SemaOverload.cpp revision 699ee52b2f383b62865013c3575510b520055811
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "Lookup.h" 16#include "clang/Basic/Diagnostic.h" 17#include "clang/Lex/Preprocessor.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/CXXInheritance.h" 20#include "clang/AST/Expr.h" 21#include "clang/AST/ExprCXX.h" 22#include "clang/AST/TypeOrdering.h" 23#include "clang/Basic/PartialDiagnostic.h" 24#include "llvm/ADT/SmallPtrSet.h" 25#include "llvm/ADT/STLExtras.h" 26#include "llvm/Support/Compiler.h" 27#include <algorithm> 28#include <cstdio> 29 30namespace clang { 31 32/// GetConversionCategory - Retrieve the implicit conversion 33/// category corresponding to the given implicit conversion kind. 34ImplicitConversionCategory 35GetConversionCategory(ImplicitConversionKind Kind) { 36 static const ImplicitConversionCategory 37 Category[(int)ICK_Num_Conversion_Kinds] = { 38 ICC_Identity, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Lvalue_Transformation, 42 ICC_Qualification_Adjustment, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Promotion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion, 55 ICC_Conversion 56 }; 57 return Category[(int)Kind]; 58} 59 60/// GetConversionRank - Retrieve the implicit conversion rank 61/// corresponding to the given implicit conversion kind. 62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 63 static const ImplicitConversionRank 64 Rank[(int)ICK_Num_Conversion_Kinds] = { 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Exact_Match, 70 ICR_Promotion, 71 ICR_Promotion, 72 ICR_Promotion, 73 ICR_Conversion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion, 82 ICR_Conversion 83 }; 84 return Rank[(int)Kind]; 85} 86 87/// GetImplicitConversionName - Return the name of this kind of 88/// implicit conversion. 89const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 90 static const char* Name[(int)ICK_Num_Conversion_Kinds] = { 91 "No conversion", 92 "Lvalue-to-rvalue", 93 "Array-to-pointer", 94 "Function-to-pointer", 95 "Qualification", 96 "Integral promotion", 97 "Floating point promotion", 98 "Complex promotion", 99 "Integral conversion", 100 "Floating conversion", 101 "Complex conversion", 102 "Floating-integral conversion", 103 "Complex-real conversion", 104 "Pointer conversion", 105 "Pointer-to-member conversion", 106 "Boolean conversion", 107 "Compatible-types conversion", 108 "Derived-to-base conversion" 109 }; 110 return Name[Kind]; 111} 112 113/// StandardConversionSequence - Set the standard conversion 114/// sequence to the identity conversion. 115void StandardConversionSequence::setAsIdentityConversion() { 116 First = ICK_Identity; 117 Second = ICK_Identity; 118 Third = ICK_Identity; 119 Deprecated = false; 120 ReferenceBinding = false; 121 DirectBinding = false; 122 RRefBinding = false; 123 CopyConstructor = 0; 124} 125 126/// getRank - Retrieve the rank of this standard conversion sequence 127/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 128/// implicit conversions. 129ImplicitConversionRank StandardConversionSequence::getRank() const { 130 ImplicitConversionRank Rank = ICR_Exact_Match; 131 if (GetConversionRank(First) > Rank) 132 Rank = GetConversionRank(First); 133 if (GetConversionRank(Second) > Rank) 134 Rank = GetConversionRank(Second); 135 if (GetConversionRank(Third) > Rank) 136 Rank = GetConversionRank(Third); 137 return Rank; 138} 139 140/// isPointerConversionToBool - Determines whether this conversion is 141/// a conversion of a pointer or pointer-to-member to bool. This is 142/// used as part of the ranking of standard conversion sequences 143/// (C++ 13.3.3.2p4). 144bool StandardConversionSequence::isPointerConversionToBool() const { 145 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 146 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 147 148 // Note that FromType has not necessarily been transformed by the 149 // array-to-pointer or function-to-pointer implicit conversions, so 150 // check for their presence as well as checking whether FromType is 151 // a pointer. 152 if (ToType->isBooleanType() && 153 (FromType->isPointerType() || FromType->isBlockPointerType() || 154 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 155 return true; 156 157 return false; 158} 159 160/// isPointerConversionToVoidPointer - Determines whether this 161/// conversion is a conversion of a pointer to a void pointer. This is 162/// used as part of the ranking of standard conversion sequences (C++ 163/// 13.3.3.2p4). 164bool 165StandardConversionSequence:: 166isPointerConversionToVoidPointer(ASTContext& Context) const { 167 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 168 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 169 170 // Note that FromType has not necessarily been transformed by the 171 // array-to-pointer implicit conversion, so check for its presence 172 // and redo the conversion to get a pointer. 173 if (First == ICK_Array_To_Pointer) 174 FromType = Context.getArrayDecayedType(FromType); 175 176 if (Second == ICK_Pointer_Conversion) 177 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 178 return ToPtrType->getPointeeType()->isVoidType(); 179 180 return false; 181} 182 183/// DebugPrint - Print this standard conversion sequence to standard 184/// error. Useful for debugging overloading issues. 185void StandardConversionSequence::DebugPrint() const { 186 bool PrintedSomething = false; 187 if (First != ICK_Identity) { 188 fprintf(stderr, "%s", GetImplicitConversionName(First)); 189 PrintedSomething = true; 190 } 191 192 if (Second != ICK_Identity) { 193 if (PrintedSomething) { 194 fprintf(stderr, " -> "); 195 } 196 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 197 198 if (CopyConstructor) { 199 fprintf(stderr, " (by copy constructor)"); 200 } else if (DirectBinding) { 201 fprintf(stderr, " (direct reference binding)"); 202 } else if (ReferenceBinding) { 203 fprintf(stderr, " (reference binding)"); 204 } 205 PrintedSomething = true; 206 } 207 208 if (Third != ICK_Identity) { 209 if (PrintedSomething) { 210 fprintf(stderr, " -> "); 211 } 212 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 213 PrintedSomething = true; 214 } 215 216 if (!PrintedSomething) { 217 fprintf(stderr, "No conversions required"); 218 } 219} 220 221/// DebugPrint - Print this user-defined conversion sequence to standard 222/// error. Useful for debugging overloading issues. 223void UserDefinedConversionSequence::DebugPrint() const { 224 if (Before.First || Before.Second || Before.Third) { 225 Before.DebugPrint(); 226 fprintf(stderr, " -> "); 227 } 228 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 229 if (After.First || After.Second || After.Third) { 230 fprintf(stderr, " -> "); 231 After.DebugPrint(); 232 } 233} 234 235/// DebugPrint - Print this implicit conversion sequence to standard 236/// error. Useful for debugging overloading issues. 237void ImplicitConversionSequence::DebugPrint() const { 238 switch (ConversionKind) { 239 case StandardConversion: 240 fprintf(stderr, "Standard conversion: "); 241 Standard.DebugPrint(); 242 break; 243 case UserDefinedConversion: 244 fprintf(stderr, "User-defined conversion: "); 245 UserDefined.DebugPrint(); 246 break; 247 case EllipsisConversion: 248 fprintf(stderr, "Ellipsis conversion"); 249 break; 250 case BadConversion: 251 fprintf(stderr, "Bad conversion"); 252 break; 253 } 254 255 fprintf(stderr, "\n"); 256} 257 258// IsOverload - Determine whether the given New declaration is an 259// overload of the Old declaration. This routine returns false if New 260// and Old cannot be overloaded, e.g., if they are functions with the 261// same signature (C++ 1.3.10) or if the Old declaration isn't a 262// function (or overload set). When it does return false and Old is an 263// OverloadedFunctionDecl, MatchedDecl will be set to point to the 264// FunctionDecl that New cannot be overloaded with. 265// 266// Example: Given the following input: 267// 268// void f(int, float); // #1 269// void f(int, int); // #2 270// int f(int, int); // #3 271// 272// When we process #1, there is no previous declaration of "f", 273// so IsOverload will not be used. 274// 275// When we process #2, Old is a FunctionDecl for #1. By comparing the 276// parameter types, we see that #1 and #2 are overloaded (since they 277// have different signatures), so this routine returns false; 278// MatchedDecl is unchanged. 279// 280// When we process #3, Old is an OverloadedFunctionDecl containing #1 281// and #2. We compare the signatures of #3 to #1 (they're overloaded, 282// so we do nothing) and then #3 to #2. Since the signatures of #3 and 283// #2 are identical (return types of functions are not part of the 284// signature), IsOverload returns false and MatchedDecl will be set to 285// point to the FunctionDecl for #2. 286bool 287Sema::IsOverload(FunctionDecl *New, LookupResult &Previous, NamedDecl *&Match) { 288 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 289 I != E; ++I) { 290 NamedDecl *Old = (*I)->getUnderlyingDecl(); 291 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(Old)) { 292 if (!IsOverload(New, OldT->getTemplatedDecl())) { 293 Match = Old; 294 return false; 295 } 296 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(Old)) { 297 if (!IsOverload(New, OldF)) { 298 Match = Old; 299 return false; 300 } 301 } else { 302 // (C++ 13p1): 303 // Only function declarations can be overloaded; object and type 304 // declarations cannot be overloaded. 305 Match = Old; 306 return false; 307 } 308 } 309 310 return true; 311} 312 313bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) { 314 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 315 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 316 317 // C++ [temp.fct]p2: 318 // A function template can be overloaded with other function templates 319 // and with normal (non-template) functions. 320 if ((OldTemplate == 0) != (NewTemplate == 0)) 321 return true; 322 323 // Is the function New an overload of the function Old? 324 QualType OldQType = Context.getCanonicalType(Old->getType()); 325 QualType NewQType = Context.getCanonicalType(New->getType()); 326 327 // Compare the signatures (C++ 1.3.10) of the two functions to 328 // determine whether they are overloads. If we find any mismatch 329 // in the signature, they are overloads. 330 331 // If either of these functions is a K&R-style function (no 332 // prototype), then we consider them to have matching signatures. 333 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 334 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 335 return false; 336 337 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 338 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 339 340 // The signature of a function includes the types of its 341 // parameters (C++ 1.3.10), which includes the presence or absence 342 // of the ellipsis; see C++ DR 357). 343 if (OldQType != NewQType && 344 (OldType->getNumArgs() != NewType->getNumArgs() || 345 OldType->isVariadic() != NewType->isVariadic() || 346 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 347 NewType->arg_type_begin()))) 348 return true; 349 350 // C++ [temp.over.link]p4: 351 // The signature of a function template consists of its function 352 // signature, its return type and its template parameter list. The names 353 // of the template parameters are significant only for establishing the 354 // relationship between the template parameters and the rest of the 355 // signature. 356 // 357 // We check the return type and template parameter lists for function 358 // templates first; the remaining checks follow. 359 if (NewTemplate && 360 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 361 OldTemplate->getTemplateParameters(), 362 false, TPL_TemplateMatch) || 363 OldType->getResultType() != NewType->getResultType())) 364 return true; 365 366 // If the function is a class member, its signature includes the 367 // cv-qualifiers (if any) on the function itself. 368 // 369 // As part of this, also check whether one of the member functions 370 // is static, in which case they are not overloads (C++ 371 // 13.1p2). While not part of the definition of the signature, 372 // this check is important to determine whether these functions 373 // can be overloaded. 374 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 375 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 376 if (OldMethod && NewMethod && 377 !OldMethod->isStatic() && !NewMethod->isStatic() && 378 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 379 return true; 380 381 // The signatures match; this is not an overload. 382 return false; 383} 384 385/// TryImplicitConversion - Attempt to perform an implicit conversion 386/// from the given expression (Expr) to the given type (ToType). This 387/// function returns an implicit conversion sequence that can be used 388/// to perform the initialization. Given 389/// 390/// void f(float f); 391/// void g(int i) { f(i); } 392/// 393/// this routine would produce an implicit conversion sequence to 394/// describe the initialization of f from i, which will be a standard 395/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 396/// 4.1) followed by a floating-integral conversion (C++ 4.9). 397// 398/// Note that this routine only determines how the conversion can be 399/// performed; it does not actually perform the conversion. As such, 400/// it will not produce any diagnostics if no conversion is available, 401/// but will instead return an implicit conversion sequence of kind 402/// "BadConversion". 403/// 404/// If @p SuppressUserConversions, then user-defined conversions are 405/// not permitted. 406/// If @p AllowExplicit, then explicit user-defined conversions are 407/// permitted. 408/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 409/// no matter its actual lvalueness. 410/// If @p UserCast, the implicit conversion is being done for a user-specified 411/// cast. 412ImplicitConversionSequence 413Sema::TryImplicitConversion(Expr* From, QualType ToType, 414 bool SuppressUserConversions, 415 bool AllowExplicit, bool ForceRValue, 416 bool InOverloadResolution, 417 bool UserCast) { 418 ImplicitConversionSequence ICS; 419 OverloadCandidateSet Conversions; 420 OverloadingResult UserDefResult = OR_Success; 421 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 422 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 423 else if (getLangOptions().CPlusPlus && 424 (UserDefResult = IsUserDefinedConversion(From, ToType, 425 ICS.UserDefined, 426 Conversions, 427 !SuppressUserConversions, AllowExplicit, 428 ForceRValue, UserCast)) == OR_Success) { 429 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 430 // C++ [over.ics.user]p4: 431 // A conversion of an expression of class type to the same class 432 // type is given Exact Match rank, and a conversion of an 433 // expression of class type to a base class of that type is 434 // given Conversion rank, in spite of the fact that a copy 435 // constructor (i.e., a user-defined conversion function) is 436 // called for those cases. 437 if (CXXConstructorDecl *Constructor 438 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 439 QualType FromCanon 440 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 441 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 442 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 443 // Turn this into a "standard" conversion sequence, so that it 444 // gets ranked with standard conversion sequences. 445 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 446 ICS.Standard.setAsIdentityConversion(); 447 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 448 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 449 ICS.Standard.CopyConstructor = Constructor; 450 if (ToCanon != FromCanon) 451 ICS.Standard.Second = ICK_Derived_To_Base; 452 } 453 } 454 455 // C++ [over.best.ics]p4: 456 // However, when considering the argument of a user-defined 457 // conversion function that is a candidate by 13.3.1.3 when 458 // invoked for the copying of the temporary in the second step 459 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 460 // 13.3.1.6 in all cases, only standard conversion sequences and 461 // ellipsis conversion sequences are allowed. 462 if (SuppressUserConversions && 463 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) 464 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 465 } else { 466 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 467 if (UserDefResult == OR_Ambiguous) { 468 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 469 Cand != Conversions.end(); ++Cand) 470 if (Cand->Viable) 471 ICS.ConversionFunctionSet.push_back(Cand->Function); 472 } 473 } 474 475 return ICS; 476} 477 478/// IsStandardConversion - Determines whether there is a standard 479/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 480/// expression From to the type ToType. Standard conversion sequences 481/// only consider non-class types; for conversions that involve class 482/// types, use TryImplicitConversion. If a conversion exists, SCS will 483/// contain the standard conversion sequence required to perform this 484/// conversion and this routine will return true. Otherwise, this 485/// routine will return false and the value of SCS is unspecified. 486bool 487Sema::IsStandardConversion(Expr* From, QualType ToType, 488 bool InOverloadResolution, 489 StandardConversionSequence &SCS) { 490 QualType FromType = From->getType(); 491 492 // Standard conversions (C++ [conv]) 493 SCS.setAsIdentityConversion(); 494 SCS.Deprecated = false; 495 SCS.IncompatibleObjC = false; 496 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 497 SCS.CopyConstructor = 0; 498 499 // There are no standard conversions for class types in C++, so 500 // abort early. When overloading in C, however, we do permit 501 if (FromType->isRecordType() || ToType->isRecordType()) { 502 if (getLangOptions().CPlusPlus) 503 return false; 504 505 // When we're overloading in C, we allow, as standard conversions, 506 } 507 508 // The first conversion can be an lvalue-to-rvalue conversion, 509 // array-to-pointer conversion, or function-to-pointer conversion 510 // (C++ 4p1). 511 512 // Lvalue-to-rvalue conversion (C++ 4.1): 513 // An lvalue (3.10) of a non-function, non-array type T can be 514 // converted to an rvalue. 515 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 516 if (argIsLvalue == Expr::LV_Valid && 517 !FromType->isFunctionType() && !FromType->isArrayType() && 518 Context.getCanonicalType(FromType) != Context.OverloadTy) { 519 SCS.First = ICK_Lvalue_To_Rvalue; 520 521 // If T is a non-class type, the type of the rvalue is the 522 // cv-unqualified version of T. Otherwise, the type of the rvalue 523 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 524 // just strip the qualifiers because they don't matter. 525 FromType = FromType.getUnqualifiedType(); 526 } else if (FromType->isArrayType()) { 527 // Array-to-pointer conversion (C++ 4.2) 528 SCS.First = ICK_Array_To_Pointer; 529 530 // An lvalue or rvalue of type "array of N T" or "array of unknown 531 // bound of T" can be converted to an rvalue of type "pointer to 532 // T" (C++ 4.2p1). 533 FromType = Context.getArrayDecayedType(FromType); 534 535 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 536 // This conversion is deprecated. (C++ D.4). 537 SCS.Deprecated = true; 538 539 // For the purpose of ranking in overload resolution 540 // (13.3.3.1.1), this conversion is considered an 541 // array-to-pointer conversion followed by a qualification 542 // conversion (4.4). (C++ 4.2p2) 543 SCS.Second = ICK_Identity; 544 SCS.Third = ICK_Qualification; 545 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 546 return true; 547 } 548 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 549 // Function-to-pointer conversion (C++ 4.3). 550 SCS.First = ICK_Function_To_Pointer; 551 552 // An lvalue of function type T can be converted to an rvalue of 553 // type "pointer to T." The result is a pointer to the 554 // function. (C++ 4.3p1). 555 FromType = Context.getPointerType(FromType); 556 } else if (FunctionDecl *Fn 557 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 558 // Address of overloaded function (C++ [over.over]). 559 SCS.First = ICK_Function_To_Pointer; 560 561 // We were able to resolve the address of the overloaded function, 562 // so we can convert to the type of that function. 563 FromType = Fn->getType(); 564 if (ToType->isLValueReferenceType()) 565 FromType = Context.getLValueReferenceType(FromType); 566 else if (ToType->isRValueReferenceType()) 567 FromType = Context.getRValueReferenceType(FromType); 568 else if (ToType->isMemberPointerType()) { 569 // Resolve address only succeeds if both sides are member pointers, 570 // but it doesn't have to be the same class. See DR 247. 571 // Note that this means that the type of &Derived::fn can be 572 // Ret (Base::*)(Args) if the fn overload actually found is from the 573 // base class, even if it was brought into the derived class via a 574 // using declaration. The standard isn't clear on this issue at all. 575 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 576 FromType = Context.getMemberPointerType(FromType, 577 Context.getTypeDeclType(M->getParent()).getTypePtr()); 578 } else 579 FromType = Context.getPointerType(FromType); 580 } else { 581 // We don't require any conversions for the first step. 582 SCS.First = ICK_Identity; 583 } 584 585 // The second conversion can be an integral promotion, floating 586 // point promotion, integral conversion, floating point conversion, 587 // floating-integral conversion, pointer conversion, 588 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 589 // For overloading in C, this can also be a "compatible-type" 590 // conversion. 591 bool IncompatibleObjC = false; 592 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 593 // The unqualified versions of the types are the same: there's no 594 // conversion to do. 595 SCS.Second = ICK_Identity; 596 } else if (IsIntegralPromotion(From, FromType, ToType)) { 597 // Integral promotion (C++ 4.5). 598 SCS.Second = ICK_Integral_Promotion; 599 FromType = ToType.getUnqualifiedType(); 600 } else if (IsFloatingPointPromotion(FromType, ToType)) { 601 // Floating point promotion (C++ 4.6). 602 SCS.Second = ICK_Floating_Promotion; 603 FromType = ToType.getUnqualifiedType(); 604 } else if (IsComplexPromotion(FromType, ToType)) { 605 // Complex promotion (Clang extension) 606 SCS.Second = ICK_Complex_Promotion; 607 FromType = ToType.getUnqualifiedType(); 608 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 609 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 610 // Integral conversions (C++ 4.7). 611 // FIXME: isIntegralType shouldn't be true for enums in C++. 612 SCS.Second = ICK_Integral_Conversion; 613 FromType = ToType.getUnqualifiedType(); 614 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 615 // Floating point conversions (C++ 4.8). 616 SCS.Second = ICK_Floating_Conversion; 617 FromType = ToType.getUnqualifiedType(); 618 } else if (FromType->isComplexType() && ToType->isComplexType()) { 619 // Complex conversions (C99 6.3.1.6) 620 SCS.Second = ICK_Complex_Conversion; 621 FromType = ToType.getUnqualifiedType(); 622 } else if ((FromType->isFloatingType() && 623 ToType->isIntegralType() && (!ToType->isBooleanType() && 624 !ToType->isEnumeralType())) || 625 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 626 ToType->isFloatingType())) { 627 // Floating-integral conversions (C++ 4.9). 628 // FIXME: isIntegralType shouldn't be true for enums in C++. 629 SCS.Second = ICK_Floating_Integral; 630 FromType = ToType.getUnqualifiedType(); 631 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 632 (ToType->isComplexType() && FromType->isArithmeticType())) { 633 // Complex-real conversions (C99 6.3.1.7) 634 SCS.Second = ICK_Complex_Real; 635 FromType = ToType.getUnqualifiedType(); 636 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 637 FromType, IncompatibleObjC)) { 638 // Pointer conversions (C++ 4.10). 639 SCS.Second = ICK_Pointer_Conversion; 640 SCS.IncompatibleObjC = IncompatibleObjC; 641 } else if (IsMemberPointerConversion(From, FromType, ToType, 642 InOverloadResolution, FromType)) { 643 // Pointer to member conversions (4.11). 644 SCS.Second = ICK_Pointer_Member; 645 } else if (ToType->isBooleanType() && 646 (FromType->isArithmeticType() || 647 FromType->isEnumeralType() || 648 FromType->isPointerType() || 649 FromType->isBlockPointerType() || 650 FromType->isMemberPointerType() || 651 FromType->isNullPtrType())) { 652 // Boolean conversions (C++ 4.12). 653 SCS.Second = ICK_Boolean_Conversion; 654 FromType = Context.BoolTy; 655 } else if (!getLangOptions().CPlusPlus && 656 Context.typesAreCompatible(ToType, FromType)) { 657 // Compatible conversions (Clang extension for C function overloading) 658 SCS.Second = ICK_Compatible_Conversion; 659 } else { 660 // No second conversion required. 661 SCS.Second = ICK_Identity; 662 } 663 664 QualType CanonFrom; 665 QualType CanonTo; 666 // The third conversion can be a qualification conversion (C++ 4p1). 667 if (IsQualificationConversion(FromType, ToType)) { 668 SCS.Third = ICK_Qualification; 669 FromType = ToType; 670 CanonFrom = Context.getCanonicalType(FromType); 671 CanonTo = Context.getCanonicalType(ToType); 672 } else { 673 // No conversion required 674 SCS.Third = ICK_Identity; 675 676 // C++ [over.best.ics]p6: 677 // [...] Any difference in top-level cv-qualification is 678 // subsumed by the initialization itself and does not constitute 679 // a conversion. [...] 680 CanonFrom = Context.getCanonicalType(FromType); 681 CanonTo = Context.getCanonicalType(ToType); 682 if (CanonFrom.getLocalUnqualifiedType() 683 == CanonTo.getLocalUnqualifiedType() && 684 CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) { 685 FromType = ToType; 686 CanonFrom = CanonTo; 687 } 688 } 689 690 // If we have not converted the argument type to the parameter type, 691 // this is a bad conversion sequence. 692 if (CanonFrom != CanonTo) 693 return false; 694 695 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 696 return true; 697} 698 699/// IsIntegralPromotion - Determines whether the conversion from the 700/// expression From (whose potentially-adjusted type is FromType) to 701/// ToType is an integral promotion (C++ 4.5). If so, returns true and 702/// sets PromotedType to the promoted type. 703bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 704 const BuiltinType *To = ToType->getAs<BuiltinType>(); 705 // All integers are built-in. 706 if (!To) { 707 return false; 708 } 709 710 // An rvalue of type char, signed char, unsigned char, short int, or 711 // unsigned short int can be converted to an rvalue of type int if 712 // int can represent all the values of the source type; otherwise, 713 // the source rvalue can be converted to an rvalue of type unsigned 714 // int (C++ 4.5p1). 715 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 716 if (// We can promote any signed, promotable integer type to an int 717 (FromType->isSignedIntegerType() || 718 // We can promote any unsigned integer type whose size is 719 // less than int to an int. 720 (!FromType->isSignedIntegerType() && 721 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 722 return To->getKind() == BuiltinType::Int; 723 } 724 725 return To->getKind() == BuiltinType::UInt; 726 } 727 728 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 729 // can be converted to an rvalue of the first of the following types 730 // that can represent all the values of its underlying type: int, 731 // unsigned int, long, or unsigned long (C++ 4.5p2). 732 if ((FromType->isEnumeralType() || FromType->isWideCharType()) 733 && ToType->isIntegerType()) { 734 // Determine whether the type we're converting from is signed or 735 // unsigned. 736 bool FromIsSigned; 737 uint64_t FromSize = Context.getTypeSize(FromType); 738 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 739 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); 740 FromIsSigned = UnderlyingType->isSignedIntegerType(); 741 } else { 742 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 743 FromIsSigned = true; 744 } 745 746 // The types we'll try to promote to, in the appropriate 747 // order. Try each of these types. 748 QualType PromoteTypes[6] = { 749 Context.IntTy, Context.UnsignedIntTy, 750 Context.LongTy, Context.UnsignedLongTy , 751 Context.LongLongTy, Context.UnsignedLongLongTy 752 }; 753 for (int Idx = 0; Idx < 6; ++Idx) { 754 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 755 if (FromSize < ToSize || 756 (FromSize == ToSize && 757 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 758 // We found the type that we can promote to. If this is the 759 // type we wanted, we have a promotion. Otherwise, no 760 // promotion. 761 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 762 } 763 } 764 } 765 766 // An rvalue for an integral bit-field (9.6) can be converted to an 767 // rvalue of type int if int can represent all the values of the 768 // bit-field; otherwise, it can be converted to unsigned int if 769 // unsigned int can represent all the values of the bit-field. If 770 // the bit-field is larger yet, no integral promotion applies to 771 // it. If the bit-field has an enumerated type, it is treated as any 772 // other value of that type for promotion purposes (C++ 4.5p3). 773 // FIXME: We should delay checking of bit-fields until we actually perform the 774 // conversion. 775 using llvm::APSInt; 776 if (From) 777 if (FieldDecl *MemberDecl = From->getBitField()) { 778 APSInt BitWidth; 779 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 780 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 781 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 782 ToSize = Context.getTypeSize(ToType); 783 784 // Are we promoting to an int from a bitfield that fits in an int? 785 if (BitWidth < ToSize || 786 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 787 return To->getKind() == BuiltinType::Int; 788 } 789 790 // Are we promoting to an unsigned int from an unsigned bitfield 791 // that fits into an unsigned int? 792 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 793 return To->getKind() == BuiltinType::UInt; 794 } 795 796 return false; 797 } 798 } 799 800 // An rvalue of type bool can be converted to an rvalue of type int, 801 // with false becoming zero and true becoming one (C++ 4.5p4). 802 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 803 return true; 804 } 805 806 return false; 807} 808 809/// IsFloatingPointPromotion - Determines whether the conversion from 810/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 811/// returns true and sets PromotedType to the promoted type. 812bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 813 /// An rvalue of type float can be converted to an rvalue of type 814 /// double. (C++ 4.6p1). 815 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 816 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 817 if (FromBuiltin->getKind() == BuiltinType::Float && 818 ToBuiltin->getKind() == BuiltinType::Double) 819 return true; 820 821 // C99 6.3.1.5p1: 822 // When a float is promoted to double or long double, or a 823 // double is promoted to long double [...]. 824 if (!getLangOptions().CPlusPlus && 825 (FromBuiltin->getKind() == BuiltinType::Float || 826 FromBuiltin->getKind() == BuiltinType::Double) && 827 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 828 return true; 829 } 830 831 return false; 832} 833 834/// \brief Determine if a conversion is a complex promotion. 835/// 836/// A complex promotion is defined as a complex -> complex conversion 837/// where the conversion between the underlying real types is a 838/// floating-point or integral promotion. 839bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 840 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 841 if (!FromComplex) 842 return false; 843 844 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 845 if (!ToComplex) 846 return false; 847 848 return IsFloatingPointPromotion(FromComplex->getElementType(), 849 ToComplex->getElementType()) || 850 IsIntegralPromotion(0, FromComplex->getElementType(), 851 ToComplex->getElementType()); 852} 853 854/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 855/// the pointer type FromPtr to a pointer to type ToPointee, with the 856/// same type qualifiers as FromPtr has on its pointee type. ToType, 857/// if non-empty, will be a pointer to ToType that may or may not have 858/// the right set of qualifiers on its pointee. 859static QualType 860BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 861 QualType ToPointee, QualType ToType, 862 ASTContext &Context) { 863 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 864 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 865 Qualifiers Quals = CanonFromPointee.getQualifiers(); 866 867 // Exact qualifier match -> return the pointer type we're converting to. 868 if (CanonToPointee.getLocalQualifiers() == Quals) { 869 // ToType is exactly what we need. Return it. 870 if (!ToType.isNull()) 871 return ToType; 872 873 // Build a pointer to ToPointee. It has the right qualifiers 874 // already. 875 return Context.getPointerType(ToPointee); 876 } 877 878 // Just build a canonical type that has the right qualifiers. 879 return Context.getPointerType( 880 Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), 881 Quals)); 882} 883 884static bool isNullPointerConstantForConversion(Expr *Expr, 885 bool InOverloadResolution, 886 ASTContext &Context) { 887 // Handle value-dependent integral null pointer constants correctly. 888 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 889 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 890 Expr->getType()->isIntegralType()) 891 return !InOverloadResolution; 892 893 return Expr->isNullPointerConstant(Context, 894 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 895 : Expr::NPC_ValueDependentIsNull); 896} 897 898/// IsPointerConversion - Determines whether the conversion of the 899/// expression From, which has the (possibly adjusted) type FromType, 900/// can be converted to the type ToType via a pointer conversion (C++ 901/// 4.10). If so, returns true and places the converted type (that 902/// might differ from ToType in its cv-qualifiers at some level) into 903/// ConvertedType. 904/// 905/// This routine also supports conversions to and from block pointers 906/// and conversions with Objective-C's 'id', 'id<protocols...>', and 907/// pointers to interfaces. FIXME: Once we've determined the 908/// appropriate overloading rules for Objective-C, we may want to 909/// split the Objective-C checks into a different routine; however, 910/// GCC seems to consider all of these conversions to be pointer 911/// conversions, so for now they live here. IncompatibleObjC will be 912/// set if the conversion is an allowed Objective-C conversion that 913/// should result in a warning. 914bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 915 bool InOverloadResolution, 916 QualType& ConvertedType, 917 bool &IncompatibleObjC) { 918 IncompatibleObjC = false; 919 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 920 return true; 921 922 // Conversion from a null pointer constant to any Objective-C pointer type. 923 if (ToType->isObjCObjectPointerType() && 924 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 925 ConvertedType = ToType; 926 return true; 927 } 928 929 // Blocks: Block pointers can be converted to void*. 930 if (FromType->isBlockPointerType() && ToType->isPointerType() && 931 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 932 ConvertedType = ToType; 933 return true; 934 } 935 // Blocks: A null pointer constant can be converted to a block 936 // pointer type. 937 if (ToType->isBlockPointerType() && 938 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 939 ConvertedType = ToType; 940 return true; 941 } 942 943 // If the left-hand-side is nullptr_t, the right side can be a null 944 // pointer constant. 945 if (ToType->isNullPtrType() && 946 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 947 ConvertedType = ToType; 948 return true; 949 } 950 951 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 952 if (!ToTypePtr) 953 return false; 954 955 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 956 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 957 ConvertedType = ToType; 958 return true; 959 } 960 961 // Beyond this point, both types need to be pointers. 962 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 963 if (!FromTypePtr) 964 return false; 965 966 QualType FromPointeeType = FromTypePtr->getPointeeType(); 967 QualType ToPointeeType = ToTypePtr->getPointeeType(); 968 969 // An rvalue of type "pointer to cv T," where T is an object type, 970 // can be converted to an rvalue of type "pointer to cv void" (C++ 971 // 4.10p2). 972 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 973 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 974 ToPointeeType, 975 ToType, Context); 976 return true; 977 } 978 979 // When we're overloading in C, we allow a special kind of pointer 980 // conversion for compatible-but-not-identical pointee types. 981 if (!getLangOptions().CPlusPlus && 982 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 983 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 984 ToPointeeType, 985 ToType, Context); 986 return true; 987 } 988 989 // C++ [conv.ptr]p3: 990 // 991 // An rvalue of type "pointer to cv D," where D is a class type, 992 // can be converted to an rvalue of type "pointer to cv B," where 993 // B is a base class (clause 10) of D. If B is an inaccessible 994 // (clause 11) or ambiguous (10.2) base class of D, a program that 995 // necessitates this conversion is ill-formed. The result of the 996 // conversion is a pointer to the base class sub-object of the 997 // derived class object. The null pointer value is converted to 998 // the null pointer value of the destination type. 999 // 1000 // Note that we do not check for ambiguity or inaccessibility 1001 // here. That is handled by CheckPointerConversion. 1002 if (getLangOptions().CPlusPlus && 1003 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1004 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1005 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1006 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1007 ToPointeeType, 1008 ToType, Context); 1009 return true; 1010 } 1011 1012 return false; 1013} 1014 1015/// isObjCPointerConversion - Determines whether this is an 1016/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1017/// with the same arguments and return values. 1018bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1019 QualType& ConvertedType, 1020 bool &IncompatibleObjC) { 1021 if (!getLangOptions().ObjC1) 1022 return false; 1023 1024 // First, we handle all conversions on ObjC object pointer types. 1025 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1026 const ObjCObjectPointerType *FromObjCPtr = 1027 FromType->getAs<ObjCObjectPointerType>(); 1028 1029 if (ToObjCPtr && FromObjCPtr) { 1030 // Objective C++: We're able to convert between "id" or "Class" and a 1031 // pointer to any interface (in both directions). 1032 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1033 ConvertedType = ToType; 1034 return true; 1035 } 1036 // Conversions with Objective-C's id<...>. 1037 if ((FromObjCPtr->isObjCQualifiedIdType() || 1038 ToObjCPtr->isObjCQualifiedIdType()) && 1039 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1040 /*compare=*/false)) { 1041 ConvertedType = ToType; 1042 return true; 1043 } 1044 // Objective C++: We're able to convert from a pointer to an 1045 // interface to a pointer to a different interface. 1046 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1047 ConvertedType = ToType; 1048 return true; 1049 } 1050 1051 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1052 // Okay: this is some kind of implicit downcast of Objective-C 1053 // interfaces, which is permitted. However, we're going to 1054 // complain about it. 1055 IncompatibleObjC = true; 1056 ConvertedType = FromType; 1057 return true; 1058 } 1059 } 1060 // Beyond this point, both types need to be C pointers or block pointers. 1061 QualType ToPointeeType; 1062 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1063 ToPointeeType = ToCPtr->getPointeeType(); 1064 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>()) 1065 ToPointeeType = ToBlockPtr->getPointeeType(); 1066 else 1067 return false; 1068 1069 QualType FromPointeeType; 1070 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1071 FromPointeeType = FromCPtr->getPointeeType(); 1072 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1073 FromPointeeType = FromBlockPtr->getPointeeType(); 1074 else 1075 return false; 1076 1077 // If we have pointers to pointers, recursively check whether this 1078 // is an Objective-C conversion. 1079 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1080 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1081 IncompatibleObjC)) { 1082 // We always complain about this conversion. 1083 IncompatibleObjC = true; 1084 ConvertedType = ToType; 1085 return true; 1086 } 1087 // If we have pointers to functions or blocks, check whether the only 1088 // differences in the argument and result types are in Objective-C 1089 // pointer conversions. If so, we permit the conversion (but 1090 // complain about it). 1091 const FunctionProtoType *FromFunctionType 1092 = FromPointeeType->getAs<FunctionProtoType>(); 1093 const FunctionProtoType *ToFunctionType 1094 = ToPointeeType->getAs<FunctionProtoType>(); 1095 if (FromFunctionType && ToFunctionType) { 1096 // If the function types are exactly the same, this isn't an 1097 // Objective-C pointer conversion. 1098 if (Context.getCanonicalType(FromPointeeType) 1099 == Context.getCanonicalType(ToPointeeType)) 1100 return false; 1101 1102 // Perform the quick checks that will tell us whether these 1103 // function types are obviously different. 1104 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1105 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1106 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1107 return false; 1108 1109 bool HasObjCConversion = false; 1110 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1111 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1112 // Okay, the types match exactly. Nothing to do. 1113 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1114 ToFunctionType->getResultType(), 1115 ConvertedType, IncompatibleObjC)) { 1116 // Okay, we have an Objective-C pointer conversion. 1117 HasObjCConversion = true; 1118 } else { 1119 // Function types are too different. Abort. 1120 return false; 1121 } 1122 1123 // Check argument types. 1124 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1125 ArgIdx != NumArgs; ++ArgIdx) { 1126 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1127 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1128 if (Context.getCanonicalType(FromArgType) 1129 == Context.getCanonicalType(ToArgType)) { 1130 // Okay, the types match exactly. Nothing to do. 1131 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1132 ConvertedType, IncompatibleObjC)) { 1133 // Okay, we have an Objective-C pointer conversion. 1134 HasObjCConversion = true; 1135 } else { 1136 // Argument types are too different. Abort. 1137 return false; 1138 } 1139 } 1140 1141 if (HasObjCConversion) { 1142 // We had an Objective-C conversion. Allow this pointer 1143 // conversion, but complain about it. 1144 ConvertedType = ToType; 1145 IncompatibleObjC = true; 1146 return true; 1147 } 1148 } 1149 1150 return false; 1151} 1152 1153/// CheckPointerConversion - Check the pointer conversion from the 1154/// expression From to the type ToType. This routine checks for 1155/// ambiguous or inaccessible derived-to-base pointer 1156/// conversions for which IsPointerConversion has already returned 1157/// true. It returns true and produces a diagnostic if there was an 1158/// error, or returns false otherwise. 1159bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1160 CastExpr::CastKind &Kind, 1161 bool IgnoreBaseAccess) { 1162 QualType FromType = From->getType(); 1163 1164 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1165 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1166 QualType FromPointeeType = FromPtrType->getPointeeType(), 1167 ToPointeeType = ToPtrType->getPointeeType(); 1168 1169 if (FromPointeeType->isRecordType() && 1170 ToPointeeType->isRecordType()) { 1171 // We must have a derived-to-base conversion. Check an 1172 // ambiguous or inaccessible conversion. 1173 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1174 From->getExprLoc(), 1175 From->getSourceRange(), 1176 IgnoreBaseAccess)) 1177 return true; 1178 1179 // The conversion was successful. 1180 Kind = CastExpr::CK_DerivedToBase; 1181 } 1182 } 1183 if (const ObjCObjectPointerType *FromPtrType = 1184 FromType->getAs<ObjCObjectPointerType>()) 1185 if (const ObjCObjectPointerType *ToPtrType = 1186 ToType->getAs<ObjCObjectPointerType>()) { 1187 // Objective-C++ conversions are always okay. 1188 // FIXME: We should have a different class of conversions for the 1189 // Objective-C++ implicit conversions. 1190 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1191 return false; 1192 1193 } 1194 return false; 1195} 1196 1197/// IsMemberPointerConversion - Determines whether the conversion of the 1198/// expression From, which has the (possibly adjusted) type FromType, can be 1199/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1200/// If so, returns true and places the converted type (that might differ from 1201/// ToType in its cv-qualifiers at some level) into ConvertedType. 1202bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1203 QualType ToType, 1204 bool InOverloadResolution, 1205 QualType &ConvertedType) { 1206 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1207 if (!ToTypePtr) 1208 return false; 1209 1210 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1211 if (From->isNullPointerConstant(Context, 1212 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1213 : Expr::NPC_ValueDependentIsNull)) { 1214 ConvertedType = ToType; 1215 return true; 1216 } 1217 1218 // Otherwise, both types have to be member pointers. 1219 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1220 if (!FromTypePtr) 1221 return false; 1222 1223 // A pointer to member of B can be converted to a pointer to member of D, 1224 // where D is derived from B (C++ 4.11p2). 1225 QualType FromClass(FromTypePtr->getClass(), 0); 1226 QualType ToClass(ToTypePtr->getClass(), 0); 1227 // FIXME: What happens when these are dependent? Is this function even called? 1228 1229 if (IsDerivedFrom(ToClass, FromClass)) { 1230 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1231 ToClass.getTypePtr()); 1232 return true; 1233 } 1234 1235 return false; 1236} 1237 1238/// CheckMemberPointerConversion - Check the member pointer conversion from the 1239/// expression From to the type ToType. This routine checks for ambiguous or 1240/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1241/// for which IsMemberPointerConversion has already returned true. It returns 1242/// true and produces a diagnostic if there was an error, or returns false 1243/// otherwise. 1244bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1245 CastExpr::CastKind &Kind, 1246 bool IgnoreBaseAccess) { 1247 (void)IgnoreBaseAccess; 1248 QualType FromType = From->getType(); 1249 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1250 if (!FromPtrType) { 1251 // This must be a null pointer to member pointer conversion 1252 assert(From->isNullPointerConstant(Context, 1253 Expr::NPC_ValueDependentIsNull) && 1254 "Expr must be null pointer constant!"); 1255 Kind = CastExpr::CK_NullToMemberPointer; 1256 return false; 1257 } 1258 1259 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1260 assert(ToPtrType && "No member pointer cast has a target type " 1261 "that is not a member pointer."); 1262 1263 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1264 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1265 1266 // FIXME: What about dependent types? 1267 assert(FromClass->isRecordType() && "Pointer into non-class."); 1268 assert(ToClass->isRecordType() && "Pointer into non-class."); 1269 1270 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1271 /*DetectVirtual=*/true); 1272 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1273 assert(DerivationOkay && 1274 "Should not have been called if derivation isn't OK."); 1275 (void)DerivationOkay; 1276 1277 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1278 getUnqualifiedType())) { 1279 // Derivation is ambiguous. Redo the check to find the exact paths. 1280 Paths.clear(); 1281 Paths.setRecordingPaths(true); 1282 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1283 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1284 (void)StillOkay; 1285 1286 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1287 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1288 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1289 return true; 1290 } 1291 1292 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1293 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1294 << FromClass << ToClass << QualType(VBase, 0) 1295 << From->getSourceRange(); 1296 return true; 1297 } 1298 1299 // Must be a base to derived member conversion. 1300 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1301 return false; 1302} 1303 1304/// IsQualificationConversion - Determines whether the conversion from 1305/// an rvalue of type FromType to ToType is a qualification conversion 1306/// (C++ 4.4). 1307bool 1308Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1309 FromType = Context.getCanonicalType(FromType); 1310 ToType = Context.getCanonicalType(ToType); 1311 1312 // If FromType and ToType are the same type, this is not a 1313 // qualification conversion. 1314 if (FromType == ToType) 1315 return false; 1316 1317 // (C++ 4.4p4): 1318 // A conversion can add cv-qualifiers at levels other than the first 1319 // in multi-level pointers, subject to the following rules: [...] 1320 bool PreviousToQualsIncludeConst = true; 1321 bool UnwrappedAnyPointer = false; 1322 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1323 // Within each iteration of the loop, we check the qualifiers to 1324 // determine if this still looks like a qualification 1325 // conversion. Then, if all is well, we unwrap one more level of 1326 // pointers or pointers-to-members and do it all again 1327 // until there are no more pointers or pointers-to-members left to 1328 // unwrap. 1329 UnwrappedAnyPointer = true; 1330 1331 // -- for every j > 0, if const is in cv 1,j then const is in cv 1332 // 2,j, and similarly for volatile. 1333 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1334 return false; 1335 1336 // -- if the cv 1,j and cv 2,j are different, then const is in 1337 // every cv for 0 < k < j. 1338 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1339 && !PreviousToQualsIncludeConst) 1340 return false; 1341 1342 // Keep track of whether all prior cv-qualifiers in the "to" type 1343 // include const. 1344 PreviousToQualsIncludeConst 1345 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1346 } 1347 1348 // We are left with FromType and ToType being the pointee types 1349 // after unwrapping the original FromType and ToType the same number 1350 // of types. If we unwrapped any pointers, and if FromType and 1351 // ToType have the same unqualified type (since we checked 1352 // qualifiers above), then this is a qualification conversion. 1353 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 1354} 1355 1356/// \brief Given a function template or function, extract the function template 1357/// declaration (if any) and the underlying function declaration. 1358template<typename T> 1359static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function, 1360 FunctionTemplateDecl *&FunctionTemplate) { 1361 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig); 1362 if (FunctionTemplate) 1363 Function = cast<T>(FunctionTemplate->getTemplatedDecl()); 1364 else 1365 Function = cast<T>(Orig); 1366} 1367 1368/// Determines whether there is a user-defined conversion sequence 1369/// (C++ [over.ics.user]) that converts expression From to the type 1370/// ToType. If such a conversion exists, User will contain the 1371/// user-defined conversion sequence that performs such a conversion 1372/// and this routine will return true. Otherwise, this routine returns 1373/// false and User is unspecified. 1374/// 1375/// \param AllowConversionFunctions true if the conversion should 1376/// consider conversion functions at all. If false, only constructors 1377/// will be considered. 1378/// 1379/// \param AllowExplicit true if the conversion should consider C++0x 1380/// "explicit" conversion functions as well as non-explicit conversion 1381/// functions (C++0x [class.conv.fct]p2). 1382/// 1383/// \param ForceRValue true if the expression should be treated as an rvalue 1384/// for overload resolution. 1385/// \param UserCast true if looking for user defined conversion for a static 1386/// cast. 1387Sema::OverloadingResult Sema::IsUserDefinedConversion( 1388 Expr *From, QualType ToType, 1389 UserDefinedConversionSequence& User, 1390 OverloadCandidateSet& CandidateSet, 1391 bool AllowConversionFunctions, 1392 bool AllowExplicit, bool ForceRValue, 1393 bool UserCast) { 1394 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1395 if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) { 1396 // We're not going to find any constructors. 1397 } else if (CXXRecordDecl *ToRecordDecl 1398 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1399 // C++ [over.match.ctor]p1: 1400 // When objects of class type are direct-initialized (8.5), or 1401 // copy-initialized from an expression of the same or a 1402 // derived class type (8.5), overload resolution selects the 1403 // constructor. [...] For copy-initialization, the candidate 1404 // functions are all the converting constructors (12.3.1) of 1405 // that class. The argument list is the expression-list within 1406 // the parentheses of the initializer. 1407 bool SuppressUserConversions = !UserCast; 1408 if (Context.hasSameUnqualifiedType(ToType, From->getType()) || 1409 IsDerivedFrom(From->getType(), ToType)) { 1410 SuppressUserConversions = false; 1411 AllowConversionFunctions = false; 1412 } 1413 1414 DeclarationName ConstructorName 1415 = Context.DeclarationNames.getCXXConstructorName( 1416 Context.getCanonicalType(ToType).getUnqualifiedType()); 1417 DeclContext::lookup_iterator Con, ConEnd; 1418 for (llvm::tie(Con, ConEnd) 1419 = ToRecordDecl->lookup(ConstructorName); 1420 Con != ConEnd; ++Con) { 1421 // Find the constructor (which may be a template). 1422 CXXConstructorDecl *Constructor = 0; 1423 FunctionTemplateDecl *ConstructorTmpl 1424 = dyn_cast<FunctionTemplateDecl>(*Con); 1425 if (ConstructorTmpl) 1426 Constructor 1427 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1428 else 1429 Constructor = cast<CXXConstructorDecl>(*Con); 1430 1431 if (!Constructor->isInvalidDecl() && 1432 Constructor->isConvertingConstructor(AllowExplicit)) { 1433 if (ConstructorTmpl) 1434 AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From, 1435 1, CandidateSet, 1436 SuppressUserConversions, ForceRValue); 1437 else 1438 // Allow one user-defined conversion when user specifies a 1439 // From->ToType conversion via an static cast (c-style, etc). 1440 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1441 SuppressUserConversions, ForceRValue); 1442 } 1443 } 1444 } 1445 } 1446 1447 if (!AllowConversionFunctions) { 1448 // Don't allow any conversion functions to enter the overload set. 1449 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1450 PDiag(0) 1451 << From->getSourceRange())) { 1452 // No conversion functions from incomplete types. 1453 } else if (const RecordType *FromRecordType 1454 = From->getType()->getAs<RecordType>()) { 1455 if (CXXRecordDecl *FromRecordDecl 1456 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1457 // Add all of the conversion functions as candidates. 1458 OverloadedFunctionDecl *Conversions 1459 = FromRecordDecl->getVisibleConversionFunctions(); 1460 for (OverloadedFunctionDecl::function_iterator Func 1461 = Conversions->function_begin(); 1462 Func != Conversions->function_end(); ++Func) { 1463 CXXConversionDecl *Conv; 1464 FunctionTemplateDecl *ConvTemplate; 1465 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 1466 if (ConvTemplate) 1467 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1468 else 1469 Conv = dyn_cast<CXXConversionDecl>(*Func); 1470 1471 if (AllowExplicit || !Conv->isExplicit()) { 1472 if (ConvTemplate) 1473 AddTemplateConversionCandidate(ConvTemplate, From, ToType, 1474 CandidateSet); 1475 else 1476 AddConversionCandidate(Conv, From, ToType, CandidateSet); 1477 } 1478 } 1479 } 1480 } 1481 1482 OverloadCandidateSet::iterator Best; 1483 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1484 case OR_Success: 1485 // Record the standard conversion we used and the conversion function. 1486 if (CXXConstructorDecl *Constructor 1487 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1488 // C++ [over.ics.user]p1: 1489 // If the user-defined conversion is specified by a 1490 // constructor (12.3.1), the initial standard conversion 1491 // sequence converts the source type to the type required by 1492 // the argument of the constructor. 1493 // 1494 QualType ThisType = Constructor->getThisType(Context); 1495 if (Best->Conversions[0].ConversionKind == 1496 ImplicitConversionSequence::EllipsisConversion) 1497 User.EllipsisConversion = true; 1498 else { 1499 User.Before = Best->Conversions[0].Standard; 1500 User.EllipsisConversion = false; 1501 } 1502 User.ConversionFunction = Constructor; 1503 User.After.setAsIdentityConversion(); 1504 User.After.FromTypePtr 1505 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr(); 1506 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1507 return OR_Success; 1508 } else if (CXXConversionDecl *Conversion 1509 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1510 // C++ [over.ics.user]p1: 1511 // 1512 // [...] If the user-defined conversion is specified by a 1513 // conversion function (12.3.2), the initial standard 1514 // conversion sequence converts the source type to the 1515 // implicit object parameter of the conversion function. 1516 User.Before = Best->Conversions[0].Standard; 1517 User.ConversionFunction = Conversion; 1518 User.EllipsisConversion = false; 1519 1520 // C++ [over.ics.user]p2: 1521 // The second standard conversion sequence converts the 1522 // result of the user-defined conversion to the target type 1523 // for the sequence. Since an implicit conversion sequence 1524 // is an initialization, the special rules for 1525 // initialization by user-defined conversion apply when 1526 // selecting the best user-defined conversion for a 1527 // user-defined conversion sequence (see 13.3.3 and 1528 // 13.3.3.1). 1529 User.After = Best->FinalConversion; 1530 return OR_Success; 1531 } else { 1532 assert(false && "Not a constructor or conversion function?"); 1533 return OR_No_Viable_Function; 1534 } 1535 1536 case OR_No_Viable_Function: 1537 return OR_No_Viable_Function; 1538 case OR_Deleted: 1539 // No conversion here! We're done. 1540 return OR_Deleted; 1541 1542 case OR_Ambiguous: 1543 return OR_Ambiguous; 1544 } 1545 1546 return OR_No_Viable_Function; 1547} 1548 1549bool 1550Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 1551 ImplicitConversionSequence ICS; 1552 OverloadCandidateSet CandidateSet; 1553 OverloadingResult OvResult = 1554 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1555 CandidateSet, true, false, false); 1556 if (OvResult == OR_Ambiguous) 1557 Diag(From->getSourceRange().getBegin(), 1558 diag::err_typecheck_ambiguous_condition) 1559 << From->getType() << ToType << From->getSourceRange(); 1560 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 1561 Diag(From->getSourceRange().getBegin(), 1562 diag::err_typecheck_nonviable_condition) 1563 << From->getType() << ToType << From->getSourceRange(); 1564 else 1565 return false; 1566 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 1567 return true; 1568} 1569 1570/// CompareImplicitConversionSequences - Compare two implicit 1571/// conversion sequences to determine whether one is better than the 1572/// other or if they are indistinguishable (C++ 13.3.3.2). 1573ImplicitConversionSequence::CompareKind 1574Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1575 const ImplicitConversionSequence& ICS2) 1576{ 1577 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1578 // conversion sequences (as defined in 13.3.3.1) 1579 // -- a standard conversion sequence (13.3.3.1.1) is a better 1580 // conversion sequence than a user-defined conversion sequence or 1581 // an ellipsis conversion sequence, and 1582 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1583 // conversion sequence than an ellipsis conversion sequence 1584 // (13.3.3.1.3). 1585 // 1586 if (ICS1.ConversionKind < ICS2.ConversionKind) 1587 return ImplicitConversionSequence::Better; 1588 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1589 return ImplicitConversionSequence::Worse; 1590 1591 // Two implicit conversion sequences of the same form are 1592 // indistinguishable conversion sequences unless one of the 1593 // following rules apply: (C++ 13.3.3.2p3): 1594 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1595 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1596 else if (ICS1.ConversionKind == 1597 ImplicitConversionSequence::UserDefinedConversion) { 1598 // User-defined conversion sequence U1 is a better conversion 1599 // sequence than another user-defined conversion sequence U2 if 1600 // they contain the same user-defined conversion function or 1601 // constructor and if the second standard conversion sequence of 1602 // U1 is better than the second standard conversion sequence of 1603 // U2 (C++ 13.3.3.2p3). 1604 if (ICS1.UserDefined.ConversionFunction == 1605 ICS2.UserDefined.ConversionFunction) 1606 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1607 ICS2.UserDefined.After); 1608 } 1609 1610 return ImplicitConversionSequence::Indistinguishable; 1611} 1612 1613/// CompareStandardConversionSequences - Compare two standard 1614/// conversion sequences to determine whether one is better than the 1615/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1616ImplicitConversionSequence::CompareKind 1617Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1618 const StandardConversionSequence& SCS2) 1619{ 1620 // Standard conversion sequence S1 is a better conversion sequence 1621 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1622 1623 // -- S1 is a proper subsequence of S2 (comparing the conversion 1624 // sequences in the canonical form defined by 13.3.3.1.1, 1625 // excluding any Lvalue Transformation; the identity conversion 1626 // sequence is considered to be a subsequence of any 1627 // non-identity conversion sequence) or, if not that, 1628 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1629 // Neither is a proper subsequence of the other. Do nothing. 1630 ; 1631 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1632 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1633 (SCS1.Second == ICK_Identity && 1634 SCS1.Third == ICK_Identity)) 1635 // SCS1 is a proper subsequence of SCS2. 1636 return ImplicitConversionSequence::Better; 1637 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1638 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1639 (SCS2.Second == ICK_Identity && 1640 SCS2.Third == ICK_Identity)) 1641 // SCS2 is a proper subsequence of SCS1. 1642 return ImplicitConversionSequence::Worse; 1643 1644 // -- the rank of S1 is better than the rank of S2 (by the rules 1645 // defined below), or, if not that, 1646 ImplicitConversionRank Rank1 = SCS1.getRank(); 1647 ImplicitConversionRank Rank2 = SCS2.getRank(); 1648 if (Rank1 < Rank2) 1649 return ImplicitConversionSequence::Better; 1650 else if (Rank2 < Rank1) 1651 return ImplicitConversionSequence::Worse; 1652 1653 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1654 // are indistinguishable unless one of the following rules 1655 // applies: 1656 1657 // A conversion that is not a conversion of a pointer, or 1658 // pointer to member, to bool is better than another conversion 1659 // that is such a conversion. 1660 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1661 return SCS2.isPointerConversionToBool() 1662 ? ImplicitConversionSequence::Better 1663 : ImplicitConversionSequence::Worse; 1664 1665 // C++ [over.ics.rank]p4b2: 1666 // 1667 // If class B is derived directly or indirectly from class A, 1668 // conversion of B* to A* is better than conversion of B* to 1669 // void*, and conversion of A* to void* is better than conversion 1670 // of B* to void*. 1671 bool SCS1ConvertsToVoid 1672 = SCS1.isPointerConversionToVoidPointer(Context); 1673 bool SCS2ConvertsToVoid 1674 = SCS2.isPointerConversionToVoidPointer(Context); 1675 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1676 // Exactly one of the conversion sequences is a conversion to 1677 // a void pointer; it's the worse conversion. 1678 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1679 : ImplicitConversionSequence::Worse; 1680 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1681 // Neither conversion sequence converts to a void pointer; compare 1682 // their derived-to-base conversions. 1683 if (ImplicitConversionSequence::CompareKind DerivedCK 1684 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1685 return DerivedCK; 1686 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1687 // Both conversion sequences are conversions to void 1688 // pointers. Compare the source types to determine if there's an 1689 // inheritance relationship in their sources. 1690 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1691 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1692 1693 // Adjust the types we're converting from via the array-to-pointer 1694 // conversion, if we need to. 1695 if (SCS1.First == ICK_Array_To_Pointer) 1696 FromType1 = Context.getArrayDecayedType(FromType1); 1697 if (SCS2.First == ICK_Array_To_Pointer) 1698 FromType2 = Context.getArrayDecayedType(FromType2); 1699 1700 QualType FromPointee1 1701 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1702 QualType FromPointee2 1703 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1704 1705 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1706 return ImplicitConversionSequence::Better; 1707 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1708 return ImplicitConversionSequence::Worse; 1709 1710 // Objective-C++: If one interface is more specific than the 1711 // other, it is the better one. 1712 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1713 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1714 if (FromIface1 && FromIface1) { 1715 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1716 return ImplicitConversionSequence::Better; 1717 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1718 return ImplicitConversionSequence::Worse; 1719 } 1720 } 1721 1722 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1723 // bullet 3). 1724 if (ImplicitConversionSequence::CompareKind QualCK 1725 = CompareQualificationConversions(SCS1, SCS2)) 1726 return QualCK; 1727 1728 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1729 // C++0x [over.ics.rank]p3b4: 1730 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1731 // implicit object parameter of a non-static member function declared 1732 // without a ref-qualifier, and S1 binds an rvalue reference to an 1733 // rvalue and S2 binds an lvalue reference. 1734 // FIXME: We don't know if we're dealing with the implicit object parameter, 1735 // or if the member function in this case has a ref qualifier. 1736 // (Of course, we don't have ref qualifiers yet.) 1737 if (SCS1.RRefBinding != SCS2.RRefBinding) 1738 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1739 : ImplicitConversionSequence::Worse; 1740 1741 // C++ [over.ics.rank]p3b4: 1742 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1743 // which the references refer are the same type except for 1744 // top-level cv-qualifiers, and the type to which the reference 1745 // initialized by S2 refers is more cv-qualified than the type 1746 // to which the reference initialized by S1 refers. 1747 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1748 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1749 T1 = Context.getCanonicalType(T1); 1750 T2 = Context.getCanonicalType(T2); 1751 if (Context.hasSameUnqualifiedType(T1, T2)) { 1752 if (T2.isMoreQualifiedThan(T1)) 1753 return ImplicitConversionSequence::Better; 1754 else if (T1.isMoreQualifiedThan(T2)) 1755 return ImplicitConversionSequence::Worse; 1756 } 1757 } 1758 1759 return ImplicitConversionSequence::Indistinguishable; 1760} 1761 1762/// CompareQualificationConversions - Compares two standard conversion 1763/// sequences to determine whether they can be ranked based on their 1764/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1765ImplicitConversionSequence::CompareKind 1766Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1767 const StandardConversionSequence& SCS2) { 1768 // C++ 13.3.3.2p3: 1769 // -- S1 and S2 differ only in their qualification conversion and 1770 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1771 // cv-qualification signature of type T1 is a proper subset of 1772 // the cv-qualification signature of type T2, and S1 is not the 1773 // deprecated string literal array-to-pointer conversion (4.2). 1774 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1775 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1776 return ImplicitConversionSequence::Indistinguishable; 1777 1778 // FIXME: the example in the standard doesn't use a qualification 1779 // conversion (!) 1780 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1781 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1782 T1 = Context.getCanonicalType(T1); 1783 T2 = Context.getCanonicalType(T2); 1784 1785 // If the types are the same, we won't learn anything by unwrapped 1786 // them. 1787 if (Context.hasSameUnqualifiedType(T1, T2)) 1788 return ImplicitConversionSequence::Indistinguishable; 1789 1790 ImplicitConversionSequence::CompareKind Result 1791 = ImplicitConversionSequence::Indistinguishable; 1792 while (UnwrapSimilarPointerTypes(T1, T2)) { 1793 // Within each iteration of the loop, we check the qualifiers to 1794 // determine if this still looks like a qualification 1795 // conversion. Then, if all is well, we unwrap one more level of 1796 // pointers or pointers-to-members and do it all again 1797 // until there are no more pointers or pointers-to-members left 1798 // to unwrap. This essentially mimics what 1799 // IsQualificationConversion does, but here we're checking for a 1800 // strict subset of qualifiers. 1801 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1802 // The qualifiers are the same, so this doesn't tell us anything 1803 // about how the sequences rank. 1804 ; 1805 else if (T2.isMoreQualifiedThan(T1)) { 1806 // T1 has fewer qualifiers, so it could be the better sequence. 1807 if (Result == ImplicitConversionSequence::Worse) 1808 // Neither has qualifiers that are a subset of the other's 1809 // qualifiers. 1810 return ImplicitConversionSequence::Indistinguishable; 1811 1812 Result = ImplicitConversionSequence::Better; 1813 } else if (T1.isMoreQualifiedThan(T2)) { 1814 // T2 has fewer qualifiers, so it could be the better sequence. 1815 if (Result == ImplicitConversionSequence::Better) 1816 // Neither has qualifiers that are a subset of the other's 1817 // qualifiers. 1818 return ImplicitConversionSequence::Indistinguishable; 1819 1820 Result = ImplicitConversionSequence::Worse; 1821 } else { 1822 // Qualifiers are disjoint. 1823 return ImplicitConversionSequence::Indistinguishable; 1824 } 1825 1826 // If the types after this point are equivalent, we're done. 1827 if (Context.hasSameUnqualifiedType(T1, T2)) 1828 break; 1829 } 1830 1831 // Check that the winning standard conversion sequence isn't using 1832 // the deprecated string literal array to pointer conversion. 1833 switch (Result) { 1834 case ImplicitConversionSequence::Better: 1835 if (SCS1.Deprecated) 1836 Result = ImplicitConversionSequence::Indistinguishable; 1837 break; 1838 1839 case ImplicitConversionSequence::Indistinguishable: 1840 break; 1841 1842 case ImplicitConversionSequence::Worse: 1843 if (SCS2.Deprecated) 1844 Result = ImplicitConversionSequence::Indistinguishable; 1845 break; 1846 } 1847 1848 return Result; 1849} 1850 1851/// CompareDerivedToBaseConversions - Compares two standard conversion 1852/// sequences to determine whether they can be ranked based on their 1853/// various kinds of derived-to-base conversions (C++ 1854/// [over.ics.rank]p4b3). As part of these checks, we also look at 1855/// conversions between Objective-C interface types. 1856ImplicitConversionSequence::CompareKind 1857Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1858 const StandardConversionSequence& SCS2) { 1859 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1860 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1861 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1862 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1863 1864 // Adjust the types we're converting from via the array-to-pointer 1865 // conversion, if we need to. 1866 if (SCS1.First == ICK_Array_To_Pointer) 1867 FromType1 = Context.getArrayDecayedType(FromType1); 1868 if (SCS2.First == ICK_Array_To_Pointer) 1869 FromType2 = Context.getArrayDecayedType(FromType2); 1870 1871 // Canonicalize all of the types. 1872 FromType1 = Context.getCanonicalType(FromType1); 1873 ToType1 = Context.getCanonicalType(ToType1); 1874 FromType2 = Context.getCanonicalType(FromType2); 1875 ToType2 = Context.getCanonicalType(ToType2); 1876 1877 // C++ [over.ics.rank]p4b3: 1878 // 1879 // If class B is derived directly or indirectly from class A and 1880 // class C is derived directly or indirectly from B, 1881 // 1882 // For Objective-C, we let A, B, and C also be Objective-C 1883 // interfaces. 1884 1885 // Compare based on pointer conversions. 1886 if (SCS1.Second == ICK_Pointer_Conversion && 1887 SCS2.Second == ICK_Pointer_Conversion && 1888 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1889 FromType1->isPointerType() && FromType2->isPointerType() && 1890 ToType1->isPointerType() && ToType2->isPointerType()) { 1891 QualType FromPointee1 1892 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1893 QualType ToPointee1 1894 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1895 QualType FromPointee2 1896 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1897 QualType ToPointee2 1898 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1899 1900 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1901 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1902 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 1903 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 1904 1905 // -- conversion of C* to B* is better than conversion of C* to A*, 1906 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1907 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1908 return ImplicitConversionSequence::Better; 1909 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1910 return ImplicitConversionSequence::Worse; 1911 1912 if (ToIface1 && ToIface2) { 1913 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1914 return ImplicitConversionSequence::Better; 1915 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1916 return ImplicitConversionSequence::Worse; 1917 } 1918 } 1919 1920 // -- conversion of B* to A* is better than conversion of C* to A*, 1921 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1922 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1923 return ImplicitConversionSequence::Better; 1924 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1925 return ImplicitConversionSequence::Worse; 1926 1927 if (FromIface1 && FromIface2) { 1928 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1929 return ImplicitConversionSequence::Better; 1930 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1931 return ImplicitConversionSequence::Worse; 1932 } 1933 } 1934 } 1935 1936 // Compare based on reference bindings. 1937 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 1938 SCS1.Second == ICK_Derived_To_Base) { 1939 // -- binding of an expression of type C to a reference of type 1940 // B& is better than binding an expression of type C to a 1941 // reference of type A&, 1942 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 1943 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 1944 if (IsDerivedFrom(ToType1, ToType2)) 1945 return ImplicitConversionSequence::Better; 1946 else if (IsDerivedFrom(ToType2, ToType1)) 1947 return ImplicitConversionSequence::Worse; 1948 } 1949 1950 // -- binding of an expression of type B to a reference of type 1951 // A& is better than binding an expression of type C to a 1952 // reference of type A&, 1953 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 1954 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 1955 if (IsDerivedFrom(FromType2, FromType1)) 1956 return ImplicitConversionSequence::Better; 1957 else if (IsDerivedFrom(FromType1, FromType2)) 1958 return ImplicitConversionSequence::Worse; 1959 } 1960 } 1961 1962 // Ranking of member-pointer types. 1963 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 1964 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 1965 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 1966 const MemberPointerType * FromMemPointer1 = 1967 FromType1->getAs<MemberPointerType>(); 1968 const MemberPointerType * ToMemPointer1 = 1969 ToType1->getAs<MemberPointerType>(); 1970 const MemberPointerType * FromMemPointer2 = 1971 FromType2->getAs<MemberPointerType>(); 1972 const MemberPointerType * ToMemPointer2 = 1973 ToType2->getAs<MemberPointerType>(); 1974 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 1975 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 1976 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 1977 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 1978 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 1979 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 1980 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 1981 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 1982 // conversion of A::* to B::* is better than conversion of A::* to C::*, 1983 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1984 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1985 return ImplicitConversionSequence::Worse; 1986 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1987 return ImplicitConversionSequence::Better; 1988 } 1989 // conversion of B::* to C::* is better than conversion of A::* to C::* 1990 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 1991 if (IsDerivedFrom(FromPointee1, FromPointee2)) 1992 return ImplicitConversionSequence::Better; 1993 else if (IsDerivedFrom(FromPointee2, FromPointee1)) 1994 return ImplicitConversionSequence::Worse; 1995 } 1996 } 1997 1998 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 1999 SCS1.Second == ICK_Derived_To_Base) { 2000 // -- conversion of C to B is better than conversion of C to A, 2001 if (Context.hasSameUnqualifiedType(FromType1, FromType2) && 2002 !Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2003 if (IsDerivedFrom(ToType1, ToType2)) 2004 return ImplicitConversionSequence::Better; 2005 else if (IsDerivedFrom(ToType2, ToType1)) 2006 return ImplicitConversionSequence::Worse; 2007 } 2008 2009 // -- conversion of B to A is better than conversion of C to A. 2010 if (!Context.hasSameUnqualifiedType(FromType1, FromType2) && 2011 Context.hasSameUnqualifiedType(ToType1, ToType2)) { 2012 if (IsDerivedFrom(FromType2, FromType1)) 2013 return ImplicitConversionSequence::Better; 2014 else if (IsDerivedFrom(FromType1, FromType2)) 2015 return ImplicitConversionSequence::Worse; 2016 } 2017 } 2018 2019 return ImplicitConversionSequence::Indistinguishable; 2020} 2021 2022/// TryCopyInitialization - Try to copy-initialize a value of type 2023/// ToType from the expression From. Return the implicit conversion 2024/// sequence required to pass this argument, which may be a bad 2025/// conversion sequence (meaning that the argument cannot be passed to 2026/// a parameter of this type). If @p SuppressUserConversions, then we 2027/// do not permit any user-defined conversion sequences. If @p ForceRValue, 2028/// then we treat @p From as an rvalue, even if it is an lvalue. 2029ImplicitConversionSequence 2030Sema::TryCopyInitialization(Expr *From, QualType ToType, 2031 bool SuppressUserConversions, bool ForceRValue, 2032 bool InOverloadResolution) { 2033 if (ToType->isReferenceType()) { 2034 ImplicitConversionSequence ICS; 2035 CheckReferenceInit(From, ToType, 2036 /*FIXME:*/From->getLocStart(), 2037 SuppressUserConversions, 2038 /*AllowExplicit=*/false, 2039 ForceRValue, 2040 &ICS); 2041 return ICS; 2042 } else { 2043 return TryImplicitConversion(From, ToType, 2044 SuppressUserConversions, 2045 /*AllowExplicit=*/false, 2046 ForceRValue, 2047 InOverloadResolution); 2048 } 2049} 2050 2051/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 2052/// the expression @p From. Returns true (and emits a diagnostic) if there was 2053/// an error, returns false if the initialization succeeded. Elidable should 2054/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 2055/// differently in C++0x for this case. 2056bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 2057 const char* Flavor, bool Elidable) { 2058 if (!getLangOptions().CPlusPlus) { 2059 // In C, argument passing is the same as performing an assignment. 2060 QualType FromType = From->getType(); 2061 2062 AssignConvertType ConvTy = 2063 CheckSingleAssignmentConstraints(ToType, From); 2064 if (ConvTy != Compatible && 2065 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2066 ConvTy = Compatible; 2067 2068 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2069 FromType, From, Flavor); 2070 } 2071 2072 if (ToType->isReferenceType()) 2073 return CheckReferenceInit(From, ToType, 2074 /*FIXME:*/From->getLocStart(), 2075 /*SuppressUserConversions=*/false, 2076 /*AllowExplicit=*/false, 2077 /*ForceRValue=*/false); 2078 2079 if (!PerformImplicitConversion(From, ToType, Flavor, 2080 /*AllowExplicit=*/false, Elidable)) 2081 return false; 2082 if (!DiagnoseMultipleUserDefinedConversion(From, ToType)) 2083 return Diag(From->getSourceRange().getBegin(), 2084 diag::err_typecheck_convert_incompatible) 2085 << ToType << From->getType() << Flavor << From->getSourceRange(); 2086 return true; 2087} 2088 2089/// TryObjectArgumentInitialization - Try to initialize the object 2090/// parameter of the given member function (@c Method) from the 2091/// expression @p From. 2092ImplicitConversionSequence 2093Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { 2094 QualType ClassType = Context.getTypeDeclType(Method->getParent()); 2095 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 2096 // const volatile object. 2097 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 2098 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 2099 QualType ImplicitParamType = Context.getCVRQualifiedType(ClassType, Quals); 2100 2101 // Set up the conversion sequence as a "bad" conversion, to allow us 2102 // to exit early. 2103 ImplicitConversionSequence ICS; 2104 ICS.Standard.setAsIdentityConversion(); 2105 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 2106 2107 // We need to have an object of class type. 2108 QualType FromType = From->getType(); 2109 if (const PointerType *PT = FromType->getAs<PointerType>()) 2110 FromType = PT->getPointeeType(); 2111 2112 assert(FromType->isRecordType()); 2113 2114 // The implicit object parameter is has the type "reference to cv X", 2115 // where X is the class of which the function is a member 2116 // (C++ [over.match.funcs]p4). However, when finding an implicit 2117 // conversion sequence for the argument, we are not allowed to 2118 // create temporaries or perform user-defined conversions 2119 // (C++ [over.match.funcs]p5). We perform a simplified version of 2120 // reference binding here, that allows class rvalues to bind to 2121 // non-constant references. 2122 2123 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2124 // with the implicit object parameter (C++ [over.match.funcs]p5). 2125 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2126 if (ImplicitParamType.getCVRQualifiers() 2127 != FromTypeCanon.getLocalCVRQualifiers() && 2128 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) 2129 return ICS; 2130 2131 // Check that we have either the same type or a derived type. It 2132 // affects the conversion rank. 2133 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2134 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) 2135 ICS.Standard.Second = ICK_Identity; 2136 else if (IsDerivedFrom(FromType, ClassType)) 2137 ICS.Standard.Second = ICK_Derived_To_Base; 2138 else 2139 return ICS; 2140 2141 // Success. Mark this as a reference binding. 2142 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 2143 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 2144 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 2145 ICS.Standard.ReferenceBinding = true; 2146 ICS.Standard.DirectBinding = true; 2147 ICS.Standard.RRefBinding = false; 2148 return ICS; 2149} 2150 2151/// PerformObjectArgumentInitialization - Perform initialization of 2152/// the implicit object parameter for the given Method with the given 2153/// expression. 2154bool 2155Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2156 QualType FromRecordType, DestType; 2157 QualType ImplicitParamRecordType = 2158 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2159 2160 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2161 FromRecordType = PT->getPointeeType(); 2162 DestType = Method->getThisType(Context); 2163 } else { 2164 FromRecordType = From->getType(); 2165 DestType = ImplicitParamRecordType; 2166 } 2167 2168 ImplicitConversionSequence ICS 2169 = TryObjectArgumentInitialization(From, Method); 2170 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 2171 return Diag(From->getSourceRange().getBegin(), 2172 diag::err_implicit_object_parameter_init) 2173 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2174 2175 if (ICS.Standard.Second == ICK_Derived_To_Base && 2176 CheckDerivedToBaseConversion(FromRecordType, 2177 ImplicitParamRecordType, 2178 From->getSourceRange().getBegin(), 2179 From->getSourceRange())) 2180 return true; 2181 2182 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2183 /*isLvalue=*/true); 2184 return false; 2185} 2186 2187/// TryContextuallyConvertToBool - Attempt to contextually convert the 2188/// expression From to bool (C++0x [conv]p3). 2189ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2190 return TryImplicitConversion(From, Context.BoolTy, 2191 // FIXME: Are these flags correct? 2192 /*SuppressUserConversions=*/false, 2193 /*AllowExplicit=*/true, 2194 /*ForceRValue=*/false, 2195 /*InOverloadResolution=*/false); 2196} 2197 2198/// PerformContextuallyConvertToBool - Perform a contextual conversion 2199/// of the expression From to bool (C++0x [conv]p3). 2200bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2201 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2202 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) 2203 return false; 2204 2205 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 2206 return Diag(From->getSourceRange().getBegin(), 2207 diag::err_typecheck_bool_condition) 2208 << From->getType() << From->getSourceRange(); 2209 return true; 2210} 2211 2212/// AddOverloadCandidate - Adds the given function to the set of 2213/// candidate functions, using the given function call arguments. If 2214/// @p SuppressUserConversions, then don't allow user-defined 2215/// conversions via constructors or conversion operators. 2216/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2217/// hacky way to implement the overloading rules for elidable copy 2218/// initialization in C++0x (C++0x 12.8p15). 2219/// 2220/// \para PartialOverloading true if we are performing "partial" overloading 2221/// based on an incomplete set of function arguments. This feature is used by 2222/// code completion. 2223void 2224Sema::AddOverloadCandidate(FunctionDecl *Function, 2225 Expr **Args, unsigned NumArgs, 2226 OverloadCandidateSet& CandidateSet, 2227 bool SuppressUserConversions, 2228 bool ForceRValue, 2229 bool PartialOverloading) { 2230 const FunctionProtoType* Proto 2231 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2232 assert(Proto && "Functions without a prototype cannot be overloaded"); 2233 assert(!isa<CXXConversionDecl>(Function) && 2234 "Use AddConversionCandidate for conversion functions"); 2235 assert(!Function->getDescribedFunctionTemplate() && 2236 "Use AddTemplateOverloadCandidate for function templates"); 2237 2238 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2239 if (!isa<CXXConstructorDecl>(Method)) { 2240 // If we get here, it's because we're calling a member function 2241 // that is named without a member access expression (e.g., 2242 // "this->f") that was either written explicitly or created 2243 // implicitly. This can happen with a qualified call to a member 2244 // function, e.g., X::f(). We use a NULL object as the implied 2245 // object argument (C++ [over.call.func]p3). 2246 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, 2247 SuppressUserConversions, ForceRValue); 2248 return; 2249 } 2250 // We treat a constructor like a non-member function, since its object 2251 // argument doesn't participate in overload resolution. 2252 } 2253 2254 if (!CandidateSet.isNewCandidate(Function)) 2255 return; 2256 2257 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 2258 // C++ [class.copy]p3: 2259 // A member function template is never instantiated to perform the copy 2260 // of a class object to an object of its class type. 2261 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 2262 if (NumArgs == 1 && 2263 Constructor->isCopyConstructorLikeSpecialization() && 2264 Context.hasSameUnqualifiedType(ClassType, Args[0]->getType())) 2265 return; 2266 } 2267 2268 // Add this candidate 2269 CandidateSet.push_back(OverloadCandidate()); 2270 OverloadCandidate& Candidate = CandidateSet.back(); 2271 Candidate.Function = Function; 2272 Candidate.Viable = true; 2273 Candidate.IsSurrogate = false; 2274 Candidate.IgnoreObjectArgument = false; 2275 2276 unsigned NumArgsInProto = Proto->getNumArgs(); 2277 2278 // (C++ 13.3.2p2): A candidate function having fewer than m 2279 // parameters is viable only if it has an ellipsis in its parameter 2280 // list (8.3.5). 2281 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2282 !Proto->isVariadic()) { 2283 Candidate.Viable = false; 2284 return; 2285 } 2286 2287 // (C++ 13.3.2p2): A candidate function having more than m parameters 2288 // is viable only if the (m+1)st parameter has a default argument 2289 // (8.3.6). For the purposes of overload resolution, the 2290 // parameter list is truncated on the right, so that there are 2291 // exactly m parameters. 2292 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2293 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2294 // Not enough arguments. 2295 Candidate.Viable = false; 2296 return; 2297 } 2298 2299 // Determine the implicit conversion sequences for each of the 2300 // arguments. 2301 Candidate.Conversions.resize(NumArgs); 2302 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2303 if (ArgIdx < NumArgsInProto) { 2304 // (C++ 13.3.2p3): for F to be a viable function, there shall 2305 // exist for each argument an implicit conversion sequence 2306 // (13.3.3.1) that converts that argument to the corresponding 2307 // parameter of F. 2308 QualType ParamType = Proto->getArgType(ArgIdx); 2309 Candidate.Conversions[ArgIdx] 2310 = TryCopyInitialization(Args[ArgIdx], ParamType, 2311 SuppressUserConversions, ForceRValue, 2312 /*InOverloadResolution=*/true); 2313 if (Candidate.Conversions[ArgIdx].ConversionKind 2314 == ImplicitConversionSequence::BadConversion) { 2315 // 13.3.3.1-p10 If several different sequences of conversions exist that 2316 // each convert the argument to the parameter type, the implicit conversion 2317 // sequence associated with the parameter is defined to be the unique conversion 2318 // sequence designated the ambiguous conversion sequence. For the purpose of 2319 // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous 2320 // conversion sequence is treated as a user-defined sequence that is 2321 // indistinguishable from any other user-defined conversion sequence 2322 if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) { 2323 Candidate.Conversions[ArgIdx].ConversionKind = 2324 ImplicitConversionSequence::UserDefinedConversion; 2325 // Set the conversion function to one of them. As due to ambiguity, 2326 // they carry the same weight and is needed for overload resolution 2327 // later. 2328 Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction = 2329 Candidate.Conversions[ArgIdx].ConversionFunctionSet[0]; 2330 } 2331 else { 2332 Candidate.Viable = false; 2333 break; 2334 } 2335 } 2336 } else { 2337 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2338 // argument for which there is no corresponding parameter is 2339 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2340 Candidate.Conversions[ArgIdx].ConversionKind 2341 = ImplicitConversionSequence::EllipsisConversion; 2342 } 2343 } 2344} 2345 2346/// \brief Add all of the function declarations in the given function set to 2347/// the overload canddiate set. 2348void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2349 Expr **Args, unsigned NumArgs, 2350 OverloadCandidateSet& CandidateSet, 2351 bool SuppressUserConversions) { 2352 for (FunctionSet::const_iterator F = Functions.begin(), 2353 FEnd = Functions.end(); 2354 F != FEnd; ++F) { 2355 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2356 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2357 AddMethodCandidate(cast<CXXMethodDecl>(FD), 2358 Args[0], Args + 1, NumArgs - 1, 2359 CandidateSet, SuppressUserConversions); 2360 else 2361 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2362 SuppressUserConversions); 2363 } else { 2364 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2365 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2366 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2367 AddMethodTemplateCandidate(FunTmpl, 2368 /*FIXME: explicit args */false, 0, 0, 2369 Args[0], Args + 1, NumArgs - 1, 2370 CandidateSet, 2371 SuppressUserConversions); 2372 else 2373 AddTemplateOverloadCandidate(FunTmpl, 2374 /*FIXME: explicit args */false, 0, 0, 2375 Args, NumArgs, CandidateSet, 2376 SuppressUserConversions); 2377 } 2378 } 2379} 2380 2381/// AddMethodCandidate - Adds a named decl (which is some kind of 2382/// method) as a method candidate to the given overload set. 2383void Sema::AddMethodCandidate(NamedDecl *Decl, Expr *Object, 2384 Expr **Args, unsigned NumArgs, 2385 OverloadCandidateSet& CandidateSet, 2386 bool SuppressUserConversions, bool ForceRValue) { 2387 2388 // FIXME: use this 2389 //DeclContext *ActingContext = Decl->getDeclContext(); 2390 2391 if (isa<UsingShadowDecl>(Decl)) 2392 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 2393 2394 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 2395 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 2396 "Expected a member function template"); 2397 AddMethodTemplateCandidate(TD, false, 0, 0, 2398 Object, Args, NumArgs, 2399 CandidateSet, 2400 SuppressUserConversions, 2401 ForceRValue); 2402 } else { 2403 AddMethodCandidate(cast<CXXMethodDecl>(Decl), Object, Args, NumArgs, 2404 CandidateSet, SuppressUserConversions, ForceRValue); 2405 } 2406} 2407 2408/// AddMethodCandidate - Adds the given C++ member function to the set 2409/// of candidate functions, using the given function call arguments 2410/// and the object argument (@c Object). For example, in a call 2411/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2412/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2413/// allow user-defined conversions via constructors or conversion 2414/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2415/// a slightly hacky way to implement the overloading rules for elidable copy 2416/// initialization in C++0x (C++0x 12.8p15). 2417void 2418Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, 2419 Expr **Args, unsigned NumArgs, 2420 OverloadCandidateSet& CandidateSet, 2421 bool SuppressUserConversions, bool ForceRValue) { 2422 const FunctionProtoType* Proto 2423 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2424 assert(Proto && "Methods without a prototype cannot be overloaded"); 2425 assert(!isa<CXXConversionDecl>(Method) && 2426 "Use AddConversionCandidate for conversion functions"); 2427 assert(!isa<CXXConstructorDecl>(Method) && 2428 "Use AddOverloadCandidate for constructors"); 2429 2430 if (!CandidateSet.isNewCandidate(Method)) 2431 return; 2432 2433 // Add this candidate 2434 CandidateSet.push_back(OverloadCandidate()); 2435 OverloadCandidate& Candidate = CandidateSet.back(); 2436 Candidate.Function = Method; 2437 Candidate.IsSurrogate = false; 2438 Candidate.IgnoreObjectArgument = false; 2439 2440 unsigned NumArgsInProto = Proto->getNumArgs(); 2441 2442 // (C++ 13.3.2p2): A candidate function having fewer than m 2443 // parameters is viable only if it has an ellipsis in its parameter 2444 // list (8.3.5). 2445 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2446 Candidate.Viable = false; 2447 return; 2448 } 2449 2450 // (C++ 13.3.2p2): A candidate function having more than m parameters 2451 // is viable only if the (m+1)st parameter has a default argument 2452 // (8.3.6). For the purposes of overload resolution, the 2453 // parameter list is truncated on the right, so that there are 2454 // exactly m parameters. 2455 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2456 if (NumArgs < MinRequiredArgs) { 2457 // Not enough arguments. 2458 Candidate.Viable = false; 2459 return; 2460 } 2461 2462 Candidate.Viable = true; 2463 Candidate.Conversions.resize(NumArgs + 1); 2464 2465 if (Method->isStatic() || !Object) 2466 // The implicit object argument is ignored. 2467 Candidate.IgnoreObjectArgument = true; 2468 else { 2469 // Determine the implicit conversion sequence for the object 2470 // parameter. 2471 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); 2472 if (Candidate.Conversions[0].ConversionKind 2473 == ImplicitConversionSequence::BadConversion) { 2474 Candidate.Viable = false; 2475 return; 2476 } 2477 } 2478 2479 // Determine the implicit conversion sequences for each of the 2480 // arguments. 2481 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2482 if (ArgIdx < NumArgsInProto) { 2483 // (C++ 13.3.2p3): for F to be a viable function, there shall 2484 // exist for each argument an implicit conversion sequence 2485 // (13.3.3.1) that converts that argument to the corresponding 2486 // parameter of F. 2487 QualType ParamType = Proto->getArgType(ArgIdx); 2488 Candidate.Conversions[ArgIdx + 1] 2489 = TryCopyInitialization(Args[ArgIdx], ParamType, 2490 SuppressUserConversions, ForceRValue, 2491 /*InOverloadResolution=*/true); 2492 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2493 == ImplicitConversionSequence::BadConversion) { 2494 Candidate.Viable = false; 2495 break; 2496 } 2497 } else { 2498 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2499 // argument for which there is no corresponding parameter is 2500 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2501 Candidate.Conversions[ArgIdx + 1].ConversionKind 2502 = ImplicitConversionSequence::EllipsisConversion; 2503 } 2504 } 2505} 2506 2507/// \brief Add a C++ member function template as a candidate to the candidate 2508/// set, using template argument deduction to produce an appropriate member 2509/// function template specialization. 2510void 2511Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2512 bool HasExplicitTemplateArgs, 2513 const TemplateArgumentLoc *ExplicitTemplateArgs, 2514 unsigned NumExplicitTemplateArgs, 2515 Expr *Object, Expr **Args, unsigned NumArgs, 2516 OverloadCandidateSet& CandidateSet, 2517 bool SuppressUserConversions, 2518 bool ForceRValue) { 2519 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2520 return; 2521 2522 // C++ [over.match.funcs]p7: 2523 // In each case where a candidate is a function template, candidate 2524 // function template specializations are generated using template argument 2525 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2526 // candidate functions in the usual way.113) A given name can refer to one 2527 // or more function templates and also to a set of overloaded non-template 2528 // functions. In such a case, the candidate functions generated from each 2529 // function template are combined with the set of non-template candidate 2530 // functions. 2531 TemplateDeductionInfo Info(Context); 2532 FunctionDecl *Specialization = 0; 2533 if (TemplateDeductionResult Result 2534 = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs, 2535 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2536 Args, NumArgs, Specialization, Info)) { 2537 // FIXME: Record what happened with template argument deduction, so 2538 // that we can give the user a beautiful diagnostic. 2539 (void)Result; 2540 return; 2541 } 2542 2543 // Add the function template specialization produced by template argument 2544 // deduction as a candidate. 2545 assert(Specialization && "Missing member function template specialization?"); 2546 assert(isa<CXXMethodDecl>(Specialization) && 2547 "Specialization is not a member function?"); 2548 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs, 2549 CandidateSet, SuppressUserConversions, ForceRValue); 2550} 2551 2552/// \brief Add a C++ function template specialization as a candidate 2553/// in the candidate set, using template argument deduction to produce 2554/// an appropriate function template specialization. 2555void 2556Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2557 bool HasExplicitTemplateArgs, 2558 const TemplateArgumentLoc *ExplicitTemplateArgs, 2559 unsigned NumExplicitTemplateArgs, 2560 Expr **Args, unsigned NumArgs, 2561 OverloadCandidateSet& CandidateSet, 2562 bool SuppressUserConversions, 2563 bool ForceRValue) { 2564 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2565 return; 2566 2567 // C++ [over.match.funcs]p7: 2568 // In each case where a candidate is a function template, candidate 2569 // function template specializations are generated using template argument 2570 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2571 // candidate functions in the usual way.113) A given name can refer to one 2572 // or more function templates and also to a set of overloaded non-template 2573 // functions. In such a case, the candidate functions generated from each 2574 // function template are combined with the set of non-template candidate 2575 // functions. 2576 TemplateDeductionInfo Info(Context); 2577 FunctionDecl *Specialization = 0; 2578 if (TemplateDeductionResult Result 2579 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, 2580 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2581 Args, NumArgs, Specialization, Info)) { 2582 // FIXME: Record what happened with template argument deduction, so 2583 // that we can give the user a beautiful diagnostic. 2584 (void)Result; 2585 return; 2586 } 2587 2588 // Add the function template specialization produced by template argument 2589 // deduction as a candidate. 2590 assert(Specialization && "Missing function template specialization?"); 2591 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2592 SuppressUserConversions, ForceRValue); 2593} 2594 2595/// AddConversionCandidate - Add a C++ conversion function as a 2596/// candidate in the candidate set (C++ [over.match.conv], 2597/// C++ [over.match.copy]). From is the expression we're converting from, 2598/// and ToType is the type that we're eventually trying to convert to 2599/// (which may or may not be the same type as the type that the 2600/// conversion function produces). 2601void 2602Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2603 Expr *From, QualType ToType, 2604 OverloadCandidateSet& CandidateSet) { 2605 assert(!Conversion->getDescribedFunctionTemplate() && 2606 "Conversion function templates use AddTemplateConversionCandidate"); 2607 2608 if (!CandidateSet.isNewCandidate(Conversion)) 2609 return; 2610 2611 // Add this candidate 2612 CandidateSet.push_back(OverloadCandidate()); 2613 OverloadCandidate& Candidate = CandidateSet.back(); 2614 Candidate.Function = Conversion; 2615 Candidate.IsSurrogate = false; 2616 Candidate.IgnoreObjectArgument = false; 2617 Candidate.FinalConversion.setAsIdentityConversion(); 2618 Candidate.FinalConversion.FromTypePtr 2619 = Conversion->getConversionType().getAsOpaquePtr(); 2620 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2621 2622 // Determine the implicit conversion sequence for the implicit 2623 // object parameter. 2624 Candidate.Viable = true; 2625 Candidate.Conversions.resize(1); 2626 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); 2627 // Conversion functions to a different type in the base class is visible in 2628 // the derived class. So, a derived to base conversion should not participate 2629 // in overload resolution. 2630 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2631 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2632 if (Candidate.Conversions[0].ConversionKind 2633 == ImplicitConversionSequence::BadConversion) { 2634 Candidate.Viable = false; 2635 return; 2636 } 2637 2638 // We won't go through a user-define type conversion function to convert a 2639 // derived to base as such conversions are given Conversion Rank. They only 2640 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 2641 QualType FromCanon 2642 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 2643 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 2644 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 2645 Candidate.Viable = false; 2646 return; 2647 } 2648 2649 2650 // To determine what the conversion from the result of calling the 2651 // conversion function to the type we're eventually trying to 2652 // convert to (ToType), we need to synthesize a call to the 2653 // conversion function and attempt copy initialization from it. This 2654 // makes sure that we get the right semantics with respect to 2655 // lvalues/rvalues and the type. Fortunately, we can allocate this 2656 // call on the stack and we don't need its arguments to be 2657 // well-formed. 2658 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2659 From->getLocStart()); 2660 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2661 CastExpr::CK_FunctionToPointerDecay, 2662 &ConversionRef, false); 2663 2664 // Note that it is safe to allocate CallExpr on the stack here because 2665 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2666 // allocator). 2667 CallExpr Call(Context, &ConversionFn, 0, 0, 2668 Conversion->getConversionType().getNonReferenceType(), 2669 From->getLocStart()); 2670 ImplicitConversionSequence ICS = 2671 TryCopyInitialization(&Call, ToType, 2672 /*SuppressUserConversions=*/true, 2673 /*ForceRValue=*/false, 2674 /*InOverloadResolution=*/false); 2675 2676 switch (ICS.ConversionKind) { 2677 case ImplicitConversionSequence::StandardConversion: 2678 Candidate.FinalConversion = ICS.Standard; 2679 break; 2680 2681 case ImplicitConversionSequence::BadConversion: 2682 Candidate.Viable = false; 2683 break; 2684 2685 default: 2686 assert(false && 2687 "Can only end up with a standard conversion sequence or failure"); 2688 } 2689} 2690 2691/// \brief Adds a conversion function template specialization 2692/// candidate to the overload set, using template argument deduction 2693/// to deduce the template arguments of the conversion function 2694/// template from the type that we are converting to (C++ 2695/// [temp.deduct.conv]). 2696void 2697Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2698 Expr *From, QualType ToType, 2699 OverloadCandidateSet &CandidateSet) { 2700 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2701 "Only conversion function templates permitted here"); 2702 2703 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2704 return; 2705 2706 TemplateDeductionInfo Info(Context); 2707 CXXConversionDecl *Specialization = 0; 2708 if (TemplateDeductionResult Result 2709 = DeduceTemplateArguments(FunctionTemplate, ToType, 2710 Specialization, Info)) { 2711 // FIXME: Record what happened with template argument deduction, so 2712 // that we can give the user a beautiful diagnostic. 2713 (void)Result; 2714 return; 2715 } 2716 2717 // Add the conversion function template specialization produced by 2718 // template argument deduction as a candidate. 2719 assert(Specialization && "Missing function template specialization?"); 2720 AddConversionCandidate(Specialization, From, ToType, CandidateSet); 2721} 2722 2723/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2724/// converts the given @c Object to a function pointer via the 2725/// conversion function @c Conversion, and then attempts to call it 2726/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2727/// the type of function that we'll eventually be calling. 2728void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2729 const FunctionProtoType *Proto, 2730 Expr *Object, Expr **Args, unsigned NumArgs, 2731 OverloadCandidateSet& CandidateSet) { 2732 if (!CandidateSet.isNewCandidate(Conversion)) 2733 return; 2734 2735 CandidateSet.push_back(OverloadCandidate()); 2736 OverloadCandidate& Candidate = CandidateSet.back(); 2737 Candidate.Function = 0; 2738 Candidate.Surrogate = Conversion; 2739 Candidate.Viable = true; 2740 Candidate.IsSurrogate = true; 2741 Candidate.IgnoreObjectArgument = false; 2742 Candidate.Conversions.resize(NumArgs + 1); 2743 2744 // Determine the implicit conversion sequence for the implicit 2745 // object parameter. 2746 ImplicitConversionSequence ObjectInit 2747 = TryObjectArgumentInitialization(Object, Conversion); 2748 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2749 Candidate.Viable = false; 2750 return; 2751 } 2752 2753 // The first conversion is actually a user-defined conversion whose 2754 // first conversion is ObjectInit's standard conversion (which is 2755 // effectively a reference binding). Record it as such. 2756 Candidate.Conversions[0].ConversionKind 2757 = ImplicitConversionSequence::UserDefinedConversion; 2758 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2759 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 2760 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2761 Candidate.Conversions[0].UserDefined.After 2762 = Candidate.Conversions[0].UserDefined.Before; 2763 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2764 2765 // Find the 2766 unsigned NumArgsInProto = Proto->getNumArgs(); 2767 2768 // (C++ 13.3.2p2): A candidate function having fewer than m 2769 // parameters is viable only if it has an ellipsis in its parameter 2770 // list (8.3.5). 2771 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2772 Candidate.Viable = false; 2773 return; 2774 } 2775 2776 // Function types don't have any default arguments, so just check if 2777 // we have enough arguments. 2778 if (NumArgs < NumArgsInProto) { 2779 // Not enough arguments. 2780 Candidate.Viable = false; 2781 return; 2782 } 2783 2784 // Determine the implicit conversion sequences for each of the 2785 // arguments. 2786 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2787 if (ArgIdx < NumArgsInProto) { 2788 // (C++ 13.3.2p3): for F to be a viable function, there shall 2789 // exist for each argument an implicit conversion sequence 2790 // (13.3.3.1) that converts that argument to the corresponding 2791 // parameter of F. 2792 QualType ParamType = Proto->getArgType(ArgIdx); 2793 Candidate.Conversions[ArgIdx + 1] 2794 = TryCopyInitialization(Args[ArgIdx], ParamType, 2795 /*SuppressUserConversions=*/false, 2796 /*ForceRValue=*/false, 2797 /*InOverloadResolution=*/false); 2798 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2799 == ImplicitConversionSequence::BadConversion) { 2800 Candidate.Viable = false; 2801 break; 2802 } 2803 } else { 2804 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2805 // argument for which there is no corresponding parameter is 2806 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2807 Candidate.Conversions[ArgIdx + 1].ConversionKind 2808 = ImplicitConversionSequence::EllipsisConversion; 2809 } 2810 } 2811} 2812 2813// FIXME: This will eventually be removed, once we've migrated all of the 2814// operator overloading logic over to the scheme used by binary operators, which 2815// works for template instantiation. 2816void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2817 SourceLocation OpLoc, 2818 Expr **Args, unsigned NumArgs, 2819 OverloadCandidateSet& CandidateSet, 2820 SourceRange OpRange) { 2821 FunctionSet Functions; 2822 2823 QualType T1 = Args[0]->getType(); 2824 QualType T2; 2825 if (NumArgs > 1) 2826 T2 = Args[1]->getType(); 2827 2828 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2829 if (S) 2830 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2831 ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions); 2832 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2833 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2834 AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet); 2835} 2836 2837/// \brief Add overload candidates for overloaded operators that are 2838/// member functions. 2839/// 2840/// Add the overloaded operator candidates that are member functions 2841/// for the operator Op that was used in an operator expression such 2842/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2843/// CandidateSet will store the added overload candidates. (C++ 2844/// [over.match.oper]). 2845void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2846 SourceLocation OpLoc, 2847 Expr **Args, unsigned NumArgs, 2848 OverloadCandidateSet& CandidateSet, 2849 SourceRange OpRange) { 2850 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2851 2852 // C++ [over.match.oper]p3: 2853 // For a unary operator @ with an operand of a type whose 2854 // cv-unqualified version is T1, and for a binary operator @ with 2855 // a left operand of a type whose cv-unqualified version is T1 and 2856 // a right operand of a type whose cv-unqualified version is T2, 2857 // three sets of candidate functions, designated member 2858 // candidates, non-member candidates and built-in candidates, are 2859 // constructed as follows: 2860 QualType T1 = Args[0]->getType(); 2861 QualType T2; 2862 if (NumArgs > 1) 2863 T2 = Args[1]->getType(); 2864 2865 // -- If T1 is a class type, the set of member candidates is the 2866 // result of the qualified lookup of T1::operator@ 2867 // (13.3.1.1.1); otherwise, the set of member candidates is 2868 // empty. 2869 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 2870 // Complete the type if it can be completed. Otherwise, we're done. 2871 if (RequireCompleteType(OpLoc, T1, PDiag())) 2872 return; 2873 2874 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 2875 LookupQualifiedName(Operators, T1Rec->getDecl()); 2876 Operators.suppressDiagnostics(); 2877 2878 for (LookupResult::iterator Oper = Operators.begin(), 2879 OperEnd = Operators.end(); 2880 Oper != OperEnd; 2881 ++Oper) 2882 AddMethodCandidate(*Oper, Args[0], Args + 1, NumArgs - 1, CandidateSet, 2883 /* SuppressUserConversions = */ false); 2884 } 2885} 2886 2887/// AddBuiltinCandidate - Add a candidate for a built-in 2888/// operator. ResultTy and ParamTys are the result and parameter types 2889/// of the built-in candidate, respectively. Args and NumArgs are the 2890/// arguments being passed to the candidate. IsAssignmentOperator 2891/// should be true when this built-in candidate is an assignment 2892/// operator. NumContextualBoolArguments is the number of arguments 2893/// (at the beginning of the argument list) that will be contextually 2894/// converted to bool. 2895void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 2896 Expr **Args, unsigned NumArgs, 2897 OverloadCandidateSet& CandidateSet, 2898 bool IsAssignmentOperator, 2899 unsigned NumContextualBoolArguments) { 2900 // Add this candidate 2901 CandidateSet.push_back(OverloadCandidate()); 2902 OverloadCandidate& Candidate = CandidateSet.back(); 2903 Candidate.Function = 0; 2904 Candidate.IsSurrogate = false; 2905 Candidate.IgnoreObjectArgument = false; 2906 Candidate.BuiltinTypes.ResultTy = ResultTy; 2907 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2908 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 2909 2910 // Determine the implicit conversion sequences for each of the 2911 // arguments. 2912 Candidate.Viable = true; 2913 Candidate.Conversions.resize(NumArgs); 2914 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2915 // C++ [over.match.oper]p4: 2916 // For the built-in assignment operators, conversions of the 2917 // left operand are restricted as follows: 2918 // -- no temporaries are introduced to hold the left operand, and 2919 // -- no user-defined conversions are applied to the left 2920 // operand to achieve a type match with the left-most 2921 // parameter of a built-in candidate. 2922 // 2923 // We block these conversions by turning off user-defined 2924 // conversions, since that is the only way that initialization of 2925 // a reference to a non-class type can occur from something that 2926 // is not of the same type. 2927 if (ArgIdx < NumContextualBoolArguments) { 2928 assert(ParamTys[ArgIdx] == Context.BoolTy && 2929 "Contextual conversion to bool requires bool type"); 2930 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 2931 } else { 2932 Candidate.Conversions[ArgIdx] 2933 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 2934 ArgIdx == 0 && IsAssignmentOperator, 2935 /*ForceRValue=*/false, 2936 /*InOverloadResolution=*/false); 2937 } 2938 if (Candidate.Conversions[ArgIdx].ConversionKind 2939 == ImplicitConversionSequence::BadConversion) { 2940 Candidate.Viable = false; 2941 break; 2942 } 2943 } 2944} 2945 2946/// BuiltinCandidateTypeSet - A set of types that will be used for the 2947/// candidate operator functions for built-in operators (C++ 2948/// [over.built]). The types are separated into pointer types and 2949/// enumeration types. 2950class BuiltinCandidateTypeSet { 2951 /// TypeSet - A set of types. 2952 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 2953 2954 /// PointerTypes - The set of pointer types that will be used in the 2955 /// built-in candidates. 2956 TypeSet PointerTypes; 2957 2958 /// MemberPointerTypes - The set of member pointer types that will be 2959 /// used in the built-in candidates. 2960 TypeSet MemberPointerTypes; 2961 2962 /// EnumerationTypes - The set of enumeration types that will be 2963 /// used in the built-in candidates. 2964 TypeSet EnumerationTypes; 2965 2966 /// Sema - The semantic analysis instance where we are building the 2967 /// candidate type set. 2968 Sema &SemaRef; 2969 2970 /// Context - The AST context in which we will build the type sets. 2971 ASTContext &Context; 2972 2973 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 2974 const Qualifiers &VisibleQuals); 2975 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 2976 2977public: 2978 /// iterator - Iterates through the types that are part of the set. 2979 typedef TypeSet::iterator iterator; 2980 2981 BuiltinCandidateTypeSet(Sema &SemaRef) 2982 : SemaRef(SemaRef), Context(SemaRef.Context) { } 2983 2984 void AddTypesConvertedFrom(QualType Ty, 2985 SourceLocation Loc, 2986 bool AllowUserConversions, 2987 bool AllowExplicitConversions, 2988 const Qualifiers &VisibleTypeConversionsQuals); 2989 2990 /// pointer_begin - First pointer type found; 2991 iterator pointer_begin() { return PointerTypes.begin(); } 2992 2993 /// pointer_end - Past the last pointer type found; 2994 iterator pointer_end() { return PointerTypes.end(); } 2995 2996 /// member_pointer_begin - First member pointer type found; 2997 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 2998 2999 /// member_pointer_end - Past the last member pointer type found; 3000 iterator member_pointer_end() { return MemberPointerTypes.end(); } 3001 3002 /// enumeration_begin - First enumeration type found; 3003 iterator enumeration_begin() { return EnumerationTypes.begin(); } 3004 3005 /// enumeration_end - Past the last enumeration type found; 3006 iterator enumeration_end() { return EnumerationTypes.end(); } 3007}; 3008 3009/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 3010/// the set of pointer types along with any more-qualified variants of 3011/// that type. For example, if @p Ty is "int const *", this routine 3012/// will add "int const *", "int const volatile *", "int const 3013/// restrict *", and "int const volatile restrict *" to the set of 3014/// pointer types. Returns true if the add of @p Ty itself succeeded, 3015/// false otherwise. 3016/// 3017/// FIXME: what to do about extended qualifiers? 3018bool 3019BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 3020 const Qualifiers &VisibleQuals) { 3021 3022 // Insert this type. 3023 if (!PointerTypes.insert(Ty)) 3024 return false; 3025 3026 const PointerType *PointerTy = Ty->getAs<PointerType>(); 3027 assert(PointerTy && "type was not a pointer type!"); 3028 3029 QualType PointeeTy = PointerTy->getPointeeType(); 3030 // Don't add qualified variants of arrays. For one, they're not allowed 3031 // (the qualifier would sink to the element type), and for another, the 3032 // only overload situation where it matters is subscript or pointer +- int, 3033 // and those shouldn't have qualifier variants anyway. 3034 if (PointeeTy->isArrayType()) 3035 return true; 3036 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3037 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 3038 BaseCVR = Array->getElementType().getCVRQualifiers(); 3039 bool hasVolatile = VisibleQuals.hasVolatile(); 3040 bool hasRestrict = VisibleQuals.hasRestrict(); 3041 3042 // Iterate through all strict supersets of BaseCVR. 3043 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3044 if ((CVR | BaseCVR) != CVR) continue; 3045 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 3046 // in the types. 3047 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 3048 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 3049 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3050 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 3051 } 3052 3053 return true; 3054} 3055 3056/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 3057/// to the set of pointer types along with any more-qualified variants of 3058/// that type. For example, if @p Ty is "int const *", this routine 3059/// will add "int const *", "int const volatile *", "int const 3060/// restrict *", and "int const volatile restrict *" to the set of 3061/// pointer types. Returns true if the add of @p Ty itself succeeded, 3062/// false otherwise. 3063/// 3064/// FIXME: what to do about extended qualifiers? 3065bool 3066BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 3067 QualType Ty) { 3068 // Insert this type. 3069 if (!MemberPointerTypes.insert(Ty)) 3070 return false; 3071 3072 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 3073 assert(PointerTy && "type was not a member pointer type!"); 3074 3075 QualType PointeeTy = PointerTy->getPointeeType(); 3076 // Don't add qualified variants of arrays. For one, they're not allowed 3077 // (the qualifier would sink to the element type), and for another, the 3078 // only overload situation where it matters is subscript or pointer +- int, 3079 // and those shouldn't have qualifier variants anyway. 3080 if (PointeeTy->isArrayType()) 3081 return true; 3082 const Type *ClassTy = PointerTy->getClass(); 3083 3084 // Iterate through all strict supersets of the pointee type's CVR 3085 // qualifiers. 3086 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 3087 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 3088 if ((CVR | BaseCVR) != CVR) continue; 3089 3090 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 3091 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 3092 } 3093 3094 return true; 3095} 3096 3097/// AddTypesConvertedFrom - Add each of the types to which the type @p 3098/// Ty can be implicit converted to the given set of @p Types. We're 3099/// primarily interested in pointer types and enumeration types. We also 3100/// take member pointer types, for the conditional operator. 3101/// AllowUserConversions is true if we should look at the conversion 3102/// functions of a class type, and AllowExplicitConversions if we 3103/// should also include the explicit conversion functions of a class 3104/// type. 3105void 3106BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 3107 SourceLocation Loc, 3108 bool AllowUserConversions, 3109 bool AllowExplicitConversions, 3110 const Qualifiers &VisibleQuals) { 3111 // Only deal with canonical types. 3112 Ty = Context.getCanonicalType(Ty); 3113 3114 // Look through reference types; they aren't part of the type of an 3115 // expression for the purposes of conversions. 3116 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 3117 Ty = RefTy->getPointeeType(); 3118 3119 // We don't care about qualifiers on the type. 3120 Ty = Ty.getLocalUnqualifiedType(); 3121 3122 // If we're dealing with an array type, decay to the pointer. 3123 if (Ty->isArrayType()) 3124 Ty = SemaRef.Context.getArrayDecayedType(Ty); 3125 3126 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 3127 QualType PointeeTy = PointerTy->getPointeeType(); 3128 3129 // Insert our type, and its more-qualified variants, into the set 3130 // of types. 3131 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 3132 return; 3133 } else if (Ty->isMemberPointerType()) { 3134 // Member pointers are far easier, since the pointee can't be converted. 3135 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3136 return; 3137 } else if (Ty->isEnumeralType()) { 3138 EnumerationTypes.insert(Ty); 3139 } else if (AllowUserConversions) { 3140 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3141 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) { 3142 // No conversion functions in incomplete types. 3143 return; 3144 } 3145 3146 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3147 OverloadedFunctionDecl *Conversions 3148 = ClassDecl->getVisibleConversionFunctions(); 3149 for (OverloadedFunctionDecl::function_iterator Func 3150 = Conversions->function_begin(); 3151 Func != Conversions->function_end(); ++Func) { 3152 CXXConversionDecl *Conv; 3153 FunctionTemplateDecl *ConvTemplate; 3154 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 3155 3156 // Skip conversion function templates; they don't tell us anything 3157 // about which builtin types we can convert to. 3158 if (ConvTemplate) 3159 continue; 3160 3161 if (AllowExplicitConversions || !Conv->isExplicit()) { 3162 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 3163 VisibleQuals); 3164 } 3165 } 3166 } 3167 } 3168} 3169 3170/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3171/// the volatile- and non-volatile-qualified assignment operators for the 3172/// given type to the candidate set. 3173static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3174 QualType T, 3175 Expr **Args, 3176 unsigned NumArgs, 3177 OverloadCandidateSet &CandidateSet) { 3178 QualType ParamTypes[2]; 3179 3180 // T& operator=(T&, T) 3181 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3182 ParamTypes[1] = T; 3183 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3184 /*IsAssignmentOperator=*/true); 3185 3186 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3187 // volatile T& operator=(volatile T&, T) 3188 ParamTypes[0] 3189 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3190 ParamTypes[1] = T; 3191 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3192 /*IsAssignmentOperator=*/true); 3193 } 3194} 3195 3196/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 3197/// if any, found in visible type conversion functions found in ArgExpr's type. 3198static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 3199 Qualifiers VRQuals; 3200 const RecordType *TyRec; 3201 if (const MemberPointerType *RHSMPType = 3202 ArgExpr->getType()->getAs<MemberPointerType>()) 3203 TyRec = cast<RecordType>(RHSMPType->getClass()); 3204 else 3205 TyRec = ArgExpr->getType()->getAs<RecordType>(); 3206 if (!TyRec) { 3207 // Just to be safe, assume the worst case. 3208 VRQuals.addVolatile(); 3209 VRQuals.addRestrict(); 3210 return VRQuals; 3211 } 3212 3213 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3214 OverloadedFunctionDecl *Conversions = 3215 ClassDecl->getVisibleConversionFunctions(); 3216 3217 for (OverloadedFunctionDecl::function_iterator Func 3218 = Conversions->function_begin(); 3219 Func != Conversions->function_end(); ++Func) { 3220 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*Func)) { 3221 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 3222 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 3223 CanTy = ResTypeRef->getPointeeType(); 3224 // Need to go down the pointer/mempointer chain and add qualifiers 3225 // as see them. 3226 bool done = false; 3227 while (!done) { 3228 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 3229 CanTy = ResTypePtr->getPointeeType(); 3230 else if (const MemberPointerType *ResTypeMPtr = 3231 CanTy->getAs<MemberPointerType>()) 3232 CanTy = ResTypeMPtr->getPointeeType(); 3233 else 3234 done = true; 3235 if (CanTy.isVolatileQualified()) 3236 VRQuals.addVolatile(); 3237 if (CanTy.isRestrictQualified()) 3238 VRQuals.addRestrict(); 3239 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 3240 return VRQuals; 3241 } 3242 } 3243 } 3244 return VRQuals; 3245} 3246 3247/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3248/// operator overloads to the candidate set (C++ [over.built]), based 3249/// on the operator @p Op and the arguments given. For example, if the 3250/// operator is a binary '+', this routine might add "int 3251/// operator+(int, int)" to cover integer addition. 3252void 3253Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3254 SourceLocation OpLoc, 3255 Expr **Args, unsigned NumArgs, 3256 OverloadCandidateSet& CandidateSet) { 3257 // The set of "promoted arithmetic types", which are the arithmetic 3258 // types are that preserved by promotion (C++ [over.built]p2). Note 3259 // that the first few of these types are the promoted integral 3260 // types; these types need to be first. 3261 // FIXME: What about complex? 3262 const unsigned FirstIntegralType = 0; 3263 const unsigned LastIntegralType = 13; 3264 const unsigned FirstPromotedIntegralType = 7, 3265 LastPromotedIntegralType = 13; 3266 const unsigned FirstPromotedArithmeticType = 7, 3267 LastPromotedArithmeticType = 16; 3268 const unsigned NumArithmeticTypes = 16; 3269 QualType ArithmeticTypes[NumArithmeticTypes] = { 3270 Context.BoolTy, Context.CharTy, Context.WCharTy, 3271// FIXME: Context.Char16Ty, Context.Char32Ty, 3272 Context.SignedCharTy, Context.ShortTy, 3273 Context.UnsignedCharTy, Context.UnsignedShortTy, 3274 Context.IntTy, Context.LongTy, Context.LongLongTy, 3275 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3276 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3277 }; 3278 assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy && 3279 "Invalid first promoted integral type"); 3280 assert(ArithmeticTypes[LastPromotedIntegralType - 1] 3281 == Context.UnsignedLongLongTy && 3282 "Invalid last promoted integral type"); 3283 assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy && 3284 "Invalid first promoted arithmetic type"); 3285 assert(ArithmeticTypes[LastPromotedArithmeticType - 1] 3286 == Context.LongDoubleTy && 3287 "Invalid last promoted arithmetic type"); 3288 3289 // Find all of the types that the arguments can convert to, but only 3290 // if the operator we're looking at has built-in operator candidates 3291 // that make use of these types. 3292 Qualifiers VisibleTypeConversionsQuals; 3293 VisibleTypeConversionsQuals.addConst(); 3294 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3295 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 3296 3297 BuiltinCandidateTypeSet CandidateTypes(*this); 3298 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3299 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3300 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3301 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3302 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3303 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3304 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3305 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3306 OpLoc, 3307 true, 3308 (Op == OO_Exclaim || 3309 Op == OO_AmpAmp || 3310 Op == OO_PipePipe), 3311 VisibleTypeConversionsQuals); 3312 } 3313 3314 bool isComparison = false; 3315 switch (Op) { 3316 case OO_None: 3317 case NUM_OVERLOADED_OPERATORS: 3318 assert(false && "Expected an overloaded operator"); 3319 break; 3320 3321 case OO_Star: // '*' is either unary or binary 3322 if (NumArgs == 1) 3323 goto UnaryStar; 3324 else 3325 goto BinaryStar; 3326 break; 3327 3328 case OO_Plus: // '+' is either unary or binary 3329 if (NumArgs == 1) 3330 goto UnaryPlus; 3331 else 3332 goto BinaryPlus; 3333 break; 3334 3335 case OO_Minus: // '-' is either unary or binary 3336 if (NumArgs == 1) 3337 goto UnaryMinus; 3338 else 3339 goto BinaryMinus; 3340 break; 3341 3342 case OO_Amp: // '&' is either unary or binary 3343 if (NumArgs == 1) 3344 goto UnaryAmp; 3345 else 3346 goto BinaryAmp; 3347 3348 case OO_PlusPlus: 3349 case OO_MinusMinus: 3350 // C++ [over.built]p3: 3351 // 3352 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3353 // is either volatile or empty, there exist candidate operator 3354 // functions of the form 3355 // 3356 // VQ T& operator++(VQ T&); 3357 // T operator++(VQ T&, int); 3358 // 3359 // C++ [over.built]p4: 3360 // 3361 // For every pair (T, VQ), where T is an arithmetic type other 3362 // than bool, and VQ is either volatile or empty, there exist 3363 // candidate operator functions of the form 3364 // 3365 // VQ T& operator--(VQ T&); 3366 // T operator--(VQ T&, int); 3367 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3368 Arith < NumArithmeticTypes; ++Arith) { 3369 QualType ArithTy = ArithmeticTypes[Arith]; 3370 QualType ParamTypes[2] 3371 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3372 3373 // Non-volatile version. 3374 if (NumArgs == 1) 3375 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3376 else 3377 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3378 // heuristic to reduce number of builtin candidates in the set. 3379 // Add volatile version only if there are conversions to a volatile type. 3380 if (VisibleTypeConversionsQuals.hasVolatile()) { 3381 // Volatile version 3382 ParamTypes[0] 3383 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3384 if (NumArgs == 1) 3385 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3386 else 3387 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3388 } 3389 } 3390 3391 // C++ [over.built]p5: 3392 // 3393 // For every pair (T, VQ), where T is a cv-qualified or 3394 // cv-unqualified object type, and VQ is either volatile or 3395 // empty, there exist candidate operator functions of the form 3396 // 3397 // T*VQ& operator++(T*VQ&); 3398 // T*VQ& operator--(T*VQ&); 3399 // T* operator++(T*VQ&, int); 3400 // T* operator--(T*VQ&, int); 3401 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3402 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3403 // Skip pointer types that aren't pointers to object types. 3404 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3405 continue; 3406 3407 QualType ParamTypes[2] = { 3408 Context.getLValueReferenceType(*Ptr), Context.IntTy 3409 }; 3410 3411 // Without volatile 3412 if (NumArgs == 1) 3413 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3414 else 3415 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3416 3417 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3418 VisibleTypeConversionsQuals.hasVolatile()) { 3419 // With volatile 3420 ParamTypes[0] 3421 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3422 if (NumArgs == 1) 3423 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3424 else 3425 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3426 } 3427 } 3428 break; 3429 3430 UnaryStar: 3431 // C++ [over.built]p6: 3432 // For every cv-qualified or cv-unqualified object type T, there 3433 // exist candidate operator functions of the form 3434 // 3435 // T& operator*(T*); 3436 // 3437 // C++ [over.built]p7: 3438 // For every function type T, there exist candidate operator 3439 // functions of the form 3440 // T& operator*(T*); 3441 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3442 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3443 QualType ParamTy = *Ptr; 3444 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3445 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3446 &ParamTy, Args, 1, CandidateSet); 3447 } 3448 break; 3449 3450 UnaryPlus: 3451 // C++ [over.built]p8: 3452 // For every type T, there exist candidate operator functions of 3453 // the form 3454 // 3455 // T* operator+(T*); 3456 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3457 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3458 QualType ParamTy = *Ptr; 3459 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3460 } 3461 3462 // Fall through 3463 3464 UnaryMinus: 3465 // C++ [over.built]p9: 3466 // For every promoted arithmetic type T, there exist candidate 3467 // operator functions of the form 3468 // 3469 // T operator+(T); 3470 // T operator-(T); 3471 for (unsigned Arith = FirstPromotedArithmeticType; 3472 Arith < LastPromotedArithmeticType; ++Arith) { 3473 QualType ArithTy = ArithmeticTypes[Arith]; 3474 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3475 } 3476 break; 3477 3478 case OO_Tilde: 3479 // C++ [over.built]p10: 3480 // For every promoted integral type T, there exist candidate 3481 // operator functions of the form 3482 // 3483 // T operator~(T); 3484 for (unsigned Int = FirstPromotedIntegralType; 3485 Int < LastPromotedIntegralType; ++Int) { 3486 QualType IntTy = ArithmeticTypes[Int]; 3487 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3488 } 3489 break; 3490 3491 case OO_New: 3492 case OO_Delete: 3493 case OO_Array_New: 3494 case OO_Array_Delete: 3495 case OO_Call: 3496 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3497 break; 3498 3499 case OO_Comma: 3500 UnaryAmp: 3501 case OO_Arrow: 3502 // C++ [over.match.oper]p3: 3503 // -- For the operator ',', the unary operator '&', or the 3504 // operator '->', the built-in candidates set is empty. 3505 break; 3506 3507 case OO_EqualEqual: 3508 case OO_ExclaimEqual: 3509 // C++ [over.match.oper]p16: 3510 // For every pointer to member type T, there exist candidate operator 3511 // functions of the form 3512 // 3513 // bool operator==(T,T); 3514 // bool operator!=(T,T); 3515 for (BuiltinCandidateTypeSet::iterator 3516 MemPtr = CandidateTypes.member_pointer_begin(), 3517 MemPtrEnd = CandidateTypes.member_pointer_end(); 3518 MemPtr != MemPtrEnd; 3519 ++MemPtr) { 3520 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3521 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3522 } 3523 3524 // Fall through 3525 3526 case OO_Less: 3527 case OO_Greater: 3528 case OO_LessEqual: 3529 case OO_GreaterEqual: 3530 // C++ [over.built]p15: 3531 // 3532 // For every pointer or enumeration type T, there exist 3533 // candidate operator functions of the form 3534 // 3535 // bool operator<(T, T); 3536 // bool operator>(T, T); 3537 // bool operator<=(T, T); 3538 // bool operator>=(T, T); 3539 // bool operator==(T, T); 3540 // bool operator!=(T, T); 3541 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3542 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3543 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3544 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3545 } 3546 for (BuiltinCandidateTypeSet::iterator Enum 3547 = CandidateTypes.enumeration_begin(); 3548 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3549 QualType ParamTypes[2] = { *Enum, *Enum }; 3550 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3551 } 3552 3553 // Fall through. 3554 isComparison = true; 3555 3556 BinaryPlus: 3557 BinaryMinus: 3558 if (!isComparison) { 3559 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3560 3561 // C++ [over.built]p13: 3562 // 3563 // For every cv-qualified or cv-unqualified object type T 3564 // there exist candidate operator functions of the form 3565 // 3566 // T* operator+(T*, ptrdiff_t); 3567 // T& operator[](T*, ptrdiff_t); [BELOW] 3568 // T* operator-(T*, ptrdiff_t); 3569 // T* operator+(ptrdiff_t, T*); 3570 // T& operator[](ptrdiff_t, T*); [BELOW] 3571 // 3572 // C++ [over.built]p14: 3573 // 3574 // For every T, where T is a pointer to object type, there 3575 // exist candidate operator functions of the form 3576 // 3577 // ptrdiff_t operator-(T, T); 3578 for (BuiltinCandidateTypeSet::iterator Ptr 3579 = CandidateTypes.pointer_begin(); 3580 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3581 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3582 3583 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3584 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3585 3586 if (Op == OO_Plus) { 3587 // T* operator+(ptrdiff_t, T*); 3588 ParamTypes[0] = ParamTypes[1]; 3589 ParamTypes[1] = *Ptr; 3590 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3591 } else { 3592 // ptrdiff_t operator-(T, T); 3593 ParamTypes[1] = *Ptr; 3594 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3595 Args, 2, CandidateSet); 3596 } 3597 } 3598 } 3599 // Fall through 3600 3601 case OO_Slash: 3602 BinaryStar: 3603 Conditional: 3604 // C++ [over.built]p12: 3605 // 3606 // For every pair of promoted arithmetic types L and R, there 3607 // exist candidate operator functions of the form 3608 // 3609 // LR operator*(L, R); 3610 // LR operator/(L, R); 3611 // LR operator+(L, R); 3612 // LR operator-(L, R); 3613 // bool operator<(L, R); 3614 // bool operator>(L, R); 3615 // bool operator<=(L, R); 3616 // bool operator>=(L, R); 3617 // bool operator==(L, R); 3618 // bool operator!=(L, R); 3619 // 3620 // where LR is the result of the usual arithmetic conversions 3621 // between types L and R. 3622 // 3623 // C++ [over.built]p24: 3624 // 3625 // For every pair of promoted arithmetic types L and R, there exist 3626 // candidate operator functions of the form 3627 // 3628 // LR operator?(bool, L, R); 3629 // 3630 // where LR is the result of the usual arithmetic conversions 3631 // between types L and R. 3632 // Our candidates ignore the first parameter. 3633 for (unsigned Left = FirstPromotedArithmeticType; 3634 Left < LastPromotedArithmeticType; ++Left) { 3635 for (unsigned Right = FirstPromotedArithmeticType; 3636 Right < LastPromotedArithmeticType; ++Right) { 3637 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3638 QualType Result 3639 = isComparison 3640 ? Context.BoolTy 3641 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3642 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3643 } 3644 } 3645 break; 3646 3647 case OO_Percent: 3648 BinaryAmp: 3649 case OO_Caret: 3650 case OO_Pipe: 3651 case OO_LessLess: 3652 case OO_GreaterGreater: 3653 // C++ [over.built]p17: 3654 // 3655 // For every pair of promoted integral types L and R, there 3656 // exist candidate operator functions of the form 3657 // 3658 // LR operator%(L, R); 3659 // LR operator&(L, R); 3660 // LR operator^(L, R); 3661 // LR operator|(L, R); 3662 // L operator<<(L, R); 3663 // L operator>>(L, R); 3664 // 3665 // where LR is the result of the usual arithmetic conversions 3666 // between types L and R. 3667 for (unsigned Left = FirstPromotedIntegralType; 3668 Left < LastPromotedIntegralType; ++Left) { 3669 for (unsigned Right = FirstPromotedIntegralType; 3670 Right < LastPromotedIntegralType; ++Right) { 3671 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3672 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3673 ? LandR[0] 3674 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3675 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3676 } 3677 } 3678 break; 3679 3680 case OO_Equal: 3681 // C++ [over.built]p20: 3682 // 3683 // For every pair (T, VQ), where T is an enumeration or 3684 // pointer to member type and VQ is either volatile or 3685 // empty, there exist candidate operator functions of the form 3686 // 3687 // VQ T& operator=(VQ T&, T); 3688 for (BuiltinCandidateTypeSet::iterator 3689 Enum = CandidateTypes.enumeration_begin(), 3690 EnumEnd = CandidateTypes.enumeration_end(); 3691 Enum != EnumEnd; ++Enum) 3692 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3693 CandidateSet); 3694 for (BuiltinCandidateTypeSet::iterator 3695 MemPtr = CandidateTypes.member_pointer_begin(), 3696 MemPtrEnd = CandidateTypes.member_pointer_end(); 3697 MemPtr != MemPtrEnd; ++MemPtr) 3698 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3699 CandidateSet); 3700 // Fall through. 3701 3702 case OO_PlusEqual: 3703 case OO_MinusEqual: 3704 // C++ [over.built]p19: 3705 // 3706 // For every pair (T, VQ), where T is any type and VQ is either 3707 // volatile or empty, there exist candidate operator functions 3708 // of the form 3709 // 3710 // T*VQ& operator=(T*VQ&, T*); 3711 // 3712 // C++ [over.built]p21: 3713 // 3714 // For every pair (T, VQ), where T is a cv-qualified or 3715 // cv-unqualified object type and VQ is either volatile or 3716 // empty, there exist candidate operator functions of the form 3717 // 3718 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3719 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3720 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3721 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3722 QualType ParamTypes[2]; 3723 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3724 3725 // non-volatile version 3726 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3727 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3728 /*IsAssigmentOperator=*/Op == OO_Equal); 3729 3730 if (!Context.getCanonicalType(*Ptr).isVolatileQualified() && 3731 VisibleTypeConversionsQuals.hasVolatile()) { 3732 // volatile version 3733 ParamTypes[0] 3734 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3735 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3736 /*IsAssigmentOperator=*/Op == OO_Equal); 3737 } 3738 } 3739 // Fall through. 3740 3741 case OO_StarEqual: 3742 case OO_SlashEqual: 3743 // C++ [over.built]p18: 3744 // 3745 // For every triple (L, VQ, R), where L is an arithmetic type, 3746 // VQ is either volatile or empty, and R is a promoted 3747 // arithmetic type, there exist candidate operator functions of 3748 // the form 3749 // 3750 // VQ L& operator=(VQ L&, R); 3751 // VQ L& operator*=(VQ L&, R); 3752 // VQ L& operator/=(VQ L&, R); 3753 // VQ L& operator+=(VQ L&, R); 3754 // VQ L& operator-=(VQ L&, R); 3755 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3756 for (unsigned Right = FirstPromotedArithmeticType; 3757 Right < LastPromotedArithmeticType; ++Right) { 3758 QualType ParamTypes[2]; 3759 ParamTypes[1] = ArithmeticTypes[Right]; 3760 3761 // Add this built-in operator as a candidate (VQ is empty). 3762 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3763 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3764 /*IsAssigmentOperator=*/Op == OO_Equal); 3765 3766 // Add this built-in operator as a candidate (VQ is 'volatile'). 3767 if (VisibleTypeConversionsQuals.hasVolatile()) { 3768 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3769 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3770 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3771 /*IsAssigmentOperator=*/Op == OO_Equal); 3772 } 3773 } 3774 } 3775 break; 3776 3777 case OO_PercentEqual: 3778 case OO_LessLessEqual: 3779 case OO_GreaterGreaterEqual: 3780 case OO_AmpEqual: 3781 case OO_CaretEqual: 3782 case OO_PipeEqual: 3783 // C++ [over.built]p22: 3784 // 3785 // For every triple (L, VQ, R), where L is an integral type, VQ 3786 // is either volatile or empty, and R is a promoted integral 3787 // type, there exist candidate operator functions of the form 3788 // 3789 // VQ L& operator%=(VQ L&, R); 3790 // VQ L& operator<<=(VQ L&, R); 3791 // VQ L& operator>>=(VQ L&, R); 3792 // VQ L& operator&=(VQ L&, R); 3793 // VQ L& operator^=(VQ L&, R); 3794 // VQ L& operator|=(VQ L&, R); 3795 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3796 for (unsigned Right = FirstPromotedIntegralType; 3797 Right < LastPromotedIntegralType; ++Right) { 3798 QualType ParamTypes[2]; 3799 ParamTypes[1] = ArithmeticTypes[Right]; 3800 3801 // Add this built-in operator as a candidate (VQ is empty). 3802 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3803 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3804 if (VisibleTypeConversionsQuals.hasVolatile()) { 3805 // Add this built-in operator as a candidate (VQ is 'volatile'). 3806 ParamTypes[0] = ArithmeticTypes[Left]; 3807 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 3808 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3809 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3810 } 3811 } 3812 } 3813 break; 3814 3815 case OO_Exclaim: { 3816 // C++ [over.operator]p23: 3817 // 3818 // There also exist candidate operator functions of the form 3819 // 3820 // bool operator!(bool); 3821 // bool operator&&(bool, bool); [BELOW] 3822 // bool operator||(bool, bool); [BELOW] 3823 QualType ParamTy = Context.BoolTy; 3824 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3825 /*IsAssignmentOperator=*/false, 3826 /*NumContextualBoolArguments=*/1); 3827 break; 3828 } 3829 3830 case OO_AmpAmp: 3831 case OO_PipePipe: { 3832 // C++ [over.operator]p23: 3833 // 3834 // There also exist candidate operator functions of the form 3835 // 3836 // bool operator!(bool); [ABOVE] 3837 // bool operator&&(bool, bool); 3838 // bool operator||(bool, bool); 3839 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3840 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3841 /*IsAssignmentOperator=*/false, 3842 /*NumContextualBoolArguments=*/2); 3843 break; 3844 } 3845 3846 case OO_Subscript: 3847 // C++ [over.built]p13: 3848 // 3849 // For every cv-qualified or cv-unqualified object type T there 3850 // exist candidate operator functions of the form 3851 // 3852 // T* operator+(T*, ptrdiff_t); [ABOVE] 3853 // T& operator[](T*, ptrdiff_t); 3854 // T* operator-(T*, ptrdiff_t); [ABOVE] 3855 // T* operator+(ptrdiff_t, T*); [ABOVE] 3856 // T& operator[](ptrdiff_t, T*); 3857 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3858 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3859 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3860 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 3861 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 3862 3863 // T& operator[](T*, ptrdiff_t) 3864 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3865 3866 // T& operator[](ptrdiff_t, T*); 3867 ParamTypes[0] = ParamTypes[1]; 3868 ParamTypes[1] = *Ptr; 3869 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3870 } 3871 break; 3872 3873 case OO_ArrowStar: 3874 // C++ [over.built]p11: 3875 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 3876 // C1 is the same type as C2 or is a derived class of C2, T is an object 3877 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 3878 // there exist candidate operator functions of the form 3879 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 3880 // where CV12 is the union of CV1 and CV2. 3881 { 3882 for (BuiltinCandidateTypeSet::iterator Ptr = 3883 CandidateTypes.pointer_begin(); 3884 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3885 QualType C1Ty = (*Ptr); 3886 QualType C1; 3887 QualifierCollector Q1; 3888 if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) { 3889 C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0); 3890 if (!isa<RecordType>(C1)) 3891 continue; 3892 // heuristic to reduce number of builtin candidates in the set. 3893 // Add volatile/restrict version only if there are conversions to a 3894 // volatile/restrict type. 3895 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 3896 continue; 3897 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 3898 continue; 3899 } 3900 for (BuiltinCandidateTypeSet::iterator 3901 MemPtr = CandidateTypes.member_pointer_begin(), 3902 MemPtrEnd = CandidateTypes.member_pointer_end(); 3903 MemPtr != MemPtrEnd; ++MemPtr) { 3904 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 3905 QualType C2 = QualType(mptr->getClass(), 0); 3906 C2 = C2.getUnqualifiedType(); 3907 if (C1 != C2 && !IsDerivedFrom(C1, C2)) 3908 break; 3909 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 3910 // build CV12 T& 3911 QualType T = mptr->getPointeeType(); 3912 if (!VisibleTypeConversionsQuals.hasVolatile() && 3913 T.isVolatileQualified()) 3914 continue; 3915 if (!VisibleTypeConversionsQuals.hasRestrict() && 3916 T.isRestrictQualified()) 3917 continue; 3918 T = Q1.apply(T); 3919 QualType ResultTy = Context.getLValueReferenceType(T); 3920 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3921 } 3922 } 3923 } 3924 break; 3925 3926 case OO_Conditional: 3927 // Note that we don't consider the first argument, since it has been 3928 // contextually converted to bool long ago. The candidates below are 3929 // therefore added as binary. 3930 // 3931 // C++ [over.built]p24: 3932 // For every type T, where T is a pointer or pointer-to-member type, 3933 // there exist candidate operator functions of the form 3934 // 3935 // T operator?(bool, T, T); 3936 // 3937 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 3938 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 3939 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3940 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3941 } 3942 for (BuiltinCandidateTypeSet::iterator Ptr = 3943 CandidateTypes.member_pointer_begin(), 3944 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 3945 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3946 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3947 } 3948 goto Conditional; 3949 } 3950} 3951 3952/// \brief Add function candidates found via argument-dependent lookup 3953/// to the set of overloading candidates. 3954/// 3955/// This routine performs argument-dependent name lookup based on the 3956/// given function name (which may also be an operator name) and adds 3957/// all of the overload candidates found by ADL to the overload 3958/// candidate set (C++ [basic.lookup.argdep]). 3959void 3960Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 3961 Expr **Args, unsigned NumArgs, 3962 bool HasExplicitTemplateArgs, 3963 const TemplateArgumentLoc *ExplicitTemplateArgs, 3964 unsigned NumExplicitTemplateArgs, 3965 OverloadCandidateSet& CandidateSet, 3966 bool PartialOverloading) { 3967 FunctionSet Functions; 3968 3969 // FIXME: Should we be trafficking in canonical function decls throughout? 3970 3971 // Record all of the function candidates that we've already 3972 // added to the overload set, so that we don't add those same 3973 // candidates a second time. 3974 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3975 CandEnd = CandidateSet.end(); 3976 Cand != CandEnd; ++Cand) 3977 if (Cand->Function) { 3978 Functions.insert(Cand->Function); 3979 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3980 Functions.insert(FunTmpl); 3981 } 3982 3983 // FIXME: Pass in the explicit template arguments? 3984 ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions); 3985 3986 // Erase all of the candidates we already knew about. 3987 // FIXME: This is suboptimal. Is there a better way? 3988 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3989 CandEnd = CandidateSet.end(); 3990 Cand != CandEnd; ++Cand) 3991 if (Cand->Function) { 3992 Functions.erase(Cand->Function); 3993 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3994 Functions.erase(FunTmpl); 3995 } 3996 3997 // For each of the ADL candidates we found, add it to the overload 3998 // set. 3999 for (FunctionSet::iterator Func = Functions.begin(), 4000 FuncEnd = Functions.end(); 4001 Func != FuncEnd; ++Func) { 4002 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) { 4003 if (HasExplicitTemplateArgs) 4004 continue; 4005 4006 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 4007 false, false, PartialOverloading); 4008 } else 4009 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 4010 HasExplicitTemplateArgs, 4011 ExplicitTemplateArgs, 4012 NumExplicitTemplateArgs, 4013 Args, NumArgs, CandidateSet); 4014 } 4015} 4016 4017/// isBetterOverloadCandidate - Determines whether the first overload 4018/// candidate is a better candidate than the second (C++ 13.3.3p1). 4019bool 4020Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 4021 const OverloadCandidate& Cand2) { 4022 // Define viable functions to be better candidates than non-viable 4023 // functions. 4024 if (!Cand2.Viable) 4025 return Cand1.Viable; 4026 else if (!Cand1.Viable) 4027 return false; 4028 4029 // C++ [over.match.best]p1: 4030 // 4031 // -- if F is a static member function, ICS1(F) is defined such 4032 // that ICS1(F) is neither better nor worse than ICS1(G) for 4033 // any function G, and, symmetrically, ICS1(G) is neither 4034 // better nor worse than ICS1(F). 4035 unsigned StartArg = 0; 4036 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 4037 StartArg = 1; 4038 4039 // C++ [over.match.best]p1: 4040 // A viable function F1 is defined to be a better function than another 4041 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 4042 // conversion sequence than ICSi(F2), and then... 4043 unsigned NumArgs = Cand1.Conversions.size(); 4044 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 4045 bool HasBetterConversion = false; 4046 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 4047 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 4048 Cand2.Conversions[ArgIdx])) { 4049 case ImplicitConversionSequence::Better: 4050 // Cand1 has a better conversion sequence. 4051 HasBetterConversion = true; 4052 break; 4053 4054 case ImplicitConversionSequence::Worse: 4055 // Cand1 can't be better than Cand2. 4056 return false; 4057 4058 case ImplicitConversionSequence::Indistinguishable: 4059 // Do nothing. 4060 break; 4061 } 4062 } 4063 4064 // -- for some argument j, ICSj(F1) is a better conversion sequence than 4065 // ICSj(F2), or, if not that, 4066 if (HasBetterConversion) 4067 return true; 4068 4069 // - F1 is a non-template function and F2 is a function template 4070 // specialization, or, if not that, 4071 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 4072 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4073 return true; 4074 4075 // -- F1 and F2 are function template specializations, and the function 4076 // template for F1 is more specialized than the template for F2 4077 // according to the partial ordering rules described in 14.5.5.2, or, 4078 // if not that, 4079 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 4080 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 4081 if (FunctionTemplateDecl *BetterTemplate 4082 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 4083 Cand2.Function->getPrimaryTemplate(), 4084 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 4085 : TPOC_Call)) 4086 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 4087 4088 // -- the context is an initialization by user-defined conversion 4089 // (see 8.5, 13.3.1.5) and the standard conversion sequence 4090 // from the return type of F1 to the destination type (i.e., 4091 // the type of the entity being initialized) is a better 4092 // conversion sequence than the standard conversion sequence 4093 // from the return type of F2 to the destination type. 4094 if (Cand1.Function && Cand2.Function && 4095 isa<CXXConversionDecl>(Cand1.Function) && 4096 isa<CXXConversionDecl>(Cand2.Function)) { 4097 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 4098 Cand2.FinalConversion)) { 4099 case ImplicitConversionSequence::Better: 4100 // Cand1 has a better conversion sequence. 4101 return true; 4102 4103 case ImplicitConversionSequence::Worse: 4104 // Cand1 can't be better than Cand2. 4105 return false; 4106 4107 case ImplicitConversionSequence::Indistinguishable: 4108 // Do nothing 4109 break; 4110 } 4111 } 4112 4113 return false; 4114} 4115 4116/// \brief Computes the best viable function (C++ 13.3.3) 4117/// within an overload candidate set. 4118/// 4119/// \param CandidateSet the set of candidate functions. 4120/// 4121/// \param Loc the location of the function name (or operator symbol) for 4122/// which overload resolution occurs. 4123/// 4124/// \param Best f overload resolution was successful or found a deleted 4125/// function, Best points to the candidate function found. 4126/// 4127/// \returns The result of overload resolution. 4128Sema::OverloadingResult 4129Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 4130 SourceLocation Loc, 4131 OverloadCandidateSet::iterator& Best) { 4132 // Find the best viable function. 4133 Best = CandidateSet.end(); 4134 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4135 Cand != CandidateSet.end(); ++Cand) { 4136 if (Cand->Viable) { 4137 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 4138 Best = Cand; 4139 } 4140 } 4141 4142 // If we didn't find any viable functions, abort. 4143 if (Best == CandidateSet.end()) 4144 return OR_No_Viable_Function; 4145 4146 // Make sure that this function is better than every other viable 4147 // function. If not, we have an ambiguity. 4148 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4149 Cand != CandidateSet.end(); ++Cand) { 4150 if (Cand->Viable && 4151 Cand != Best && 4152 !isBetterOverloadCandidate(*Best, *Cand)) { 4153 Best = CandidateSet.end(); 4154 return OR_Ambiguous; 4155 } 4156 } 4157 4158 // Best is the best viable function. 4159 if (Best->Function && 4160 (Best->Function->isDeleted() || 4161 Best->Function->getAttr<UnavailableAttr>())) 4162 return OR_Deleted; 4163 4164 // C++ [basic.def.odr]p2: 4165 // An overloaded function is used if it is selected by overload resolution 4166 // when referred to from a potentially-evaluated expression. [Note: this 4167 // covers calls to named functions (5.2.2), operator overloading 4168 // (clause 13), user-defined conversions (12.3.2), allocation function for 4169 // placement new (5.3.4), as well as non-default initialization (8.5). 4170 if (Best->Function) 4171 MarkDeclarationReferenced(Loc, Best->Function); 4172 return OR_Success; 4173} 4174 4175/// PrintOverloadCandidates - When overload resolution fails, prints 4176/// diagnostic messages containing the candidates in the candidate 4177/// set. If OnlyViable is true, only viable candidates will be printed. 4178void 4179Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 4180 bool OnlyViable, 4181 const char *Opc, 4182 SourceLocation OpLoc) { 4183 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 4184 LastCand = CandidateSet.end(); 4185 bool Reported = false; 4186 for (; Cand != LastCand; ++Cand) { 4187 if (Cand->Viable || !OnlyViable) { 4188 if (Cand->Function) { 4189 if (Cand->Function->isDeleted() || 4190 Cand->Function->getAttr<UnavailableAttr>()) { 4191 // Deleted or "unavailable" function. 4192 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) 4193 << Cand->Function->isDeleted(); 4194 } else if (FunctionTemplateDecl *FunTmpl 4195 = Cand->Function->getPrimaryTemplate()) { 4196 // Function template specialization 4197 // FIXME: Give a better reason! 4198 Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate) 4199 << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(), 4200 *Cand->Function->getTemplateSpecializationArgs()); 4201 } else { 4202 // Normal function 4203 bool errReported = false; 4204 if (!Cand->Viable && Cand->Conversions.size() > 0) { 4205 for (int i = Cand->Conversions.size()-1; i >= 0; i--) { 4206 const ImplicitConversionSequence &Conversion = 4207 Cand->Conversions[i]; 4208 if ((Conversion.ConversionKind != 4209 ImplicitConversionSequence::BadConversion) || 4210 Conversion.ConversionFunctionSet.size() == 0) 4211 continue; 4212 Diag(Cand->Function->getLocation(), 4213 diag::err_ovl_candidate_not_viable) << (i+1); 4214 errReported = true; 4215 for (int j = Conversion.ConversionFunctionSet.size()-1; 4216 j >= 0; j--) { 4217 FunctionDecl *Func = Conversion.ConversionFunctionSet[j]; 4218 Diag(Func->getLocation(), diag::err_ovl_candidate); 4219 } 4220 } 4221 } 4222 if (!errReported) 4223 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); 4224 } 4225 } else if (Cand->IsSurrogate) { 4226 // Desugar the type of the surrogate down to a function type, 4227 // retaining as many typedefs as possible while still showing 4228 // the function type (and, therefore, its parameter types). 4229 QualType FnType = Cand->Surrogate->getConversionType(); 4230 bool isLValueReference = false; 4231 bool isRValueReference = false; 4232 bool isPointer = false; 4233 if (const LValueReferenceType *FnTypeRef = 4234 FnType->getAs<LValueReferenceType>()) { 4235 FnType = FnTypeRef->getPointeeType(); 4236 isLValueReference = true; 4237 } else if (const RValueReferenceType *FnTypeRef = 4238 FnType->getAs<RValueReferenceType>()) { 4239 FnType = FnTypeRef->getPointeeType(); 4240 isRValueReference = true; 4241 } 4242 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 4243 FnType = FnTypePtr->getPointeeType(); 4244 isPointer = true; 4245 } 4246 // Desugar down to a function type. 4247 FnType = QualType(FnType->getAs<FunctionType>(), 0); 4248 // Reconstruct the pointer/reference as appropriate. 4249 if (isPointer) FnType = Context.getPointerType(FnType); 4250 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); 4251 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); 4252 4253 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) 4254 << FnType; 4255 } else if (OnlyViable) { 4256 assert(Cand->Conversions.size() <= 2 && 4257 "builtin-binary-operator-not-binary"); 4258 std::string TypeStr("operator"); 4259 TypeStr += Opc; 4260 TypeStr += "("; 4261 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 4262 if (Cand->Conversions.size() == 1) { 4263 TypeStr += ")"; 4264 Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr; 4265 } 4266 else { 4267 TypeStr += ", "; 4268 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 4269 TypeStr += ")"; 4270 Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr; 4271 } 4272 } 4273 else if (!Cand->Viable && !Reported) { 4274 // Non-viability might be due to ambiguous user-defined conversions, 4275 // needed for built-in operators. Report them as well, but only once 4276 // as we have typically many built-in candidates. 4277 unsigned NoOperands = Cand->Conversions.size(); 4278 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 4279 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 4280 if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion || 4281 ICS.ConversionFunctionSet.empty()) 4282 continue; 4283 if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>( 4284 Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) { 4285 QualType FromTy = 4286 QualType( 4287 static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0); 4288 Diag(OpLoc,diag::note_ambiguous_type_conversion) 4289 << FromTy << Func->getConversionType(); 4290 } 4291 for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) { 4292 FunctionDecl *Func = 4293 Cand->Conversions[ArgIdx].ConversionFunctionSet[j]; 4294 Diag(Func->getLocation(),diag::err_ovl_candidate); 4295 } 4296 } 4297 Reported = true; 4298 } 4299 } 4300 } 4301} 4302 4303/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4304/// an overloaded function (C++ [over.over]), where @p From is an 4305/// expression with overloaded function type and @p ToType is the type 4306/// we're trying to resolve to. For example: 4307/// 4308/// @code 4309/// int f(double); 4310/// int f(int); 4311/// 4312/// int (*pfd)(double) = f; // selects f(double) 4313/// @endcode 4314/// 4315/// This routine returns the resulting FunctionDecl if it could be 4316/// resolved, and NULL otherwise. When @p Complain is true, this 4317/// routine will emit diagnostics if there is an error. 4318FunctionDecl * 4319Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4320 bool Complain) { 4321 QualType FunctionType = ToType; 4322 bool IsMember = false; 4323 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4324 FunctionType = ToTypePtr->getPointeeType(); 4325 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4326 FunctionType = ToTypeRef->getPointeeType(); 4327 else if (const MemberPointerType *MemTypePtr = 4328 ToType->getAs<MemberPointerType>()) { 4329 FunctionType = MemTypePtr->getPointeeType(); 4330 IsMember = true; 4331 } 4332 4333 // We only look at pointers or references to functions. 4334 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 4335 if (!FunctionType->isFunctionType()) 4336 return 0; 4337 4338 // Find the actual overloaded function declaration. 4339 OverloadedFunctionDecl *Ovl = 0; 4340 4341 // C++ [over.over]p1: 4342 // [...] [Note: any redundant set of parentheses surrounding the 4343 // overloaded function name is ignored (5.1). ] 4344 Expr *OvlExpr = From->IgnoreParens(); 4345 4346 // C++ [over.over]p1: 4347 // [...] The overloaded function name can be preceded by the & 4348 // operator. 4349 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4350 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4351 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4352 } 4353 4354 bool HasExplicitTemplateArgs = false; 4355 const TemplateArgumentLoc *ExplicitTemplateArgs = 0; 4356 unsigned NumExplicitTemplateArgs = 0; 4357 4358 // Try to dig out the overloaded function. 4359 FunctionTemplateDecl *FunctionTemplate = 0; 4360 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) { 4361 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl()); 4362 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl()); 4363 HasExplicitTemplateArgs = DR->hasExplicitTemplateArgumentList(); 4364 ExplicitTemplateArgs = DR->getTemplateArgs(); 4365 NumExplicitTemplateArgs = DR->getNumTemplateArgs(); 4366 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) { 4367 Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl()); 4368 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl()); 4369 HasExplicitTemplateArgs = ME->hasExplicitTemplateArgumentList(); 4370 ExplicitTemplateArgs = ME->getTemplateArgs(); 4371 NumExplicitTemplateArgs = ME->getNumTemplateArgs(); 4372 } else if (TemplateIdRefExpr *TIRE = dyn_cast<TemplateIdRefExpr>(OvlExpr)) { 4373 TemplateName Name = TIRE->getTemplateName(); 4374 Ovl = Name.getAsOverloadedFunctionDecl(); 4375 FunctionTemplate = 4376 dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); 4377 4378 HasExplicitTemplateArgs = true; 4379 ExplicitTemplateArgs = TIRE->getTemplateArgs(); 4380 NumExplicitTemplateArgs = TIRE->getNumTemplateArgs(); 4381 } 4382 4383 // If there's no overloaded function declaration or function template, 4384 // we're done. 4385 if (!Ovl && !FunctionTemplate) 4386 return 0; 4387 4388 OverloadIterator Fun; 4389 if (Ovl) 4390 Fun = Ovl; 4391 else 4392 Fun = FunctionTemplate; 4393 4394 // Look through all of the overloaded functions, searching for one 4395 // whose type matches exactly. 4396 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 4397 bool FoundNonTemplateFunction = false; 4398 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) { 4399 // C++ [over.over]p3: 4400 // Non-member functions and static member functions match 4401 // targets of type "pointer-to-function" or "reference-to-function." 4402 // Nonstatic member functions match targets of 4403 // type "pointer-to-member-function." 4404 // Note that according to DR 247, the containing class does not matter. 4405 4406 if (FunctionTemplateDecl *FunctionTemplate 4407 = dyn_cast<FunctionTemplateDecl>(*Fun)) { 4408 if (CXXMethodDecl *Method 4409 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 4410 // Skip non-static function templates when converting to pointer, and 4411 // static when converting to member pointer. 4412 if (Method->isStatic() == IsMember) 4413 continue; 4414 } else if (IsMember) 4415 continue; 4416 4417 // C++ [over.over]p2: 4418 // If the name is a function template, template argument deduction is 4419 // done (14.8.2.2), and if the argument deduction succeeds, the 4420 // resulting template argument list is used to generate a single 4421 // function template specialization, which is added to the set of 4422 // overloaded functions considered. 4423 // FIXME: We don't really want to build the specialization here, do we? 4424 FunctionDecl *Specialization = 0; 4425 TemplateDeductionInfo Info(Context); 4426 if (TemplateDeductionResult Result 4427 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, 4428 ExplicitTemplateArgs, 4429 NumExplicitTemplateArgs, 4430 FunctionType, Specialization, Info)) { 4431 // FIXME: make a note of the failed deduction for diagnostics. 4432 (void)Result; 4433 } else { 4434 // FIXME: If the match isn't exact, shouldn't we just drop this as 4435 // a candidate? Find a testcase before changing the code. 4436 assert(FunctionType 4437 == Context.getCanonicalType(Specialization->getType())); 4438 Matches.insert( 4439 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 4440 } 4441 } 4442 4443 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) { 4444 // Skip non-static functions when converting to pointer, and static 4445 // when converting to member pointer. 4446 if (Method->isStatic() == IsMember) 4447 continue; 4448 4449 // If we have explicit template arguments, skip non-templates. 4450 if (HasExplicitTemplateArgs) 4451 continue; 4452 } else if (IsMember) 4453 continue; 4454 4455 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) { 4456 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) { 4457 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl())); 4458 FoundNonTemplateFunction = true; 4459 } 4460 } 4461 } 4462 4463 // If there were 0 or 1 matches, we're done. 4464 if (Matches.empty()) 4465 return 0; 4466 else if (Matches.size() == 1) { 4467 FunctionDecl *Result = *Matches.begin(); 4468 MarkDeclarationReferenced(From->getLocStart(), Result); 4469 return Result; 4470 } 4471 4472 // C++ [over.over]p4: 4473 // If more than one function is selected, [...] 4474 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4475 if (!FoundNonTemplateFunction) { 4476 // [...] and any given function template specialization F1 is 4477 // eliminated if the set contains a second function template 4478 // specialization whose function template is more specialized 4479 // than the function template of F1 according to the partial 4480 // ordering rules of 14.5.5.2. 4481 4482 // The algorithm specified above is quadratic. We instead use a 4483 // two-pass algorithm (similar to the one used to identify the 4484 // best viable function in an overload set) that identifies the 4485 // best function template (if it exists). 4486 llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(), 4487 Matches.end()); 4488 FunctionDecl *Result = 4489 getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(), 4490 TPOC_Other, From->getLocStart(), 4491 PDiag(), 4492 PDiag(diag::err_addr_ovl_ambiguous) 4493 << TemplateMatches[0]->getDeclName(), 4494 PDiag(diag::err_ovl_template_candidate)); 4495 MarkDeclarationReferenced(From->getLocStart(), Result); 4496 return Result; 4497 } 4498 4499 // [...] any function template specializations in the set are 4500 // eliminated if the set also contains a non-template function, [...] 4501 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4502 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4503 if ((*M)->getPrimaryTemplate() == 0) 4504 RemainingMatches.push_back(*M); 4505 4506 // [...] After such eliminations, if any, there shall remain exactly one 4507 // selected function. 4508 if (RemainingMatches.size() == 1) { 4509 FunctionDecl *Result = RemainingMatches.front(); 4510 MarkDeclarationReferenced(From->getLocStart(), Result); 4511 return Result; 4512 } 4513 4514 // FIXME: We should probably return the same thing that BestViableFunction 4515 // returns (even if we issue the diagnostics here). 4516 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4517 << RemainingMatches[0]->getDeclName(); 4518 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4519 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate); 4520 return 0; 4521} 4522 4523/// \brief Add a single candidate to the overload set. 4524static void AddOverloadedCallCandidate(Sema &S, 4525 AnyFunctionDecl Callee, 4526 bool &ArgumentDependentLookup, 4527 bool HasExplicitTemplateArgs, 4528 const TemplateArgumentLoc *ExplicitTemplateArgs, 4529 unsigned NumExplicitTemplateArgs, 4530 Expr **Args, unsigned NumArgs, 4531 OverloadCandidateSet &CandidateSet, 4532 bool PartialOverloading) { 4533 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 4534 assert(!HasExplicitTemplateArgs && "Explicit template arguments?"); 4535 S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false, 4536 PartialOverloading); 4537 4538 if (Func->getDeclContext()->isRecord() || 4539 Func->getDeclContext()->isFunctionOrMethod()) 4540 ArgumentDependentLookup = false; 4541 return; 4542 } 4543 4544 FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee); 4545 S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs, 4546 ExplicitTemplateArgs, 4547 NumExplicitTemplateArgs, 4548 Args, NumArgs, CandidateSet); 4549 4550 if (FuncTemplate->getDeclContext()->isRecord()) 4551 ArgumentDependentLookup = false; 4552} 4553 4554/// \brief Add the overload candidates named by callee and/or found by argument 4555/// dependent lookup to the given overload set. 4556void Sema::AddOverloadedCallCandidates(NamedDecl *Callee, 4557 DeclarationName &UnqualifiedName, 4558 bool &ArgumentDependentLookup, 4559 bool HasExplicitTemplateArgs, 4560 const TemplateArgumentLoc *ExplicitTemplateArgs, 4561 unsigned NumExplicitTemplateArgs, 4562 Expr **Args, unsigned NumArgs, 4563 OverloadCandidateSet &CandidateSet, 4564 bool PartialOverloading) { 4565 // Add the functions denoted by Callee to the set of candidate 4566 // functions. While we're doing so, track whether argument-dependent 4567 // lookup still applies, per: 4568 // 4569 // C++0x [basic.lookup.argdep]p3: 4570 // Let X be the lookup set produced by unqualified lookup (3.4.1) 4571 // and let Y be the lookup set produced by argument dependent 4572 // lookup (defined as follows). If X contains 4573 // 4574 // -- a declaration of a class member, or 4575 // 4576 // -- a block-scope function declaration that is not a 4577 // using-declaration (FIXME: check for using declaration), or 4578 // 4579 // -- a declaration that is neither a function or a function 4580 // template 4581 // 4582 // then Y is empty. 4583 if (!Callee) { 4584 // Nothing to do. 4585 } else if (OverloadedFunctionDecl *Ovl 4586 = dyn_cast<OverloadedFunctionDecl>(Callee)) { 4587 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 4588 FuncEnd = Ovl->function_end(); 4589 Func != FuncEnd; ++Func) 4590 AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup, 4591 HasExplicitTemplateArgs, 4592 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4593 Args, NumArgs, CandidateSet, 4594 PartialOverloading); 4595 } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee)) 4596 AddOverloadedCallCandidate(*this, 4597 AnyFunctionDecl::getFromNamedDecl(Callee), 4598 ArgumentDependentLookup, 4599 HasExplicitTemplateArgs, 4600 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4601 Args, NumArgs, CandidateSet, 4602 PartialOverloading); 4603 // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than 4604 // checking dynamically. 4605 4606 if (Callee) 4607 UnqualifiedName = Callee->getDeclName(); 4608 4609 if (ArgumentDependentLookup) 4610 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, 4611 HasExplicitTemplateArgs, 4612 ExplicitTemplateArgs, 4613 NumExplicitTemplateArgs, 4614 CandidateSet, 4615 PartialOverloading); 4616} 4617 4618/// ResolveOverloadedCallFn - Given the call expression that calls Fn 4619/// (which eventually refers to the declaration Func) and the call 4620/// arguments Args/NumArgs, attempt to resolve the function call down 4621/// to a specific function. If overload resolution succeeds, returns 4622/// the function declaration produced by overload 4623/// resolution. Otherwise, emits diagnostics, deletes all of the 4624/// arguments and Fn, and returns NULL. 4625FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, 4626 DeclarationName UnqualifiedName, 4627 bool HasExplicitTemplateArgs, 4628 const TemplateArgumentLoc *ExplicitTemplateArgs, 4629 unsigned NumExplicitTemplateArgs, 4630 SourceLocation LParenLoc, 4631 Expr **Args, unsigned NumArgs, 4632 SourceLocation *CommaLocs, 4633 SourceLocation RParenLoc, 4634 bool &ArgumentDependentLookup) { 4635 OverloadCandidateSet CandidateSet; 4636 4637 // Add the functions denoted by Callee to the set of candidate 4638 // functions. 4639 AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup, 4640 HasExplicitTemplateArgs, ExplicitTemplateArgs, 4641 NumExplicitTemplateArgs, Args, NumArgs, 4642 CandidateSet); 4643 OverloadCandidateSet::iterator Best; 4644 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 4645 case OR_Success: 4646 return Best->Function; 4647 4648 case OR_No_Viable_Function: 4649 Diag(Fn->getSourceRange().getBegin(), 4650 diag::err_ovl_no_viable_function_in_call) 4651 << UnqualifiedName << Fn->getSourceRange(); 4652 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4653 break; 4654 4655 case OR_Ambiguous: 4656 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 4657 << UnqualifiedName << Fn->getSourceRange(); 4658 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4659 break; 4660 4661 case OR_Deleted: 4662 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 4663 << Best->Function->isDeleted() 4664 << UnqualifiedName 4665 << Fn->getSourceRange(); 4666 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4667 break; 4668 } 4669 4670 // Overload resolution failed. Destroy all of the subexpressions and 4671 // return NULL. 4672 Fn->Destroy(Context); 4673 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4674 Args[Arg]->Destroy(Context); 4675 return 0; 4676} 4677 4678/// \brief Create a unary operation that may resolve to an overloaded 4679/// operator. 4680/// 4681/// \param OpLoc The location of the operator itself (e.g., '*'). 4682/// 4683/// \param OpcIn The UnaryOperator::Opcode that describes this 4684/// operator. 4685/// 4686/// \param Functions The set of non-member functions that will be 4687/// considered by overload resolution. The caller needs to build this 4688/// set based on the context using, e.g., 4689/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4690/// set should not contain any member functions; those will be added 4691/// by CreateOverloadedUnaryOp(). 4692/// 4693/// \param input The input argument. 4694Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 4695 unsigned OpcIn, 4696 FunctionSet &Functions, 4697 ExprArg input) { 4698 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 4699 Expr *Input = (Expr *)input.get(); 4700 4701 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 4702 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 4703 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4704 4705 Expr *Args[2] = { Input, 0 }; 4706 unsigned NumArgs = 1; 4707 4708 // For post-increment and post-decrement, add the implicit '0' as 4709 // the second argument, so that we know this is a post-increment or 4710 // post-decrement. 4711 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 4712 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 4713 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 4714 SourceLocation()); 4715 NumArgs = 2; 4716 } 4717 4718 if (Input->isTypeDependent()) { 4719 OverloadedFunctionDecl *Overloads 4720 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4721 for (FunctionSet::iterator Func = Functions.begin(), 4722 FuncEnd = Functions.end(); 4723 Func != FuncEnd; ++Func) 4724 Overloads->addOverload(*Func); 4725 4726 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4727 OpLoc, false, false); 4728 4729 input.release(); 4730 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4731 &Args[0], NumArgs, 4732 Context.DependentTy, 4733 OpLoc)); 4734 } 4735 4736 // Build an empty overload set. 4737 OverloadCandidateSet CandidateSet; 4738 4739 // Add the candidates from the given function set. 4740 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 4741 4742 // Add operator candidates that are member functions. 4743 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4744 4745 // Add builtin operator candidates. 4746 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4747 4748 // Perform overload resolution. 4749 OverloadCandidateSet::iterator Best; 4750 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4751 case OR_Success: { 4752 // We found a built-in operator or an overloaded operator. 4753 FunctionDecl *FnDecl = Best->Function; 4754 4755 if (FnDecl) { 4756 // We matched an overloaded operator. Build a call to that 4757 // operator. 4758 4759 // Convert the arguments. 4760 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4761 if (PerformObjectArgumentInitialization(Input, Method)) 4762 return ExprError(); 4763 } else { 4764 // Convert the arguments. 4765 if (PerformCopyInitialization(Input, 4766 FnDecl->getParamDecl(0)->getType(), 4767 "passing")) 4768 return ExprError(); 4769 } 4770 4771 // Determine the result type 4772 QualType ResultTy = FnDecl->getResultType().getNonReferenceType(); 4773 4774 // Build the actual expression node. 4775 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4776 SourceLocation()); 4777 UsualUnaryConversions(FnExpr); 4778 4779 input.release(); 4780 Args[0] = Input; 4781 ExprOwningPtr<CallExpr> TheCall(this, 4782 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4783 Args, NumArgs, ResultTy, OpLoc)); 4784 4785 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4786 FnDecl)) 4787 return ExprError(); 4788 4789 return MaybeBindToTemporary(TheCall.release()); 4790 } else { 4791 // We matched a built-in operator. Convert the arguments, then 4792 // break out so that we will build the appropriate built-in 4793 // operator node. 4794 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 4795 Best->Conversions[0], "passing")) 4796 return ExprError(); 4797 4798 break; 4799 } 4800 } 4801 4802 case OR_No_Viable_Function: 4803 // No viable function; fall through to handling this as a 4804 // built-in operator, which will produce an error message for us. 4805 break; 4806 4807 case OR_Ambiguous: 4808 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4809 << UnaryOperator::getOpcodeStr(Opc) 4810 << Input->getSourceRange(); 4811 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 4812 UnaryOperator::getOpcodeStr(Opc), OpLoc); 4813 return ExprError(); 4814 4815 case OR_Deleted: 4816 Diag(OpLoc, diag::err_ovl_deleted_oper) 4817 << Best->Function->isDeleted() 4818 << UnaryOperator::getOpcodeStr(Opc) 4819 << Input->getSourceRange(); 4820 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4821 return ExprError(); 4822 } 4823 4824 // Either we found no viable overloaded operator or we matched a 4825 // built-in operator. In either case, fall through to trying to 4826 // build a built-in operation. 4827 input.release(); 4828 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 4829} 4830 4831/// \brief Create a binary operation that may resolve to an overloaded 4832/// operator. 4833/// 4834/// \param OpLoc The location of the operator itself (e.g., '+'). 4835/// 4836/// \param OpcIn The BinaryOperator::Opcode that describes this 4837/// operator. 4838/// 4839/// \param Functions The set of non-member functions that will be 4840/// considered by overload resolution. The caller needs to build this 4841/// set based on the context using, e.g., 4842/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4843/// set should not contain any member functions; those will be added 4844/// by CreateOverloadedBinOp(). 4845/// 4846/// \param LHS Left-hand argument. 4847/// \param RHS Right-hand argument. 4848Sema::OwningExprResult 4849Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 4850 unsigned OpcIn, 4851 FunctionSet &Functions, 4852 Expr *LHS, Expr *RHS) { 4853 Expr *Args[2] = { LHS, RHS }; 4854 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 4855 4856 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 4857 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 4858 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4859 4860 // If either side is type-dependent, create an appropriate dependent 4861 // expression. 4862 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 4863 if (Functions.empty()) { 4864 // If there are no functions to store, just build a dependent 4865 // BinaryOperator or CompoundAssignment. 4866 if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign) 4867 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 4868 Context.DependentTy, OpLoc)); 4869 4870 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 4871 Context.DependentTy, 4872 Context.DependentTy, 4873 Context.DependentTy, 4874 OpLoc)); 4875 } 4876 4877 OverloadedFunctionDecl *Overloads 4878 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4879 for (FunctionSet::iterator Func = Functions.begin(), 4880 FuncEnd = Functions.end(); 4881 Func != FuncEnd; ++Func) 4882 Overloads->addOverload(*Func); 4883 4884 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4885 OpLoc, false, false); 4886 4887 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4888 Args, 2, 4889 Context.DependentTy, 4890 OpLoc)); 4891 } 4892 4893 // If this is the .* operator, which is not overloadable, just 4894 // create a built-in binary operator. 4895 if (Opc == BinaryOperator::PtrMemD) 4896 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4897 4898 // If this is the assignment operator, we only perform overload resolution 4899 // if the left-hand side is a class or enumeration type. This is actually 4900 // a hack. The standard requires that we do overload resolution between the 4901 // various built-in candidates, but as DR507 points out, this can lead to 4902 // problems. So we do it this way, which pretty much follows what GCC does. 4903 // Note that we go the traditional code path for compound assignment forms. 4904 if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType()) 4905 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4906 4907 // Build an empty overload set. 4908 OverloadCandidateSet CandidateSet; 4909 4910 // Add the candidates from the given function set. 4911 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 4912 4913 // Add operator candidates that are member functions. 4914 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4915 4916 // Add builtin operator candidates. 4917 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4918 4919 // Perform overload resolution. 4920 OverloadCandidateSet::iterator Best; 4921 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4922 case OR_Success: { 4923 // We found a built-in operator or an overloaded operator. 4924 FunctionDecl *FnDecl = Best->Function; 4925 4926 if (FnDecl) { 4927 // We matched an overloaded operator. Build a call to that 4928 // operator. 4929 4930 // Convert the arguments. 4931 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4932 if (PerformObjectArgumentInitialization(Args[0], Method) || 4933 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(), 4934 "passing")) 4935 return ExprError(); 4936 } else { 4937 // Convert the arguments. 4938 if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(), 4939 "passing") || 4940 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(), 4941 "passing")) 4942 return ExprError(); 4943 } 4944 4945 // Determine the result type 4946 QualType ResultTy 4947 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 4948 ResultTy = ResultTy.getNonReferenceType(); 4949 4950 // Build the actual expression node. 4951 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4952 OpLoc); 4953 UsualUnaryConversions(FnExpr); 4954 4955 ExprOwningPtr<CXXOperatorCallExpr> 4956 TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4957 Args, 2, ResultTy, 4958 OpLoc)); 4959 4960 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(), 4961 FnDecl)) 4962 return ExprError(); 4963 4964 return MaybeBindToTemporary(TheCall.release()); 4965 } else { 4966 // We matched a built-in operator. Convert the arguments, then 4967 // break out so that we will build the appropriate built-in 4968 // operator node. 4969 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 4970 Best->Conversions[0], "passing") || 4971 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 4972 Best->Conversions[1], "passing")) 4973 return ExprError(); 4974 4975 break; 4976 } 4977 } 4978 4979 case OR_No_Viable_Function: { 4980 // C++ [over.match.oper]p9: 4981 // If the operator is the operator , [...] and there are no 4982 // viable functions, then the operator is assumed to be the 4983 // built-in operator and interpreted according to clause 5. 4984 if (Opc == BinaryOperator::Comma) 4985 break; 4986 4987 // For class as left operand for assignment or compound assigment operator 4988 // do not fall through to handling in built-in, but report that no overloaded 4989 // assignment operator found 4990 OwningExprResult Result = ExprError(); 4991 if (Args[0]->getType()->isRecordType() && 4992 Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 4993 Diag(OpLoc, diag::err_ovl_no_viable_oper) 4994 << BinaryOperator::getOpcodeStr(Opc) 4995 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4996 } else { 4997 // No viable function; try to create a built-in operation, which will 4998 // produce an error. Then, show the non-viable candidates. 4999 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5000 } 5001 assert(Result.isInvalid() && 5002 "C++ binary operator overloading is missing candidates!"); 5003 if (Result.isInvalid()) 5004 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 5005 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5006 return move(Result); 5007 } 5008 5009 case OR_Ambiguous: 5010 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5011 << BinaryOperator::getOpcodeStr(Opc) 5012 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5013 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5014 BinaryOperator::getOpcodeStr(Opc), OpLoc); 5015 return ExprError(); 5016 5017 case OR_Deleted: 5018 Diag(OpLoc, diag::err_ovl_deleted_oper) 5019 << Best->Function->isDeleted() 5020 << BinaryOperator::getOpcodeStr(Opc) 5021 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5022 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5023 return ExprError(); 5024 } 5025 5026 // We matched a built-in operator; build it. 5027 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 5028} 5029 5030Action::OwningExprResult 5031Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 5032 SourceLocation RLoc, 5033 ExprArg Base, ExprArg Idx) { 5034 Expr *Args[2] = { static_cast<Expr*>(Base.get()), 5035 static_cast<Expr*>(Idx.get()) }; 5036 DeclarationName OpName = 5037 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 5038 5039 // If either side is type-dependent, create an appropriate dependent 5040 // expression. 5041 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 5042 5043 OverloadedFunctionDecl *Overloads 5044 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 5045 5046 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 5047 LLoc, false, false); 5048 5049 Base.release(); 5050 Idx.release(); 5051 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 5052 Args, 2, 5053 Context.DependentTy, 5054 RLoc)); 5055 } 5056 5057 // Build an empty overload set. 5058 OverloadCandidateSet CandidateSet; 5059 5060 // Subscript can only be overloaded as a member function. 5061 5062 // Add operator candidates that are member functions. 5063 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5064 5065 // Add builtin operator candidates. 5066 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 5067 5068 // Perform overload resolution. 5069 OverloadCandidateSet::iterator Best; 5070 switch (BestViableFunction(CandidateSet, LLoc, Best)) { 5071 case OR_Success: { 5072 // We found a built-in operator or an overloaded operator. 5073 FunctionDecl *FnDecl = Best->Function; 5074 5075 if (FnDecl) { 5076 // We matched an overloaded operator. Build a call to that 5077 // operator. 5078 5079 // Convert the arguments. 5080 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 5081 if (PerformObjectArgumentInitialization(Args[0], Method) || 5082 PerformCopyInitialization(Args[1], 5083 FnDecl->getParamDecl(0)->getType(), 5084 "passing")) 5085 return ExprError(); 5086 5087 // Determine the result type 5088 QualType ResultTy 5089 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 5090 ResultTy = ResultTy.getNonReferenceType(); 5091 5092 // Build the actual expression node. 5093 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 5094 LLoc); 5095 UsualUnaryConversions(FnExpr); 5096 5097 Base.release(); 5098 Idx.release(); 5099 ExprOwningPtr<CXXOperatorCallExpr> 5100 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 5101 FnExpr, Args, 2, 5102 ResultTy, RLoc)); 5103 5104 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(), 5105 FnDecl)) 5106 return ExprError(); 5107 5108 return MaybeBindToTemporary(TheCall.release()); 5109 } else { 5110 // We matched a built-in operator. Convert the arguments, then 5111 // break out so that we will build the appropriate built-in 5112 // operator node. 5113 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 5114 Best->Conversions[0], "passing") || 5115 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 5116 Best->Conversions[1], "passing")) 5117 return ExprError(); 5118 5119 break; 5120 } 5121 } 5122 5123 case OR_No_Viable_Function: { 5124 // No viable function; try to create a built-in operation, which will 5125 // produce an error. Then, show the non-viable candidates. 5126 OwningExprResult Result = 5127 CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc); 5128 assert(Result.isInvalid() && 5129 "C++ subscript operator overloading is missing candidates!"); 5130 if (Result.isInvalid()) 5131 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false, 5132 "[]", LLoc); 5133 return move(Result); 5134 } 5135 5136 case OR_Ambiguous: 5137 Diag(LLoc, diag::err_ovl_ambiguous_oper) 5138 << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5139 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true, 5140 "[]", LLoc); 5141 return ExprError(); 5142 5143 case OR_Deleted: 5144 Diag(LLoc, diag::err_ovl_deleted_oper) 5145 << Best->Function->isDeleted() << "[]" 5146 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 5147 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5148 return ExprError(); 5149 } 5150 5151 // We matched a built-in operator; build it. 5152 Base.release(); 5153 Idx.release(); 5154 return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc, 5155 Owned(Args[1]), RLoc); 5156} 5157 5158/// BuildCallToMemberFunction - Build a call to a member 5159/// function. MemExpr is the expression that refers to the member 5160/// function (and includes the object parameter), Args/NumArgs are the 5161/// arguments to the function call (not including the object 5162/// parameter). The caller needs to validate that the member 5163/// expression refers to a member function or an overloaded member 5164/// function. 5165Sema::ExprResult 5166Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 5167 SourceLocation LParenLoc, Expr **Args, 5168 unsigned NumArgs, SourceLocation *CommaLocs, 5169 SourceLocation RParenLoc) { 5170 // Dig out the member expression. This holds both the object 5171 // argument and the member function we're referring to. 5172 MemberExpr *MemExpr = 0; 5173 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE)) 5174 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr()); 5175 else 5176 MemExpr = dyn_cast<MemberExpr>(MemExprE); 5177 assert(MemExpr && "Building member call without member expression"); 5178 5179 // Extract the object argument. 5180 Expr *ObjectArg = MemExpr->getBase(); 5181 5182 CXXMethodDecl *Method = 0; 5183 if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) || 5184 isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) { 5185 // Add overload candidates 5186 OverloadCandidateSet CandidateSet; 5187 DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName(); 5188 5189 for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd; 5190 Func != FuncEnd; ++Func) { 5191 if ((Method = dyn_cast<CXXMethodDecl>(*Func))) { 5192 // If explicit template arguments were provided, we can't call a 5193 // non-template member function. 5194 if (MemExpr->hasExplicitTemplateArgumentList()) 5195 continue; 5196 5197 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, 5198 /*SuppressUserConversions=*/false); 5199 } else 5200 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func), 5201 MemExpr->hasExplicitTemplateArgumentList(), 5202 MemExpr->getTemplateArgs(), 5203 MemExpr->getNumTemplateArgs(), 5204 ObjectArg, Args, NumArgs, 5205 CandidateSet, 5206 /*SuppressUsedConversions=*/false); 5207 } 5208 5209 OverloadCandidateSet::iterator Best; 5210 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) { 5211 case OR_Success: 5212 Method = cast<CXXMethodDecl>(Best->Function); 5213 break; 5214 5215 case OR_No_Viable_Function: 5216 Diag(MemExpr->getSourceRange().getBegin(), 5217 diag::err_ovl_no_viable_member_function_in_call) 5218 << DeclName << MemExprE->getSourceRange(); 5219 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5220 // FIXME: Leaking incoming expressions! 5221 return true; 5222 5223 case OR_Ambiguous: 5224 Diag(MemExpr->getSourceRange().getBegin(), 5225 diag::err_ovl_ambiguous_member_call) 5226 << DeclName << MemExprE->getSourceRange(); 5227 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5228 // FIXME: Leaking incoming expressions! 5229 return true; 5230 5231 case OR_Deleted: 5232 Diag(MemExpr->getSourceRange().getBegin(), 5233 diag::err_ovl_deleted_member_call) 5234 << Best->Function->isDeleted() 5235 << DeclName << MemExprE->getSourceRange(); 5236 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5237 // FIXME: Leaking incoming expressions! 5238 return true; 5239 } 5240 5241 MemExprE = FixOverloadedFunctionReference(MemExprE, Method); 5242 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE)) 5243 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr()); 5244 else 5245 MemExpr = dyn_cast<MemberExpr>(MemExprE); 5246 5247 } else { 5248 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 5249 } 5250 5251 assert(Method && "Member call to something that isn't a method?"); 5252 ExprOwningPtr<CXXMemberCallExpr> 5253 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args, 5254 NumArgs, 5255 Method->getResultType().getNonReferenceType(), 5256 RParenLoc)); 5257 5258 // Check for a valid return type. 5259 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 5260 TheCall.get(), Method)) 5261 return true; 5262 5263 // Convert the object argument (for a non-static member function call). 5264 if (!Method->isStatic() && 5265 PerformObjectArgumentInitialization(ObjectArg, Method)) 5266 return true; 5267 MemExpr->setBase(ObjectArg); 5268 5269 // Convert the rest of the arguments 5270 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 5271 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 5272 RParenLoc)) 5273 return true; 5274 5275 if (CheckFunctionCall(Method, TheCall.get())) 5276 return true; 5277 5278 return MaybeBindToTemporary(TheCall.release()).release(); 5279} 5280 5281/// BuildCallToObjectOfClassType - Build a call to an object of class 5282/// type (C++ [over.call.object]), which can end up invoking an 5283/// overloaded function call operator (@c operator()) or performing a 5284/// user-defined conversion on the object argument. 5285Sema::ExprResult 5286Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 5287 SourceLocation LParenLoc, 5288 Expr **Args, unsigned NumArgs, 5289 SourceLocation *CommaLocs, 5290 SourceLocation RParenLoc) { 5291 assert(Object->getType()->isRecordType() && "Requires object type argument"); 5292 const RecordType *Record = Object->getType()->getAs<RecordType>(); 5293 5294 // C++ [over.call.object]p1: 5295 // If the primary-expression E in the function call syntax 5296 // evaluates to a class object of type "cv T", then the set of 5297 // candidate functions includes at least the function call 5298 // operators of T. The function call operators of T are obtained by 5299 // ordinary lookup of the name operator() in the context of 5300 // (E).operator(). 5301 OverloadCandidateSet CandidateSet; 5302 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 5303 5304 if (RequireCompleteType(LParenLoc, Object->getType(), 5305 PartialDiagnostic(diag::err_incomplete_object_call) 5306 << Object->getSourceRange())) 5307 return true; 5308 5309 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 5310 LookupQualifiedName(R, Record->getDecl()); 5311 R.suppressDiagnostics(); 5312 5313 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5314 Oper != OperEnd; ++Oper) { 5315 AddMethodCandidate(*Oper, Object, Args, NumArgs, CandidateSet, 5316 /*SuppressUserConversions=*/ false); 5317 } 5318 5319 // C++ [over.call.object]p2: 5320 // In addition, for each conversion function declared in T of the 5321 // form 5322 // 5323 // operator conversion-type-id () cv-qualifier; 5324 // 5325 // where cv-qualifier is the same cv-qualification as, or a 5326 // greater cv-qualification than, cv, and where conversion-type-id 5327 // denotes the type "pointer to function of (P1,...,Pn) returning 5328 // R", or the type "reference to pointer to function of 5329 // (P1,...,Pn) returning R", or the type "reference to function 5330 // of (P1,...,Pn) returning R", a surrogate call function [...] 5331 // is also considered as a candidate function. Similarly, 5332 // surrogate call functions are added to the set of candidate 5333 // functions for each conversion function declared in an 5334 // accessible base class provided the function is not hidden 5335 // within T by another intervening declaration. 5336 // FIXME: Look in base classes for more conversion operators! 5337 OverloadedFunctionDecl *Conversions 5338 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 5339 for (OverloadedFunctionDecl::function_iterator 5340 Func = Conversions->function_begin(), 5341 FuncEnd = Conversions->function_end(); 5342 Func != FuncEnd; ++Func) { 5343 CXXConversionDecl *Conv; 5344 FunctionTemplateDecl *ConvTemplate; 5345 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 5346 5347 // Skip over templated conversion functions; they aren't 5348 // surrogates. 5349 if (ConvTemplate) 5350 continue; 5351 5352 // Strip the reference type (if any) and then the pointer type (if 5353 // any) to get down to what might be a function type. 5354 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 5355 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 5356 ConvType = ConvPtrType->getPointeeType(); 5357 5358 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 5359 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); 5360 } 5361 5362 // Perform overload resolution. 5363 OverloadCandidateSet::iterator Best; 5364 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 5365 case OR_Success: 5366 // Overload resolution succeeded; we'll build the appropriate call 5367 // below. 5368 break; 5369 5370 case OR_No_Viable_Function: 5371 Diag(Object->getSourceRange().getBegin(), 5372 diag::err_ovl_no_viable_object_call) 5373 << Object->getType() << Object->getSourceRange(); 5374 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5375 break; 5376 5377 case OR_Ambiguous: 5378 Diag(Object->getSourceRange().getBegin(), 5379 diag::err_ovl_ambiguous_object_call) 5380 << Object->getType() << Object->getSourceRange(); 5381 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5382 break; 5383 5384 case OR_Deleted: 5385 Diag(Object->getSourceRange().getBegin(), 5386 diag::err_ovl_deleted_object_call) 5387 << Best->Function->isDeleted() 5388 << Object->getType() << Object->getSourceRange(); 5389 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5390 break; 5391 } 5392 5393 if (Best == CandidateSet.end()) { 5394 // We had an error; delete all of the subexpressions and return 5395 // the error. 5396 Object->Destroy(Context); 5397 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5398 Args[ArgIdx]->Destroy(Context); 5399 return true; 5400 } 5401 5402 if (Best->Function == 0) { 5403 // Since there is no function declaration, this is one of the 5404 // surrogate candidates. Dig out the conversion function. 5405 CXXConversionDecl *Conv 5406 = cast<CXXConversionDecl>( 5407 Best->Conversions[0].UserDefined.ConversionFunction); 5408 5409 // We selected one of the surrogate functions that converts the 5410 // object parameter to a function pointer. Perform the conversion 5411 // on the object argument, then let ActOnCallExpr finish the job. 5412 5413 // Create an implicit member expr to refer to the conversion operator. 5414 // and then call it. 5415 CXXMemberCallExpr *CE = 5416 BuildCXXMemberCallExpr(Object, Conv); 5417 5418 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 5419 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 5420 CommaLocs, RParenLoc).release(); 5421 } 5422 5423 // We found an overloaded operator(). Build a CXXOperatorCallExpr 5424 // that calls this method, using Object for the implicit object 5425 // parameter and passing along the remaining arguments. 5426 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5427 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 5428 5429 unsigned NumArgsInProto = Proto->getNumArgs(); 5430 unsigned NumArgsToCheck = NumArgs; 5431 5432 // Build the full argument list for the method call (the 5433 // implicit object parameter is placed at the beginning of the 5434 // list). 5435 Expr **MethodArgs; 5436 if (NumArgs < NumArgsInProto) { 5437 NumArgsToCheck = NumArgsInProto; 5438 MethodArgs = new Expr*[NumArgsInProto + 1]; 5439 } else { 5440 MethodArgs = new Expr*[NumArgs + 1]; 5441 } 5442 MethodArgs[0] = Object; 5443 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 5444 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 5445 5446 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 5447 SourceLocation()); 5448 UsualUnaryConversions(NewFn); 5449 5450 // Once we've built TheCall, all of the expressions are properly 5451 // owned. 5452 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5453 ExprOwningPtr<CXXOperatorCallExpr> 5454 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 5455 MethodArgs, NumArgs + 1, 5456 ResultTy, RParenLoc)); 5457 delete [] MethodArgs; 5458 5459 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(), 5460 Method)) 5461 return true; 5462 5463 // We may have default arguments. If so, we need to allocate more 5464 // slots in the call for them. 5465 if (NumArgs < NumArgsInProto) 5466 TheCall->setNumArgs(Context, NumArgsInProto + 1); 5467 else if (NumArgs > NumArgsInProto) 5468 NumArgsToCheck = NumArgsInProto; 5469 5470 bool IsError = false; 5471 5472 // Initialize the implicit object parameter. 5473 IsError |= PerformObjectArgumentInitialization(Object, Method); 5474 TheCall->setArg(0, Object); 5475 5476 5477 // Check the argument types. 5478 for (unsigned i = 0; i != NumArgsToCheck; i++) { 5479 Expr *Arg; 5480 if (i < NumArgs) { 5481 Arg = Args[i]; 5482 5483 // Pass the argument. 5484 QualType ProtoArgType = Proto->getArgType(i); 5485 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing"); 5486 } else { 5487 OwningExprResult DefArg 5488 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 5489 if (DefArg.isInvalid()) { 5490 IsError = true; 5491 break; 5492 } 5493 5494 Arg = DefArg.takeAs<Expr>(); 5495 } 5496 5497 TheCall->setArg(i + 1, Arg); 5498 } 5499 5500 // If this is a variadic call, handle args passed through "...". 5501 if (Proto->isVariadic()) { 5502 // Promote the arguments (C99 6.5.2.2p7). 5503 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 5504 Expr *Arg = Args[i]; 5505 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 5506 TheCall->setArg(i + 1, Arg); 5507 } 5508 } 5509 5510 if (IsError) return true; 5511 5512 if (CheckFunctionCall(Method, TheCall.get())) 5513 return true; 5514 5515 return MaybeBindToTemporary(TheCall.release()).release(); 5516} 5517 5518/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 5519/// (if one exists), where @c Base is an expression of class type and 5520/// @c Member is the name of the member we're trying to find. 5521Sema::OwningExprResult 5522Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 5523 Expr *Base = static_cast<Expr *>(BaseIn.get()); 5524 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 5525 5526 // C++ [over.ref]p1: 5527 // 5528 // [...] An expression x->m is interpreted as (x.operator->())->m 5529 // for a class object x of type T if T::operator->() exists and if 5530 // the operator is selected as the best match function by the 5531 // overload resolution mechanism (13.3). 5532 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 5533 OverloadCandidateSet CandidateSet; 5534 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 5535 5536 if (RequireCompleteType(Base->getLocStart(), Base->getType(), 5537 PDiag(diag::err_typecheck_incomplete_tag) 5538 << Base->getSourceRange())) 5539 return ExprError(); 5540 5541 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 5542 LookupQualifiedName(R, BaseRecord->getDecl()); 5543 R.suppressDiagnostics(); 5544 5545 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5546 Oper != OperEnd; ++Oper) 5547 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet, 5548 /*SuppressUserConversions=*/false); 5549 5550 // Perform overload resolution. 5551 OverloadCandidateSet::iterator Best; 5552 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5553 case OR_Success: 5554 // Overload resolution succeeded; we'll build the call below. 5555 break; 5556 5557 case OR_No_Viable_Function: 5558 if (CandidateSet.empty()) 5559 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5560 << Base->getType() << Base->getSourceRange(); 5561 else 5562 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5563 << "operator->" << Base->getSourceRange(); 5564 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5565 return ExprError(); 5566 5567 case OR_Ambiguous: 5568 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5569 << "->" << Base->getSourceRange(); 5570 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5571 return ExprError(); 5572 5573 case OR_Deleted: 5574 Diag(OpLoc, diag::err_ovl_deleted_oper) 5575 << Best->Function->isDeleted() 5576 << "->" << Base->getSourceRange(); 5577 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5578 return ExprError(); 5579 } 5580 5581 // Convert the object parameter. 5582 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5583 if (PerformObjectArgumentInitialization(Base, Method)) 5584 return ExprError(); 5585 5586 // No concerns about early exits now. 5587 BaseIn.release(); 5588 5589 // Build the operator call. 5590 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 5591 SourceLocation()); 5592 UsualUnaryConversions(FnExpr); 5593 5594 QualType ResultTy = Method->getResultType().getNonReferenceType(); 5595 ExprOwningPtr<CXXOperatorCallExpr> 5596 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, 5597 &Base, 1, ResultTy, OpLoc)); 5598 5599 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(), 5600 Method)) 5601 return ExprError(); 5602 return move(TheCall); 5603} 5604 5605/// FixOverloadedFunctionReference - E is an expression that refers to 5606/// a C++ overloaded function (possibly with some parentheses and 5607/// perhaps a '&' around it). We have resolved the overloaded function 5608/// to the function declaration Fn, so patch up the expression E to 5609/// refer (possibly indirectly) to Fn. Returns the new expr. 5610Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 5611 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5612 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 5613 if (SubExpr == PE->getSubExpr()) 5614 return PE->Retain(); 5615 5616 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 5617 } 5618 5619 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 5620 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn); 5621 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 5622 SubExpr->getType()) && 5623 "Implicit cast type cannot be determined from overload"); 5624 if (SubExpr == ICE->getSubExpr()) 5625 return ICE->Retain(); 5626 5627 return new (Context) ImplicitCastExpr(ICE->getType(), 5628 ICE->getCastKind(), 5629 SubExpr, 5630 ICE->isLvalueCast()); 5631 } 5632 5633 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 5634 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 5635 "Can only take the address of an overloaded function"); 5636 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5637 if (Method->isStatic()) { 5638 // Do nothing: static member functions aren't any different 5639 // from non-member functions. 5640 } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr())) { 5641 if (DRE->getQualifier()) { 5642 // We have taken the address of a pointer to member 5643 // function. Perform the computation here so that we get the 5644 // appropriate pointer to member type. 5645 QualType ClassType 5646 = Context.getTypeDeclType( 5647 cast<RecordDecl>(Method->getDeclContext())); 5648 QualType MemPtrType 5649 = Context.getMemberPointerType(Fn->getType(), 5650 ClassType.getTypePtr()); 5651 5652 DeclRefExpr *NewDRE 5653 = DeclRefExpr::Create(Context, 5654 DRE->getQualifier(), 5655 DRE->getQualifierRange(), 5656 Fn, 5657 DRE->getLocation(), 5658 DRE->hasExplicitTemplateArgumentList(), 5659 DRE->getLAngleLoc(), 5660 DRE->getTemplateArgs(), 5661 DRE->getNumTemplateArgs(), 5662 DRE->getRAngleLoc(), 5663 Fn->getType(), 5664 DRE->isTypeDependent(), 5665 DRE->isValueDependent()); 5666 5667 return new (Context) UnaryOperator(NewDRE, UnaryOperator::AddrOf, 5668 MemPtrType, 5669 UnOp->getOperatorLoc()); 5670 } 5671 } 5672 // FIXME: TemplateIdRefExpr referring to a member function template 5673 // specialization! 5674 } 5675 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 5676 if (SubExpr == UnOp->getSubExpr()) 5677 return UnOp->Retain(); 5678 5679 return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf, 5680 Context.getPointerType(SubExpr->getType()), 5681 UnOp->getOperatorLoc()); 5682 } 5683 5684 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 5685 assert((isa<OverloadedFunctionDecl>(DRE->getDecl()) || 5686 isa<FunctionTemplateDecl>(DRE->getDecl()) || 5687 isa<FunctionDecl>(DRE->getDecl())) && 5688 "Expected function or function template"); 5689 return DeclRefExpr::Create(Context, 5690 DRE->getQualifier(), 5691 DRE->getQualifierRange(), 5692 Fn, 5693 DRE->getLocation(), 5694 DRE->hasExplicitTemplateArgumentList(), 5695 DRE->getLAngleLoc(), 5696 DRE->getTemplateArgs(), 5697 DRE->getNumTemplateArgs(), 5698 DRE->getRAngleLoc(), 5699 Fn->getType(), 5700 DRE->isTypeDependent(), 5701 DRE->isValueDependent()); 5702 } 5703 5704 if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) { 5705 assert((isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) || 5706 isa<FunctionTemplateDecl>(MemExpr->getMemberDecl()) || 5707 isa<FunctionDecl>(MemExpr->getMemberDecl())) && 5708 "Expected member function or member function template"); 5709 return MemberExpr::Create(Context, MemExpr->getBase()->Retain(), 5710 MemExpr->isArrow(), 5711 MemExpr->getQualifier(), 5712 MemExpr->getQualifierRange(), 5713 Fn, 5714 MemExpr->getMemberLoc(), 5715 MemExpr->hasExplicitTemplateArgumentList(), 5716 MemExpr->getLAngleLoc(), 5717 MemExpr->getTemplateArgs(), 5718 MemExpr->getNumTemplateArgs(), 5719 MemExpr->getRAngleLoc(), 5720 Fn->getType()); 5721 } 5722 5723 if (TemplateIdRefExpr *TID = dyn_cast<TemplateIdRefExpr>(E)) { 5724 // FIXME: Don't destroy TID here, since we need its template arguments 5725 // to survive. 5726 // TID->Destroy(Context); 5727 return DeclRefExpr::Create(Context, 5728 TID->getQualifier(), TID->getQualifierRange(), 5729 Fn, TID->getTemplateNameLoc(), 5730 true, 5731 TID->getLAngleLoc(), 5732 TID->getTemplateArgs(), 5733 TID->getNumTemplateArgs(), 5734 TID->getRAngleLoc(), 5735 Fn->getType(), 5736 /*FIXME?*/false, /*FIXME?*/false); 5737 } 5738 5739 if (isa<UnresolvedFunctionNameExpr>(E)) 5740 return DeclRefExpr::Create(Context, 5741 /*Qualifier=*/0, 5742 /*QualifierRange=*/SourceRange(), 5743 Fn, E->getLocStart(), 5744 Fn->getType(), false, false); 5745 5746 assert(false && "Invalid reference to overloaded function"); 5747 return E->Retain(); 5748} 5749 5750} // end namespace clang 5751