Ptr) {
5193        QualType PointeeTy = (*Ptr)->getPointeeType();
5194        if (!PointeeTy->isObjectType())
5195          continue;
5196
5197        AsymetricParamTypes[Arg] = *Ptr;
5198        if (Arg == 0 || Op == OO_Plus) {
5199          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
5200          // T* operator+(ptrdiff_t, T*);
5201          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
5202                                CandidateSet);
5203        }
5204        if (Op == OO_Minus) {
5205          // ptrdiff_t operator-(T, T);
5206          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5207            continue;
5208
5209          QualType ParamTypes[2] = { *Ptr, *Ptr };
5210          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
5211                                Args, 2, CandidateSet);
5212        }
5213      }
5214    }
5215  }
5216
5217  // C++ [over.built]p12:
5218  //
5219  //   For every pair of promoted arithmetic types L and R, there
5220  //   exist candidate operator functions of the form
5221  //
5222  //        LR         operator*(L, R);
5223  //        LR         operator/(L, R);
5224  //        LR         operator+(L, R);
5225  //        LR         operator-(L, R);
5226  //        bool       operator<(L, R);
5227  //        bool       operator>(L, R);
5228  //        bool       operator<=(L, R);
5229  //        bool       operator>=(L, R);
5230  //        bool       operator==(L, R);
5231  //        bool       operator!=(L, R);
5232  //
5233  //   where LR is the result of the usual arithmetic conversions
5234  //   between types L and R.
5235  //
5236  // C++ [over.built]p24:
5237  //
5238  //   For every pair of promoted arithmetic types L and R, there exist
5239  //   candidate operator functions of the form
5240  //
5241  //        LR       operator?(bool, L, R);
5242  //
5243  //   where LR is the result of the usual arithmetic conversions
5244  //   between types L and R.
5245  // Our candidates ignore the first parameter.
5246  void addGenericBinaryArithmeticOverloads(bool isComparison) {
5247    if (!HasArithmeticOrEnumeralCandidateType)
5248      return;
5249
5250    for (unsigned Left = FirstPromotedArithmeticType;
5251         Left < LastPromotedArithmeticType; ++Left) {
5252      for (unsigned Right = FirstPromotedArithmeticType;
5253           Right < LastPromotedArithmeticType; ++Right) {
5254        QualType LandR[2] = { getArithmeticType(Left),
5255                              getArithmeticType(Right) };
5256        QualType Result =
5257          isComparison ? S.Context.BoolTy
5258                       : getUsualArithmeticConversions(Left, Right);
5259        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5260      }
5261    }
5262
5263    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
5264    // conditional operator for vector types.
5265    for (BuiltinCandidateTypeSet::iterator
5266              Vec1 = CandidateTypes[0].vector_begin(),
5267           Vec1End = CandidateTypes[0].vector_end();
5268         Vec1 != Vec1End; ++Vec1) {
5269      for (BuiltinCandidateTypeSet::iterator
5270                Vec2 = CandidateTypes[1].vector_begin(),
5271             Vec2End = CandidateTypes[1].vector_end();
5272           Vec2 != Vec2End; ++Vec2) {
5273        QualType LandR[2] = { *Vec1, *Vec2 };
5274        QualType Result = S.Context.BoolTy;
5275        if (!isComparison) {
5276          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
5277            Result = *Vec1;
5278          else
5279            Result = *Vec2;
5280        }
5281
5282        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5283      }
5284    }
5285  }
5286
5287  // C++ [over.built]p17:
5288  //
5289  //   For every pair of promoted integral types L and R, there
5290  //   exist candidate operator functions of the form
5291  //
5292  //      LR         operator%(L, R);
5293  //      LR         operator&(L, R);
5294  //      LR         operator^(L, R);
5295  //      LR         operator|(L, R);
5296  //      L          operator<<(L, R);
5297  //      L          operator>>(L, R);
5298  //
5299  //   where LR is the result of the usual arithmetic conversions
5300  //   between types L and R.
5301  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
5302    if (!HasArithmeticOrEnumeralCandidateType)
5303      return;
5304
5305    for (unsigned Left = FirstPromotedIntegralType;
5306         Left < LastPromotedIntegralType; ++Left) {
5307      for (unsigned Right = FirstPromotedIntegralType;
5308           Right < LastPromotedIntegralType; ++Right) {
5309        QualType LandR[2] = { getArithmeticType(Left),
5310                              getArithmeticType(Right) };
5311        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
5312            ? LandR[0]
5313            : getUsualArithmeticConversions(Left, Right);
5314        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
5315      }
5316    }
5317  }
5318
5319  // C++ [over.built]p20:
5320  //
5321  //   For every pair (T, VQ), where T is an enumeration or
5322  //   pointer to member type and VQ is either volatile or
5323  //   empty, there exist candidate operator functions of the form
5324  //
5325  //        VQ T&      operator=(VQ T&, T);
5326  void addAssignmentMemberPointerOrEnumeralOverloads() {
5327    /// Set of (canonical) types that we've already handled.
5328    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5329
5330    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5331      for (BuiltinCandidateTypeSet::iterator
5332                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5333             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5334           Enum != EnumEnd; ++Enum) {
5335        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5336          continue;
5337
5338        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
5339                                               CandidateSet);
5340      }
5341
5342      for (BuiltinCandidateTypeSet::iterator
5343                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5344             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5345           MemPtr != MemPtrEnd; ++MemPtr) {
5346        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5347          continue;
5348
5349        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
5350                                               CandidateSet);
5351      }
5352    }
5353  }
5354
5355  // C++ [over.built]p19:
5356  //
5357  //   For every pair (T, VQ), where T is any type and VQ is either
5358  //   volatile or empty, there exist candidate operator functions
5359  //   of the form
5360  //
5361  //        T*VQ&      operator=(T*VQ&, T*);
5362  //
5363  // C++ [over.built]p21:
5364  //
5365  //   For every pair (T, VQ), where T is a cv-qualified or
5366  //   cv-unqualified object type and VQ is either volatile or
5367  //   empty, there exist candidate operator functions of the form
5368  //
5369  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
5370  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
5371  void addAssignmentPointerOverloads(bool isEqualOp) {
5372    /// Set of (canonical) types that we've already handled.
5373    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5374
5375    for (BuiltinCandidateTypeSet::iterator
5376              Ptr = CandidateTypes[0].pointer_begin(),
5377           PtrEnd = CandidateTypes[0].pointer_end();
5378         Ptr != PtrEnd; ++Ptr) {
5379      // If this is operator=, keep track of the builtin candidates we added.
5380      if (isEqualOp)
5381        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
5382      else if (!(*Ptr)->getPointeeType()->isObjectType())
5383        continue;
5384
5385      // non-volatile version
5386      QualType ParamTypes[2] = {
5387        S.Context.getLValueReferenceType(*Ptr),
5388        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
5389      };
5390      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5391                            /*IsAssigmentOperator=*/ isEqualOp);
5392
5393      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5394          VisibleTypeConversionsQuals.hasVolatile()) {
5395        // volatile version
5396        ParamTypes[0] =
5397          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5398        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5399                              /*IsAssigmentOperator=*/isEqualOp);
5400      }
5401    }
5402
5403    if (isEqualOp) {
5404      for (BuiltinCandidateTypeSet::iterator
5405                Ptr = CandidateTypes[1].pointer_begin(),
5406             PtrEnd = CandidateTypes[1].pointer_end();
5407           Ptr != PtrEnd; ++Ptr) {
5408        // Make sure we don't add the same candidate twice.
5409        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5410          continue;
5411
5412        QualType ParamTypes[2] = {
5413          S.Context.getLValueReferenceType(*Ptr),
5414          *Ptr,
5415        };
5416
5417        // non-volatile version
5418        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5419                              /*IsAssigmentOperator=*/true);
5420
5421        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5422            VisibleTypeConversionsQuals.hasVolatile()) {
5423          // volatile version
5424          ParamTypes[0] =
5425            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
5426          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5427                                CandidateSet, /*IsAssigmentOperator=*/true);
5428        }
5429      }
5430    }
5431  }
5432
5433  // C++ [over.built]p18:
5434  //
5435  //   For every triple (L, VQ, R), where L is an arithmetic type,
5436  //   VQ is either volatile or empty, and R is a promoted
5437  //   arithmetic type, there exist candidate operator functions of
5438  //   the form
5439  //
5440  //        VQ L&      operator=(VQ L&, R);
5441  //        VQ L&      operator*=(VQ L&, R);
5442  //        VQ L&      operator/=(VQ L&, R);
5443  //        VQ L&      operator+=(VQ L&, R);
5444  //        VQ L&      operator-=(VQ L&, R);
5445  void addAssignmentArithmeticOverloads(bool isEqualOp) {
5446    if (!HasArithmeticOrEnumeralCandidateType)
5447      return;
5448
5449    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
5450      for (unsigned Right = FirstPromotedArithmeticType;
5451           Right < LastPromotedArithmeticType; ++Right) {
5452        QualType ParamTypes[2];
5453        ParamTypes[1] = getArithmeticType(Right);
5454
5455        // Add this built-in operator as a candidate (VQ is empty).
5456        ParamTypes[0] =
5457          S.Context.getLValueReferenceType(getArithmeticType(Left));
5458        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5459                              /*IsAssigmentOperator=*/isEqualOp);
5460
5461        // Add this built-in operator as a candidate (VQ is 'volatile').
5462        if (VisibleTypeConversionsQuals.hasVolatile()) {
5463          ParamTypes[0] =
5464            S.Context.getVolatileType(getArithmeticType(Left));
5465          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5466          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5467                                CandidateSet,
5468                                /*IsAssigmentOperator=*/isEqualOp);
5469        }
5470      }
5471    }
5472
5473    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
5474    for (BuiltinCandidateTypeSet::iterator
5475              Vec1 = CandidateTypes[0].vector_begin(),
5476           Vec1End = CandidateTypes[0].vector_end();
5477         Vec1 != Vec1End; ++Vec1) {
5478      for (BuiltinCandidateTypeSet::iterator
5479                Vec2 = CandidateTypes[1].vector_begin(),
5480             Vec2End = CandidateTypes[1].vector_end();
5481           Vec2 != Vec2End; ++Vec2) {
5482        QualType ParamTypes[2];
5483        ParamTypes[1] = *Vec2;
5484        // Add this built-in operator as a candidate (VQ is empty).
5485        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
5486        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5487                              /*IsAssigmentOperator=*/isEqualOp);
5488
5489        // Add this built-in operator as a candidate (VQ is 'volatile').
5490        if (VisibleTypeConversionsQuals.hasVolatile()) {
5491          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
5492          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5493          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5494                                CandidateSet,
5495                                /*IsAssigmentOperator=*/isEqualOp);
5496        }
5497      }
5498    }
5499  }
5500
5501  // C++ [over.built]p22:
5502  //
5503  //   For every triple (L, VQ, R), where L is an integral type, VQ
5504  //   is either volatile or empty, and R is a promoted integral
5505  //   type, there exist candidate operator functions of the form
5506  //
5507  //        VQ L&       operator%=(VQ L&, R);
5508  //        VQ L&       operator<<=(VQ L&, R);
5509  //        VQ L&       operator>>=(VQ L&, R);
5510  //        VQ L&       operator&=(VQ L&, R);
5511  //        VQ L&       operator^=(VQ L&, R);
5512  //        VQ L&       operator|=(VQ L&, R);
5513  void addAssignmentIntegralOverloads() {
5514    if (!HasArithmeticOrEnumeralCandidateType)
5515      return;
5516
5517    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
5518      for (unsigned Right = FirstPromotedIntegralType;
5519           Right < LastPromotedIntegralType; ++Right) {
5520        QualType ParamTypes[2];
5521        ParamTypes[1] = getArithmeticType(Right);
5522
5523        // Add this built-in operator as a candidate (VQ is empty).
5524        ParamTypes[0] =
5525          S.Context.getLValueReferenceType(getArithmeticType(Left));
5526        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
5527        if (VisibleTypeConversionsQuals.hasVolatile()) {
5528          // Add this built-in operator as a candidate (VQ is 'volatile').
5529          ParamTypes[0] = getArithmeticType(Left);
5530          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
5531          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
5532          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
5533                                CandidateSet);
5534        }
5535      }
5536    }
5537  }
5538
5539  // C++ [over.operator]p23:
5540  //
5541  //   There also exist candidate operator functions of the form
5542  //
5543  //        bool        operator!(bool);
5544  //        bool        operator&&(bool, bool);
5545  //        bool        operator||(bool, bool);
5546  void addExclaimOverload() {
5547    QualType ParamTy = S.Context.BoolTy;
5548    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
5549                          /*IsAssignmentOperator=*/false,
5550                          /*NumContextualBoolArguments=*/1);
5551  }
5552  void addAmpAmpOrPipePipeOverload() {
5553    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
5554    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
5555                          /*IsAssignmentOperator=*/false,
5556                          /*NumContextualBoolArguments=*/2);
5557  }
5558
5559  // C++ [over.built]p13:
5560  //
5561  //   For every cv-qualified or cv-unqualified object type T there
5562  //   exist candidate operator functions of the form
5563  //
5564  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
5565  //        T&         operator[](T*, ptrdiff_t);
5566  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
5567  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
5568  //        T&         operator[](ptrdiff_t, T*);
5569  void addSubscriptOverloads() {
5570    for (BuiltinCandidateTypeSet::iterator
5571              Ptr = CandidateTypes[0].pointer_begin(),
5572           PtrEnd = CandidateTypes[0].pointer_end();
5573         Ptr != PtrEnd; ++Ptr) {
5574      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
5575      QualType PointeeType = (*Ptr)->getPointeeType();
5576      if (!PointeeType->isObjectType())
5577        continue;
5578
5579      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5580
5581      // T& operator[](T*, ptrdiff_t)
5582      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5583    }
5584
5585    for (BuiltinCandidateTypeSet::iterator
5586              Ptr = CandidateTypes[1].pointer_begin(),
5587           PtrEnd = CandidateTypes[1].pointer_end();
5588         Ptr != PtrEnd; ++Ptr) {
5589      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
5590      QualType PointeeType = (*Ptr)->getPointeeType();
5591      if (!PointeeType->isObjectType())
5592        continue;
5593
5594      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
5595
5596      // T& operator[](ptrdiff_t, T*)
5597      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5598    }
5599  }
5600
5601  // C++ [over.built]p11:
5602  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
5603  //    C1 is the same type as C2 or is a derived class of C2, T is an object
5604  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
5605  //    there exist candidate operator functions of the form
5606  //
5607  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
5608  //
5609  //    where CV12 is the union of CV1 and CV2.
5610  void addArrowStarOverloads() {
5611    for (BuiltinCandidateTypeSet::iterator
5612             Ptr = CandidateTypes[0].pointer_begin(),
5613           PtrEnd = CandidateTypes[0].pointer_end();
5614         Ptr != PtrEnd; ++Ptr) {
5615      QualType C1Ty = (*Ptr);
5616      QualType C1;
5617      QualifierCollector Q1;
5618      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
5619      if (!isa<RecordType>(C1))
5620        continue;
5621      // heuristic to reduce number of builtin candidates in the set.
5622      // Add volatile/restrict version only if there are conversions to a
5623      // volatile/restrict type.
5624      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
5625        continue;
5626      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
5627        continue;
5628      for (BuiltinCandidateTypeSet::iterator
5629                MemPtr = CandidateTypes[1].member_pointer_begin(),
5630             MemPtrEnd = CandidateTypes[1].member_pointer_end();
5631           MemPtr != MemPtrEnd; ++MemPtr) {
5632        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
5633        QualType C2 = QualType(mptr->getClass(), 0);
5634        C2 = C2.getUnqualifiedType();
5635        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
5636          break;
5637        QualType ParamTypes[2] = { *Ptr, *MemPtr };
5638        // build CV12 T&
5639        QualType T = mptr->getPointeeType();
5640        if (!VisibleTypeConversionsQuals.hasVolatile() &&
5641            T.isVolatileQualified())
5642          continue;
5643        if (!VisibleTypeConversionsQuals.hasRestrict() &&
5644            T.isRestrictQualified())
5645          continue;
5646        T = Q1.apply(S.Context, T);
5647        QualType ResultTy = S.Context.getLValueReferenceType(T);
5648        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
5649      }
5650    }
5651  }
5652
5653  // Note that we don't consider the first argument, since it has been
5654  // contextually converted to bool long ago. The candidates below are
5655  // therefore added as binary.
5656  //
5657  // C++ [over.built]p25:
5658  //   For every type T, where T is a pointer, pointer-to-member, or scoped
5659  //   enumeration type, there exist candidate operator functions of the form
5660  //
5661  //        T        operator?(bool, T, T);
5662  //
5663  void addConditionalOperatorOverloads() {
5664    /// Set of (canonical) types that we've already handled.
5665    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5666
5667    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
5668      for (BuiltinCandidateTypeSet::iterator
5669                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5670             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5671           Ptr != PtrEnd; ++Ptr) {
5672        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5673          continue;
5674
5675        QualType ParamTypes[2] = { *Ptr, *Ptr };
5676        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
5677      }
5678
5679      for (BuiltinCandidateTypeSet::iterator
5680                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5681             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5682           MemPtr != MemPtrEnd; ++MemPtr) {
5683        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5684          continue;
5685
5686        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5687        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
5688      }
5689
5690      if (S.getLangOptions().CPlusPlus0x) {
5691        for (BuiltinCandidateTypeSet::iterator
5692                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5693               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5694             Enum != EnumEnd; ++Enum) {
5695          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
5696            continue;
5697
5698          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
5699            continue;
5700
5701          QualType ParamTypes[2] = { *Enum, *Enum };
5702          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
5703        }
5704      }
5705    }
5706  }
5707};
5708
5709} // end anonymous namespace
5710
5711/// AddBuiltinOperatorCandidates - Add the appropriate built-in
5712/// operator overloads to the candidate set (C++ [over.built]), based
5713/// on the operator @p Op and the arguments given. For example, if the
5714/// operator is a binary '+', this routine might add "int
5715/// operator+(int, int)" to cover integer addition.
5716void
5717Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
5718                                   SourceLocation OpLoc,
5719                                   Expr **Args, unsigned NumArgs,
5720                                   OverloadCandidateSet& CandidateSet) {
5721  // Find all of the types that the arguments can convert to, but only
5722  // if the operator we're looking at has built-in operator candidates
5723  // that make use of these types. Also record whether we encounter non-record
5724  // candidate types or either arithmetic or enumeral candidate types.
5725  Qualifiers VisibleTypeConversionsQuals;
5726  VisibleTypeConversionsQuals.addConst();
5727  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5728    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
5729
5730  bool HasNonRecordCandidateType = false;
5731  bool HasArithmeticOrEnumeralCandidateType = false;
5732  llvm::SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
5733  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5734    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
5735    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
5736                                                 OpLoc,
5737                                                 true,
5738                                                 (Op == OO_Exclaim ||
5739                                                  Op == OO_AmpAmp ||
5740                                                  Op == OO_PipePipe),
5741                                                 VisibleTypeConversionsQuals);
5742    HasNonRecordCandidateType = HasNonRecordCandidateType ||
5743        CandidateTypes[ArgIdx].hasNonRecordTypes();
5744    HasArithmeticOrEnumeralCandidateType =
5745        HasArithmeticOrEnumeralCandidateType ||
5746        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
5747  }
5748
5749  // Exit early when no non-record types have been added to the candidate set
5750  // for any of the arguments to the operator.
5751  if (!HasNonRecordCandidateType)
5752    return;
5753
5754  // Setup an object to manage the common state for building overloads.
5755  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
5756                                           VisibleTypeConversionsQuals,
5757                                           HasArithmeticOrEnumeralCandidateType,
5758                                           CandidateTypes, CandidateSet);
5759
5760  // Dispatch over the operation to add in only those overloads which apply.
5761  switch (Op) {
5762  case OO_None:
5763  case NUM_OVERLOADED_OPERATORS:
5764    assert(false && "Expected an overloaded operator");
5765    break;
5766
5767  case OO_New:
5768  case OO_Delete:
5769  case OO_Array_New:
5770  case OO_Array_Delete:
5771  case OO_Call:
5772    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
5773    break;
5774
5775  case OO_Comma:
5776  case OO_Arrow:
5777    // C++ [over.match.oper]p3:
5778    //   -- For the operator ',', the unary operator '&', or the
5779    //      operator '->', the built-in candidates set is empty.
5780    break;
5781
5782  case OO_Plus: // '+' is either unary or binary
5783    if (NumArgs == 1)
5784      OpBuilder.addUnaryPlusPointerOverloads();
5785    // Fall through.
5786
5787  case OO_Minus: // '-' is either unary or binary
5788    if (NumArgs == 1) {
5789      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
5790    } else {
5791      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
5792      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5793    }
5794    break;
5795
5796  case OO_Star: // '*' is either unary or binary
5797    if (NumArgs == 1)
5798      OpBuilder.addUnaryStarPointerOverloads();
5799    else
5800      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5801    break;
5802
5803  case OO_Slash:
5804    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5805    break;
5806
5807  case OO_PlusPlus:
5808  case OO_MinusMinus:
5809    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
5810    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
5811    break;
5812
5813  case OO_EqualEqual:
5814  case OO_ExclaimEqual:
5815    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
5816    // Fall through.
5817
5818  case OO_Less:
5819  case OO_Greater:
5820  case OO_LessEqual:
5821  case OO_GreaterEqual:
5822    OpBuilder.addRelationalPointerOrEnumeralOverloads();
5823    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
5824    break;
5825
5826  case OO_Percent:
5827  case OO_Caret:
5828  case OO_Pipe:
5829  case OO_LessLess:
5830  case OO_GreaterGreater:
5831    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
5832    break;
5833
5834  case OO_Amp: // '&' is either unary or binary
5835    if (NumArgs == 1)
5836      // C++ [over.match.oper]p3:
5837      //   -- For the operator ',', the unary operator '&', or the
5838      //      operator '->', the built-in candidates set is empty.
5839      break;
5840
5841    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
5842    break;
5843
5844  case OO_Tilde:
5845    OpBuilder.addUnaryTildePromotedIntegralOverloads();
5846    break;
5847
5848  case OO_Equal:
5849    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
5850    // Fall through.
5851
5852  case OO_PlusEqual:
5853  case OO_MinusEqual:
5854    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
5855    // Fall through.
5856
5857  case OO_StarEqual:
5858  case OO_SlashEqual:
5859    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
5860    break;
5861
5862  case OO_PercentEqual:
5863  case OO_LessLessEqual:
5864  case OO_GreaterGreaterEqual:
5865  case OO_AmpEqual:
5866  case OO_CaretEqual:
5867  case OO_PipeEqual:
5868    OpBuilder.addAssignmentIntegralOverloads();
5869    break;
5870
5871  case OO_Exclaim:
5872    OpBuilder.addExclaimOverload();
5873    break;
5874
5875  case OO_AmpAmp:
5876  case OO_PipePipe:
5877    OpBuilder.addAmpAmpOrPipePipeOverload();
5878    break;
5879
5880  case OO_Subscript:
5881    OpBuilder.addSubscriptOverloads();
5882    break;
5883
5884  case OO_ArrowStar:
5885    OpBuilder.addArrowStarOverloads();
5886    break;
5887
5888  case OO_Conditional:
5889    OpBuilder.addConditionalOperatorOverloads();
5890    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
5891    break;
5892  }
5893}
5894
5895/// \brief Add function candidates found via argument-dependent lookup
5896/// to the set of overloading candidates.
5897///
5898/// This routine performs argument-dependent name lookup based on the
5899/// given function name (which may also be an operator name) and adds
5900/// all of the overload candidates found by ADL to the overload
5901/// candidate set (C++ [basic.lookup.argdep]).
5902void
5903Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
5904                                           bool Operator,
5905                                           Expr **Args, unsigned NumArgs,
5906                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5907                                           OverloadCandidateSet& CandidateSet,
5908                                           bool PartialOverloading) {
5909  ADLResult Fns;
5910
5911  // FIXME: This approach for uniquing ADL results (and removing
5912  // redundant candidates from the set) relies on pointer-equality,
5913  // which means we need to key off the canonical decl.  However,
5914  // always going back to the canonical decl might not get us the
5915  // right set of default arguments.  What default arguments are
5916  // we supposed to consider on ADL candidates, anyway?
5917
5918  // FIXME: Pass in the explicit template arguments?
5919  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
5920
5921  // Erase all of the candidates we already knew about.
5922  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5923                                   CandEnd = CandidateSet.end();
5924       Cand != CandEnd; ++Cand)
5925    if (Cand->Function) {
5926      Fns.erase(Cand->Function);
5927      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
5928        Fns.erase(FunTmpl);
5929    }
5930
5931  // For each of the ADL candidates we found, add it to the overload
5932  // set.
5933  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
5934    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
5935    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
5936      if (ExplicitTemplateArgs)
5937        continue;
5938
5939      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
5940                           false, PartialOverloading);
5941    } else
5942      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
5943                                   FoundDecl, ExplicitTemplateArgs,
5944                                   Args, NumArgs, CandidateSet);
5945  }
5946}
5947
5948/// isBetterOverloadCandidate - Determines whether the first overload
5949/// candidate is a better candidate than the second (C++ 13.3.3p1).
5950bool
5951isBetterOverloadCandidate(Sema &S,
5952                          const OverloadCandidate &Cand1,
5953                          const OverloadCandidate &Cand2,
5954                          SourceLocation Loc,
5955                          bool UserDefinedConversion) {
5956  // Define viable functions to be better candidates than non-viable
5957  // functions.
5958  if (!Cand2.Viable)
5959    return Cand1.Viable;
5960  else if (!Cand1.Viable)
5961    return false;
5962
5963  // C++ [over.match.best]p1:
5964  //
5965  //   -- if F is a static member function, ICS1(F) is defined such
5966  //      that ICS1(F) is neither better nor worse than ICS1(G) for
5967  //      any function G, and, symmetrically, ICS1(G) is neither
5968  //      better nor worse than ICS1(F).
5969  unsigned StartArg = 0;
5970  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
5971    StartArg = 1;
5972
5973  // C++ [over.match.best]p1:
5974  //   A viable function F1 is defined to be a better function than another
5975  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
5976  //   conversion sequence than ICSi(F2), and then...
5977  unsigned NumArgs = Cand1.Conversions.size();
5978  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
5979  bool HasBetterConversion = false;
5980  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
5981    switch (CompareImplicitConversionSequences(S,
5982                                               Cand1.Conversions[ArgIdx],
5983                                               Cand2.Conversions[ArgIdx])) {
5984    case ImplicitConversionSequence::Better:
5985      // Cand1 has a better conversion sequence.
5986      HasBetterConversion = true;
5987      break;
5988
5989    case ImplicitConversionSequence::Worse:
5990      // Cand1 can't be better than Cand2.
5991      return false;
5992
5993    case ImplicitConversionSequence::Indistinguishable:
5994      // Do nothing.
5995      break;
5996    }
5997  }
5998
5999  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
6000  //       ICSj(F2), or, if not that,
6001  if (HasBetterConversion)
6002    return true;
6003
6004  //     - F1 is a non-template function and F2 is a function template
6005  //       specialization, or, if not that,
6006  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
6007      Cand2.Function && Cand2.Function->getPrimaryTemplate())
6008    return true;
6009
6010  //   -- F1 and F2 are function template specializations, and the function
6011  //      template for F1 is more specialized than the template for F2
6012  //      according to the partial ordering rules described in 14.5.5.2, or,
6013  //      if not that,
6014  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
6015      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
6016    if (FunctionTemplateDecl *BetterTemplate
6017          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
6018                                         Cand2.Function->getPrimaryTemplate(),
6019                                         Loc,
6020                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
6021                                                             : TPOC_Call,
6022                                         Cand1.ExplicitCallArguments))
6023      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
6024  }
6025
6026  //   -- the context is an initialization by user-defined conversion
6027  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
6028  //      from the return type of F1 to the destination type (i.e.,
6029  //      the type of the entity being initialized) is a better
6030  //      conversion sequence than the standard conversion sequence
6031  //      from the return type of F2 to the destination type.
6032  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
6033      isa<CXXConversionDecl>(Cand1.Function) &&
6034      isa<CXXConversionDecl>(Cand2.Function)) {
6035    switch (CompareStandardConversionSequences(S,
6036                                               Cand1.FinalConversion,
6037                                               Cand2.FinalConversion)) {
6038    case ImplicitConversionSequence::Better:
6039      // Cand1 has a better conversion sequence.
6040      return true;
6041
6042    case ImplicitConversionSequence::Worse:
6043      // Cand1 can't be better than Cand2.
6044      return false;
6045
6046    case ImplicitConversionSequence::Indistinguishable:
6047      // Do nothing
6048      break;
6049    }
6050  }
6051
6052  return false;
6053}
6054
6055/// \brief Computes the best viable function (C++ 13.3.3)
6056/// within an overload candidate set.
6057///
6058/// \param CandidateSet the set of candidate functions.
6059///
6060/// \param Loc the location of the function name (or operator symbol) for
6061/// which overload resolution occurs.
6062///
6063/// \param Best f overload resolution was successful or found a deleted
6064/// function, Best points to the candidate function found.
6065///
6066/// \returns The result of overload resolution.
6067OverloadingResult
6068OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
6069                                         iterator &Best,
6070                                         bool UserDefinedConversion) {
6071  // Find the best viable function.
6072  Best = end();
6073  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6074    if (Cand->Viable)
6075      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6076                                                     UserDefinedConversion))
6077        Best = Cand;
6078  }
6079
6080  // If we didn't find any viable functions, abort.
6081  if (Best == end())
6082    return OR_No_Viable_Function;
6083
6084  // Make sure that this function is better than every other viable
6085  // function. If not, we have an ambiguity.
6086  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6087    if (Cand->Viable &&
6088        Cand != Best &&
6089        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6090                                   UserDefinedConversion)) {
6091      Best = end();
6092      return OR_Ambiguous;
6093    }
6094  }
6095
6096  // Best is the best viable function.
6097  if (Best->Function &&
6098      (Best->Function->isDeleted() ||
6099       Best->Function->getAttr<UnavailableAttr>()))
6100    return OR_Deleted;
6101
6102  // C++ [basic.def.odr]p2:
6103  //   An overloaded function is used if it is selected by overload resolution
6104  //   when referred to from a potentially-evaluated expression. [Note: this
6105  //   covers calls to named functions (5.2.2), operator overloading
6106  //   (clause 13), user-defined conversions (12.3.2), allocation function for
6107  //   placement new (5.3.4), as well as non-default initialization (8.5).
6108  if (Best->Function)
6109    S.MarkDeclarationReferenced(Loc, Best->Function);
6110
6111  return OR_Success;
6112}
6113
6114namespace {
6115
6116enum OverloadCandidateKind {
6117  oc_function,
6118  oc_method,
6119  oc_constructor,
6120  oc_function_template,
6121  oc_method_template,
6122  oc_constructor_template,
6123  oc_implicit_default_constructor,
6124  oc_implicit_copy_constructor,
6125  oc_implicit_copy_assignment
6126};
6127
6128OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6129                                                FunctionDecl *Fn,
6130                                                std::string &Description) {
6131  bool isTemplate = false;
6132
6133  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6134    isTemplate = true;
6135    Description = S.getTemplateArgumentBindingsText(
6136      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6137  }
6138
6139  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6140    if (!Ctor->isImplicit())
6141      return isTemplate ? oc_constructor_template : oc_constructor;
6142
6143    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
6144                                     : oc_implicit_default_constructor;
6145  }
6146
6147  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6148    // This actually gets spelled 'candidate function' for now, but
6149    // it doesn't hurt to split it out.
6150    if (!Meth->isImplicit())
6151      return isTemplate ? oc_method_template : oc_method;
6152
6153    assert(Meth->isCopyAssignmentOperator()
6154           && "implicit method is not copy assignment operator?");
6155    return oc_implicit_copy_assignment;
6156  }
6157
6158  return isTemplate ? oc_function_template : oc_function;
6159}
6160
6161} // end anonymous namespace
6162
6163// Notes the location of an overload candidate.
6164void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
6165  std::string FnDesc;
6166  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
6167  Diag(Fn->getLocation(), diag::note_ovl_candidate)
6168    << (unsigned) K << FnDesc;
6169}
6170
6171/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
6172/// "lead" diagnostic; it will be given two arguments, the source and
6173/// target types of the conversion.
6174void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
6175                                 Sema &S,
6176                                 SourceLocation CaretLoc,
6177                                 const PartialDiagnostic &PDiag) const {
6178  S.Diag(CaretLoc, PDiag)
6179    << Ambiguous.getFromType() << Ambiguous.getToType();
6180  for (AmbiguousConversionSequence::const_iterator
6181         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
6182    S.NoteOverloadCandidate(*I);
6183  }
6184}
6185
6186namespace {
6187
6188void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
6189  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
6190  assert(Conv.isBad());
6191  assert(Cand->Function && "for now, candidate must be a function");
6192  FunctionDecl *Fn = Cand->Function;
6193
6194  // There's a conversion slot for the object argument if this is a
6195  // non-constructor method.  Note that 'I' corresponds the
6196  // conversion-slot index.
6197  bool isObjectArgument = false;
6198  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
6199    if (I == 0)
6200      isObjectArgument = true;
6201    else
6202      I--;
6203  }
6204
6205  std::string FnDesc;
6206  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6207
6208  Expr *FromExpr = Conv.Bad.FromExpr;
6209  QualType FromTy = Conv.Bad.getFromType();
6210  QualType ToTy = Conv.Bad.getToType();
6211
6212  if (FromTy == S.Context.OverloadTy) {
6213    assert(FromExpr && "overload set argument came from implicit argument?");
6214    Expr *E = FromExpr->IgnoreParens();
6215    if (isa<UnaryOperator>(E))
6216      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
6217    DeclarationName Name = cast<OverloadExpr>(E)->getName();
6218
6219    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
6220      << (unsigned) FnKind << FnDesc
6221      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6222      << ToTy << Name << I+1;
6223    return;
6224  }
6225
6226  // Do some hand-waving analysis to see if the non-viability is due
6227  // to a qualifier mismatch.
6228  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
6229  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
6230  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
6231    CToTy = RT->getPointeeType();
6232  else {
6233    // TODO: detect and diagnose the full richness of const mismatches.
6234    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
6235      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
6236        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
6237  }
6238
6239  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
6240      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
6241    // It is dumb that we have to do this here.
6242    while (isa<ArrayType>(CFromTy))
6243      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
6244    while (isa<ArrayType>(CToTy))
6245      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
6246
6247    Qualifiers FromQs = CFromTy.getQualifiers();
6248    Qualifiers ToQs = CToTy.getQualifiers();
6249
6250    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
6251      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
6252        << (unsigned) FnKind << FnDesc
6253        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6254        << FromTy
6255        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
6256        << (unsigned) isObjectArgument << I+1;
6257      return;
6258    }
6259
6260    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
6261    assert(CVR && "unexpected qualifiers mismatch");
6262
6263    if (isObjectArgument) {
6264      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
6265        << (unsigned) FnKind << FnDesc
6266        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6267        << FromTy << (CVR - 1);
6268    } else {
6269      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
6270        << (unsigned) FnKind << FnDesc
6271        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6272        << FromTy << (CVR - 1) << I+1;
6273    }
6274    return;
6275  }
6276
6277  // Diagnose references or pointers to incomplete types differently,
6278  // since it's far from impossible that the incompleteness triggered
6279  // the failure.
6280  QualType TempFromTy = FromTy.getNonReferenceType();
6281  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
6282    TempFromTy = PTy->getPointeeType();
6283  if (TempFromTy->isIncompleteType()) {
6284    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
6285      << (unsigned) FnKind << FnDesc
6286      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6287      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6288    return;
6289  }
6290
6291  // Diagnose base -> derived pointer conversions.
6292  unsigned BaseToDerivedConversion = 0;
6293  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
6294    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
6295      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6296                                               FromPtrTy->getPointeeType()) &&
6297          !FromPtrTy->getPointeeType()->isIncompleteType() &&
6298          !ToPtrTy->getPointeeType()->isIncompleteType() &&
6299          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
6300                          FromPtrTy->getPointeeType()))
6301        BaseToDerivedConversion = 1;
6302    }
6303  } else if (const ObjCObjectPointerType *FromPtrTy
6304                                    = FromTy->getAs<ObjCObjectPointerType>()) {
6305    if (const ObjCObjectPointerType *ToPtrTy
6306                                        = ToTy->getAs<ObjCObjectPointerType>())
6307      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
6308        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
6309          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
6310                                                FromPtrTy->getPointeeType()) &&
6311              FromIface->isSuperClassOf(ToIface))
6312            BaseToDerivedConversion = 2;
6313  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
6314      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
6315          !FromTy->isIncompleteType() &&
6316          !ToRefTy->getPointeeType()->isIncompleteType() &&
6317          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
6318        BaseToDerivedConversion = 3;
6319    }
6320
6321  if (BaseToDerivedConversion) {
6322    S.Diag(Fn->getLocation(),
6323           diag::note_ovl_candidate_bad_base_to_derived_conv)
6324      << (unsigned) FnKind << FnDesc
6325      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6326      << (BaseToDerivedConversion - 1)
6327      << FromTy << ToTy << I+1;
6328    return;
6329  }
6330
6331  // TODO: specialize more based on the kind of mismatch
6332  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
6333    << (unsigned) FnKind << FnDesc
6334    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
6335    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
6336}
6337
6338void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
6339                           unsigned NumFormalArgs) {
6340  // TODO: treat calls to a missing default constructor as a special case
6341
6342  FunctionDecl *Fn = Cand->Function;
6343  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
6344
6345  unsigned MinParams = Fn->getMinRequiredArguments();
6346
6347  // at least / at most / exactly
6348  unsigned mode, modeCount;
6349  if (NumFormalArgs < MinParams) {
6350    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
6351           (Cand->FailureKind == ovl_fail_bad_deduction &&
6352            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
6353    if (MinParams != FnTy->getNumArgs() ||
6354        FnTy->isVariadic() || FnTy->isTemplateVariadic())
6355      mode = 0; // "at least"
6356    else
6357      mode = 2; // "exactly"
6358    modeCount = MinParams;
6359  } else {
6360    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
6361           (Cand->FailureKind == ovl_fail_bad_deduction &&
6362            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
6363    if (MinParams != FnTy->getNumArgs())
6364      mode = 1; // "at most"
6365    else
6366      mode = 2; // "exactly"
6367    modeCount = FnTy->getNumArgs();
6368  }
6369
6370  std::string Description;
6371  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
6372
6373  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
6374    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
6375    << modeCount << NumFormalArgs;
6376}
6377
6378/// Diagnose a failed template-argument deduction.
6379void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
6380                          Expr **Args, unsigned NumArgs) {
6381  FunctionDecl *Fn = Cand->Function; // pattern
6382
6383  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
6384  NamedDecl *ParamD;
6385  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
6386  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
6387  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
6388  switch (Cand->DeductionFailure.Result) {
6389  case Sema::TDK_Success:
6390    llvm_unreachable("TDK_success while diagnosing bad deduction");
6391
6392  case Sema::TDK_Incomplete: {
6393    assert(ParamD && "no parameter found for incomplete deduction result");
6394    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
6395      << ParamD->getDeclName();
6396    return;
6397  }
6398
6399  case Sema::TDK_Underqualified: {
6400    assert(ParamD && "no parameter found for bad qualifiers deduction result");
6401    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
6402
6403    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
6404
6405    // Param will have been canonicalized, but it should just be a
6406    // qualified version of ParamD, so move the qualifiers to that.
6407    QualifierCollector Qs;
6408    Qs.strip(Param);
6409    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
6410    assert(S.Context.hasSameType(Param, NonCanonParam));
6411
6412    // Arg has also been canonicalized, but there's nothing we can do
6413    // about that.  It also doesn't matter as much, because it won't
6414    // have any template parameters in it (because deduction isn't
6415    // done on dependent types).
6416    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
6417
6418    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
6419      << ParamD->getDeclName() << Arg << NonCanonParam;
6420    return;
6421  }
6422
6423  case Sema::TDK_Inconsistent: {
6424    assert(ParamD && "no parameter found for inconsistent deduction result");
6425    int which = 0;
6426    if (isa<TemplateTypeParmDecl>(ParamD))
6427      which = 0;
6428    else if (isa<NonTypeTemplateParmDecl>(ParamD))
6429      which = 1;
6430    else {
6431      which = 2;
6432    }
6433
6434    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
6435      << which << ParamD->getDeclName()
6436      << *Cand->DeductionFailure.getFirstArg()
6437      << *Cand->DeductionFailure.getSecondArg();
6438    return;
6439  }
6440
6441  case Sema::TDK_InvalidExplicitArguments:
6442    assert(ParamD && "no parameter found for invalid explicit arguments");
6443    if (ParamD->getDeclName())
6444      S.Diag(Fn->getLocation(),
6445             diag::note_ovl_candidate_explicit_arg_mismatch_named)
6446        << ParamD->getDeclName();
6447    else {
6448      int index = 0;
6449      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
6450        index = TTP->getIndex();
6451      else if (NonTypeTemplateParmDecl *NTTP
6452                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
6453        index = NTTP->getIndex();
6454      else
6455        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
6456      S.Diag(Fn->getLocation(),
6457             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
6458        << (index + 1);
6459    }
6460    return;
6461
6462  case Sema::TDK_TooManyArguments:
6463  case Sema::TDK_TooFewArguments:
6464    DiagnoseArityMismatch(S, Cand, NumArgs);
6465    return;
6466
6467  case Sema::TDK_InstantiationDepth:
6468    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
6469    return;
6470
6471  case Sema::TDK_SubstitutionFailure: {
6472    std::string ArgString;
6473    if (TemplateArgumentList *Args
6474                            = Cand->DeductionFailure.getTemplateArgumentList())
6475      ArgString = S.getTemplateArgumentBindingsText(
6476                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
6477                                                    *Args);
6478    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
6479      << ArgString;
6480    return;
6481  }
6482
6483  // TODO: diagnose these individually, then kill off
6484  // note_ovl_candidate_bad_deduction, which is uselessly vague.
6485  case Sema::TDK_NonDeducedMismatch:
6486  case Sema::TDK_FailedOverloadResolution:
6487    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
6488    return;
6489  }
6490}
6491
6492/// Generates a 'note' diagnostic for an overload candidate.  We've
6493/// already generated a primary error at the call site.
6494///
6495/// It really does need to be a single diagnostic with its caret
6496/// pointed at the candidate declaration.  Yes, this creates some
6497/// major challenges of technical writing.  Yes, this makes pointing
6498/// out problems with specific arguments quite awkward.  It's still
6499/// better than generating twenty screens of text for every failed
6500/// overload.
6501///
6502/// It would be great to be able to express per-candidate problems
6503/// more richly for those diagnostic clients that cared, but we'd
6504/// still have to be just as careful with the default diagnostics.
6505void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
6506                           Expr **Args, unsigned NumArgs) {
6507  FunctionDecl *Fn = Cand->Function;
6508
6509  // Note deleted candidates, but only if they're viable.
6510  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
6511    std::string FnDesc;
6512    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
6513
6514    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
6515      << FnKind << FnDesc << Fn->isDeleted();
6516    return;
6517  }
6518
6519  // We don't really have anything else to say about viable candidates.
6520  if (Cand->Viable) {
6521    S.NoteOverloadCandidate(Fn);
6522    return;
6523  }
6524
6525  switch (Cand->FailureKind) {
6526  case ovl_fail_too_many_arguments:
6527  case ovl_fail_too_few_arguments:
6528    return DiagnoseArityMismatch(S, Cand, NumArgs);
6529
6530  case ovl_fail_bad_deduction:
6531    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
6532
6533  case ovl_fail_trivial_conversion:
6534  case ovl_fail_bad_final_conversion:
6535  case ovl_fail_final_conversion_not_exact:
6536    return S.NoteOverloadCandidate(Fn);
6537
6538  case ovl_fail_bad_conversion: {
6539    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
6540    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
6541      if (Cand->Conversions[I].isBad())
6542        return DiagnoseBadConversion(S, Cand, I);
6543
6544    // FIXME: this currently happens when we're called from SemaInit
6545    // when user-conversion overload fails.  Figure out how to handle
6546    // those conditions and diagnose them well.
6547    return S.NoteOverloadCandidate(Fn);
6548  }
6549  }
6550}
6551
6552void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
6553  // Desugar the type of the surrogate down to a function type,
6554  // retaining as many typedefs as possible while still showing
6555  // the function type (and, therefore, its parameter types).
6556  QualType FnType = Cand->Surrogate->getConversionType();
6557  bool isLValueReference = false;
6558  bool isRValueReference = false;
6559  bool isPointer = false;
6560  if (const LValueReferenceType *FnTypeRef =
6561        FnType->getAs<LValueReferenceType>()) {
6562    FnType = FnTypeRef->getPointeeType();
6563    isLValueReference = true;
6564  } else if (const RValueReferenceType *FnTypeRef =
6565               FnType->getAs<RValueReferenceType>()) {
6566    FnType = FnTypeRef->getPointeeType();
6567    isRValueReference = true;
6568  }
6569  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
6570    FnType = FnTypePtr->getPointeeType();
6571    isPointer = true;
6572  }
6573  // Desugar down to a function type.
6574  FnType = QualType(FnType->getAs<FunctionType>(), 0);
6575  // Reconstruct the pointer/reference as appropriate.
6576  if (isPointer) FnType = S.Context.getPointerType(FnType);
6577  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
6578  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
6579
6580  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
6581    << FnType;
6582}
6583
6584void NoteBuiltinOperatorCandidate(Sema &S,
6585                                  const char *Opc,
6586                                  SourceLocation OpLoc,
6587                                  OverloadCandidate *Cand) {
6588  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
6589  std::string TypeStr("operator");
6590  TypeStr += Opc;
6591  TypeStr += "(";
6592  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
6593  if (Cand->Conversions.size() == 1) {
6594    TypeStr += ")";
6595    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
6596  } else {
6597    TypeStr += ", ";
6598    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
6599    TypeStr += ")";
6600    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
6601  }
6602}
6603
6604void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
6605                                  OverloadCandidate *Cand) {
6606  unsigned NoOperands = Cand->Conversions.size();
6607  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
6608    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
6609    if (ICS.isBad()) break; // all meaningless after first invalid
6610    if (!ICS.isAmbiguous()) continue;
6611
6612    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
6613                              S.PDiag(diag::note_ambiguous_type_conversion));
6614  }
6615}
6616
6617SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
6618  if (Cand->Function)
6619    return Cand->Function->getLocation();
6620  if (Cand->IsSurrogate)
6621    return Cand->Surrogate->getLocation();
6622  return SourceLocation();
6623}
6624
6625struct CompareOverloadCandidatesForDisplay {
6626  Sema &S;
6627  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
6628
6629  bool operator()(const OverloadCandidate *L,
6630                  const OverloadCandidate *R) {
6631    // Fast-path this check.
6632    if (L == R) return false;
6633
6634    // Order first by viability.
6635    if (L->Viable) {
6636      if (!R->Viable) return true;
6637
6638      // TODO: introduce a tri-valued comparison for overload
6639      // candidates.  Would be more worthwhile if we had a sort
6640      // that could exploit it.
6641      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
6642      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
6643    } else if (R->Viable)
6644      return false;
6645
6646    assert(L->Viable == R->Viable);
6647
6648    // Criteria by which we can sort non-viable candidates:
6649    if (!L->Viable) {
6650      // 1. Arity mismatches come after other candidates.
6651      if (L->FailureKind == ovl_fail_too_many_arguments ||
6652          L->FailureKind == ovl_fail_too_few_arguments)
6653        return false;
6654      if (R->FailureKind == ovl_fail_too_many_arguments ||
6655          R->FailureKind == ovl_fail_too_few_arguments)
6656        return true;
6657
6658      // 2. Bad conversions come first and are ordered by the number
6659      // of bad conversions and quality of good conversions.
6660      if (L->FailureKind == ovl_fail_bad_conversion) {
6661        if (R->FailureKind != ovl_fail_bad_conversion)
6662          return true;
6663
6664        // If there's any ordering between the defined conversions...
6665        // FIXME: this might not be transitive.
6666        assert(L->Conversions.size() == R->Conversions.size());
6667
6668        int leftBetter = 0;
6669        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
6670        for (unsigned E = L->Conversions.size(); I != E; ++I) {
6671          switch (CompareImplicitConversionSequences(S,
6672                                                     L->Conversions[I],
6673                                                     R->Conversions[I])) {
6674          case ImplicitConversionSequence::Better:
6675            leftBetter++;
6676            break;
6677
6678          case ImplicitConversionSequence::Worse:
6679            leftBetter--;
6680            break;
6681
6682          case ImplicitConversionSequence::Indistinguishable:
6683            break;
6684          }
6685        }
6686        if (leftBetter > 0) return true;
6687        if (leftBetter < 0) return false;
6688
6689      } else if (R->FailureKind == ovl_fail_bad_conversion)
6690        return false;
6691
6692      // TODO: others?
6693    }
6694
6695    // Sort everything else by location.
6696    SourceLocation LLoc = GetLocationForCandidate(L);
6697    SourceLocation RLoc = GetLocationForCandidate(R);
6698
6699    // Put candidates without locations (e.g. builtins) at the end.
6700    if (LLoc.isInvalid()) return false;
6701    if (RLoc.isInvalid()) return true;
6702
6703    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
6704  }
6705};
6706
6707/// CompleteNonViableCandidate - Normally, overload resolution only
6708/// computes up to the first
6709void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
6710                                Expr **Args, unsigned NumArgs) {
6711  assert(!Cand->Viable);
6712
6713  // Don't do anything on failures other than bad conversion.
6714  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
6715
6716  // Skip forward to the first bad conversion.
6717  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
6718  unsigned ConvCount = Cand->Conversions.size();
6719  while (true) {
6720    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
6721    ConvIdx++;
6722    if (Cand->Conversions[ConvIdx - 1].isBad())
6723      break;
6724  }
6725
6726  if (ConvIdx == ConvCount)
6727    return;
6728
6729  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
6730         "remaining conversion is initialized?");
6731
6732  // FIXME: this should probably be preserved from the overload
6733  // operation somehow.
6734  bool SuppressUserConversions = false;
6735
6736  const FunctionProtoType* Proto;
6737  unsigned ArgIdx = ConvIdx;
6738
6739  if (Cand->IsSurrogate) {
6740    QualType ConvType
6741      = Cand->Surrogate->getConversionType().getNonReferenceType();
6742    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6743      ConvType = ConvPtrType->getPointeeType();
6744    Proto = ConvType->getAs<FunctionProtoType>();
6745    ArgIdx--;
6746  } else if (Cand->Function) {
6747    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
6748    if (isa<CXXMethodDecl>(Cand->Function) &&
6749        !isa<CXXConstructorDecl>(Cand->Function))
6750      ArgIdx--;
6751  } else {
6752    // Builtin binary operator with a bad first conversion.
6753    assert(ConvCount <= 3);
6754    for (; ConvIdx != ConvCount; ++ConvIdx)
6755      Cand->Conversions[ConvIdx]
6756        = TryCopyInitialization(S, Args[ConvIdx],
6757                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
6758                                SuppressUserConversions,
6759                                /*InOverloadResolution*/ true);
6760    return;
6761  }
6762
6763  // Fill in the rest of the conversions.
6764  unsigned NumArgsInProto = Proto->getNumArgs();
6765  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
6766    if (ArgIdx < NumArgsInProto)
6767      Cand->Conversions[ConvIdx]
6768        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
6769                                SuppressUserConversions,
6770                                /*InOverloadResolution=*/true);
6771    else
6772      Cand->Conversions[ConvIdx].setEllipsis();
6773  }
6774}
6775
6776} // end anonymous namespace
6777
6778/// PrintOverloadCandidates - When overload resolution fails, prints
6779/// diagnostic messages containing the candidates in the candidate
6780/// set.
6781void OverloadCandidateSet::NoteCandidates(Sema &S,
6782                                          OverloadCandidateDisplayKind OCD,
6783                                          Expr **Args, unsigned NumArgs,
6784                                          const char *Opc,
6785                                          SourceLocation OpLoc) {
6786  // Sort the candidates by viability and position.  Sorting directly would
6787  // be prohibitive, so we make a set of pointers and sort those.
6788  llvm::SmallVector<OverloadCandidate*, 32> Cands;
6789  if (OCD == OCD_AllCandidates) Cands.reserve(size());
6790  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
6791    if (Cand->Viable)
6792      Cands.push_back(Cand);
6793    else if (OCD == OCD_AllCandidates) {
6794      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
6795      if (Cand->Function || Cand->IsSurrogate)
6796        Cands.push_back(Cand);
6797      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
6798      // want to list every possible builtin candidate.
6799    }
6800  }
6801
6802  std::sort(Cands.begin(), Cands.end(),
6803            CompareOverloadCandidatesForDisplay(S));
6804
6805  bool ReportedAmbiguousConversions = false;
6806
6807  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
6808  const Diagnostic::OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
6809  unsigned CandsShown = 0;
6810  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
6811    OverloadCandidate *Cand = *I;
6812
6813    // Set an arbitrary limit on the number of candidate functions we'll spam
6814    // the user with.  FIXME: This limit should depend on details of the
6815    // candidate list.
6816    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
6817      break;
6818    }
6819    ++CandsShown;
6820
6821    if (Cand->Function)
6822      NoteFunctionCandidate(S, Cand, Args, NumArgs);
6823    else if (Cand->IsSurrogate)
6824      NoteSurrogateCandidate(S, Cand);
6825    else {
6826      assert(Cand->Viable &&
6827             "Non-viable built-in candidates are not added to Cands.");
6828      // Generally we only see ambiguities including viable builtin
6829      // operators if overload resolution got screwed up by an
6830      // ambiguous user-defined conversion.
6831      //
6832      // FIXME: It's quite possible for different conversions to see
6833      // different ambiguities, though.
6834      if (!ReportedAmbiguousConversions) {
6835        NoteAmbiguousUserConversions(S, OpLoc, Cand);
6836        ReportedAmbiguousConversions = true;
6837      }
6838
6839      // If this is a viable builtin, print it.
6840      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
6841    }
6842  }
6843
6844  if (I != E)
6845    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
6846}
6847
6848static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
6849  if (isa<UnresolvedLookupExpr>(E))
6850    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
6851
6852  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
6853}
6854
6855/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
6856/// an overloaded function (C++ [over.over]), where @p From is an
6857/// expression with overloaded function type and @p ToType is the type
6858/// we're trying to resolve to. For example:
6859///
6860/// @code
6861/// int f(double);
6862/// int f(int);
6863///
6864/// int (*pfd)(double) = f; // selects f(double)
6865/// @endcode
6866///
6867/// This routine returns the resulting FunctionDecl if it could be
6868/// resolved, and NULL otherwise. When @p Complain is true, this
6869/// routine will emit diagnostics if there is an error.
6870FunctionDecl *
6871Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
6872                                         bool Complain,
6873                                         DeclAccessPair &FoundResult) {
6874  QualType FunctionType = ToType;
6875  bool IsMember = false;
6876  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
6877    FunctionType = ToTypePtr->getPointeeType();
6878  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
6879    FunctionType = ToTypeRef->getPointeeType();
6880  else if (const MemberPointerType *MemTypePtr =
6881                    ToType->getAs<MemberPointerType>()) {
6882    FunctionType = MemTypePtr->getPointeeType();
6883    IsMember = true;
6884  }
6885
6886  // C++ [over.over]p1:
6887  //   [...] [Note: any redundant set of parentheses surrounding the
6888  //   overloaded function name is ignored (5.1). ]
6889  // C++ [over.over]p1:
6890  //   [...] The overloaded function name can be preceded by the &
6891  //   operator.
6892  // However, remember whether the expression has member-pointer form:
6893  // C++ [expr.unary.op]p4:
6894  //     A pointer to member is only formed when an explicit & is used
6895  //     and its operand is a qualified-id not enclosed in
6896  //     parentheses.
6897  OverloadExpr::FindResult Ovl = OverloadExpr::find(From);
6898  OverloadExpr *OvlExpr = Ovl.Expression;
6899
6900  // We expect a pointer or reference to function, or a function pointer.
6901  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
6902  if (!FunctionType->isFunctionType()) {
6903    if (Complain)
6904      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
6905        << OvlExpr->getName() << ToType;
6906
6907    return 0;
6908  }
6909
6910  // If the overload expression doesn't have the form of a pointer to
6911  // member, don't try to convert it to a pointer-to-member type.
6912  if (IsMember && !Ovl.HasFormOfMemberPointer) {
6913    if (!Complain) return 0;
6914
6915    // TODO: Should we condition this on whether any functions might
6916    // have matched, or is it more appropriate to do that in callers?
6917    // TODO: a fixit wouldn't hurt.
6918    Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
6919      << ToType << OvlExpr->getSourceRange();
6920    return 0;
6921  }
6922
6923  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
6924  if (OvlExpr->hasExplicitTemplateArgs()) {
6925    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
6926    ExplicitTemplateArgs = &ETABuffer;
6927  }
6928
6929  assert(From->getType() == Context.OverloadTy);
6930
6931  // Look through all of the overloaded functions, searching for one
6932  // whose type matches exactly.
6933  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
6934  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
6935
6936  bool FoundNonTemplateFunction = false;
6937  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6938         E = OvlExpr->decls_end(); I != E; ++I) {
6939    // Look through any using declarations to find the underlying function.
6940    NamedDecl *Fn = (*I)->getUnderlyingDecl();
6941
6942    // C++ [over.over]p3:
6943    //   Non-member functions and static member functions match
6944    //   targets of type "pointer-to-function" or "reference-to-function."
6945    //   Nonstatic member functions match targets of
6946    //   type "pointer-to-member-function."
6947    // Note that according to DR 247, the containing class does not matter.
6948
6949    if (FunctionTemplateDecl *FunctionTemplate
6950          = dyn_cast<FunctionTemplateDecl>(Fn)) {
6951      if (CXXMethodDecl *Method
6952            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
6953        // Skip non-static function templates when converting to pointer, and
6954        // static when converting to member pointer.
6955        if (Method->isStatic() == IsMember)
6956          continue;
6957      } else if (IsMember)
6958        continue;
6959
6960      // C++ [over.over]p2:
6961      //   If the name is a function template, template argument deduction is
6962      //   done (14.8.2.2), and if the argument deduction succeeds, the
6963      //   resulting template argument list is used to generate a single
6964      //   function template specialization, which is added to the set of
6965      //   overloaded functions considered.
6966      FunctionDecl *Specialization = 0;
6967      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
6968      if (TemplateDeductionResult Result
6969            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
6970                                      FunctionType, Specialization, Info)) {
6971        // FIXME: make a note of the failed deduction for diagnostics.
6972        (void)Result;
6973      } else {
6974        // Template argument deduction ensures that we have an exact match.
6975        // This function template specicalization works.
6976        Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
6977        assert(FunctionType
6978                 == Context.getCanonicalType(Specialization->getType()));
6979        Matches.push_back(std::make_pair(I.getPair(), Specialization));
6980      }
6981
6982      continue;
6983    }
6984
6985    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6986      // Skip non-static functions when converting to pointer, and static
6987      // when converting to member pointer.
6988      if (Method->isStatic() == IsMember)
6989        continue;
6990
6991      // If we have explicit template arguments, skip non-templates.
6992      if (OvlExpr->hasExplicitTemplateArgs())
6993        continue;
6994    } else if (IsMember)
6995      continue;
6996
6997    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
6998      QualType ResultTy;
6999      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
7000          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
7001                               ResultTy)) {
7002        Matches.push_back(std::make_pair(I.getPair(),
7003                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
7004        FoundNonTemplateFunction = true;
7005      }
7006    }
7007  }
7008
7009  // If there were 0 or 1 matches, we're done.
7010  if (Matches.empty()) {
7011    if (Complain) {
7012      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
7013        << OvlExpr->getName() << FunctionType;
7014      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7015                                 E = OvlExpr->decls_end();
7016           I != E; ++I)
7017        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
7018          NoteOverloadCandidate(F);
7019    }
7020
7021    return 0;
7022  } else if (Matches.size() == 1) {
7023    FunctionDecl *Result = Matches[0].second;
7024    FoundResult = Matches[0].first;
7025    MarkDeclarationReferenced(From->getLocStart(), Result);
7026    if (Complain) {
7027      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
7028    }
7029    return Result;
7030  }
7031
7032  // C++ [over.over]p4:
7033  //   If more than one function is selected, [...]
7034  if (!FoundNonTemplateFunction) {
7035    //   [...] and any given function template specialization F1 is
7036    //   eliminated if the set contains a second function template
7037    //   specialization whose function template is more specialized
7038    //   than the function template of F1 according to the partial
7039    //   ordering rules of 14.5.5.2.
7040
7041    // The algorithm specified above is quadratic. We instead use a
7042    // two-pass algorithm (similar to the one used to identify the
7043    // best viable function in an overload set) that identifies the
7044    // best function template (if it exists).
7045
7046    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
7047    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7048      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
7049
7050    UnresolvedSetIterator Result =
7051        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
7052                           TPOC_Other, 0, From->getLocStart(),
7053                           PDiag(),
7054                           PDiag(diag::err_addr_ovl_ambiguous)
7055                               << Matches[0].second->getDeclName(),
7056                           PDiag(diag::note_ovl_candidate)
7057                               << (unsigned) oc_function_template);
7058    if (Result == MatchesCopy.end())
7059      return 0;
7060
7061    MarkDeclarationReferenced(From->getLocStart(), *Result);
7062    FoundResult = Matches[Result - MatchesCopy.begin()].first;
7063    if (Complain)
7064      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
7065    return cast<FunctionDecl>(*Result);
7066  }
7067
7068  //   [...] any function template specializations in the set are
7069  //   eliminated if the set also contains a non-template function, [...]
7070  for (unsigned I = 0, N = Matches.size(); I != N; ) {
7071    if (Matches[I].second->getPrimaryTemplate() == 0)
7072      ++I;
7073    else {
7074      Matches[I] = Matches[--N];
7075      Matches.set_size(N);
7076    }
7077  }
7078
7079  // [...] After such eliminations, if any, there shall remain exactly one
7080  // selected function.
7081  if (Matches.size() == 1) {
7082    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
7083    FoundResult = Matches[0].first;
7084    if (Complain)
7085      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
7086    return cast<FunctionDecl>(Matches[0].second);
7087  }
7088
7089  // FIXME: We should probably return the same thing that BestViableFunction
7090  // returns (even if we issue the diagnostics here).
7091  if (Complain) {
7092    Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
7093      << Matches[0].second->getDeclName();
7094    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
7095      NoteOverloadCandidate(Matches[I].second);
7096  }
7097
7098  return 0;
7099}
7100
7101/// \brief Given an expression that refers to an overloaded function, try to
7102/// resolve that overloaded function expression down to a single function.
7103///
7104/// This routine can only resolve template-ids that refer to a single function
7105/// template, where that template-id refers to a single template whose template
7106/// arguments are either provided by the template-id or have defaults,
7107/// as described in C++0x [temp.arg.explicit]p3.
7108FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
7109  // C++ [over.over]p1:
7110  //   [...] [Note: any redundant set of parentheses surrounding the
7111  //   overloaded function name is ignored (5.1). ]
7112  // C++ [over.over]p1:
7113  //   [...] The overloaded function name can be preceded by the &
7114  //   operator.
7115
7116  if (From->getType() != Context.OverloadTy)
7117    return 0;
7118
7119  OverloadExpr *OvlExpr = OverloadExpr::find(From).Expression;
7120
7121  // If we didn't actually find any template-ids, we're done.
7122  if (!OvlExpr->hasExplicitTemplateArgs())
7123    return 0;
7124
7125  TemplateArgumentListInfo ExplicitTemplateArgs;
7126  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
7127
7128  // Look through all of the overloaded functions, searching for one
7129  // whose type matches exactly.
7130  FunctionDecl *Matched = 0;
7131  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7132         E = OvlExpr->decls_end(); I != E; ++I) {
7133    // C++0x [temp.arg.explicit]p3:
7134    //   [...] In contexts where deduction is done and fails, or in contexts
7135    //   where deduction is not done, if a template argument list is
7136    //   specified and it, along with any default template arguments,
7137    //   identifies a single function template specialization, then the
7138    //   template-id is an lvalue for the function template specialization.
7139    FunctionTemplateDecl *FunctionTemplate
7140      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
7141
7142    // C++ [over.over]p2:
7143    //   If the name is a function template, template argument deduction is
7144    //   done (14.8.2.2), and if the argument deduction succeeds, the
7145    //   resulting template argument list is used to generate a single
7146    //   function template specialization, which is added to the set of
7147    //   overloaded functions considered.
7148    FunctionDecl *Specialization = 0;
7149    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
7150    if (TemplateDeductionResult Result
7151          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
7152                                    Specialization, Info)) {
7153      // FIXME: make a note of the failed deduction for diagnostics.
7154      (void)Result;
7155      continue;
7156    }
7157
7158    // Multiple matches; we can't resolve to a single declaration.
7159    if (Matched)
7160      return 0;
7161
7162    Matched = Specialization;
7163  }
7164
7165  return Matched;
7166}
7167
7168/// \brief Add a single candidate to the overload set.
7169static void AddOverloadedCallCandidate(Sema &S,
7170                                       DeclAccessPair FoundDecl,
7171                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
7172                                       Expr **Args, unsigned NumArgs,
7173                                       OverloadCandidateSet &CandidateSet,
7174                                       bool PartialOverloading) {
7175  NamedDecl *Callee = FoundDecl.getDecl();
7176  if (isa<UsingShadowDecl>(Callee))
7177    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
7178
7179  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
7180    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
7181    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
7182                           false, PartialOverloading);
7183    return;
7184  }
7185
7186  if (FunctionTemplateDecl *FuncTemplate
7187      = dyn_cast<FunctionTemplateDecl>(Callee)) {
7188    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
7189                                   ExplicitTemplateArgs,
7190                                   Args, NumArgs, CandidateSet);
7191    return;
7192  }
7193
7194  assert(false && "unhandled case in overloaded call candidate");
7195
7196  // do nothing?
7197}
7198
7199/// \brief Add the overload candidates named by callee and/or found by argument
7200/// dependent lookup to the given overload set.
7201void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
7202                                       Expr **Args, unsigned NumArgs,
7203                                       OverloadCandidateSet &CandidateSet,
7204                                       bool PartialOverloading) {
7205
7206#ifndef NDEBUG
7207  // Verify that ArgumentDependentLookup is consistent with the rules
7208  // in C++0x [basic.lookup.argdep]p3:
7209  //
7210  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
7211  //   and let Y be the lookup set produced by argument dependent
7212  //   lookup (defined as follows). If X contains
7213  //
7214  //     -- a declaration of a class member, or
7215  //
7216  //     -- a block-scope function declaration that is not a
7217  //        using-declaration, or
7218  //
7219  //     -- a declaration that is neither a function or a function
7220  //        template
7221  //
7222  //   then Y is empty.
7223
7224  if (ULE->requiresADL()) {
7225    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7226           E = ULE->decls_end(); I != E; ++I) {
7227      assert(!(*I)->getDeclContext()->isRecord());
7228      assert(isa<UsingShadowDecl>(*I) ||
7229             !(*I)->getDeclContext()->isFunctionOrMethod());
7230      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
7231    }
7232  }
7233#endif
7234
7235  // It would be nice to avoid this copy.
7236  TemplateArgumentListInfo TABuffer;
7237  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7238  if (ULE->hasExplicitTemplateArgs()) {
7239    ULE->copyTemplateArgumentsInto(TABuffer);
7240    ExplicitTemplateArgs = &TABuffer;
7241  }
7242
7243  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
7244         E = ULE->decls_end(); I != E; ++I)
7245    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
7246                               Args, NumArgs, CandidateSet,
7247                               PartialOverloading);
7248
7249  if (ULE->requiresADL())
7250    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
7251                                         Args, NumArgs,
7252                                         ExplicitTemplateArgs,
7253                                         CandidateSet,
7254                                         PartialOverloading);
7255}
7256
7257/// Attempts to recover from a call where no functions were found.
7258///
7259/// Returns true if new candidates were found.
7260static ExprResult
7261BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
7262                      UnresolvedLookupExpr *ULE,
7263                      SourceLocation LParenLoc,
7264                      Expr **Args, unsigned NumArgs,
7265                      SourceLocation RParenLoc) {
7266
7267  CXXScopeSpec SS;
7268  if (ULE->getQualifier()) {
7269    SS.setScopeRep(ULE->getQualifier());
7270    SS.setRange(ULE->getQualifierRange());
7271  }
7272
7273  TemplateArgumentListInfo TABuffer;
7274  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
7275  if (ULE->hasExplicitTemplateArgs()) {
7276    ULE->copyTemplateArgumentsInto(TABuffer);
7277    ExplicitTemplateArgs = &TABuffer;
7278  }
7279
7280  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
7281                 Sema::LookupOrdinaryName);
7282  if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
7283    return ExprError();
7284
7285  assert(!R.empty() && "lookup results empty despite recovery");
7286
7287  // Build an implicit member call if appropriate.  Just drop the
7288  // casts and such from the call, we don't really care.
7289  ExprResult NewFn = ExprError();
7290  if ((*R.begin())->isCXXClassMember())
7291    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
7292                                                    ExplicitTemplateArgs);
7293  else if (ExplicitTemplateArgs)
7294    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
7295  else
7296    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
7297
7298  if (NewFn.isInvalid())
7299    return ExprError();
7300
7301  // This shouldn't cause an infinite loop because we're giving it
7302  // an expression with non-empty lookup results, which should never
7303  // end up here.
7304  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
7305                               MultiExprArg(Args, NumArgs), RParenLoc);
7306}
7307
7308/// ResolveOverloadedCallFn - Given the call expression that calls Fn
7309/// (which eventually refers to the declaration Func) and the call
7310/// arguments Args/NumArgs, attempt to resolve the function call down
7311/// to a specific function. If overload resolution succeeds, returns
7312/// the function declaration produced by overload
7313/// resolution. Otherwise, emits diagnostics, deletes all of the
7314/// arguments and Fn, and returns NULL.
7315ExprResult
7316Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
7317                              SourceLocation LParenLoc,
7318                              Expr **Args, unsigned NumArgs,
7319                              SourceLocation RParenLoc) {
7320#ifndef NDEBUG
7321  if (ULE->requiresADL()) {
7322    // To do ADL, we must have found an unqualified name.
7323    assert(!ULE->getQualifier() && "qualified name with ADL");
7324
7325    // We don't perform ADL for implicit declarations of builtins.
7326    // Verify that this was correctly set up.
7327    FunctionDecl *F;
7328    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
7329        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
7330        F->getBuiltinID() && F->isImplicit())
7331      assert(0 && "performing ADL for builtin");
7332
7333    // We don't perform ADL in C.
7334    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
7335  }
7336#endif
7337
7338  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
7339
7340  // Add the functions denoted by the callee to the set of candidate
7341  // functions, including those from argument-dependent lookup.
7342  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
7343
7344  // If we found nothing, try to recover.
7345  // AddRecoveryCallCandidates diagnoses the error itself, so we just
7346  // bailout out if it fails.
7347  if (CandidateSet.empty())
7348    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
7349                                 RParenLoc);
7350
7351  OverloadCandidateSet::iterator Best;
7352  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
7353  case OR_Success: {
7354    FunctionDecl *FDecl = Best->Function;
7355    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
7356    DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
7357                      ULE->getNameLoc());
7358    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
7359    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
7360                                 RParenLoc);
7361  }
7362
7363  case OR_No_Viable_Function:
7364    Diag(Fn->getSourceRange().getBegin(),
7365         diag::err_ovl_no_viable_function_in_call)
7366      << ULE->getName() << Fn->getSourceRange();
7367    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7368    break;
7369
7370  case OR_Ambiguous:
7371    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
7372      << ULE->getName() << Fn->getSourceRange();
7373    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
7374    break;
7375
7376  case OR_Deleted:
7377    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
7378      << Best->Function->isDeleted()
7379      << ULE->getName()
7380      << Fn->getSourceRange();
7381    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7382    break;
7383  }
7384
7385  // Overload resolution failed.
7386  return ExprError();
7387}
7388
7389static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
7390  return Functions.size() > 1 ||
7391    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
7392}
7393
7394/// \brief Create a unary operation that may resolve to an overloaded
7395/// operator.
7396///
7397/// \param OpLoc The location of the operator itself (e.g., '*').
7398///
7399/// \param OpcIn The UnaryOperator::Opcode that describes this
7400/// operator.
7401///
7402/// \param Functions The set of non-member functions that will be
7403/// considered by overload resolution. The caller needs to build this
7404/// set based on the context using, e.g.,
7405/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
7406/// set should not contain any member functions; those will be added
7407/// by CreateOverloadedUnaryOp().
7408///
7409/// \param input The input argument.
7410ExprResult
7411Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
7412                              const UnresolvedSetImpl &Fns,
7413                              Expr *Input) {
7414  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
7415
7416  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
7417  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
7418  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7419  // TODO: provide better source location info.
7420  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
7421
7422  if (Input->getObjectKind() == OK_ObjCProperty)
7423    ConvertPropertyForRValue(Input);
7424
7425  Expr *Args[2] = { Input, 0 };
7426  unsigned NumArgs = 1;
7427
7428  // For post-increment and post-decrement, add the implicit '0' as
7429  // the second argument, so that we know this is a post-increment or
7430  // post-decrement.
7431  if (Opc == UO_PostInc || Opc == UO_PostDec) {
7432    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
7433    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
7434                                     SourceLocation());
7435    NumArgs = 2;
7436  }
7437
7438  if (Input->isTypeDependent()) {
7439    if (Fns.empty())
7440      return Owned(new (Context) UnaryOperator(Input,
7441                                               Opc,
7442                                               Context.DependentTy,
7443                                               VK_RValue, OK_Ordinary,
7444                                               OpLoc));
7445
7446    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7447    UnresolvedLookupExpr *Fn
7448      = UnresolvedLookupExpr::Create(Context, NamingClass,
7449                                     0, SourceRange(), OpNameInfo,
7450                                     /*ADL*/ true, IsOverloaded(Fns),
7451                                     Fns.begin(), Fns.end());
7452    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
7453                                                   &Args[0], NumArgs,
7454                                                   Context.DependentTy,
7455                                                   VK_RValue,
7456                                                   OpLoc));
7457  }
7458
7459  // Build an empty overload set.
7460  OverloadCandidateSet CandidateSet(OpLoc);
7461
7462  // Add the candidates from the given function set.
7463  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
7464
7465  // Add operator candidates that are member functions.
7466  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
7467
7468  // Add candidates from ADL.
7469  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
7470                                       Args, NumArgs,
7471                                       /*ExplicitTemplateArgs*/ 0,
7472                                       CandidateSet);
7473
7474  // Add builtin operator candidates.
7475  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
7476
7477  // Perform overload resolution.
7478  OverloadCandidateSet::iterator Best;
7479  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
7480  case OR_Success: {
7481    // We found a built-in operator or an overloaded operator.
7482    FunctionDecl *FnDecl = Best->Function;
7483
7484    if (FnDecl) {
7485      // We matched an overloaded operator. Build a call to that
7486      // operator.
7487
7488      // Convert the arguments.
7489      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
7490        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
7491
7492        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
7493                                                Best->FoundDecl, Method))
7494          return ExprError();
7495      } else {
7496        // Convert the arguments.
7497        ExprResult InputInit
7498          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7499                                                      Context,
7500                                                      FnDecl->getParamDecl(0)),
7501                                      SourceLocation(),
7502                                      Input);
7503        if (InputInit.isInvalid())
7504          return ExprError();
7505        Input = InputInit.take();
7506      }
7507
7508      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7509
7510      // Determine the result type.
7511      QualType ResultTy = FnDecl->getResultType();
7512      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7513      ResultTy = ResultTy.getNonLValueExprType(Context);
7514
7515      // Build the actual expression node.
7516      Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl);
7517
7518      Args[0] = Input;
7519      CallExpr *TheCall =
7520        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
7521                                          Args, NumArgs, ResultTy, VK, OpLoc);
7522
7523      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
7524                              FnDecl))
7525        return ExprError();
7526
7527      return MaybeBindToTemporary(TheCall);
7528    } else {
7529      // We matched a built-in operator. Convert the arguments, then
7530      // break out so that we will build the appropriate built-in
7531      // operator node.
7532        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
7533                                      Best->Conversions[0], AA_Passing))
7534          return ExprError();
7535
7536        break;
7537      }
7538    }
7539
7540    case OR_No_Viable_Function:
7541      // No viable function; fall through to handling this as a
7542      // built-in operator, which will produce an error message for us.
7543      break;
7544
7545    case OR_Ambiguous:
7546      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
7547          << UnaryOperator::getOpcodeStr(Opc)
7548          << Input->getType()
7549          << Input->getSourceRange();
7550      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
7551                                  Args, NumArgs,
7552                                  UnaryOperator::getOpcodeStr(Opc), OpLoc);
7553      return ExprError();
7554
7555    case OR_Deleted:
7556      Diag(OpLoc, diag::err_ovl_deleted_oper)
7557        << Best->Function->isDeleted()
7558        << UnaryOperator::getOpcodeStr(Opc)
7559        << Input->getSourceRange();
7560      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
7561      return ExprError();
7562    }
7563
7564  // Either we found no viable overloaded operator or we matched a
7565  // built-in operator. In either case, fall through to trying to
7566  // build a built-in operation.
7567  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
7568}
7569
7570/// \brief Create a binary operation that may resolve to an overloaded
7571/// operator.
7572///
7573/// \param OpLoc The location of the operator itself (e.g., '+').
7574///
7575/// \param OpcIn The BinaryOperator::Opcode that describes this
7576/// operator.
7577///
7578/// \param Functions The set of non-member functions that will be
7579/// considered by overload resolution. The caller needs to build this
7580/// set based on the context using, e.g.,
7581/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
7582/// set should not contain any member functions; those will be added
7583/// by CreateOverloadedBinOp().
7584///
7585/// \param LHS Left-hand argument.
7586/// \param RHS Right-hand argument.
7587ExprResult
7588Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
7589                            unsigned OpcIn,
7590                            const UnresolvedSetImpl &Fns,
7591                            Expr *LHS, Expr *RHS) {
7592  Expr *Args[2] = { LHS, RHS };
7593  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
7594
7595  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
7596  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
7597  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
7598
7599  // If either side is type-dependent, create an appropriate dependent
7600  // expression.
7601  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
7602    if (Fns.empty()) {
7603      // If there are no functions to store, just build a dependent
7604      // BinaryOperator or CompoundAssignment.
7605      if (Opc <= BO_Assign || Opc > BO_OrAssign)
7606        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
7607                                                  Context.DependentTy,
7608                                                  VK_RValue, OK_Ordinary,
7609                                                  OpLoc));
7610
7611      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
7612                                                        Context.DependentTy,
7613                                                        VK_LValue,
7614                                                        OK_Ordinary,
7615                                                        Context.DependentTy,
7616                                                        Context.DependentTy,
7617                                                        OpLoc));
7618    }
7619
7620    // FIXME: save results of ADL from here?
7621    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7622    // TODO: provide better source location info in DNLoc component.
7623    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
7624    UnresolvedLookupExpr *Fn
7625      = UnresolvedLookupExpr::Create(Context, NamingClass, 0, SourceRange(),
7626                                     OpNameInfo, /*ADL*/ true, IsOverloaded(Fns),
7627                                     Fns.begin(), Fns.end());
7628    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
7629                                                   Args, 2,
7630                                                   Context.DependentTy,
7631                                                   VK_RValue,
7632                                                   OpLoc));
7633  }
7634
7635  // Always do property rvalue conversions on the RHS.
7636  if (Args[1]->getObjectKind() == OK_ObjCProperty)
7637    ConvertPropertyForRValue(Args[1]);
7638
7639  // The LHS is more complicated.
7640  if (Args[0]->getObjectKind() == OK_ObjCProperty) {
7641
7642    // There's a tension for assignment operators between primitive
7643    // property assignment and the overloaded operators.
7644    if (BinaryOperator::isAssignmentOp(Opc)) {
7645      const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
7646
7647      // Is the property "logically" settable?
7648      bool Settable = (PRE->isExplicitProperty() ||
7649                       PRE->getImplicitPropertySetter());
7650
7651      // To avoid gratuitously inventing semantics, use the primitive
7652      // unless it isn't.  Thoughts in case we ever really care:
7653      // - If the property isn't logically settable, we have to
7654      //   load and hope.
7655      // - If the property is settable and this is simple assignment,
7656      //   we really should use the primitive.
7657      // - If the property is settable, then we could try overloading
7658      //   on a generic lvalue of the appropriate type;  if it works
7659      //   out to a builtin candidate, we would do that same operation
7660      //   on the property, and otherwise just error.
7661      if (Settable)
7662        return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7663    }
7664
7665    ConvertPropertyForRValue(Args[0]);
7666  }
7667
7668  // If this is the assignment operator, we only perform overload resolution
7669  // if the left-hand side is a class or enumeration type. This is actually
7670  // a hack. The standard requires that we do overload resolution between the
7671  // various built-in candidates, but as DR507 points out, this can lead to
7672  // problems. So we do it this way, which pretty much follows what GCC does.
7673  // Note that we go the traditional code path for compound assignment forms.
7674  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
7675    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7676
7677  // If this is the .* operator, which is not overloadable, just
7678  // create a built-in binary operator.
7679  if (Opc == BO_PtrMemD)
7680    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7681
7682  // Build an empty overload set.
7683  OverloadCandidateSet CandidateSet(OpLoc);
7684
7685  // Add the candidates from the given function set.
7686  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
7687
7688  // Add operator candidates that are member functions.
7689  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
7690
7691  // Add candidates from ADL.
7692  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
7693                                       Args, 2,
7694                                       /*ExplicitTemplateArgs*/ 0,
7695                                       CandidateSet);
7696
7697  // Add builtin operator candidates.
7698  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
7699
7700  // Perform overload resolution.
7701  OverloadCandidateSet::iterator Best;
7702  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
7703    case OR_Success: {
7704      // We found a built-in operator or an overloaded operator.
7705      FunctionDecl *FnDecl = Best->Function;
7706
7707      if (FnDecl) {
7708        // We matched an overloaded operator. Build a call to that
7709        // operator.
7710
7711        // Convert the arguments.
7712        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
7713          // Best->Access is only meaningful for class members.
7714          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
7715
7716          ExprResult Arg1 =
7717            PerformCopyInitialization(
7718              InitializedEntity::InitializeParameter(Context,
7719                                                     FnDecl->getParamDecl(0)),
7720              SourceLocation(), Owned(Args[1]));
7721          if (Arg1.isInvalid())
7722            return ExprError();
7723
7724          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
7725                                                  Best->FoundDecl, Method))
7726            return ExprError();
7727
7728          Args[1] = RHS = Arg1.takeAs<Expr>();
7729        } else {
7730          // Convert the arguments.
7731          ExprResult Arg0 = PerformCopyInitialization(
7732            InitializedEntity::InitializeParameter(Context,
7733                                                   FnDecl->getParamDecl(0)),
7734            SourceLocation(), Owned(Args[0]));
7735          if (Arg0.isInvalid())
7736            return ExprError();
7737
7738          ExprResult Arg1 =
7739            PerformCopyInitialization(
7740              InitializedEntity::InitializeParameter(Context,
7741                                                     FnDecl->getParamDecl(1)),
7742              SourceLocation(), Owned(Args[1]));
7743          if (Arg1.isInvalid())
7744            return ExprError();
7745          Args[0] = LHS = Arg0.takeAs<Expr>();
7746          Args[1] = RHS = Arg1.takeAs<Expr>();
7747        }
7748
7749        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7750
7751        // Determine the result type.
7752        QualType ResultTy = FnDecl->getResultType();
7753        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7754        ResultTy = ResultTy.getNonLValueExprType(Context);
7755
7756        // Build the actual expression node.
7757        Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc);
7758
7759        CXXOperatorCallExpr *TheCall =
7760          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
7761                                            Args, 2, ResultTy, VK, OpLoc);
7762
7763        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
7764                                FnDecl))
7765          return ExprError();
7766
7767        return MaybeBindToTemporary(TheCall);
7768      } else {
7769        // We matched a built-in operator. Convert the arguments, then
7770        // break out so that we will build the appropriate built-in
7771        // operator node.
7772        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
7773                                      Best->Conversions[0], AA_Passing) ||
7774            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
7775                                      Best->Conversions[1], AA_Passing))
7776          return ExprError();
7777
7778        break;
7779      }
7780    }
7781
7782    case OR_No_Viable_Function: {
7783      // C++ [over.match.oper]p9:
7784      //   If the operator is the operator , [...] and there are no
7785      //   viable functions, then the operator is assumed to be the
7786      //   built-in operator and interpreted according to clause 5.
7787      if (Opc == BO_Comma)
7788        break;
7789
7790      // For class as left operand for assignment or compound assigment
7791      // operator do not fall through to handling in built-in, but report that
7792      // no overloaded assignment operator found
7793      ExprResult Result = ExprError();
7794      if (Args[0]->getType()->isRecordType() &&
7795          Opc >= BO_Assign && Opc <= BO_OrAssign) {
7796        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
7797             << BinaryOperator::getOpcodeStr(Opc)
7798             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7799      } else {
7800        // No viable function; try to create a built-in operation, which will
7801        // produce an error. Then, show the non-viable candidates.
7802        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7803      }
7804      assert(Result.isInvalid() &&
7805             "C++ binary operator overloading is missing candidates!");
7806      if (Result.isInvalid())
7807        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
7808                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
7809      return move(Result);
7810    }
7811
7812    case OR_Ambiguous:
7813      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
7814          << BinaryOperator::getOpcodeStr(Opc)
7815          << Args[0]->getType() << Args[1]->getType()
7816          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7817      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
7818                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
7819      return ExprError();
7820
7821    case OR_Deleted:
7822      Diag(OpLoc, diag::err_ovl_deleted_oper)
7823        << Best->Function->isDeleted()
7824        << BinaryOperator::getOpcodeStr(Opc)
7825        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7826      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2);
7827      return ExprError();
7828  }
7829
7830  // We matched a built-in operator; build it.
7831  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
7832}
7833
7834ExprResult
7835Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
7836                                         SourceLocation RLoc,
7837                                         Expr *Base, Expr *Idx) {
7838  Expr *Args[2] = { Base, Idx };
7839  DeclarationName OpName =
7840      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
7841
7842  // If either side is type-dependent, create an appropriate dependent
7843  // expression.
7844  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
7845
7846    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
7847    // CHECKME: no 'operator' keyword?
7848    DeclarationNameInfo OpNameInfo(OpName, LLoc);
7849    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
7850    UnresolvedLookupExpr *Fn
7851      = UnresolvedLookupExpr::Create(Context, NamingClass,
7852                                     0, SourceRange(), OpNameInfo,
7853                                     /*ADL*/ true, /*Overloaded*/ false,
7854                                     UnresolvedSetIterator(),
7855                                     UnresolvedSetIterator());
7856    // Can't add any actual overloads yet
7857
7858    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
7859                                                   Args, 2,
7860                                                   Context.DependentTy,
7861                                                   VK_RValue,
7862                                                   RLoc));
7863  }
7864
7865  if (Args[0]->getObjectKind() == OK_ObjCProperty)
7866    ConvertPropertyForRValue(Args[0]);
7867  if (Args[1]->getObjectKind() == OK_ObjCProperty)
7868    ConvertPropertyForRValue(Args[1]);
7869
7870  // Build an empty overload set.
7871  OverloadCandidateSet CandidateSet(LLoc);
7872
7873  // Subscript can only be overloaded as a member function.
7874
7875  // Add operator candidates that are member functions.
7876  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
7877
7878  // Add builtin operator candidates.
7879  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
7880
7881  // Perform overload resolution.
7882  OverloadCandidateSet::iterator Best;
7883  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
7884    case OR_Success: {
7885      // We found a built-in operator or an overloaded operator.
7886      FunctionDecl *FnDecl = Best->Function;
7887
7888      if (FnDecl) {
7889        // We matched an overloaded operator. Build a call to that
7890        // operator.
7891
7892        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
7893        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
7894
7895        // Convert the arguments.
7896        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
7897        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
7898                                                Best->FoundDecl, Method))
7899          return ExprError();
7900
7901        // Convert the arguments.
7902        ExprResult InputInit
7903          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7904                                                      Context,
7905                                                      FnDecl->getParamDecl(0)),
7906                                      SourceLocation(),
7907                                      Owned(Args[1]));
7908        if (InputInit.isInvalid())
7909          return ExprError();
7910
7911        Args[1] = InputInit.takeAs<Expr>();
7912
7913        // Determine the result type
7914        QualType ResultTy = FnDecl->getResultType();
7915        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
7916        ResultTy = ResultTy.getNonLValueExprType(Context);
7917
7918        // Build the actual expression node.
7919        Expr *FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc);
7920
7921        CXXOperatorCallExpr *TheCall =
7922          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
7923                                            FnExpr, Args, 2,
7924                                            ResultTy, VK, RLoc);
7925
7926        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
7927                                FnDecl))
7928          return ExprError();
7929
7930        return MaybeBindToTemporary(TheCall);
7931      } else {
7932        // We matched a built-in operator. Convert the arguments, then
7933        // break out so that we will build the appropriate built-in
7934        // operator node.
7935        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
7936                                      Best->Conversions[0], AA_Passing) ||
7937            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
7938                                      Best->Conversions[1], AA_Passing))
7939          return ExprError();
7940
7941        break;
7942      }
7943    }
7944
7945    case OR_No_Viable_Function: {
7946      if (CandidateSet.empty())
7947        Diag(LLoc, diag::err_ovl_no_oper)
7948          << Args[0]->getType() << /*subscript*/ 0
7949          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7950      else
7951        Diag(LLoc, diag::err_ovl_no_viable_subscript)
7952          << Args[0]->getType()
7953          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7954      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
7955                                  "[]", LLoc);
7956      return ExprError();
7957    }
7958
7959    case OR_Ambiguous:
7960      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
7961          << "[]"
7962          << Args[0]->getType() << Args[1]->getType()
7963          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7964      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
7965                                  "[]", LLoc);
7966      return ExprError();
7967
7968    case OR_Deleted:
7969      Diag(LLoc, diag::err_ovl_deleted_oper)
7970        << Best->Function->isDeleted() << "[]"
7971        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
7972      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
7973                                  "[]", LLoc);
7974      return ExprError();
7975    }
7976
7977  // We matched a built-in operator; build it.
7978  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
7979}
7980
7981/// BuildCallToMemberFunction - Build a call to a member
7982/// function. MemExpr is the expression that refers to the member
7983/// function (and includes the object parameter), Args/NumArgs are the
7984/// arguments to the function call (not including the object
7985/// parameter). The caller needs to validate that the member
7986/// expression refers to a member function or an overloaded member
7987/// function.
7988ExprResult
7989Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
7990                                SourceLocation LParenLoc, Expr **Args,
7991                                unsigned NumArgs, SourceLocation RParenLoc) {
7992  // Dig out the member expression. This holds both the object
7993  // argument and the member function we're referring to.
7994  Expr *NakedMemExpr = MemExprE->IgnoreParens();
7995
7996  MemberExpr *MemExpr;
7997  CXXMethodDecl *Method = 0;
7998  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
7999  NestedNameSpecifier *Qualifier = 0;
8000  if (isa<MemberExpr>(NakedMemExpr)) {
8001    MemExpr = cast<MemberExpr>(NakedMemExpr);
8002    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
8003    FoundDecl = MemExpr->getFoundDecl();
8004    Qualifier = MemExpr->getQualifier();
8005  } else {
8006    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
8007    Qualifier = UnresExpr->getQualifier();
8008
8009    QualType ObjectType = UnresExpr->getBaseType();
8010    Expr::Classification ObjectClassification
8011      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
8012                            : UnresExpr->getBase()->Classify(Context);
8013
8014    // Add overload candidates
8015    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
8016
8017    // FIXME: avoid copy.
8018    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
8019    if (UnresExpr->hasExplicitTemplateArgs()) {
8020      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
8021      TemplateArgs = &TemplateArgsBuffer;
8022    }
8023
8024    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
8025           E = UnresExpr->decls_end(); I != E; ++I) {
8026
8027      NamedDecl *Func = *I;
8028      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
8029      if (isa<UsingShadowDecl>(Func))
8030        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
8031
8032
8033      // Microsoft supports direct constructor calls.
8034      if (getLangOptions().Microsoft && isa<CXXConstructorDecl>(Func)) {
8035        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
8036                             CandidateSet);
8037      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
8038        // If explicit template arguments were provided, we can't call a
8039        // non-template member function.
8040        if (TemplateArgs)
8041          continue;
8042
8043        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
8044                           ObjectClassification,
8045                           Args, NumArgs, CandidateSet,
8046                           /*SuppressUserConversions=*/false);
8047      } else {
8048        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
8049                                   I.getPair(), ActingDC, TemplateArgs,
8050                                   ObjectType,  ObjectClassification,
8051                                   Args, NumArgs, CandidateSet,
8052                                   /*SuppressUsedConversions=*/false);
8053      }
8054    }
8055
8056    DeclarationName DeclName = UnresExpr->getMemberName();
8057
8058    OverloadCandidateSet::iterator Best;
8059    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
8060                                            Best)) {
8061    case OR_Success:
8062      Method = cast<CXXMethodDecl>(Best->Function);
8063      FoundDecl = Best->FoundDecl;
8064      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
8065      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
8066      break;
8067
8068    case OR_No_Viable_Function:
8069      Diag(UnresExpr->getMemberLoc(),
8070           diag::err_ovl_no_viable_member_function_in_call)
8071        << DeclName << MemExprE->getSourceRange();
8072      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8073      // FIXME: Leaking incoming expressions!
8074      return ExprError();
8075
8076    case OR_Ambiguous:
8077      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
8078        << DeclName << MemExprE->getSourceRange();
8079      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8080      // FIXME: Leaking incoming expressions!
8081      return ExprError();
8082
8083    case OR_Deleted:
8084      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
8085        << Best->Function->isDeleted()
8086        << DeclName << MemExprE->getSourceRange();
8087      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8088      // FIXME: Leaking incoming expressions!
8089      return ExprError();
8090    }
8091
8092    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
8093
8094    // If overload resolution picked a static member, build a
8095    // non-member call based on that function.
8096    if (Method->isStatic()) {
8097      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
8098                                   Args, NumArgs, RParenLoc);
8099    }
8100
8101    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
8102  }
8103
8104  QualType ResultType = Method->getResultType();
8105  ExprValueKind VK = Expr::getValueKindForType(ResultType);
8106  ResultType = ResultType.getNonLValueExprType(Context);
8107
8108  assert(Method && "Member call to something that isn't a method?");
8109  CXXMemberCallExpr *TheCall =
8110    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
8111                                    ResultType, VK, RParenLoc);
8112
8113  // Check for a valid return type.
8114  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
8115                          TheCall, Method))
8116    return ExprError();
8117
8118  // Convert the object argument (for a non-static member function call).
8119  // We only need to do this if there was actually an overload; otherwise
8120  // it was done at lookup.
8121  Expr *ObjectArg = MemExpr->getBase();
8122  if (!Method->isStatic() &&
8123      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
8124                                          FoundDecl, Method))
8125    return ExprError();
8126  MemExpr->setBase(ObjectArg);
8127
8128  // Convert the rest of the arguments
8129  const FunctionProtoType *Proto =
8130    Method->getType()->getAs<FunctionProtoType>();
8131  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
8132                              RParenLoc))
8133    return ExprError();
8134
8135  if (CheckFunctionCall(Method, TheCall))
8136    return ExprError();
8137
8138  return MaybeBindToTemporary(TheCall);
8139}
8140
8141/// BuildCallToObjectOfClassType - Build a call to an object of class
8142/// type (C++ [over.call.object]), which can end up invoking an
8143/// overloaded function call operator (@c operator()) or performing a
8144/// user-defined conversion on the object argument.
8145ExprResult
8146Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
8147                                   SourceLocation LParenLoc,
8148                                   Expr **Args, unsigned NumArgs,
8149                                   SourceLocation RParenLoc) {
8150  if (Object->getObjectKind() == OK_ObjCProperty)
8151    ConvertPropertyForRValue(Object);
8152
8153  assert(Object->getType()->isRecordType() && "Requires object type argument");
8154  const RecordType *Record = Object->getType()->getAs<RecordType>();
8155
8156  // C++ [over.call.object]p1:
8157  //  If the primary-expression E in the function call syntax
8158  //  evaluates to a class object of type "cv T", then the set of
8159  //  candidate functions includes at least the function call
8160  //  operators of T. The function call operators of T are obtained by
8161  //  ordinary lookup of the name operator() in the context of
8162  //  (E).operator().
8163  OverloadCandidateSet CandidateSet(LParenLoc);
8164  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
8165
8166  if (RequireCompleteType(LParenLoc, Object->getType(),
8167                          PDiag(diag::err_incomplete_object_call)
8168                          << Object->getSourceRange()))
8169    return true;
8170
8171  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
8172  LookupQualifiedName(R, Record->getDecl());
8173  R.suppressDiagnostics();
8174
8175  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
8176       Oper != OperEnd; ++Oper) {
8177    AddMethodCandidate(Oper.getPair(), Object->getType(),
8178                       Object->Classify(Context), Args, NumArgs, CandidateSet,
8179                       /*SuppressUserConversions=*/ false);
8180  }
8181
8182  // C++ [over.call.object]p2:
8183  //   In addition, for each conversion function declared in T of the
8184  //   form
8185  //
8186  //        operator conversion-type-id () cv-qualifier;
8187  //
8188  //   where cv-qualifier is the same cv-qualification as, or a
8189  //   greater cv-qualification than, cv, and where conversion-type-id
8190  //   denotes the type "pointer to function of (P1,...,Pn) returning
8191  //   R", or the type "reference to pointer to function of
8192  //   (P1,...,Pn) returning R", or the type "reference to function
8193  //   of (P1,...,Pn) returning R", a surrogate call function [...]
8194  //   is also considered as a candidate function. Similarly,
8195  //   surrogate call functions are added to the set of candidate
8196  //   functions for each conversion function declared in an
8197  //   accessible base class provided the function is not hidden
8198  //   within T by another intervening declaration.
8199  const UnresolvedSetImpl *Conversions
8200    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
8201  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
8202         E = Conversions->end(); I != E; ++I) {
8203    NamedDecl *D = *I;
8204    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
8205    if (isa<UsingShadowDecl>(D))
8206      D = cast<UsingShadowDecl>(D)->getTargetDecl();
8207
8208    // Skip over templated conversion functions; they aren't
8209    // surrogates.
8210    if (isa<FunctionTemplateDecl>(D))
8211      continue;
8212
8213    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
8214
8215    // Strip the reference type (if any) and then the pointer type (if
8216    // any) to get down to what might be a function type.
8217    QualType ConvType = Conv->getConversionType().getNonReferenceType();
8218    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
8219      ConvType = ConvPtrType->getPointeeType();
8220
8221    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
8222      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
8223                            Object, Args, NumArgs, CandidateSet);
8224  }
8225
8226  // Perform overload resolution.
8227  OverloadCandidateSet::iterator Best;
8228  switch (CandidateSet.BestViableFunction(*this, Object->getLocStart(),
8229                             Best)) {
8230  case OR_Success:
8231    // Overload resolution succeeded; we'll build the appropriate call
8232    // below.
8233    break;
8234
8235  case OR_No_Viable_Function:
8236    if (CandidateSet.empty())
8237      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
8238        << Object->getType() << /*call*/ 1
8239        << Object->getSourceRange();
8240    else
8241      Diag(Object->getSourceRange().getBegin(),
8242           diag::err_ovl_no_viable_object_call)
8243        << Object->getType() << Object->getSourceRange();
8244    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8245    break;
8246
8247  case OR_Ambiguous:
8248    Diag(Object->getSourceRange().getBegin(),
8249         diag::err_ovl_ambiguous_object_call)
8250      << Object->getType() << Object->getSourceRange();
8251    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8252    break;
8253
8254  case OR_Deleted:
8255    Diag(Object->getSourceRange().getBegin(),
8256         diag::err_ovl_deleted_object_call)
8257      << Best->Function->isDeleted()
8258      << Object->getType() << Object->getSourceRange();
8259    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8260    break;
8261  }
8262
8263  if (Best == CandidateSet.end())
8264    return true;
8265
8266  if (Best->Function == 0) {
8267    // Since there is no function declaration, this is one of the
8268    // surrogate candidates. Dig out the conversion function.
8269    CXXConversionDecl *Conv
8270      = cast<CXXConversionDecl>(
8271                         Best->Conversions[0].UserDefined.ConversionFunction);
8272
8273    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
8274    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8275
8276    // We selected one of the surrogate functions that converts the
8277    // object parameter to a function pointer. Perform the conversion
8278    // on the object argument, then let ActOnCallExpr finish the job.
8279
8280    // Create an implicit member expr to refer to the conversion operator.
8281    // and then call it.
8282    ExprResult Call = BuildCXXMemberCallExpr(Object, Best->FoundDecl, Conv);
8283    if (Call.isInvalid())
8284      return ExprError();
8285
8286    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
8287                         RParenLoc);
8288  }
8289
8290  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
8291  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
8292
8293  // We found an overloaded operator(). Build a CXXOperatorCallExpr
8294  // that calls this method, using Object for the implicit object
8295  // parameter and passing along the remaining arguments.
8296  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
8297  const FunctionProtoType *Proto =
8298    Method->getType()->getAs<FunctionProtoType>();
8299
8300  unsigned NumArgsInProto = Proto->getNumArgs();
8301  unsigned NumArgsToCheck = NumArgs;
8302
8303  // Build the full argument list for the method call (the
8304  // implicit object parameter is placed at the beginning of the
8305  // list).
8306  Expr **MethodArgs;
8307  if (NumArgs < NumArgsInProto) {
8308    NumArgsToCheck = NumArgsInProto;
8309    MethodArgs = new Expr*[NumArgsInProto + 1];
8310  } else {
8311    MethodArgs = new Expr*[NumArgs + 1];
8312  }
8313  MethodArgs[0] = Object;
8314  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
8315    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
8316
8317  Expr *NewFn = CreateFunctionRefExpr(*this, Method);
8318
8319  // Once we've built TheCall, all of the expressions are properly
8320  // owned.
8321  QualType ResultTy = Method->getResultType();
8322  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8323  ResultTy = ResultTy.getNonLValueExprType(Context);
8324
8325  CXXOperatorCallExpr *TheCall =
8326    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
8327                                      MethodArgs, NumArgs + 1,
8328                                      ResultTy, VK, RParenLoc);
8329  delete [] MethodArgs;
8330
8331  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
8332                          Method))
8333    return true;
8334
8335  // We may have default arguments. If so, we need to allocate more
8336  // slots in the call for them.
8337  if (NumArgs < NumArgsInProto)
8338    TheCall->setNumArgs(Context, NumArgsInProto + 1);
8339  else if (NumArgs > NumArgsInProto)
8340    NumArgsToCheck = NumArgsInProto;
8341
8342  bool IsError = false;
8343
8344  // Initialize the implicit object parameter.
8345  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
8346                                                 Best->FoundDecl, Method);
8347  TheCall->setArg(0, Object);
8348
8349
8350  // Check the argument types.
8351  for (unsigned i = 0; i != NumArgsToCheck; i++) {
8352    Expr *Arg;
8353    if (i < NumArgs) {
8354      Arg = Args[i];
8355
8356      // Pass the argument.
8357
8358      ExprResult InputInit
8359        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8360                                                    Context,
8361                                                    Method->getParamDecl(i)),
8362                                    SourceLocation(), Arg);
8363
8364      IsError |= InputInit.isInvalid();
8365      Arg = InputInit.takeAs<Expr>();
8366    } else {
8367      ExprResult DefArg
8368        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
8369      if (DefArg.isInvalid()) {
8370        IsError = true;
8371        break;
8372      }
8373
8374      Arg = DefArg.takeAs<Expr>();
8375    }
8376
8377    TheCall->setArg(i + 1, Arg);
8378  }
8379
8380  // If this is a variadic call, handle args passed through "...".
8381  if (Proto->isVariadic()) {
8382    // Promote the arguments (C99 6.5.2.2p7).
8383    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
8384      Expr *Arg = Args[i];
8385      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0);
8386      TheCall->setArg(i + 1, Arg);
8387    }
8388  }
8389
8390  if (IsError) return true;
8391
8392  if (CheckFunctionCall(Method, TheCall))
8393    return true;
8394
8395  return MaybeBindToTemporary(TheCall);
8396}
8397
8398/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
8399///  (if one exists), where @c Base is an expression of class type and
8400/// @c Member is the name of the member we're trying to find.
8401ExprResult
8402Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
8403  assert(Base->getType()->isRecordType() &&
8404         "left-hand side must have class type");
8405
8406  if (Base->getObjectKind() == OK_ObjCProperty)
8407    ConvertPropertyForRValue(Base);
8408
8409  SourceLocation Loc = Base->getExprLoc();
8410
8411  // C++ [over.ref]p1:
8412  //
8413  //   [...] An expression x->m is interpreted as (x.operator->())->m
8414  //   for a class object x of type T if T::operator->() exists and if
8415  //   the operator is selected as the best match function by the
8416  //   overload resolution mechanism (13.3).
8417  DeclarationName OpName =
8418    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
8419  OverloadCandidateSet CandidateSet(Loc);
8420  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
8421
8422  if (RequireCompleteType(Loc, Base->getType(),
8423                          PDiag(diag::err_typecheck_incomplete_tag)
8424                            << Base->getSourceRange()))
8425    return ExprError();
8426
8427  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
8428  LookupQualifiedName(R, BaseRecord->getDecl());
8429  R.suppressDiagnostics();
8430
8431  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
8432       Oper != OperEnd; ++Oper) {
8433    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
8434                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
8435  }
8436
8437  // Perform overload resolution.
8438  OverloadCandidateSet::iterator Best;
8439  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8440  case OR_Success:
8441    // Overload resolution succeeded; we'll build the call below.
8442    break;
8443
8444  case OR_No_Viable_Function:
8445    if (CandidateSet.empty())
8446      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
8447        << Base->getType() << Base->getSourceRange();
8448    else
8449      Diag(OpLoc, diag::err_ovl_no_viable_oper)
8450        << "operator->" << Base->getSourceRange();
8451    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
8452    return ExprError();
8453
8454  case OR_Ambiguous:
8455    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8456      << "->" << Base->getType() << Base->getSourceRange();
8457    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
8458    return ExprError();
8459
8460  case OR_Deleted:
8461    Diag(OpLoc,  diag::err_ovl_deleted_oper)
8462      << Best->Function->isDeleted()
8463      << "->" << Base->getSourceRange();
8464    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
8465    return ExprError();
8466  }
8467
8468  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
8469  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8470
8471  // Convert the object parameter.
8472  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
8473  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
8474                                          Best->FoundDecl, Method))
8475    return ExprError();
8476
8477  // Build the operator call.
8478  Expr *FnExpr = CreateFunctionRefExpr(*this, Method);
8479
8480  QualType ResultTy = Method->getResultType();
8481  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8482  ResultTy = ResultTy.getNonLValueExprType(Context);
8483  CXXOperatorCallExpr *TheCall =
8484    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
8485                                      &Base, 1, ResultTy, VK, OpLoc);
8486
8487  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
8488                          Method))
8489          return ExprError();
8490  return Owned(TheCall);
8491}
8492
8493/// FixOverloadedFunctionReference - E is an expression that refers to
8494/// a C++ overloaded function (possibly with some parentheses and
8495/// perhaps a '&' around it). We have resolved the overloaded function
8496/// to the function declaration Fn, so patch up the expression E to
8497/// refer (possibly indirectly) to Fn. Returns the new expr.
8498Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
8499                                           FunctionDecl *Fn) {
8500  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
8501    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
8502                                                   Found, Fn);
8503    if (SubExpr == PE->getSubExpr())
8504      return PE;
8505
8506    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
8507  }
8508
8509  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8510    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
8511                                                   Found, Fn);
8512    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
8513                               SubExpr->getType()) &&
8514           "Implicit cast type cannot be determined from overload");
8515    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
8516    if (SubExpr == ICE->getSubExpr())
8517      return ICE;
8518
8519    return ImplicitCastExpr::Create(Context, ICE->getType(),
8520                                    ICE->getCastKind(),
8521                                    SubExpr, 0,
8522                                    ICE->getValueKind());
8523  }
8524
8525  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
8526    assert(UnOp->getOpcode() == UO_AddrOf &&
8527           "Can only take the address of an overloaded function");
8528    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8529      if (Method->isStatic()) {
8530        // Do nothing: static member functions aren't any different
8531        // from non-member functions.
8532      } else {
8533        // Fix the sub expression, which really has to be an
8534        // UnresolvedLookupExpr holding an overloaded member function
8535        // or template.
8536        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
8537                                                       Found, Fn);
8538        if (SubExpr == UnOp->getSubExpr())
8539          return UnOp;
8540
8541        assert(isa<DeclRefExpr>(SubExpr)
8542               && "fixed to something other than a decl ref");
8543        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
8544               && "fixed to a member ref with no nested name qualifier");
8545
8546        // We have taken the address of a pointer to member
8547        // function. Perform the computation here so that we get the
8548        // appropriate pointer to member type.
8549        QualType ClassType
8550          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
8551        QualType MemPtrType
8552          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
8553
8554        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
8555                                           VK_RValue, OK_Ordinary,
8556                                           UnOp->getOperatorLoc());
8557      }
8558    }
8559    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
8560                                                   Found, Fn);
8561    if (SubExpr == UnOp->getSubExpr())
8562      return UnOp;
8563
8564    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
8565                                     Context.getPointerType(SubExpr->getType()),
8566                                       VK_RValue, OK_Ordinary,
8567                                       UnOp->getOperatorLoc());
8568  }
8569
8570  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
8571    // FIXME: avoid copy.
8572    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
8573    if (ULE->hasExplicitTemplateArgs()) {
8574      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
8575      TemplateArgs = &TemplateArgsBuffer;
8576    }
8577
8578    return DeclRefExpr::Create(Context,
8579                               ULE->getQualifier(),
8580                               ULE->getQualifierRange(),
8581                               Fn,
8582                               ULE->getNameLoc(),
8583                               Fn->getType(),
8584                               VK_LValue,
8585                               TemplateArgs);
8586  }
8587
8588  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
8589    // FIXME: avoid copy.
8590    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
8591    if (MemExpr->hasExplicitTemplateArgs()) {
8592      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
8593      TemplateArgs = &TemplateArgsBuffer;
8594    }
8595
8596    Expr *Base;
8597
8598    // If we're filling in a static method where we used to have an
8599    // implicit member access, rewrite to a simple decl ref.
8600    if (MemExpr->isImplicitAccess()) {
8601      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
8602        return DeclRefExpr::Create(Context,
8603                                   MemExpr->getQualifier(),
8604                                   MemExpr->getQualifierRange(),
8605                                   Fn,
8606                                   MemExpr->getMemberLoc(),
8607                                   Fn->getType(),
8608                                   VK_LValue,
8609                                   TemplateArgs);
8610      } else {
8611        SourceLocation Loc = MemExpr->getMemberLoc();
8612        if (MemExpr->getQualifier())
8613          Loc = MemExpr->getQualifierRange().getBegin();
8614        Base = new (Context) CXXThisExpr(Loc,
8615                                         MemExpr->getBaseType(),
8616                                         /*isImplicit=*/true);
8617      }
8618    } else
8619      Base = MemExpr->getBase();
8620
8621    return MemberExpr::Create(Context, Base,
8622                              MemExpr->isArrow(),
8623                              MemExpr->getQualifier(),
8624                              MemExpr->getQualifierRange(),
8625                              Fn,
8626                              Found,
8627                              MemExpr->getMemberNameInfo(),
8628                              TemplateArgs,
8629                              Fn->getType(),
8630                              cast<CXXMethodDecl>(Fn)->isStatic()
8631                                ? VK_LValue : VK_RValue,
8632                              OK_Ordinary);
8633  }
8634
8635  llvm_unreachable("Invalid reference to overloaded function");
8636  return E;
8637}
8638
8639ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
8640                                                DeclAccessPair Found,
8641                                                FunctionDecl *Fn) {
8642  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
8643}
8644
8645} // end namespace clang
8646