SemaOverload.cpp revision 82ad87b872b4c75b5e47f5b3514cc7ab082150d6
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "Sema.h" 15#include "SemaInherit.h" 16#include "clang/Basic/Diagnostic.h" 17#include "clang/Lex/Preprocessor.h" 18#include "clang/AST/ASTContext.h" 19#include "clang/AST/Expr.h" 20#include "clang/AST/ExprCXX.h" 21#include "clang/AST/TypeOrdering.h" 22#include "clang/Basic/PartialDiagnostic.h" 23#include "llvm/ADT/SmallPtrSet.h" 24#include "llvm/ADT/STLExtras.h" 25#include "llvm/Support/Compiler.h" 26#include <algorithm> 27#include <cstdio> 28 29namespace clang { 30 31/// GetConversionCategory - Retrieve the implicit conversion 32/// category corresponding to the given implicit conversion kind. 33ImplicitConversionCategory 34GetConversionCategory(ImplicitConversionKind Kind) { 35 static const ImplicitConversionCategory 36 Category[(int)ICK_Num_Conversion_Kinds] = { 37 ICC_Identity, 38 ICC_Lvalue_Transformation, 39 ICC_Lvalue_Transformation, 40 ICC_Lvalue_Transformation, 41 ICC_Qualification_Adjustment, 42 ICC_Promotion, 43 ICC_Promotion, 44 ICC_Promotion, 45 ICC_Conversion, 46 ICC_Conversion, 47 ICC_Conversion, 48 ICC_Conversion, 49 ICC_Conversion, 50 ICC_Conversion, 51 ICC_Conversion, 52 ICC_Conversion, 53 ICC_Conversion, 54 ICC_Conversion 55 }; 56 return Category[(int)Kind]; 57} 58 59/// GetConversionRank - Retrieve the implicit conversion rank 60/// corresponding to the given implicit conversion kind. 61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 62 static const ImplicitConversionRank 63 Rank[(int)ICK_Num_Conversion_Kinds] = { 64 ICR_Exact_Match, 65 ICR_Exact_Match, 66 ICR_Exact_Match, 67 ICR_Exact_Match, 68 ICR_Exact_Match, 69 ICR_Promotion, 70 ICR_Promotion, 71 ICR_Promotion, 72 ICR_Conversion, 73 ICR_Conversion, 74 ICR_Conversion, 75 ICR_Conversion, 76 ICR_Conversion, 77 ICR_Conversion, 78 ICR_Conversion, 79 ICR_Conversion, 80 ICR_Conversion, 81 ICR_Conversion 82 }; 83 return Rank[(int)Kind]; 84} 85 86/// GetImplicitConversionName - Return the name of this kind of 87/// implicit conversion. 88const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 89 static const char* Name[(int)ICK_Num_Conversion_Kinds] = { 90 "No conversion", 91 "Lvalue-to-rvalue", 92 "Array-to-pointer", 93 "Function-to-pointer", 94 "Qualification", 95 "Integral promotion", 96 "Floating point promotion", 97 "Complex promotion", 98 "Integral conversion", 99 "Floating conversion", 100 "Complex conversion", 101 "Floating-integral conversion", 102 "Complex-real conversion", 103 "Pointer conversion", 104 "Pointer-to-member conversion", 105 "Boolean conversion", 106 "Compatible-types conversion", 107 "Derived-to-base conversion" 108 }; 109 return Name[Kind]; 110} 111 112/// StandardConversionSequence - Set the standard conversion 113/// sequence to the identity conversion. 114void StandardConversionSequence::setAsIdentityConversion() { 115 First = ICK_Identity; 116 Second = ICK_Identity; 117 Third = ICK_Identity; 118 Deprecated = false; 119 ReferenceBinding = false; 120 DirectBinding = false; 121 RRefBinding = false; 122 CopyConstructor = 0; 123} 124 125/// getRank - Retrieve the rank of this standard conversion sequence 126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 127/// implicit conversions. 128ImplicitConversionRank StandardConversionSequence::getRank() const { 129 ImplicitConversionRank Rank = ICR_Exact_Match; 130 if (GetConversionRank(First) > Rank) 131 Rank = GetConversionRank(First); 132 if (GetConversionRank(Second) > Rank) 133 Rank = GetConversionRank(Second); 134 if (GetConversionRank(Third) > Rank) 135 Rank = GetConversionRank(Third); 136 return Rank; 137} 138 139/// isPointerConversionToBool - Determines whether this conversion is 140/// a conversion of a pointer or pointer-to-member to bool. This is 141/// used as part of the ranking of standard conversion sequences 142/// (C++ 13.3.3.2p4). 143bool StandardConversionSequence::isPointerConversionToBool() const { 144 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 145 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 146 147 // Note that FromType has not necessarily been transformed by the 148 // array-to-pointer or function-to-pointer implicit conversions, so 149 // check for their presence as well as checking whether FromType is 150 // a pointer. 151 if (ToType->isBooleanType() && 152 (FromType->isPointerType() || FromType->isBlockPointerType() || 153 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 154 return true; 155 156 return false; 157} 158 159/// isPointerConversionToVoidPointer - Determines whether this 160/// conversion is a conversion of a pointer to a void pointer. This is 161/// used as part of the ranking of standard conversion sequences (C++ 162/// 13.3.3.2p4). 163bool 164StandardConversionSequence:: 165isPointerConversionToVoidPointer(ASTContext& Context) const { 166 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr); 167 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr); 168 169 // Note that FromType has not necessarily been transformed by the 170 // array-to-pointer implicit conversion, so check for its presence 171 // and redo the conversion to get a pointer. 172 if (First == ICK_Array_To_Pointer) 173 FromType = Context.getArrayDecayedType(FromType); 174 175 if (Second == ICK_Pointer_Conversion) 176 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 177 return ToPtrType->getPointeeType()->isVoidType(); 178 179 return false; 180} 181 182/// DebugPrint - Print this standard conversion sequence to standard 183/// error. Useful for debugging overloading issues. 184void StandardConversionSequence::DebugPrint() const { 185 bool PrintedSomething = false; 186 if (First != ICK_Identity) { 187 fprintf(stderr, "%s", GetImplicitConversionName(First)); 188 PrintedSomething = true; 189 } 190 191 if (Second != ICK_Identity) { 192 if (PrintedSomething) { 193 fprintf(stderr, " -> "); 194 } 195 fprintf(stderr, "%s", GetImplicitConversionName(Second)); 196 197 if (CopyConstructor) { 198 fprintf(stderr, " (by copy constructor)"); 199 } else if (DirectBinding) { 200 fprintf(stderr, " (direct reference binding)"); 201 } else if (ReferenceBinding) { 202 fprintf(stderr, " (reference binding)"); 203 } 204 PrintedSomething = true; 205 } 206 207 if (Third != ICK_Identity) { 208 if (PrintedSomething) { 209 fprintf(stderr, " -> "); 210 } 211 fprintf(stderr, "%s", GetImplicitConversionName(Third)); 212 PrintedSomething = true; 213 } 214 215 if (!PrintedSomething) { 216 fprintf(stderr, "No conversions required"); 217 } 218} 219 220/// DebugPrint - Print this user-defined conversion sequence to standard 221/// error. Useful for debugging overloading issues. 222void UserDefinedConversionSequence::DebugPrint() const { 223 if (Before.First || Before.Second || Before.Third) { 224 Before.DebugPrint(); 225 fprintf(stderr, " -> "); 226 } 227 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str()); 228 if (After.First || After.Second || After.Third) { 229 fprintf(stderr, " -> "); 230 After.DebugPrint(); 231 } 232} 233 234/// DebugPrint - Print this implicit conversion sequence to standard 235/// error. Useful for debugging overloading issues. 236void ImplicitConversionSequence::DebugPrint() const { 237 switch (ConversionKind) { 238 case StandardConversion: 239 fprintf(stderr, "Standard conversion: "); 240 Standard.DebugPrint(); 241 break; 242 case UserDefinedConversion: 243 fprintf(stderr, "User-defined conversion: "); 244 UserDefined.DebugPrint(); 245 break; 246 case EllipsisConversion: 247 fprintf(stderr, "Ellipsis conversion"); 248 break; 249 case BadConversion: 250 fprintf(stderr, "Bad conversion"); 251 break; 252 } 253 254 fprintf(stderr, "\n"); 255} 256 257// IsOverload - Determine whether the given New declaration is an 258// overload of the Old declaration. This routine returns false if New 259// and Old cannot be overloaded, e.g., if they are functions with the 260// same signature (C++ 1.3.10) or if the Old declaration isn't a 261// function (or overload set). When it does return false and Old is an 262// OverloadedFunctionDecl, MatchedDecl will be set to point to the 263// FunctionDecl that New cannot be overloaded with. 264// 265// Example: Given the following input: 266// 267// void f(int, float); // #1 268// void f(int, int); // #2 269// int f(int, int); // #3 270// 271// When we process #1, there is no previous declaration of "f", 272// so IsOverload will not be used. 273// 274// When we process #2, Old is a FunctionDecl for #1. By comparing the 275// parameter types, we see that #1 and #2 are overloaded (since they 276// have different signatures), so this routine returns false; 277// MatchedDecl is unchanged. 278// 279// When we process #3, Old is an OverloadedFunctionDecl containing #1 280// and #2. We compare the signatures of #3 to #1 (they're overloaded, 281// so we do nothing) and then #3 to #2. Since the signatures of #3 and 282// #2 are identical (return types of functions are not part of the 283// signature), IsOverload returns false and MatchedDecl will be set to 284// point to the FunctionDecl for #2. 285bool 286Sema::IsOverload(FunctionDecl *New, Decl* OldD, 287 OverloadedFunctionDecl::function_iterator& MatchedDecl) { 288 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) { 289 // Is this new function an overload of every function in the 290 // overload set? 291 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 292 FuncEnd = Ovl->function_end(); 293 for (; Func != FuncEnd; ++Func) { 294 if (!IsOverload(New, *Func, MatchedDecl)) { 295 MatchedDecl = Func; 296 return false; 297 } 298 } 299 300 // This function overloads every function in the overload set. 301 return true; 302 } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD)) 303 return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl); 304 else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) { 305 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 306 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 307 308 // C++ [temp.fct]p2: 309 // A function template can be overloaded with other function templates 310 // and with normal (non-template) functions. 311 if ((OldTemplate == 0) != (NewTemplate == 0)) 312 return true; 313 314 // Is the function New an overload of the function Old? 315 QualType OldQType = Context.getCanonicalType(Old->getType()); 316 QualType NewQType = Context.getCanonicalType(New->getType()); 317 318 // Compare the signatures (C++ 1.3.10) of the two functions to 319 // determine whether they are overloads. If we find any mismatch 320 // in the signature, they are overloads. 321 322 // If either of these functions is a K&R-style function (no 323 // prototype), then we consider them to have matching signatures. 324 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 325 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 326 return false; 327 328 FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 329 FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 330 331 // The signature of a function includes the types of its 332 // parameters (C++ 1.3.10), which includes the presence or absence 333 // of the ellipsis; see C++ DR 357). 334 if (OldQType != NewQType && 335 (OldType->getNumArgs() != NewType->getNumArgs() || 336 OldType->isVariadic() != NewType->isVariadic() || 337 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 338 NewType->arg_type_begin()))) 339 return true; 340 341 // C++ [temp.over.link]p4: 342 // The signature of a function template consists of its function 343 // signature, its return type and its template parameter list. The names 344 // of the template parameters are significant only for establishing the 345 // relationship between the template parameters and the rest of the 346 // signature. 347 // 348 // We check the return type and template parameter lists for function 349 // templates first; the remaining checks follow. 350 if (NewTemplate && 351 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 352 OldTemplate->getTemplateParameters(), 353 false, false, SourceLocation()) || 354 OldType->getResultType() != NewType->getResultType())) 355 return true; 356 357 // If the function is a class member, its signature includes the 358 // cv-qualifiers (if any) on the function itself. 359 // 360 // As part of this, also check whether one of the member functions 361 // is static, in which case they are not overloads (C++ 362 // 13.1p2). While not part of the definition of the signature, 363 // this check is important to determine whether these functions 364 // can be overloaded. 365 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 366 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 367 if (OldMethod && NewMethod && 368 !OldMethod->isStatic() && !NewMethod->isStatic() && 369 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers()) 370 return true; 371 372 // The signatures match; this is not an overload. 373 return false; 374 } else { 375 // (C++ 13p1): 376 // Only function declarations can be overloaded; object and type 377 // declarations cannot be overloaded. 378 return false; 379 } 380} 381 382/// TryImplicitConversion - Attempt to perform an implicit conversion 383/// from the given expression (Expr) to the given type (ToType). This 384/// function returns an implicit conversion sequence that can be used 385/// to perform the initialization. Given 386/// 387/// void f(float f); 388/// void g(int i) { f(i); } 389/// 390/// this routine would produce an implicit conversion sequence to 391/// describe the initialization of f from i, which will be a standard 392/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 393/// 4.1) followed by a floating-integral conversion (C++ 4.9). 394// 395/// Note that this routine only determines how the conversion can be 396/// performed; it does not actually perform the conversion. As such, 397/// it will not produce any diagnostics if no conversion is available, 398/// but will instead return an implicit conversion sequence of kind 399/// "BadConversion". 400/// 401/// If @p SuppressUserConversions, then user-defined conversions are 402/// not permitted. 403/// If @p AllowExplicit, then explicit user-defined conversions are 404/// permitted. 405/// If @p ForceRValue, then overloading is performed as if From was an rvalue, 406/// no matter its actual lvalueness. 407ImplicitConversionSequence 408Sema::TryImplicitConversion(Expr* From, QualType ToType, 409 bool SuppressUserConversions, 410 bool AllowExplicit, bool ForceRValue, 411 bool InOverloadResolution) { 412 ImplicitConversionSequence ICS; 413 OverloadCandidateSet Conversions; 414 OverloadingResult UserDefResult = OR_Success; 415 if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) 416 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 417 else if (getLangOptions().CPlusPlus && 418 (UserDefResult = IsUserDefinedConversion(From, ToType, 419 ICS.UserDefined, 420 Conversions, 421 !SuppressUserConversions, AllowExplicit, 422 ForceRValue)) == OR_Success) { 423 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion; 424 // C++ [over.ics.user]p4: 425 // A conversion of an expression of class type to the same class 426 // type is given Exact Match rank, and a conversion of an 427 // expression of class type to a base class of that type is 428 // given Conversion rank, in spite of the fact that a copy 429 // constructor (i.e., a user-defined conversion function) is 430 // called for those cases. 431 if (CXXConstructorDecl *Constructor 432 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 433 QualType FromCanon 434 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 435 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 436 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 437 // Turn this into a "standard" conversion sequence, so that it 438 // gets ranked with standard conversion sequences. 439 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 440 ICS.Standard.setAsIdentityConversion(); 441 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr(); 442 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr(); 443 ICS.Standard.CopyConstructor = Constructor; 444 if (ToCanon != FromCanon) 445 ICS.Standard.Second = ICK_Derived_To_Base; 446 } 447 } 448 449 // C++ [over.best.ics]p4: 450 // However, when considering the argument of a user-defined 451 // conversion function that is a candidate by 13.3.1.3 when 452 // invoked for the copying of the temporary in the second step 453 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 454 // 13.3.1.6 in all cases, only standard conversion sequences and 455 // ellipsis conversion sequences are allowed. 456 if (SuppressUserConversions && 457 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion) 458 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 459 } else { 460 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 461 if (UserDefResult == OR_Ambiguous) { 462 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 463 Cand != Conversions.end(); ++Cand) 464 ICS.ConversionFunctionSet.push_back(Cand->Function); 465 } 466 } 467 468 return ICS; 469} 470 471/// IsStandardConversion - Determines whether there is a standard 472/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 473/// expression From to the type ToType. Standard conversion sequences 474/// only consider non-class types; for conversions that involve class 475/// types, use TryImplicitConversion. If a conversion exists, SCS will 476/// contain the standard conversion sequence required to perform this 477/// conversion and this routine will return true. Otherwise, this 478/// routine will return false and the value of SCS is unspecified. 479bool 480Sema::IsStandardConversion(Expr* From, QualType ToType, 481 bool InOverloadResolution, 482 StandardConversionSequence &SCS) { 483 QualType FromType = From->getType(); 484 485 // Standard conversions (C++ [conv]) 486 SCS.setAsIdentityConversion(); 487 SCS.Deprecated = false; 488 SCS.IncompatibleObjC = false; 489 SCS.FromTypePtr = FromType.getAsOpaquePtr(); 490 SCS.CopyConstructor = 0; 491 492 // There are no standard conversions for class types in C++, so 493 // abort early. When overloading in C, however, we do permit 494 if (FromType->isRecordType() || ToType->isRecordType()) { 495 if (getLangOptions().CPlusPlus) 496 return false; 497 498 // When we're overloading in C, we allow, as standard conversions, 499 } 500 501 // The first conversion can be an lvalue-to-rvalue conversion, 502 // array-to-pointer conversion, or function-to-pointer conversion 503 // (C++ 4p1). 504 505 // Lvalue-to-rvalue conversion (C++ 4.1): 506 // An lvalue (3.10) of a non-function, non-array type T can be 507 // converted to an rvalue. 508 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context); 509 if (argIsLvalue == Expr::LV_Valid && 510 !FromType->isFunctionType() && !FromType->isArrayType() && 511 Context.getCanonicalType(FromType) != Context.OverloadTy) { 512 SCS.First = ICK_Lvalue_To_Rvalue; 513 514 // If T is a non-class type, the type of the rvalue is the 515 // cv-unqualified version of T. Otherwise, the type of the rvalue 516 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 517 // just strip the qualifiers because they don't matter. 518 519 // FIXME: Doesn't see through to qualifiers behind a typedef! 520 FromType = FromType.getUnqualifiedType(); 521 } else if (FromType->isArrayType()) { 522 // Array-to-pointer conversion (C++ 4.2) 523 SCS.First = ICK_Array_To_Pointer; 524 525 // An lvalue or rvalue of type "array of N T" or "array of unknown 526 // bound of T" can be converted to an rvalue of type "pointer to 527 // T" (C++ 4.2p1). 528 FromType = Context.getArrayDecayedType(FromType); 529 530 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) { 531 // This conversion is deprecated. (C++ D.4). 532 SCS.Deprecated = true; 533 534 // For the purpose of ranking in overload resolution 535 // (13.3.3.1.1), this conversion is considered an 536 // array-to-pointer conversion followed by a qualification 537 // conversion (4.4). (C++ 4.2p2) 538 SCS.Second = ICK_Identity; 539 SCS.Third = ICK_Qualification; 540 SCS.ToTypePtr = ToType.getAsOpaquePtr(); 541 return true; 542 } 543 } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) { 544 // Function-to-pointer conversion (C++ 4.3). 545 SCS.First = ICK_Function_To_Pointer; 546 547 // An lvalue of function type T can be converted to an rvalue of 548 // type "pointer to T." The result is a pointer to the 549 // function. (C++ 4.3p1). 550 FromType = Context.getPointerType(FromType); 551 } else if (FunctionDecl *Fn 552 = ResolveAddressOfOverloadedFunction(From, ToType, false)) { 553 // Address of overloaded function (C++ [over.over]). 554 SCS.First = ICK_Function_To_Pointer; 555 556 // We were able to resolve the address of the overloaded function, 557 // so we can convert to the type of that function. 558 FromType = Fn->getType(); 559 if (ToType->isLValueReferenceType()) 560 FromType = Context.getLValueReferenceType(FromType); 561 else if (ToType->isRValueReferenceType()) 562 FromType = Context.getRValueReferenceType(FromType); 563 else if (ToType->isMemberPointerType()) { 564 // Resolve address only succeeds if both sides are member pointers, 565 // but it doesn't have to be the same class. See DR 247. 566 // Note that this means that the type of &Derived::fn can be 567 // Ret (Base::*)(Args) if the fn overload actually found is from the 568 // base class, even if it was brought into the derived class via a 569 // using declaration. The standard isn't clear on this issue at all. 570 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 571 FromType = Context.getMemberPointerType(FromType, 572 Context.getTypeDeclType(M->getParent()).getTypePtr()); 573 } else 574 FromType = Context.getPointerType(FromType); 575 } else { 576 // We don't require any conversions for the first step. 577 SCS.First = ICK_Identity; 578 } 579 580 // The second conversion can be an integral promotion, floating 581 // point promotion, integral conversion, floating point conversion, 582 // floating-integral conversion, pointer conversion, 583 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 584 // For overloading in C, this can also be a "compatible-type" 585 // conversion. 586 bool IncompatibleObjC = false; 587 if (Context.hasSameUnqualifiedType(FromType, ToType)) { 588 // The unqualified versions of the types are the same: there's no 589 // conversion to do. 590 SCS.Second = ICK_Identity; 591 } else if (IsIntegralPromotion(From, FromType, ToType)) { 592 // Integral promotion (C++ 4.5). 593 SCS.Second = ICK_Integral_Promotion; 594 FromType = ToType.getUnqualifiedType(); 595 } else if (IsFloatingPointPromotion(FromType, ToType)) { 596 // Floating point promotion (C++ 4.6). 597 SCS.Second = ICK_Floating_Promotion; 598 FromType = ToType.getUnqualifiedType(); 599 } else if (IsComplexPromotion(FromType, ToType)) { 600 // Complex promotion (Clang extension) 601 SCS.Second = ICK_Complex_Promotion; 602 FromType = ToType.getUnqualifiedType(); 603 } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) && 604 (ToType->isIntegralType() && !ToType->isEnumeralType())) { 605 // Integral conversions (C++ 4.7). 606 // FIXME: isIntegralType shouldn't be true for enums in C++. 607 SCS.Second = ICK_Integral_Conversion; 608 FromType = ToType.getUnqualifiedType(); 609 } else if (FromType->isFloatingType() && ToType->isFloatingType()) { 610 // Floating point conversions (C++ 4.8). 611 SCS.Second = ICK_Floating_Conversion; 612 FromType = ToType.getUnqualifiedType(); 613 } else if (FromType->isComplexType() && ToType->isComplexType()) { 614 // Complex conversions (C99 6.3.1.6) 615 SCS.Second = ICK_Complex_Conversion; 616 FromType = ToType.getUnqualifiedType(); 617 } else if ((FromType->isFloatingType() && 618 ToType->isIntegralType() && (!ToType->isBooleanType() && 619 !ToType->isEnumeralType())) || 620 ((FromType->isIntegralType() || FromType->isEnumeralType()) && 621 ToType->isFloatingType())) { 622 // Floating-integral conversions (C++ 4.9). 623 // FIXME: isIntegralType shouldn't be true for enums in C++. 624 SCS.Second = ICK_Floating_Integral; 625 FromType = ToType.getUnqualifiedType(); 626 } else if ((FromType->isComplexType() && ToType->isArithmeticType()) || 627 (ToType->isComplexType() && FromType->isArithmeticType())) { 628 // Complex-real conversions (C99 6.3.1.7) 629 SCS.Second = ICK_Complex_Real; 630 FromType = ToType.getUnqualifiedType(); 631 } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution, 632 FromType, IncompatibleObjC)) { 633 // Pointer conversions (C++ 4.10). 634 SCS.Second = ICK_Pointer_Conversion; 635 SCS.IncompatibleObjC = IncompatibleObjC; 636 } else if (IsMemberPointerConversion(From, FromType, ToType, 637 InOverloadResolution, FromType)) { 638 // Pointer to member conversions (4.11). 639 SCS.Second = ICK_Pointer_Member; 640 } else if (ToType->isBooleanType() && 641 (FromType->isArithmeticType() || 642 FromType->isEnumeralType() || 643 FromType->isPointerType() || 644 FromType->isBlockPointerType() || 645 FromType->isMemberPointerType() || 646 FromType->isNullPtrType())) { 647 // Boolean conversions (C++ 4.12). 648 SCS.Second = ICK_Boolean_Conversion; 649 FromType = Context.BoolTy; 650 } else if (!getLangOptions().CPlusPlus && 651 Context.typesAreCompatible(ToType, FromType)) { 652 // Compatible conversions (Clang extension for C function overloading) 653 SCS.Second = ICK_Compatible_Conversion; 654 } else { 655 // No second conversion required. 656 SCS.Second = ICK_Identity; 657 } 658 659 QualType CanonFrom; 660 QualType CanonTo; 661 // The third conversion can be a qualification conversion (C++ 4p1). 662 if (IsQualificationConversion(FromType, ToType)) { 663 SCS.Third = ICK_Qualification; 664 FromType = ToType; 665 CanonFrom = Context.getCanonicalType(FromType); 666 CanonTo = Context.getCanonicalType(ToType); 667 } else { 668 // No conversion required 669 SCS.Third = ICK_Identity; 670 671 // C++ [over.best.ics]p6: 672 // [...] Any difference in top-level cv-qualification is 673 // subsumed by the initialization itself and does not constitute 674 // a conversion. [...] 675 CanonFrom = Context.getCanonicalType(FromType); 676 CanonTo = Context.getCanonicalType(ToType); 677 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() && 678 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) { 679 FromType = ToType; 680 CanonFrom = CanonTo; 681 } 682 } 683 684 // If we have not converted the argument type to the parameter type, 685 // this is a bad conversion sequence. 686 if (CanonFrom != CanonTo) 687 return false; 688 689 SCS.ToTypePtr = FromType.getAsOpaquePtr(); 690 return true; 691} 692 693/// IsIntegralPromotion - Determines whether the conversion from the 694/// expression From (whose potentially-adjusted type is FromType) to 695/// ToType is an integral promotion (C++ 4.5). If so, returns true and 696/// sets PromotedType to the promoted type. 697bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 698 const BuiltinType *To = ToType->getAs<BuiltinType>(); 699 // All integers are built-in. 700 if (!To) { 701 return false; 702 } 703 704 // An rvalue of type char, signed char, unsigned char, short int, or 705 // unsigned short int can be converted to an rvalue of type int if 706 // int can represent all the values of the source type; otherwise, 707 // the source rvalue can be converted to an rvalue of type unsigned 708 // int (C++ 4.5p1). 709 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) { 710 if (// We can promote any signed, promotable integer type to an int 711 (FromType->isSignedIntegerType() || 712 // We can promote any unsigned integer type whose size is 713 // less than int to an int. 714 (!FromType->isSignedIntegerType() && 715 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 716 return To->getKind() == BuiltinType::Int; 717 } 718 719 return To->getKind() == BuiltinType::UInt; 720 } 721 722 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) 723 // can be converted to an rvalue of the first of the following types 724 // that can represent all the values of its underlying type: int, 725 // unsigned int, long, or unsigned long (C++ 4.5p2). 726 if ((FromType->isEnumeralType() || FromType->isWideCharType()) 727 && ToType->isIntegerType()) { 728 // Determine whether the type we're converting from is signed or 729 // unsigned. 730 bool FromIsSigned; 731 uint64_t FromSize = Context.getTypeSize(FromType); 732 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 733 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType(); 734 FromIsSigned = UnderlyingType->isSignedIntegerType(); 735 } else { 736 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now. 737 FromIsSigned = true; 738 } 739 740 // The types we'll try to promote to, in the appropriate 741 // order. Try each of these types. 742 QualType PromoteTypes[6] = { 743 Context.IntTy, Context.UnsignedIntTy, 744 Context.LongTy, Context.UnsignedLongTy , 745 Context.LongLongTy, Context.UnsignedLongLongTy 746 }; 747 for (int Idx = 0; Idx < 6; ++Idx) { 748 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 749 if (FromSize < ToSize || 750 (FromSize == ToSize && 751 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 752 // We found the type that we can promote to. If this is the 753 // type we wanted, we have a promotion. Otherwise, no 754 // promotion. 755 return Context.getCanonicalType(ToType).getUnqualifiedType() 756 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType(); 757 } 758 } 759 } 760 761 // An rvalue for an integral bit-field (9.6) can be converted to an 762 // rvalue of type int if int can represent all the values of the 763 // bit-field; otherwise, it can be converted to unsigned int if 764 // unsigned int can represent all the values of the bit-field. If 765 // the bit-field is larger yet, no integral promotion applies to 766 // it. If the bit-field has an enumerated type, it is treated as any 767 // other value of that type for promotion purposes (C++ 4.5p3). 768 // FIXME: We should delay checking of bit-fields until we actually perform the 769 // conversion. 770 using llvm::APSInt; 771 if (From) 772 if (FieldDecl *MemberDecl = From->getBitField()) { 773 APSInt BitWidth; 774 if (FromType->isIntegralType() && !FromType->isEnumeralType() && 775 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 776 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 777 ToSize = Context.getTypeSize(ToType); 778 779 // Are we promoting to an int from a bitfield that fits in an int? 780 if (BitWidth < ToSize || 781 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 782 return To->getKind() == BuiltinType::Int; 783 } 784 785 // Are we promoting to an unsigned int from an unsigned bitfield 786 // that fits into an unsigned int? 787 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 788 return To->getKind() == BuiltinType::UInt; 789 } 790 791 return false; 792 } 793 } 794 795 // An rvalue of type bool can be converted to an rvalue of type int, 796 // with false becoming zero and true becoming one (C++ 4.5p4). 797 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 798 return true; 799 } 800 801 return false; 802} 803 804/// IsFloatingPointPromotion - Determines whether the conversion from 805/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 806/// returns true and sets PromotedType to the promoted type. 807bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 808 /// An rvalue of type float can be converted to an rvalue of type 809 /// double. (C++ 4.6p1). 810 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 811 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 812 if (FromBuiltin->getKind() == BuiltinType::Float && 813 ToBuiltin->getKind() == BuiltinType::Double) 814 return true; 815 816 // C99 6.3.1.5p1: 817 // When a float is promoted to double or long double, or a 818 // double is promoted to long double [...]. 819 if (!getLangOptions().CPlusPlus && 820 (FromBuiltin->getKind() == BuiltinType::Float || 821 FromBuiltin->getKind() == BuiltinType::Double) && 822 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 823 return true; 824 } 825 826 return false; 827} 828 829/// \brief Determine if a conversion is a complex promotion. 830/// 831/// A complex promotion is defined as a complex -> complex conversion 832/// where the conversion between the underlying real types is a 833/// floating-point or integral promotion. 834bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 835 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 836 if (!FromComplex) 837 return false; 838 839 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 840 if (!ToComplex) 841 return false; 842 843 return IsFloatingPointPromotion(FromComplex->getElementType(), 844 ToComplex->getElementType()) || 845 IsIntegralPromotion(0, FromComplex->getElementType(), 846 ToComplex->getElementType()); 847} 848 849/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 850/// the pointer type FromPtr to a pointer to type ToPointee, with the 851/// same type qualifiers as FromPtr has on its pointee type. ToType, 852/// if non-empty, will be a pointer to ToType that may or may not have 853/// the right set of qualifiers on its pointee. 854static QualType 855BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr, 856 QualType ToPointee, QualType ToType, 857 ASTContext &Context) { 858 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType()); 859 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 860 Qualifiers Quals = CanonFromPointee.getQualifiers(); 861 862 // Exact qualifier match -> return the pointer type we're converting to. 863 if (CanonToPointee.getQualifiers() == Quals) { 864 // ToType is exactly what we need. Return it. 865 if (!ToType.isNull()) 866 return ToType; 867 868 // Build a pointer to ToPointee. It has the right qualifiers 869 // already. 870 return Context.getPointerType(ToPointee); 871 } 872 873 // Just build a canonical type that has the right qualifiers. 874 return Context.getPointerType( 875 Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals)); 876} 877 878static bool isNullPointerConstantForConversion(Expr *Expr, 879 bool InOverloadResolution, 880 ASTContext &Context) { 881 // Handle value-dependent integral null pointer constants correctly. 882 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 883 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 884 Expr->getType()->isIntegralType()) 885 return !InOverloadResolution; 886 887 return Expr->isNullPointerConstant(Context, 888 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 889 : Expr::NPC_ValueDependentIsNull); 890} 891 892/// IsPointerConversion - Determines whether the conversion of the 893/// expression From, which has the (possibly adjusted) type FromType, 894/// can be converted to the type ToType via a pointer conversion (C++ 895/// 4.10). If so, returns true and places the converted type (that 896/// might differ from ToType in its cv-qualifiers at some level) into 897/// ConvertedType. 898/// 899/// This routine also supports conversions to and from block pointers 900/// and conversions with Objective-C's 'id', 'id<protocols...>', and 901/// pointers to interfaces. FIXME: Once we've determined the 902/// appropriate overloading rules for Objective-C, we may want to 903/// split the Objective-C checks into a different routine; however, 904/// GCC seems to consider all of these conversions to be pointer 905/// conversions, so for now they live here. IncompatibleObjC will be 906/// set if the conversion is an allowed Objective-C conversion that 907/// should result in a warning. 908bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 909 bool InOverloadResolution, 910 QualType& ConvertedType, 911 bool &IncompatibleObjC) { 912 IncompatibleObjC = false; 913 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC)) 914 return true; 915 916 // Conversion from a null pointer constant to any Objective-C pointer type. 917 if (ToType->isObjCObjectPointerType() && 918 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 919 ConvertedType = ToType; 920 return true; 921 } 922 923 // Blocks: Block pointers can be converted to void*. 924 if (FromType->isBlockPointerType() && ToType->isPointerType() && 925 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 926 ConvertedType = ToType; 927 return true; 928 } 929 // Blocks: A null pointer constant can be converted to a block 930 // pointer type. 931 if (ToType->isBlockPointerType() && 932 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 933 ConvertedType = ToType; 934 return true; 935 } 936 937 // If the left-hand-side is nullptr_t, the right side can be a null 938 // pointer constant. 939 if (ToType->isNullPtrType() && 940 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 941 ConvertedType = ToType; 942 return true; 943 } 944 945 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 946 if (!ToTypePtr) 947 return false; 948 949 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 950 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 951 ConvertedType = ToType; 952 return true; 953 } 954 955 // Beyond this point, both types need to be pointers. 956 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 957 if (!FromTypePtr) 958 return false; 959 960 QualType FromPointeeType = FromTypePtr->getPointeeType(); 961 QualType ToPointeeType = ToTypePtr->getPointeeType(); 962 963 // An rvalue of type "pointer to cv T," where T is an object type, 964 // can be converted to an rvalue of type "pointer to cv void" (C++ 965 // 4.10p2). 966 if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) { 967 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 968 ToPointeeType, 969 ToType, Context); 970 return true; 971 } 972 973 // When we're overloading in C, we allow a special kind of pointer 974 // conversion for compatible-but-not-identical pointee types. 975 if (!getLangOptions().CPlusPlus && 976 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 977 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 978 ToPointeeType, 979 ToType, Context); 980 return true; 981 } 982 983 // C++ [conv.ptr]p3: 984 // 985 // An rvalue of type "pointer to cv D," where D is a class type, 986 // can be converted to an rvalue of type "pointer to cv B," where 987 // B is a base class (clause 10) of D. If B is an inaccessible 988 // (clause 11) or ambiguous (10.2) base class of D, a program that 989 // necessitates this conversion is ill-formed. The result of the 990 // conversion is a pointer to the base class sub-object of the 991 // derived class object. The null pointer value is converted to 992 // the null pointer value of the destination type. 993 // 994 // Note that we do not check for ambiguity or inaccessibility 995 // here. That is handled by CheckPointerConversion. 996 if (getLangOptions().CPlusPlus && 997 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 998 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 999 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1000 ToPointeeType, 1001 ToType, Context); 1002 return true; 1003 } 1004 1005 return false; 1006} 1007 1008/// isObjCPointerConversion - Determines whether this is an 1009/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1010/// with the same arguments and return values. 1011bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1012 QualType& ConvertedType, 1013 bool &IncompatibleObjC) { 1014 if (!getLangOptions().ObjC1) 1015 return false; 1016 1017 // First, we handle all conversions on ObjC object pointer types. 1018 const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>(); 1019 const ObjCObjectPointerType *FromObjCPtr = 1020 FromType->getAs<ObjCObjectPointerType>(); 1021 1022 if (ToObjCPtr && FromObjCPtr) { 1023 // Objective C++: We're able to convert between "id" or "Class" and a 1024 // pointer to any interface (in both directions). 1025 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1026 ConvertedType = ToType; 1027 return true; 1028 } 1029 // Conversions with Objective-C's id<...>. 1030 if ((FromObjCPtr->isObjCQualifiedIdType() || 1031 ToObjCPtr->isObjCQualifiedIdType()) && 1032 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1033 /*compare=*/false)) { 1034 ConvertedType = ToType; 1035 return true; 1036 } 1037 // Objective C++: We're able to convert from a pointer to an 1038 // interface to a pointer to a different interface. 1039 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1040 ConvertedType = ToType; 1041 return true; 1042 } 1043 1044 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1045 // Okay: this is some kind of implicit downcast of Objective-C 1046 // interfaces, which is permitted. However, we're going to 1047 // complain about it. 1048 IncompatibleObjC = true; 1049 ConvertedType = FromType; 1050 return true; 1051 } 1052 } 1053 // Beyond this point, both types need to be C pointers or block pointers. 1054 QualType ToPointeeType; 1055 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1056 ToPointeeType = ToCPtr->getPointeeType(); 1057 else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>()) 1058 ToPointeeType = ToBlockPtr->getPointeeType(); 1059 else 1060 return false; 1061 1062 QualType FromPointeeType; 1063 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1064 FromPointeeType = FromCPtr->getPointeeType(); 1065 else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>()) 1066 FromPointeeType = FromBlockPtr->getPointeeType(); 1067 else 1068 return false; 1069 1070 // If we have pointers to pointers, recursively check whether this 1071 // is an Objective-C conversion. 1072 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1073 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1074 IncompatibleObjC)) { 1075 // We always complain about this conversion. 1076 IncompatibleObjC = true; 1077 ConvertedType = ToType; 1078 return true; 1079 } 1080 // If we have pointers to functions or blocks, check whether the only 1081 // differences in the argument and result types are in Objective-C 1082 // pointer conversions. If so, we permit the conversion (but 1083 // complain about it). 1084 const FunctionProtoType *FromFunctionType 1085 = FromPointeeType->getAs<FunctionProtoType>(); 1086 const FunctionProtoType *ToFunctionType 1087 = ToPointeeType->getAs<FunctionProtoType>(); 1088 if (FromFunctionType && ToFunctionType) { 1089 // If the function types are exactly the same, this isn't an 1090 // Objective-C pointer conversion. 1091 if (Context.getCanonicalType(FromPointeeType) 1092 == Context.getCanonicalType(ToPointeeType)) 1093 return false; 1094 1095 // Perform the quick checks that will tell us whether these 1096 // function types are obviously different. 1097 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1098 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1099 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1100 return false; 1101 1102 bool HasObjCConversion = false; 1103 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1104 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1105 // Okay, the types match exactly. Nothing to do. 1106 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1107 ToFunctionType->getResultType(), 1108 ConvertedType, IncompatibleObjC)) { 1109 // Okay, we have an Objective-C pointer conversion. 1110 HasObjCConversion = true; 1111 } else { 1112 // Function types are too different. Abort. 1113 return false; 1114 } 1115 1116 // Check argument types. 1117 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1118 ArgIdx != NumArgs; ++ArgIdx) { 1119 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1120 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1121 if (Context.getCanonicalType(FromArgType) 1122 == Context.getCanonicalType(ToArgType)) { 1123 // Okay, the types match exactly. Nothing to do. 1124 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1125 ConvertedType, IncompatibleObjC)) { 1126 // Okay, we have an Objective-C pointer conversion. 1127 HasObjCConversion = true; 1128 } else { 1129 // Argument types are too different. Abort. 1130 return false; 1131 } 1132 } 1133 1134 if (HasObjCConversion) { 1135 // We had an Objective-C conversion. Allow this pointer 1136 // conversion, but complain about it. 1137 ConvertedType = ToType; 1138 IncompatibleObjC = true; 1139 return true; 1140 } 1141 } 1142 1143 return false; 1144} 1145 1146/// CheckPointerConversion - Check the pointer conversion from the 1147/// expression From to the type ToType. This routine checks for 1148/// ambiguous or inaccessible derived-to-base pointer 1149/// conversions for which IsPointerConversion has already returned 1150/// true. It returns true and produces a diagnostic if there was an 1151/// error, or returns false otherwise. 1152bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 1153 CastExpr::CastKind &Kind) { 1154 QualType FromType = From->getType(); 1155 1156 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) 1157 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 1158 QualType FromPointeeType = FromPtrType->getPointeeType(), 1159 ToPointeeType = ToPtrType->getPointeeType(); 1160 1161 if (FromPointeeType->isRecordType() && 1162 ToPointeeType->isRecordType()) { 1163 // We must have a derived-to-base conversion. Check an 1164 // ambiguous or inaccessible conversion. 1165 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 1166 From->getExprLoc(), 1167 From->getSourceRange())) 1168 return true; 1169 1170 // The conversion was successful. 1171 Kind = CastExpr::CK_DerivedToBase; 1172 } 1173 } 1174 if (const ObjCObjectPointerType *FromPtrType = 1175 FromType->getAs<ObjCObjectPointerType>()) 1176 if (const ObjCObjectPointerType *ToPtrType = 1177 ToType->getAs<ObjCObjectPointerType>()) { 1178 // Objective-C++ conversions are always okay. 1179 // FIXME: We should have a different class of conversions for the 1180 // Objective-C++ implicit conversions. 1181 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 1182 return false; 1183 1184 } 1185 return false; 1186} 1187 1188/// IsMemberPointerConversion - Determines whether the conversion of the 1189/// expression From, which has the (possibly adjusted) type FromType, can be 1190/// converted to the type ToType via a member pointer conversion (C++ 4.11). 1191/// If so, returns true and places the converted type (that might differ from 1192/// ToType in its cv-qualifiers at some level) into ConvertedType. 1193bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 1194 QualType ToType, 1195 bool InOverloadResolution, 1196 QualType &ConvertedType) { 1197 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 1198 if (!ToTypePtr) 1199 return false; 1200 1201 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 1202 if (From->isNullPointerConstant(Context, 1203 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1204 : Expr::NPC_ValueDependentIsNull)) { 1205 ConvertedType = ToType; 1206 return true; 1207 } 1208 1209 // Otherwise, both types have to be member pointers. 1210 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 1211 if (!FromTypePtr) 1212 return false; 1213 1214 // A pointer to member of B can be converted to a pointer to member of D, 1215 // where D is derived from B (C++ 4.11p2). 1216 QualType FromClass(FromTypePtr->getClass(), 0); 1217 QualType ToClass(ToTypePtr->getClass(), 0); 1218 // FIXME: What happens when these are dependent? Is this function even called? 1219 1220 if (IsDerivedFrom(ToClass, FromClass)) { 1221 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 1222 ToClass.getTypePtr()); 1223 return true; 1224 } 1225 1226 return false; 1227} 1228 1229/// CheckMemberPointerConversion - Check the member pointer conversion from the 1230/// expression From to the type ToType. This routine checks for ambiguous or 1231/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions 1232/// for which IsMemberPointerConversion has already returned true. It returns 1233/// true and produces a diagnostic if there was an error, or returns false 1234/// otherwise. 1235bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 1236 CastExpr::CastKind &Kind) { 1237 QualType FromType = From->getType(); 1238 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 1239 if (!FromPtrType) { 1240 // This must be a null pointer to member pointer conversion 1241 assert(From->isNullPointerConstant(Context, 1242 Expr::NPC_ValueDependentIsNull) && 1243 "Expr must be null pointer constant!"); 1244 Kind = CastExpr::CK_NullToMemberPointer; 1245 return false; 1246 } 1247 1248 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 1249 assert(ToPtrType && "No member pointer cast has a target type " 1250 "that is not a member pointer."); 1251 1252 QualType FromClass = QualType(FromPtrType->getClass(), 0); 1253 QualType ToClass = QualType(ToPtrType->getClass(), 0); 1254 1255 // FIXME: What about dependent types? 1256 assert(FromClass->isRecordType() && "Pointer into non-class."); 1257 assert(ToClass->isRecordType() && "Pointer into non-class."); 1258 1259 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 1260 /*DetectVirtual=*/true); 1261 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1262 assert(DerivationOkay && 1263 "Should not have been called if derivation isn't OK."); 1264 (void)DerivationOkay; 1265 1266 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 1267 getUnqualifiedType())) { 1268 // Derivation is ambiguous. Redo the check to find the exact paths. 1269 Paths.clear(); 1270 Paths.setRecordingPaths(true); 1271 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths); 1272 assert(StillOkay && "Derivation changed due to quantum fluctuation."); 1273 (void)StillOkay; 1274 1275 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 1276 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 1277 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 1278 return true; 1279 } 1280 1281 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1282 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 1283 << FromClass << ToClass << QualType(VBase, 0) 1284 << From->getSourceRange(); 1285 return true; 1286 } 1287 1288 // Must be a base to derived member conversion. 1289 Kind = CastExpr::CK_BaseToDerivedMemberPointer; 1290 return false; 1291} 1292 1293/// IsQualificationConversion - Determines whether the conversion from 1294/// an rvalue of type FromType to ToType is a qualification conversion 1295/// (C++ 4.4). 1296bool 1297Sema::IsQualificationConversion(QualType FromType, QualType ToType) { 1298 FromType = Context.getCanonicalType(FromType); 1299 ToType = Context.getCanonicalType(ToType); 1300 1301 // If FromType and ToType are the same type, this is not a 1302 // qualification conversion. 1303 if (FromType == ToType) 1304 return false; 1305 1306 // (C++ 4.4p4): 1307 // A conversion can add cv-qualifiers at levels other than the first 1308 // in multi-level pointers, subject to the following rules: [...] 1309 bool PreviousToQualsIncludeConst = true; 1310 bool UnwrappedAnyPointer = false; 1311 while (UnwrapSimilarPointerTypes(FromType, ToType)) { 1312 // Within each iteration of the loop, we check the qualifiers to 1313 // determine if this still looks like a qualification 1314 // conversion. Then, if all is well, we unwrap one more level of 1315 // pointers or pointers-to-members and do it all again 1316 // until there are no more pointers or pointers-to-members left to 1317 // unwrap. 1318 UnwrappedAnyPointer = true; 1319 1320 // -- for every j > 0, if const is in cv 1,j then const is in cv 1321 // 2,j, and similarly for volatile. 1322 if (!ToType.isAtLeastAsQualifiedAs(FromType)) 1323 return false; 1324 1325 // -- if the cv 1,j and cv 2,j are different, then const is in 1326 // every cv for 0 < k < j. 1327 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers() 1328 && !PreviousToQualsIncludeConst) 1329 return false; 1330 1331 // Keep track of whether all prior cv-qualifiers in the "to" type 1332 // include const. 1333 PreviousToQualsIncludeConst 1334 = PreviousToQualsIncludeConst && ToType.isConstQualified(); 1335 } 1336 1337 // We are left with FromType and ToType being the pointee types 1338 // after unwrapping the original FromType and ToType the same number 1339 // of types. If we unwrapped any pointers, and if FromType and 1340 // ToType have the same unqualified type (since we checked 1341 // qualifiers above), then this is a qualification conversion. 1342 return UnwrappedAnyPointer && 1343 FromType.getUnqualifiedType() == ToType.getUnqualifiedType(); 1344} 1345 1346/// \brief Given a function template or function, extract the function template 1347/// declaration (if any) and the underlying function declaration. 1348template<typename T> 1349static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function, 1350 FunctionTemplateDecl *&FunctionTemplate) { 1351 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig); 1352 if (FunctionTemplate) 1353 Function = cast<T>(FunctionTemplate->getTemplatedDecl()); 1354 else 1355 Function = cast<T>(Orig); 1356} 1357 1358/// Determines whether there is a user-defined conversion sequence 1359/// (C++ [over.ics.user]) that converts expression From to the type 1360/// ToType. If such a conversion exists, User will contain the 1361/// user-defined conversion sequence that performs such a conversion 1362/// and this routine will return true. Otherwise, this routine returns 1363/// false and User is unspecified. 1364/// 1365/// \param AllowConversionFunctions true if the conversion should 1366/// consider conversion functions at all. If false, only constructors 1367/// will be considered. 1368/// 1369/// \param AllowExplicit true if the conversion should consider C++0x 1370/// "explicit" conversion functions as well as non-explicit conversion 1371/// functions (C++0x [class.conv.fct]p2). 1372/// 1373/// \param ForceRValue true if the expression should be treated as an rvalue 1374/// for overload resolution. 1375Sema::OverloadingResult Sema::IsUserDefinedConversion( 1376 Expr *From, QualType ToType, 1377 UserDefinedConversionSequence& User, 1378 OverloadCandidateSet& CandidateSet, 1379 bool AllowConversionFunctions, 1380 bool AllowExplicit, bool ForceRValue) { 1381 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 1382 if (CXXRecordDecl *ToRecordDecl 1383 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 1384 // C++ [over.match.ctor]p1: 1385 // When objects of class type are direct-initialized (8.5), or 1386 // copy-initialized from an expression of the same or a 1387 // derived class type (8.5), overload resolution selects the 1388 // constructor. [...] For copy-initialization, the candidate 1389 // functions are all the converting constructors (12.3.1) of 1390 // that class. The argument list is the expression-list within 1391 // the parentheses of the initializer. 1392 DeclarationName ConstructorName 1393 = Context.DeclarationNames.getCXXConstructorName( 1394 Context.getCanonicalType(ToType).getUnqualifiedType()); 1395 DeclContext::lookup_iterator Con, ConEnd; 1396 for (llvm::tie(Con, ConEnd) 1397 = ToRecordDecl->lookup(ConstructorName); 1398 Con != ConEnd; ++Con) { 1399 // Find the constructor (which may be a template). 1400 CXXConstructorDecl *Constructor = 0; 1401 FunctionTemplateDecl *ConstructorTmpl 1402 = dyn_cast<FunctionTemplateDecl>(*Con); 1403 if (ConstructorTmpl) 1404 Constructor 1405 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 1406 else 1407 Constructor = cast<CXXConstructorDecl>(*Con); 1408 1409 if (!Constructor->isInvalidDecl() && 1410 Constructor->isConvertingConstructor(AllowExplicit)) { 1411 if (ConstructorTmpl) 1412 AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From, 1413 1, CandidateSet, 1414 /*SuppressUserConversions=*/true, 1415 ForceRValue); 1416 else 1417 AddOverloadCandidate(Constructor, &From, 1, CandidateSet, 1418 /*SuppressUserConversions=*/true, ForceRValue); 1419 } 1420 } 1421 } 1422 } 1423 1424 if (!AllowConversionFunctions) { 1425 // Don't allow any conversion functions to enter the overload set. 1426 } else if (RequireCompleteType(From->getLocStart(), From->getType(), 1427 PDiag(0) 1428 << From->getSourceRange())) { 1429 // No conversion functions from incomplete types. 1430 } else if (const RecordType *FromRecordType 1431 = From->getType()->getAs<RecordType>()) { 1432 if (CXXRecordDecl *FromRecordDecl 1433 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 1434 // Add all of the conversion functions as candidates. 1435 OverloadedFunctionDecl *Conversions 1436 = FromRecordDecl->getVisibleConversionFunctions(); 1437 for (OverloadedFunctionDecl::function_iterator Func 1438 = Conversions->function_begin(); 1439 Func != Conversions->function_end(); ++Func) { 1440 CXXConversionDecl *Conv; 1441 FunctionTemplateDecl *ConvTemplate; 1442 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 1443 if (ConvTemplate) 1444 Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 1445 else 1446 Conv = dyn_cast<CXXConversionDecl>(*Func); 1447 1448 if (AllowExplicit || !Conv->isExplicit()) { 1449 if (ConvTemplate) 1450 AddTemplateConversionCandidate(ConvTemplate, From, ToType, 1451 CandidateSet); 1452 else 1453 AddConversionCandidate(Conv, From, ToType, CandidateSet); 1454 } 1455 } 1456 } 1457 } 1458 1459 OverloadCandidateSet::iterator Best; 1460 switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) { 1461 case OR_Success: 1462 // Record the standard conversion we used and the conversion function. 1463 if (CXXConstructorDecl *Constructor 1464 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 1465 // C++ [over.ics.user]p1: 1466 // If the user-defined conversion is specified by a 1467 // constructor (12.3.1), the initial standard conversion 1468 // sequence converts the source type to the type required by 1469 // the argument of the constructor. 1470 // 1471 // FIXME: What about ellipsis conversions? 1472 QualType ThisType = Constructor->getThisType(Context); 1473 User.Before = Best->Conversions[0].Standard; 1474 User.ConversionFunction = Constructor; 1475 User.After.setAsIdentityConversion(); 1476 User.After.FromTypePtr 1477 = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr(); 1478 User.After.ToTypePtr = ToType.getAsOpaquePtr(); 1479 return OR_Success; 1480 } else if (CXXConversionDecl *Conversion 1481 = dyn_cast<CXXConversionDecl>(Best->Function)) { 1482 // C++ [over.ics.user]p1: 1483 // 1484 // [...] If the user-defined conversion is specified by a 1485 // conversion function (12.3.2), the initial standard 1486 // conversion sequence converts the source type to the 1487 // implicit object parameter of the conversion function. 1488 User.Before = Best->Conversions[0].Standard; 1489 User.ConversionFunction = Conversion; 1490 1491 // C++ [over.ics.user]p2: 1492 // The second standard conversion sequence converts the 1493 // result of the user-defined conversion to the target type 1494 // for the sequence. Since an implicit conversion sequence 1495 // is an initialization, the special rules for 1496 // initialization by user-defined conversion apply when 1497 // selecting the best user-defined conversion for a 1498 // user-defined conversion sequence (see 13.3.3 and 1499 // 13.3.3.1). 1500 User.After = Best->FinalConversion; 1501 return OR_Success; 1502 } else { 1503 assert(false && "Not a constructor or conversion function?"); 1504 return OR_No_Viable_Function; 1505 } 1506 1507 case OR_No_Viable_Function: 1508 return OR_No_Viable_Function; 1509 case OR_Deleted: 1510 // No conversion here! We're done. 1511 return OR_Deleted; 1512 1513 case OR_Ambiguous: 1514 return OR_Ambiguous; 1515 } 1516 1517 return OR_No_Viable_Function; 1518} 1519 1520bool 1521Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) { 1522 ImplicitConversionSequence ICS; 1523 OverloadCandidateSet CandidateSet; 1524 OverloadingResult OvResult = 1525 IsUserDefinedConversion(From, ToType, ICS.UserDefined, 1526 CandidateSet, true, false, false); 1527 if (OvResult != OR_Ambiguous) 1528 return false; 1529 Diag(From->getSourceRange().getBegin(), 1530 diag::err_typecheck_ambiguous_condition) 1531 << From->getType() << ToType << From->getSourceRange(); 1532 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 1533 return true; 1534} 1535 1536/// CompareImplicitConversionSequences - Compare two implicit 1537/// conversion sequences to determine whether one is better than the 1538/// other or if they are indistinguishable (C++ 13.3.3.2). 1539ImplicitConversionSequence::CompareKind 1540Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1, 1541 const ImplicitConversionSequence& ICS2) 1542{ 1543 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 1544 // conversion sequences (as defined in 13.3.3.1) 1545 // -- a standard conversion sequence (13.3.3.1.1) is a better 1546 // conversion sequence than a user-defined conversion sequence or 1547 // an ellipsis conversion sequence, and 1548 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 1549 // conversion sequence than an ellipsis conversion sequence 1550 // (13.3.3.1.3). 1551 // 1552 if (ICS1.ConversionKind < ICS2.ConversionKind) 1553 return ImplicitConversionSequence::Better; 1554 else if (ICS2.ConversionKind < ICS1.ConversionKind) 1555 return ImplicitConversionSequence::Worse; 1556 1557 // Two implicit conversion sequences of the same form are 1558 // indistinguishable conversion sequences unless one of the 1559 // following rules apply: (C++ 13.3.3.2p3): 1560 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion) 1561 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard); 1562 else if (ICS1.ConversionKind == 1563 ImplicitConversionSequence::UserDefinedConversion) { 1564 // User-defined conversion sequence U1 is a better conversion 1565 // sequence than another user-defined conversion sequence U2 if 1566 // they contain the same user-defined conversion function or 1567 // constructor and if the second standard conversion sequence of 1568 // U1 is better than the second standard conversion sequence of 1569 // U2 (C++ 13.3.3.2p3). 1570 if (ICS1.UserDefined.ConversionFunction == 1571 ICS2.UserDefined.ConversionFunction) 1572 return CompareStandardConversionSequences(ICS1.UserDefined.After, 1573 ICS2.UserDefined.After); 1574 } 1575 1576 return ImplicitConversionSequence::Indistinguishable; 1577} 1578 1579/// CompareStandardConversionSequences - Compare two standard 1580/// conversion sequences to determine whether one is better than the 1581/// other or if they are indistinguishable (C++ 13.3.3.2p3). 1582ImplicitConversionSequence::CompareKind 1583Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1, 1584 const StandardConversionSequence& SCS2) 1585{ 1586 // Standard conversion sequence S1 is a better conversion sequence 1587 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 1588 1589 // -- S1 is a proper subsequence of S2 (comparing the conversion 1590 // sequences in the canonical form defined by 13.3.3.1.1, 1591 // excluding any Lvalue Transformation; the identity conversion 1592 // sequence is considered to be a subsequence of any 1593 // non-identity conversion sequence) or, if not that, 1594 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third) 1595 // Neither is a proper subsequence of the other. Do nothing. 1596 ; 1597 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) || 1598 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) || 1599 (SCS1.Second == ICK_Identity && 1600 SCS1.Third == ICK_Identity)) 1601 // SCS1 is a proper subsequence of SCS2. 1602 return ImplicitConversionSequence::Better; 1603 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) || 1604 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) || 1605 (SCS2.Second == ICK_Identity && 1606 SCS2.Third == ICK_Identity)) 1607 // SCS2 is a proper subsequence of SCS1. 1608 return ImplicitConversionSequence::Worse; 1609 1610 // -- the rank of S1 is better than the rank of S2 (by the rules 1611 // defined below), or, if not that, 1612 ImplicitConversionRank Rank1 = SCS1.getRank(); 1613 ImplicitConversionRank Rank2 = SCS2.getRank(); 1614 if (Rank1 < Rank2) 1615 return ImplicitConversionSequence::Better; 1616 else if (Rank2 < Rank1) 1617 return ImplicitConversionSequence::Worse; 1618 1619 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 1620 // are indistinguishable unless one of the following rules 1621 // applies: 1622 1623 // A conversion that is not a conversion of a pointer, or 1624 // pointer to member, to bool is better than another conversion 1625 // that is such a conversion. 1626 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 1627 return SCS2.isPointerConversionToBool() 1628 ? ImplicitConversionSequence::Better 1629 : ImplicitConversionSequence::Worse; 1630 1631 // C++ [over.ics.rank]p4b2: 1632 // 1633 // If class B is derived directly or indirectly from class A, 1634 // conversion of B* to A* is better than conversion of B* to 1635 // void*, and conversion of A* to void* is better than conversion 1636 // of B* to void*. 1637 bool SCS1ConvertsToVoid 1638 = SCS1.isPointerConversionToVoidPointer(Context); 1639 bool SCS2ConvertsToVoid 1640 = SCS2.isPointerConversionToVoidPointer(Context); 1641 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 1642 // Exactly one of the conversion sequences is a conversion to 1643 // a void pointer; it's the worse conversion. 1644 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 1645 : ImplicitConversionSequence::Worse; 1646 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 1647 // Neither conversion sequence converts to a void pointer; compare 1648 // their derived-to-base conversions. 1649 if (ImplicitConversionSequence::CompareKind DerivedCK 1650 = CompareDerivedToBaseConversions(SCS1, SCS2)) 1651 return DerivedCK; 1652 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) { 1653 // Both conversion sequences are conversions to void 1654 // pointers. Compare the source types to determine if there's an 1655 // inheritance relationship in their sources. 1656 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1657 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1658 1659 // Adjust the types we're converting from via the array-to-pointer 1660 // conversion, if we need to. 1661 if (SCS1.First == ICK_Array_To_Pointer) 1662 FromType1 = Context.getArrayDecayedType(FromType1); 1663 if (SCS2.First == ICK_Array_To_Pointer) 1664 FromType2 = Context.getArrayDecayedType(FromType2); 1665 1666 QualType FromPointee1 1667 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1668 QualType FromPointee2 1669 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1670 1671 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1672 return ImplicitConversionSequence::Better; 1673 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1674 return ImplicitConversionSequence::Worse; 1675 1676 // Objective-C++: If one interface is more specific than the 1677 // other, it is the better one. 1678 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1679 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1680 if (FromIface1 && FromIface1) { 1681 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1682 return ImplicitConversionSequence::Better; 1683 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1684 return ImplicitConversionSequence::Worse; 1685 } 1686 } 1687 1688 // Compare based on qualification conversions (C++ 13.3.3.2p3, 1689 // bullet 3). 1690 if (ImplicitConversionSequence::CompareKind QualCK 1691 = CompareQualificationConversions(SCS1, SCS2)) 1692 return QualCK; 1693 1694 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 1695 // C++0x [over.ics.rank]p3b4: 1696 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 1697 // implicit object parameter of a non-static member function declared 1698 // without a ref-qualifier, and S1 binds an rvalue reference to an 1699 // rvalue and S2 binds an lvalue reference. 1700 // FIXME: We don't know if we're dealing with the implicit object parameter, 1701 // or if the member function in this case has a ref qualifier. 1702 // (Of course, we don't have ref qualifiers yet.) 1703 if (SCS1.RRefBinding != SCS2.RRefBinding) 1704 return SCS1.RRefBinding ? ImplicitConversionSequence::Better 1705 : ImplicitConversionSequence::Worse; 1706 1707 // C++ [over.ics.rank]p3b4: 1708 // -- S1 and S2 are reference bindings (8.5.3), and the types to 1709 // which the references refer are the same type except for 1710 // top-level cv-qualifiers, and the type to which the reference 1711 // initialized by S2 refers is more cv-qualified than the type 1712 // to which the reference initialized by S1 refers. 1713 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1714 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1715 T1 = Context.getCanonicalType(T1); 1716 T2 = Context.getCanonicalType(T2); 1717 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) { 1718 if (T2.isMoreQualifiedThan(T1)) 1719 return ImplicitConversionSequence::Better; 1720 else if (T1.isMoreQualifiedThan(T2)) 1721 return ImplicitConversionSequence::Worse; 1722 } 1723 } 1724 1725 return ImplicitConversionSequence::Indistinguishable; 1726} 1727 1728/// CompareQualificationConversions - Compares two standard conversion 1729/// sequences to determine whether they can be ranked based on their 1730/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 1731ImplicitConversionSequence::CompareKind 1732Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1, 1733 const StandardConversionSequence& SCS2) { 1734 // C++ 13.3.3.2p3: 1735 // -- S1 and S2 differ only in their qualification conversion and 1736 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 1737 // cv-qualification signature of type T1 is a proper subset of 1738 // the cv-qualification signature of type T2, and S1 is not the 1739 // deprecated string literal array-to-pointer conversion (4.2). 1740 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 1741 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 1742 return ImplicitConversionSequence::Indistinguishable; 1743 1744 // FIXME: the example in the standard doesn't use a qualification 1745 // conversion (!) 1746 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1747 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1748 T1 = Context.getCanonicalType(T1); 1749 T2 = Context.getCanonicalType(T2); 1750 1751 // If the types are the same, we won't learn anything by unwrapped 1752 // them. 1753 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1754 return ImplicitConversionSequence::Indistinguishable; 1755 1756 ImplicitConversionSequence::CompareKind Result 1757 = ImplicitConversionSequence::Indistinguishable; 1758 while (UnwrapSimilarPointerTypes(T1, T2)) { 1759 // Within each iteration of the loop, we check the qualifiers to 1760 // determine if this still looks like a qualification 1761 // conversion. Then, if all is well, we unwrap one more level of 1762 // pointers or pointers-to-members and do it all again 1763 // until there are no more pointers or pointers-to-members left 1764 // to unwrap. This essentially mimics what 1765 // IsQualificationConversion does, but here we're checking for a 1766 // strict subset of qualifiers. 1767 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 1768 // The qualifiers are the same, so this doesn't tell us anything 1769 // about how the sequences rank. 1770 ; 1771 else if (T2.isMoreQualifiedThan(T1)) { 1772 // T1 has fewer qualifiers, so it could be the better sequence. 1773 if (Result == ImplicitConversionSequence::Worse) 1774 // Neither has qualifiers that are a subset of the other's 1775 // qualifiers. 1776 return ImplicitConversionSequence::Indistinguishable; 1777 1778 Result = ImplicitConversionSequence::Better; 1779 } else if (T1.isMoreQualifiedThan(T2)) { 1780 // T2 has fewer qualifiers, so it could be the better sequence. 1781 if (Result == ImplicitConversionSequence::Better) 1782 // Neither has qualifiers that are a subset of the other's 1783 // qualifiers. 1784 return ImplicitConversionSequence::Indistinguishable; 1785 1786 Result = ImplicitConversionSequence::Worse; 1787 } else { 1788 // Qualifiers are disjoint. 1789 return ImplicitConversionSequence::Indistinguishable; 1790 } 1791 1792 // If the types after this point are equivalent, we're done. 1793 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) 1794 break; 1795 } 1796 1797 // Check that the winning standard conversion sequence isn't using 1798 // the deprecated string literal array to pointer conversion. 1799 switch (Result) { 1800 case ImplicitConversionSequence::Better: 1801 if (SCS1.Deprecated) 1802 Result = ImplicitConversionSequence::Indistinguishable; 1803 break; 1804 1805 case ImplicitConversionSequence::Indistinguishable: 1806 break; 1807 1808 case ImplicitConversionSequence::Worse: 1809 if (SCS2.Deprecated) 1810 Result = ImplicitConversionSequence::Indistinguishable; 1811 break; 1812 } 1813 1814 return Result; 1815} 1816 1817/// CompareDerivedToBaseConversions - Compares two standard conversion 1818/// sequences to determine whether they can be ranked based on their 1819/// various kinds of derived-to-base conversions (C++ 1820/// [over.ics.rank]p4b3). As part of these checks, we also look at 1821/// conversions between Objective-C interface types. 1822ImplicitConversionSequence::CompareKind 1823Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1, 1824 const StandardConversionSequence& SCS2) { 1825 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr); 1826 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr); 1827 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr); 1828 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr); 1829 1830 // Adjust the types we're converting from via the array-to-pointer 1831 // conversion, if we need to. 1832 if (SCS1.First == ICK_Array_To_Pointer) 1833 FromType1 = Context.getArrayDecayedType(FromType1); 1834 if (SCS2.First == ICK_Array_To_Pointer) 1835 FromType2 = Context.getArrayDecayedType(FromType2); 1836 1837 // Canonicalize all of the types. 1838 FromType1 = Context.getCanonicalType(FromType1); 1839 ToType1 = Context.getCanonicalType(ToType1); 1840 FromType2 = Context.getCanonicalType(FromType2); 1841 ToType2 = Context.getCanonicalType(ToType2); 1842 1843 // C++ [over.ics.rank]p4b3: 1844 // 1845 // If class B is derived directly or indirectly from class A and 1846 // class C is derived directly or indirectly from B, 1847 // 1848 // For Objective-C, we let A, B, and C also be Objective-C 1849 // interfaces. 1850 1851 // Compare based on pointer conversions. 1852 if (SCS1.Second == ICK_Pointer_Conversion && 1853 SCS2.Second == ICK_Pointer_Conversion && 1854 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 1855 FromType1->isPointerType() && FromType2->isPointerType() && 1856 ToType1->isPointerType() && ToType2->isPointerType()) { 1857 QualType FromPointee1 1858 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1859 QualType ToPointee1 1860 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1861 QualType FromPointee2 1862 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1863 QualType ToPointee2 1864 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 1865 1866 const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>(); 1867 const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>(); 1868 const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>(); 1869 const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>(); 1870 1871 // -- conversion of C* to B* is better than conversion of C* to A*, 1872 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 1873 if (IsDerivedFrom(ToPointee1, ToPointee2)) 1874 return ImplicitConversionSequence::Better; 1875 else if (IsDerivedFrom(ToPointee2, ToPointee1)) 1876 return ImplicitConversionSequence::Worse; 1877 1878 if (ToIface1 && ToIface2) { 1879 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1)) 1880 return ImplicitConversionSequence::Better; 1881 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2)) 1882 return ImplicitConversionSequence::Worse; 1883 } 1884 } 1885 1886 // -- conversion of B* to A* is better than conversion of C* to A*, 1887 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 1888 if (IsDerivedFrom(FromPointee2, FromPointee1)) 1889 return ImplicitConversionSequence::Better; 1890 else if (IsDerivedFrom(FromPointee1, FromPointee2)) 1891 return ImplicitConversionSequence::Worse; 1892 1893 if (FromIface1 && FromIface2) { 1894 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2)) 1895 return ImplicitConversionSequence::Better; 1896 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1)) 1897 return ImplicitConversionSequence::Worse; 1898 } 1899 } 1900 } 1901 1902 // Compare based on reference bindings. 1903 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding && 1904 SCS1.Second == ICK_Derived_To_Base) { 1905 // -- binding of an expression of type C to a reference of type 1906 // B& is better than binding an expression of type C to a 1907 // reference of type A&, 1908 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1909 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1910 if (IsDerivedFrom(ToType1, ToType2)) 1911 return ImplicitConversionSequence::Better; 1912 else if (IsDerivedFrom(ToType2, ToType1)) 1913 return ImplicitConversionSequence::Worse; 1914 } 1915 1916 // -- binding of an expression of type B to a reference of type 1917 // A& is better than binding an expression of type C to a 1918 // reference of type A&, 1919 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1920 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1921 if (IsDerivedFrom(FromType2, FromType1)) 1922 return ImplicitConversionSequence::Better; 1923 else if (IsDerivedFrom(FromType1, FromType2)) 1924 return ImplicitConversionSequence::Worse; 1925 } 1926 } 1927 1928 1929 // FIXME: conversion of A::* to B::* is better than conversion of 1930 // A::* to C::*, 1931 1932 // FIXME: conversion of B::* to C::* is better than conversion of 1933 // A::* to C::*, and 1934 1935 if (SCS1.CopyConstructor && SCS2.CopyConstructor && 1936 SCS1.Second == ICK_Derived_To_Base) { 1937 // -- conversion of C to B is better than conversion of C to A, 1938 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() && 1939 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) { 1940 if (IsDerivedFrom(ToType1, ToType2)) 1941 return ImplicitConversionSequence::Better; 1942 else if (IsDerivedFrom(ToType2, ToType1)) 1943 return ImplicitConversionSequence::Worse; 1944 } 1945 1946 // -- conversion of B to A is better than conversion of C to A. 1947 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() && 1948 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) { 1949 if (IsDerivedFrom(FromType2, FromType1)) 1950 return ImplicitConversionSequence::Better; 1951 else if (IsDerivedFrom(FromType1, FromType2)) 1952 return ImplicitConversionSequence::Worse; 1953 } 1954 } 1955 1956 return ImplicitConversionSequence::Indistinguishable; 1957} 1958 1959/// TryCopyInitialization - Try to copy-initialize a value of type 1960/// ToType from the expression From. Return the implicit conversion 1961/// sequence required to pass this argument, which may be a bad 1962/// conversion sequence (meaning that the argument cannot be passed to 1963/// a parameter of this type). If @p SuppressUserConversions, then we 1964/// do not permit any user-defined conversion sequences. If @p ForceRValue, 1965/// then we treat @p From as an rvalue, even if it is an lvalue. 1966ImplicitConversionSequence 1967Sema::TryCopyInitialization(Expr *From, QualType ToType, 1968 bool SuppressUserConversions, bool ForceRValue, 1969 bool InOverloadResolution) { 1970 if (ToType->isReferenceType()) { 1971 ImplicitConversionSequence ICS; 1972 CheckReferenceInit(From, ToType, 1973 /*FIXME:*/From->getLocStart(), 1974 SuppressUserConversions, 1975 /*AllowExplicit=*/false, 1976 ForceRValue, 1977 &ICS); 1978 return ICS; 1979 } else { 1980 return TryImplicitConversion(From, ToType, 1981 SuppressUserConversions, 1982 /*AllowExplicit=*/false, 1983 ForceRValue, 1984 InOverloadResolution); 1985 } 1986} 1987 1988/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with 1989/// the expression @p From. Returns true (and emits a diagnostic) if there was 1990/// an error, returns false if the initialization succeeded. Elidable should 1991/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works 1992/// differently in C++0x for this case. 1993bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType, 1994 const char* Flavor, bool Elidable) { 1995 if (!getLangOptions().CPlusPlus) { 1996 // In C, argument passing is the same as performing an assignment. 1997 QualType FromType = From->getType(); 1998 1999 AssignConvertType ConvTy = 2000 CheckSingleAssignmentConstraints(ToType, From); 2001 if (ConvTy != Compatible && 2002 CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible) 2003 ConvTy = Compatible; 2004 2005 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType, 2006 FromType, From, Flavor); 2007 } 2008 2009 if (ToType->isReferenceType()) 2010 return CheckReferenceInit(From, ToType, 2011 /*FIXME:*/From->getLocStart(), 2012 /*SuppressUserConversions=*/false, 2013 /*AllowExplicit=*/false, 2014 /*ForceRValue=*/false); 2015 2016 if (!PerformImplicitConversion(From, ToType, Flavor, 2017 /*AllowExplicit=*/false, Elidable)) 2018 return false; 2019 if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType)) 2020 return Diag(From->getSourceRange().getBegin(), 2021 diag::err_typecheck_convert_incompatible) 2022 << ToType << From->getType() << Flavor << From->getSourceRange(); 2023 return true; 2024} 2025 2026/// TryObjectArgumentInitialization - Try to initialize the object 2027/// parameter of the given member function (@c Method) from the 2028/// expression @p From. 2029ImplicitConversionSequence 2030Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) { 2031 QualType ClassType = Context.getTypeDeclType(Method->getParent()); 2032 QualType ImplicitParamType 2033 = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers()); 2034 2035 // Set up the conversion sequence as a "bad" conversion, to allow us 2036 // to exit early. 2037 ImplicitConversionSequence ICS; 2038 ICS.Standard.setAsIdentityConversion(); 2039 ICS.ConversionKind = ImplicitConversionSequence::BadConversion; 2040 2041 // We need to have an object of class type. 2042 QualType FromType = From->getType(); 2043 if (const PointerType *PT = FromType->getAs<PointerType>()) 2044 FromType = PT->getPointeeType(); 2045 2046 assert(FromType->isRecordType()); 2047 2048 // The implicit object parmeter is has the type "reference to cv X", 2049 // where X is the class of which the function is a member 2050 // (C++ [over.match.funcs]p4). However, when finding an implicit 2051 // conversion sequence for the argument, we are not allowed to 2052 // create temporaries or perform user-defined conversions 2053 // (C++ [over.match.funcs]p5). We perform a simplified version of 2054 // reference binding here, that allows class rvalues to bind to 2055 // non-constant references. 2056 2057 // First check the qualifiers. We don't care about lvalue-vs-rvalue 2058 // with the implicit object parameter (C++ [over.match.funcs]p5). 2059 QualType FromTypeCanon = Context.getCanonicalType(FromType); 2060 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() && 2061 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType)) 2062 return ICS; 2063 2064 // Check that we have either the same type or a derived type. It 2065 // affects the conversion rank. 2066 QualType ClassTypeCanon = Context.getCanonicalType(ClassType); 2067 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType()) 2068 ICS.Standard.Second = ICK_Identity; 2069 else if (IsDerivedFrom(FromType, ClassType)) 2070 ICS.Standard.Second = ICK_Derived_To_Base; 2071 else 2072 return ICS; 2073 2074 // Success. Mark this as a reference binding. 2075 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion; 2076 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr(); 2077 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr(); 2078 ICS.Standard.ReferenceBinding = true; 2079 ICS.Standard.DirectBinding = true; 2080 ICS.Standard.RRefBinding = false; 2081 return ICS; 2082} 2083 2084/// PerformObjectArgumentInitialization - Perform initialization of 2085/// the implicit object parameter for the given Method with the given 2086/// expression. 2087bool 2088Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) { 2089 QualType FromRecordType, DestType; 2090 QualType ImplicitParamRecordType = 2091 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 2092 2093 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 2094 FromRecordType = PT->getPointeeType(); 2095 DestType = Method->getThisType(Context); 2096 } else { 2097 FromRecordType = From->getType(); 2098 DestType = ImplicitParamRecordType; 2099 } 2100 2101 ImplicitConversionSequence ICS 2102 = TryObjectArgumentInitialization(From, Method); 2103 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) 2104 return Diag(From->getSourceRange().getBegin(), 2105 diag::err_implicit_object_parameter_init) 2106 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 2107 2108 if (ICS.Standard.Second == ICK_Derived_To_Base && 2109 CheckDerivedToBaseConversion(FromRecordType, 2110 ImplicitParamRecordType, 2111 From->getSourceRange().getBegin(), 2112 From->getSourceRange())) 2113 return true; 2114 2115 ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase, 2116 /*isLvalue=*/true); 2117 return false; 2118} 2119 2120/// TryContextuallyConvertToBool - Attempt to contextually convert the 2121/// expression From to bool (C++0x [conv]p3). 2122ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) { 2123 return TryImplicitConversion(From, Context.BoolTy, 2124 // FIXME: Are these flags correct? 2125 /*SuppressUserConversions=*/false, 2126 /*AllowExplicit=*/true, 2127 /*ForceRValue=*/false, 2128 /*InOverloadResolution=*/false); 2129} 2130 2131/// PerformContextuallyConvertToBool - Perform a contextual conversion 2132/// of the expression From to bool (C++0x [conv]p3). 2133bool Sema::PerformContextuallyConvertToBool(Expr *&From) { 2134 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From); 2135 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting")) 2136 return false; 2137 2138 if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy)) 2139 return Diag(From->getSourceRange().getBegin(), 2140 diag::err_typecheck_bool_condition) 2141 << From->getType() << From->getSourceRange(); 2142 return true; 2143} 2144 2145/// AddOverloadCandidate - Adds the given function to the set of 2146/// candidate functions, using the given function call arguments. If 2147/// @p SuppressUserConversions, then don't allow user-defined 2148/// conversions via constructors or conversion operators. 2149/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly 2150/// hacky way to implement the overloading rules for elidable copy 2151/// initialization in C++0x (C++0x 12.8p15). 2152/// 2153/// \para PartialOverloading true if we are performing "partial" overloading 2154/// based on an incomplete set of function arguments. This feature is used by 2155/// code completion. 2156void 2157Sema::AddOverloadCandidate(FunctionDecl *Function, 2158 Expr **Args, unsigned NumArgs, 2159 OverloadCandidateSet& CandidateSet, 2160 bool SuppressUserConversions, 2161 bool ForceRValue, 2162 bool PartialOverloading) { 2163 const FunctionProtoType* Proto 2164 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 2165 assert(Proto && "Functions without a prototype cannot be overloaded"); 2166 assert(!isa<CXXConversionDecl>(Function) && 2167 "Use AddConversionCandidate for conversion functions"); 2168 assert(!Function->getDescribedFunctionTemplate() && 2169 "Use AddTemplateOverloadCandidate for function templates"); 2170 2171 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2172 if (!isa<CXXConstructorDecl>(Method)) { 2173 // If we get here, it's because we're calling a member function 2174 // that is named without a member access expression (e.g., 2175 // "this->f") that was either written explicitly or created 2176 // implicitly. This can happen with a qualified call to a member 2177 // function, e.g., X::f(). We use a NULL object as the implied 2178 // object argument (C++ [over.call.func]p3). 2179 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet, 2180 SuppressUserConversions, ForceRValue); 2181 return; 2182 } 2183 // We treat a constructor like a non-member function, since its object 2184 // argument doesn't participate in overload resolution. 2185 } 2186 2187 if (!CandidateSet.isNewCandidate(Function)) 2188 return; 2189 2190 // Add this candidate 2191 CandidateSet.push_back(OverloadCandidate()); 2192 OverloadCandidate& Candidate = CandidateSet.back(); 2193 Candidate.Function = Function; 2194 Candidate.Viable = true; 2195 Candidate.IsSurrogate = false; 2196 Candidate.IgnoreObjectArgument = false; 2197 2198 unsigned NumArgsInProto = Proto->getNumArgs(); 2199 2200 // (C++ 13.3.2p2): A candidate function having fewer than m 2201 // parameters is viable only if it has an ellipsis in its parameter 2202 // list (8.3.5). 2203 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 2204 !Proto->isVariadic()) { 2205 Candidate.Viable = false; 2206 return; 2207 } 2208 2209 // (C++ 13.3.2p2): A candidate function having more than m parameters 2210 // is viable only if the (m+1)st parameter has a default argument 2211 // (8.3.6). For the purposes of overload resolution, the 2212 // parameter list is truncated on the right, so that there are 2213 // exactly m parameters. 2214 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 2215 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 2216 // Not enough arguments. 2217 Candidate.Viable = false; 2218 return; 2219 } 2220 2221 // Determine the implicit conversion sequences for each of the 2222 // arguments. 2223 Candidate.Conversions.resize(NumArgs); 2224 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2225 if (ArgIdx < NumArgsInProto) { 2226 // (C++ 13.3.2p3): for F to be a viable function, there shall 2227 // exist for each argument an implicit conversion sequence 2228 // (13.3.3.1) that converts that argument to the corresponding 2229 // parameter of F. 2230 QualType ParamType = Proto->getArgType(ArgIdx); 2231 Candidate.Conversions[ArgIdx] 2232 = TryCopyInitialization(Args[ArgIdx], ParamType, 2233 SuppressUserConversions, ForceRValue, 2234 /*InOverloadResolution=*/true); 2235 if (Candidate.Conversions[ArgIdx].ConversionKind 2236 == ImplicitConversionSequence::BadConversion) { 2237 // 13.3.3.1-p10 If several different sequences of conversions exist that 2238 // each convert the argument to the parameter type, the implicit conversion 2239 // sequence associated with the parameter is defined to be the unique conversion 2240 // sequence designated the ambiguous conversion sequence. For the purpose of 2241 // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous 2242 // conversion sequence is treated as a user-defined sequence that is 2243 // indistinguishable from any other user-defined conversion sequence 2244 if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) 2245 Candidate.Conversions[ArgIdx].ConversionKind = 2246 ImplicitConversionSequence::UserDefinedConversion; 2247 else { 2248 Candidate.Viable = false; 2249 break; 2250 } 2251 } 2252 } else { 2253 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2254 // argument for which there is no corresponding parameter is 2255 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2256 Candidate.Conversions[ArgIdx].ConversionKind 2257 = ImplicitConversionSequence::EllipsisConversion; 2258 } 2259 } 2260} 2261 2262/// \brief Add all of the function declarations in the given function set to 2263/// the overload canddiate set. 2264void Sema::AddFunctionCandidates(const FunctionSet &Functions, 2265 Expr **Args, unsigned NumArgs, 2266 OverloadCandidateSet& CandidateSet, 2267 bool SuppressUserConversions) { 2268 for (FunctionSet::const_iterator F = Functions.begin(), 2269 FEnd = Functions.end(); 2270 F != FEnd; ++F) { 2271 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) { 2272 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2273 AddMethodCandidate(cast<CXXMethodDecl>(FD), 2274 Args[0], Args + 1, NumArgs - 1, 2275 CandidateSet, SuppressUserConversions); 2276 else 2277 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 2278 SuppressUserConversions); 2279 } else { 2280 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F); 2281 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 2282 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 2283 AddMethodTemplateCandidate(FunTmpl, 2284 /*FIXME: explicit args */false, 0, 0, 2285 Args[0], Args + 1, NumArgs - 1, 2286 CandidateSet, 2287 SuppressUserConversions); 2288 else 2289 AddTemplateOverloadCandidate(FunTmpl, 2290 /*FIXME: explicit args */false, 0, 0, 2291 Args, NumArgs, CandidateSet, 2292 SuppressUserConversions); 2293 } 2294 } 2295} 2296 2297/// AddMethodCandidate - Adds the given C++ member function to the set 2298/// of candidate functions, using the given function call arguments 2299/// and the object argument (@c Object). For example, in a call 2300/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 2301/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 2302/// allow user-defined conversions via constructors or conversion 2303/// operators. If @p ForceRValue, treat all arguments as rvalues. This is 2304/// a slightly hacky way to implement the overloading rules for elidable copy 2305/// initialization in C++0x (C++0x 12.8p15). 2306void 2307Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object, 2308 Expr **Args, unsigned NumArgs, 2309 OverloadCandidateSet& CandidateSet, 2310 bool SuppressUserConversions, bool ForceRValue) { 2311 const FunctionProtoType* Proto 2312 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 2313 assert(Proto && "Methods without a prototype cannot be overloaded"); 2314 assert(!isa<CXXConversionDecl>(Method) && 2315 "Use AddConversionCandidate for conversion functions"); 2316 assert(!isa<CXXConstructorDecl>(Method) && 2317 "Use AddOverloadCandidate for constructors"); 2318 2319 if (!CandidateSet.isNewCandidate(Method)) 2320 return; 2321 2322 // Add this candidate 2323 CandidateSet.push_back(OverloadCandidate()); 2324 OverloadCandidate& Candidate = CandidateSet.back(); 2325 Candidate.Function = Method; 2326 Candidate.IsSurrogate = false; 2327 Candidate.IgnoreObjectArgument = false; 2328 2329 unsigned NumArgsInProto = Proto->getNumArgs(); 2330 2331 // (C++ 13.3.2p2): A candidate function having fewer than m 2332 // parameters is viable only if it has an ellipsis in its parameter 2333 // list (8.3.5). 2334 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2335 Candidate.Viable = false; 2336 return; 2337 } 2338 2339 // (C++ 13.3.2p2): A candidate function having more than m parameters 2340 // is viable only if the (m+1)st parameter has a default argument 2341 // (8.3.6). For the purposes of overload resolution, the 2342 // parameter list is truncated on the right, so that there are 2343 // exactly m parameters. 2344 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 2345 if (NumArgs < MinRequiredArgs) { 2346 // Not enough arguments. 2347 Candidate.Viable = false; 2348 return; 2349 } 2350 2351 Candidate.Viable = true; 2352 Candidate.Conversions.resize(NumArgs + 1); 2353 2354 if (Method->isStatic() || !Object) 2355 // The implicit object argument is ignored. 2356 Candidate.IgnoreObjectArgument = true; 2357 else { 2358 // Determine the implicit conversion sequence for the object 2359 // parameter. 2360 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method); 2361 if (Candidate.Conversions[0].ConversionKind 2362 == ImplicitConversionSequence::BadConversion) { 2363 Candidate.Viable = false; 2364 return; 2365 } 2366 } 2367 2368 // Determine the implicit conversion sequences for each of the 2369 // arguments. 2370 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2371 if (ArgIdx < NumArgsInProto) { 2372 // (C++ 13.3.2p3): for F to be a viable function, there shall 2373 // exist for each argument an implicit conversion sequence 2374 // (13.3.3.1) that converts that argument to the corresponding 2375 // parameter of F. 2376 QualType ParamType = Proto->getArgType(ArgIdx); 2377 Candidate.Conversions[ArgIdx + 1] 2378 = TryCopyInitialization(Args[ArgIdx], ParamType, 2379 SuppressUserConversions, ForceRValue, 2380 /*InOverloadResolution=*/true); 2381 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2382 == ImplicitConversionSequence::BadConversion) { 2383 Candidate.Viable = false; 2384 break; 2385 } 2386 } else { 2387 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2388 // argument for which there is no corresponding parameter is 2389 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2390 Candidate.Conversions[ArgIdx + 1].ConversionKind 2391 = ImplicitConversionSequence::EllipsisConversion; 2392 } 2393 } 2394} 2395 2396/// \brief Add a C++ member function template as a candidate to the candidate 2397/// set, using template argument deduction to produce an appropriate member 2398/// function template specialization. 2399void 2400Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 2401 bool HasExplicitTemplateArgs, 2402 const TemplateArgument *ExplicitTemplateArgs, 2403 unsigned NumExplicitTemplateArgs, 2404 Expr *Object, Expr **Args, unsigned NumArgs, 2405 OverloadCandidateSet& CandidateSet, 2406 bool SuppressUserConversions, 2407 bool ForceRValue) { 2408 if (!CandidateSet.isNewCandidate(MethodTmpl)) 2409 return; 2410 2411 // C++ [over.match.funcs]p7: 2412 // In each case where a candidate is a function template, candidate 2413 // function template specializations are generated using template argument 2414 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2415 // candidate functions in the usual way.113) A given name can refer to one 2416 // or more function templates and also to a set of overloaded non-template 2417 // functions. In such a case, the candidate functions generated from each 2418 // function template are combined with the set of non-template candidate 2419 // functions. 2420 TemplateDeductionInfo Info(Context); 2421 FunctionDecl *Specialization = 0; 2422 if (TemplateDeductionResult Result 2423 = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs, 2424 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2425 Args, NumArgs, Specialization, Info)) { 2426 // FIXME: Record what happened with template argument deduction, so 2427 // that we can give the user a beautiful diagnostic. 2428 (void)Result; 2429 return; 2430 } 2431 2432 // Add the function template specialization produced by template argument 2433 // deduction as a candidate. 2434 assert(Specialization && "Missing member function template specialization?"); 2435 assert(isa<CXXMethodDecl>(Specialization) && 2436 "Specialization is not a member function?"); 2437 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs, 2438 CandidateSet, SuppressUserConversions, ForceRValue); 2439} 2440 2441/// \brief Add a C++ function template specialization as a candidate 2442/// in the candidate set, using template argument deduction to produce 2443/// an appropriate function template specialization. 2444void 2445Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 2446 bool HasExplicitTemplateArgs, 2447 const TemplateArgument *ExplicitTemplateArgs, 2448 unsigned NumExplicitTemplateArgs, 2449 Expr **Args, unsigned NumArgs, 2450 OverloadCandidateSet& CandidateSet, 2451 bool SuppressUserConversions, 2452 bool ForceRValue) { 2453 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2454 return; 2455 2456 // C++ [over.match.funcs]p7: 2457 // In each case where a candidate is a function template, candidate 2458 // function template specializations are generated using template argument 2459 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 2460 // candidate functions in the usual way.113) A given name can refer to one 2461 // or more function templates and also to a set of overloaded non-template 2462 // functions. In such a case, the candidate functions generated from each 2463 // function template are combined with the set of non-template candidate 2464 // functions. 2465 TemplateDeductionInfo Info(Context); 2466 FunctionDecl *Specialization = 0; 2467 if (TemplateDeductionResult Result 2468 = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs, 2469 ExplicitTemplateArgs, NumExplicitTemplateArgs, 2470 Args, NumArgs, Specialization, Info)) { 2471 // FIXME: Record what happened with template argument deduction, so 2472 // that we can give the user a beautiful diagnostic. 2473 (void)Result; 2474 return; 2475 } 2476 2477 // Add the function template specialization produced by template argument 2478 // deduction as a candidate. 2479 assert(Specialization && "Missing function template specialization?"); 2480 AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet, 2481 SuppressUserConversions, ForceRValue); 2482} 2483 2484/// AddConversionCandidate - Add a C++ conversion function as a 2485/// candidate in the candidate set (C++ [over.match.conv], 2486/// C++ [over.match.copy]). From is the expression we're converting from, 2487/// and ToType is the type that we're eventually trying to convert to 2488/// (which may or may not be the same type as the type that the 2489/// conversion function produces). 2490void 2491Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 2492 Expr *From, QualType ToType, 2493 OverloadCandidateSet& CandidateSet) { 2494 assert(!Conversion->getDescribedFunctionTemplate() && 2495 "Conversion function templates use AddTemplateConversionCandidate"); 2496 2497 if (!CandidateSet.isNewCandidate(Conversion)) 2498 return; 2499 2500 // Add this candidate 2501 CandidateSet.push_back(OverloadCandidate()); 2502 OverloadCandidate& Candidate = CandidateSet.back(); 2503 Candidate.Function = Conversion; 2504 Candidate.IsSurrogate = false; 2505 Candidate.IgnoreObjectArgument = false; 2506 Candidate.FinalConversion.setAsIdentityConversion(); 2507 Candidate.FinalConversion.FromTypePtr 2508 = Conversion->getConversionType().getAsOpaquePtr(); 2509 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr(); 2510 2511 // Determine the implicit conversion sequence for the implicit 2512 // object parameter. 2513 Candidate.Viable = true; 2514 Candidate.Conversions.resize(1); 2515 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion); 2516 // Conversion functions to a different type in the base class is visible in 2517 // the derived class. So, a derived to base conversion should not participate 2518 // in overload resolution. 2519 if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base) 2520 Candidate.Conversions[0].Standard.Second = ICK_Identity; 2521 if (Candidate.Conversions[0].ConversionKind 2522 == ImplicitConversionSequence::BadConversion) { 2523 Candidate.Viable = false; 2524 return; 2525 } 2526 2527 // To determine what the conversion from the result of calling the 2528 // conversion function to the type we're eventually trying to 2529 // convert to (ToType), we need to synthesize a call to the 2530 // conversion function and attempt copy initialization from it. This 2531 // makes sure that we get the right semantics with respect to 2532 // lvalues/rvalues and the type. Fortunately, we can allocate this 2533 // call on the stack and we don't need its arguments to be 2534 // well-formed. 2535 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 2536 SourceLocation()); 2537 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()), 2538 CastExpr::CK_Unknown, 2539 &ConversionRef, false); 2540 2541 // Note that it is safe to allocate CallExpr on the stack here because 2542 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 2543 // allocator). 2544 CallExpr Call(Context, &ConversionFn, 0, 0, 2545 Conversion->getConversionType().getNonReferenceType(), 2546 SourceLocation()); 2547 ImplicitConversionSequence ICS = 2548 TryCopyInitialization(&Call, ToType, 2549 /*SuppressUserConversions=*/true, 2550 /*ForceRValue=*/false, 2551 /*InOverloadResolution=*/false); 2552 2553 switch (ICS.ConversionKind) { 2554 case ImplicitConversionSequence::StandardConversion: 2555 Candidate.FinalConversion = ICS.Standard; 2556 break; 2557 2558 case ImplicitConversionSequence::BadConversion: 2559 Candidate.Viable = false; 2560 break; 2561 2562 default: 2563 assert(false && 2564 "Can only end up with a standard conversion sequence or failure"); 2565 } 2566} 2567 2568/// \brief Adds a conversion function template specialization 2569/// candidate to the overload set, using template argument deduction 2570/// to deduce the template arguments of the conversion function 2571/// template from the type that we are converting to (C++ 2572/// [temp.deduct.conv]). 2573void 2574Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 2575 Expr *From, QualType ToType, 2576 OverloadCandidateSet &CandidateSet) { 2577 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 2578 "Only conversion function templates permitted here"); 2579 2580 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 2581 return; 2582 2583 TemplateDeductionInfo Info(Context); 2584 CXXConversionDecl *Specialization = 0; 2585 if (TemplateDeductionResult Result 2586 = DeduceTemplateArguments(FunctionTemplate, ToType, 2587 Specialization, Info)) { 2588 // FIXME: Record what happened with template argument deduction, so 2589 // that we can give the user a beautiful diagnostic. 2590 (void)Result; 2591 return; 2592 } 2593 2594 // Add the conversion function template specialization produced by 2595 // template argument deduction as a candidate. 2596 assert(Specialization && "Missing function template specialization?"); 2597 AddConversionCandidate(Specialization, From, ToType, CandidateSet); 2598} 2599 2600/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 2601/// converts the given @c Object to a function pointer via the 2602/// conversion function @c Conversion, and then attempts to call it 2603/// with the given arguments (C++ [over.call.object]p2-4). Proto is 2604/// the type of function that we'll eventually be calling. 2605void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 2606 const FunctionProtoType *Proto, 2607 Expr *Object, Expr **Args, unsigned NumArgs, 2608 OverloadCandidateSet& CandidateSet) { 2609 if (!CandidateSet.isNewCandidate(Conversion)) 2610 return; 2611 2612 CandidateSet.push_back(OverloadCandidate()); 2613 OverloadCandidate& Candidate = CandidateSet.back(); 2614 Candidate.Function = 0; 2615 Candidate.Surrogate = Conversion; 2616 Candidate.Viable = true; 2617 Candidate.IsSurrogate = true; 2618 Candidate.IgnoreObjectArgument = false; 2619 Candidate.Conversions.resize(NumArgs + 1); 2620 2621 // Determine the implicit conversion sequence for the implicit 2622 // object parameter. 2623 ImplicitConversionSequence ObjectInit 2624 = TryObjectArgumentInitialization(Object, Conversion); 2625 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) { 2626 Candidate.Viable = false; 2627 return; 2628 } 2629 2630 // The first conversion is actually a user-defined conversion whose 2631 // first conversion is ObjectInit's standard conversion (which is 2632 // effectively a reference binding). Record it as such. 2633 Candidate.Conversions[0].ConversionKind 2634 = ImplicitConversionSequence::UserDefinedConversion; 2635 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 2636 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 2637 Candidate.Conversions[0].UserDefined.After 2638 = Candidate.Conversions[0].UserDefined.Before; 2639 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 2640 2641 // Find the 2642 unsigned NumArgsInProto = Proto->getNumArgs(); 2643 2644 // (C++ 13.3.2p2): A candidate function having fewer than m 2645 // parameters is viable only if it has an ellipsis in its parameter 2646 // list (8.3.5). 2647 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 2648 Candidate.Viable = false; 2649 return; 2650 } 2651 2652 // Function types don't have any default arguments, so just check if 2653 // we have enough arguments. 2654 if (NumArgs < NumArgsInProto) { 2655 // Not enough arguments. 2656 Candidate.Viable = false; 2657 return; 2658 } 2659 2660 // Determine the implicit conversion sequences for each of the 2661 // arguments. 2662 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2663 if (ArgIdx < NumArgsInProto) { 2664 // (C++ 13.3.2p3): for F to be a viable function, there shall 2665 // exist for each argument an implicit conversion sequence 2666 // (13.3.3.1) that converts that argument to the corresponding 2667 // parameter of F. 2668 QualType ParamType = Proto->getArgType(ArgIdx); 2669 Candidate.Conversions[ArgIdx + 1] 2670 = TryCopyInitialization(Args[ArgIdx], ParamType, 2671 /*SuppressUserConversions=*/false, 2672 /*ForceRValue=*/false, 2673 /*InOverloadResolution=*/false); 2674 if (Candidate.Conversions[ArgIdx + 1].ConversionKind 2675 == ImplicitConversionSequence::BadConversion) { 2676 Candidate.Viable = false; 2677 break; 2678 } 2679 } else { 2680 // (C++ 13.3.2p2): For the purposes of overload resolution, any 2681 // argument for which there is no corresponding parameter is 2682 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 2683 Candidate.Conversions[ArgIdx + 1].ConversionKind 2684 = ImplicitConversionSequence::EllipsisConversion; 2685 } 2686 } 2687} 2688 2689// FIXME: This will eventually be removed, once we've migrated all of the 2690// operator overloading logic over to the scheme used by binary operators, which 2691// works for template instantiation. 2692void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S, 2693 SourceLocation OpLoc, 2694 Expr **Args, unsigned NumArgs, 2695 OverloadCandidateSet& CandidateSet, 2696 SourceRange OpRange) { 2697 FunctionSet Functions; 2698 2699 QualType T1 = Args[0]->getType(); 2700 QualType T2; 2701 if (NumArgs > 1) 2702 T2 = Args[1]->getType(); 2703 2704 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2705 if (S) 2706 LookupOverloadedOperatorName(Op, S, T1, T2, Functions); 2707 ArgumentDependentLookup(OpName, Args, NumArgs, Functions); 2708 AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet); 2709 AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange); 2710 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet); 2711} 2712 2713/// \brief Add overload candidates for overloaded operators that are 2714/// member functions. 2715/// 2716/// Add the overloaded operator candidates that are member functions 2717/// for the operator Op that was used in an operator expression such 2718/// as "x Op y". , Args/NumArgs provides the operator arguments, and 2719/// CandidateSet will store the added overload candidates. (C++ 2720/// [over.match.oper]). 2721void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 2722 SourceLocation OpLoc, 2723 Expr **Args, unsigned NumArgs, 2724 OverloadCandidateSet& CandidateSet, 2725 SourceRange OpRange) { 2726 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 2727 2728 // C++ [over.match.oper]p3: 2729 // For a unary operator @ with an operand of a type whose 2730 // cv-unqualified version is T1, and for a binary operator @ with 2731 // a left operand of a type whose cv-unqualified version is T1 and 2732 // a right operand of a type whose cv-unqualified version is T2, 2733 // three sets of candidate functions, designated member 2734 // candidates, non-member candidates and built-in candidates, are 2735 // constructed as follows: 2736 QualType T1 = Args[0]->getType(); 2737 QualType T2; 2738 if (NumArgs > 1) 2739 T2 = Args[1]->getType(); 2740 2741 // -- If T1 is a class type, the set of member candidates is the 2742 // result of the qualified lookup of T1::operator@ 2743 // (13.3.1.1.1); otherwise, the set of member candidates is 2744 // empty. 2745 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 2746 // Complete the type if it can be completed. Otherwise, we're done. 2747 if (RequireCompleteType(OpLoc, T1, PartialDiagnostic(0))) 2748 return; 2749 2750 LookupResult Operators = LookupQualifiedName(T1Rec->getDecl(), OpName, 2751 LookupOrdinaryName, false); 2752 for (LookupResult::iterator Oper = Operators.begin(), 2753 OperEnd = Operators.end(); 2754 Oper != OperEnd; 2755 ++Oper) 2756 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0], 2757 Args+1, NumArgs - 1, CandidateSet, 2758 /*SuppressUserConversions=*/false); 2759 } 2760} 2761 2762/// AddBuiltinCandidate - Add a candidate for a built-in 2763/// operator. ResultTy and ParamTys are the result and parameter types 2764/// of the built-in candidate, respectively. Args and NumArgs are the 2765/// arguments being passed to the candidate. IsAssignmentOperator 2766/// should be true when this built-in candidate is an assignment 2767/// operator. NumContextualBoolArguments is the number of arguments 2768/// (at the beginning of the argument list) that will be contextually 2769/// converted to bool. 2770void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 2771 Expr **Args, unsigned NumArgs, 2772 OverloadCandidateSet& CandidateSet, 2773 bool IsAssignmentOperator, 2774 unsigned NumContextualBoolArguments) { 2775 // Add this candidate 2776 CandidateSet.push_back(OverloadCandidate()); 2777 OverloadCandidate& Candidate = CandidateSet.back(); 2778 Candidate.Function = 0; 2779 Candidate.IsSurrogate = false; 2780 Candidate.IgnoreObjectArgument = false; 2781 Candidate.BuiltinTypes.ResultTy = ResultTy; 2782 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 2783 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 2784 2785 // Determine the implicit conversion sequences for each of the 2786 // arguments. 2787 Candidate.Viable = true; 2788 Candidate.Conversions.resize(NumArgs); 2789 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 2790 // C++ [over.match.oper]p4: 2791 // For the built-in assignment operators, conversions of the 2792 // left operand are restricted as follows: 2793 // -- no temporaries are introduced to hold the left operand, and 2794 // -- no user-defined conversions are applied to the left 2795 // operand to achieve a type match with the left-most 2796 // parameter of a built-in candidate. 2797 // 2798 // We block these conversions by turning off user-defined 2799 // conversions, since that is the only way that initialization of 2800 // a reference to a non-class type can occur from something that 2801 // is not of the same type. 2802 if (ArgIdx < NumContextualBoolArguments) { 2803 assert(ParamTys[ArgIdx] == Context.BoolTy && 2804 "Contextual conversion to bool requires bool type"); 2805 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]); 2806 } else { 2807 Candidate.Conversions[ArgIdx] 2808 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], 2809 ArgIdx == 0 && IsAssignmentOperator, 2810 /*ForceRValue=*/false, 2811 /*InOverloadResolution=*/false); 2812 } 2813 if (Candidate.Conversions[ArgIdx].ConversionKind 2814 == ImplicitConversionSequence::BadConversion) { 2815 Candidate.Viable = false; 2816 break; 2817 } 2818 } 2819} 2820 2821/// BuiltinCandidateTypeSet - A set of types that will be used for the 2822/// candidate operator functions for built-in operators (C++ 2823/// [over.built]). The types are separated into pointer types and 2824/// enumeration types. 2825class BuiltinCandidateTypeSet { 2826 /// TypeSet - A set of types. 2827 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 2828 2829 /// PointerTypes - The set of pointer types that will be used in the 2830 /// built-in candidates. 2831 TypeSet PointerTypes; 2832 2833 /// MemberPointerTypes - The set of member pointer types that will be 2834 /// used in the built-in candidates. 2835 TypeSet MemberPointerTypes; 2836 2837 /// EnumerationTypes - The set of enumeration types that will be 2838 /// used in the built-in candidates. 2839 TypeSet EnumerationTypes; 2840 2841 /// Sema - The semantic analysis instance where we are building the 2842 /// candidate type set. 2843 Sema &SemaRef; 2844 2845 /// Context - The AST context in which we will build the type sets. 2846 ASTContext &Context; 2847 2848 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty); 2849 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 2850 2851public: 2852 /// iterator - Iterates through the types that are part of the set. 2853 typedef TypeSet::iterator iterator; 2854 2855 BuiltinCandidateTypeSet(Sema &SemaRef) 2856 : SemaRef(SemaRef), Context(SemaRef.Context) { } 2857 2858 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions, 2859 bool AllowExplicitConversions); 2860 2861 /// pointer_begin - First pointer type found; 2862 iterator pointer_begin() { return PointerTypes.begin(); } 2863 2864 /// pointer_end - Past the last pointer type found; 2865 iterator pointer_end() { return PointerTypes.end(); } 2866 2867 /// member_pointer_begin - First member pointer type found; 2868 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 2869 2870 /// member_pointer_end - Past the last member pointer type found; 2871 iterator member_pointer_end() { return MemberPointerTypes.end(); } 2872 2873 /// enumeration_begin - First enumeration type found; 2874 iterator enumeration_begin() { return EnumerationTypes.begin(); } 2875 2876 /// enumeration_end - Past the last enumeration type found; 2877 iterator enumeration_end() { return EnumerationTypes.end(); } 2878}; 2879 2880/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 2881/// the set of pointer types along with any more-qualified variants of 2882/// that type. For example, if @p Ty is "int const *", this routine 2883/// will add "int const *", "int const volatile *", "int const 2884/// restrict *", and "int const volatile restrict *" to the set of 2885/// pointer types. Returns true if the add of @p Ty itself succeeded, 2886/// false otherwise. 2887/// 2888/// FIXME: what to do about extended qualifiers? 2889bool 2890BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) { 2891 2892 // Insert this type. 2893 if (!PointerTypes.insert(Ty)) 2894 return false; 2895 2896 const PointerType *PointerTy = Ty->getAs<PointerType>(); 2897 assert(PointerTy && "type was not a pointer type!"); 2898 2899 QualType PointeeTy = PointerTy->getPointeeType(); 2900 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 2901 2902 // Iterate through all strict supersets of BaseCVR. 2903 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 2904 if ((CVR | BaseCVR) != CVR) continue; 2905 2906 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 2907 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 2908 } 2909 2910 return true; 2911} 2912 2913/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 2914/// to the set of pointer types along with any more-qualified variants of 2915/// that type. For example, if @p Ty is "int const *", this routine 2916/// will add "int const *", "int const volatile *", "int const 2917/// restrict *", and "int const volatile restrict *" to the set of 2918/// pointer types. Returns true if the add of @p Ty itself succeeded, 2919/// false otherwise. 2920/// 2921/// FIXME: what to do about extended qualifiers? 2922bool 2923BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 2924 QualType Ty) { 2925 // Insert this type. 2926 if (!MemberPointerTypes.insert(Ty)) 2927 return false; 2928 2929 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 2930 assert(PointerTy && "type was not a member pointer type!"); 2931 2932 QualType PointeeTy = PointerTy->getPointeeType(); 2933 const Type *ClassTy = PointerTy->getClass(); 2934 2935 // Iterate through all strict supersets of the pointee type's CVR 2936 // qualifiers. 2937 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 2938 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 2939 if ((CVR | BaseCVR) != CVR) continue; 2940 2941 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 2942 MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy)); 2943 } 2944 2945 return true; 2946} 2947 2948/// AddTypesConvertedFrom - Add each of the types to which the type @p 2949/// Ty can be implicit converted to the given set of @p Types. We're 2950/// primarily interested in pointer types and enumeration types. We also 2951/// take member pointer types, for the conditional operator. 2952/// AllowUserConversions is true if we should look at the conversion 2953/// functions of a class type, and AllowExplicitConversions if we 2954/// should also include the explicit conversion functions of a class 2955/// type. 2956void 2957BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 2958 bool AllowUserConversions, 2959 bool AllowExplicitConversions) { 2960 // Only deal with canonical types. 2961 Ty = Context.getCanonicalType(Ty); 2962 2963 // Look through reference types; they aren't part of the type of an 2964 // expression for the purposes of conversions. 2965 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 2966 Ty = RefTy->getPointeeType(); 2967 2968 // We don't care about qualifiers on the type. 2969 Ty = Ty.getUnqualifiedType(); 2970 2971 if (const PointerType *PointerTy = Ty->getAs<PointerType>()) { 2972 QualType PointeeTy = PointerTy->getPointeeType(); 2973 2974 // Insert our type, and its more-qualified variants, into the set 2975 // of types. 2976 if (!AddPointerWithMoreQualifiedTypeVariants(Ty)) 2977 return; 2978 2979 // Add 'cv void*' to our set of types. 2980 if (!Ty->isVoidType()) { 2981 QualType QualVoid 2982 = Context.getCVRQualifiedType(Context.VoidTy, 2983 PointeeTy.getCVRQualifiers()); 2984 AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid)); 2985 } 2986 2987 // If this is a pointer to a class type, add pointers to its bases 2988 // (with the same level of cv-qualification as the original 2989 // derived class, of course). 2990 if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) { 2991 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl()); 2992 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); 2993 Base != ClassDecl->bases_end(); ++Base) { 2994 QualType BaseTy = Context.getCanonicalType(Base->getType()); 2995 BaseTy = Context.getCVRQualifiedType(BaseTy.getUnqualifiedType(), 2996 PointeeTy.getCVRQualifiers()); 2997 2998 // Add the pointer type, recursively, so that we get all of 2999 // the indirect base classes, too. 3000 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false); 3001 } 3002 } 3003 } else if (Ty->isMemberPointerType()) { 3004 // Member pointers are far easier, since the pointee can't be converted. 3005 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 3006 return; 3007 } else if (Ty->isEnumeralType()) { 3008 EnumerationTypes.insert(Ty); 3009 } else if (AllowUserConversions) { 3010 if (const RecordType *TyRec = Ty->getAs<RecordType>()) { 3011 if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) { 3012 // No conversion functions in incomplete types. 3013 return; 3014 } 3015 3016 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 3017 // FIXME: Visit conversion functions in the base classes, too. 3018 OverloadedFunctionDecl *Conversions 3019 = ClassDecl->getConversionFunctions(); 3020 for (OverloadedFunctionDecl::function_iterator Func 3021 = Conversions->function_begin(); 3022 Func != Conversions->function_end(); ++Func) { 3023 CXXConversionDecl *Conv; 3024 FunctionTemplateDecl *ConvTemplate; 3025 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 3026 3027 // Skip conversion function templates; they don't tell us anything 3028 // about which builtin types we can convert to. 3029 if (ConvTemplate) 3030 continue; 3031 3032 if (AllowExplicitConversions || !Conv->isExplicit()) 3033 AddTypesConvertedFrom(Conv->getConversionType(), false, false); 3034 } 3035 } 3036 } 3037} 3038 3039/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 3040/// the volatile- and non-volatile-qualified assignment operators for the 3041/// given type to the candidate set. 3042static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 3043 QualType T, 3044 Expr **Args, 3045 unsigned NumArgs, 3046 OverloadCandidateSet &CandidateSet) { 3047 QualType ParamTypes[2]; 3048 3049 // T& operator=(T&, T) 3050 ParamTypes[0] = S.Context.getLValueReferenceType(T); 3051 ParamTypes[1] = T; 3052 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3053 /*IsAssignmentOperator=*/true); 3054 3055 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 3056 // volatile T& operator=(volatile T&, T) 3057 ParamTypes[0] 3058 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 3059 ParamTypes[1] = T; 3060 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3061 /*IsAssignmentOperator=*/true); 3062 } 3063} 3064 3065/// AddBuiltinOperatorCandidates - Add the appropriate built-in 3066/// operator overloads to the candidate set (C++ [over.built]), based 3067/// on the operator @p Op and the arguments given. For example, if the 3068/// operator is a binary '+', this routine might add "int 3069/// operator+(int, int)" to cover integer addition. 3070void 3071Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 3072 Expr **Args, unsigned NumArgs, 3073 OverloadCandidateSet& CandidateSet) { 3074 // The set of "promoted arithmetic types", which are the arithmetic 3075 // types are that preserved by promotion (C++ [over.built]p2). Note 3076 // that the first few of these types are the promoted integral 3077 // types; these types need to be first. 3078 // FIXME: What about complex? 3079 const unsigned FirstIntegralType = 0; 3080 const unsigned LastIntegralType = 13; 3081 const unsigned FirstPromotedIntegralType = 7, 3082 LastPromotedIntegralType = 13; 3083 const unsigned FirstPromotedArithmeticType = 7, 3084 LastPromotedArithmeticType = 16; 3085 const unsigned NumArithmeticTypes = 16; 3086 QualType ArithmeticTypes[NumArithmeticTypes] = { 3087 Context.BoolTy, Context.CharTy, Context.WCharTy, 3088// FIXME: Context.Char16Ty, Context.Char32Ty, 3089 Context.SignedCharTy, Context.ShortTy, 3090 Context.UnsignedCharTy, Context.UnsignedShortTy, 3091 Context.IntTy, Context.LongTy, Context.LongLongTy, 3092 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy, 3093 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy 3094 }; 3095 3096 // Find all of the types that the arguments can convert to, but only 3097 // if the operator we're looking at has built-in operator candidates 3098 // that make use of these types. 3099 BuiltinCandidateTypeSet CandidateTypes(*this); 3100 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual || 3101 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual || 3102 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal || 3103 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript || 3104 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus || 3105 (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) { 3106 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 3107 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(), 3108 true, 3109 (Op == OO_Exclaim || 3110 Op == OO_AmpAmp || 3111 Op == OO_PipePipe)); 3112 } 3113 3114 bool isComparison = false; 3115 switch (Op) { 3116 case OO_None: 3117 case NUM_OVERLOADED_OPERATORS: 3118 assert(false && "Expected an overloaded operator"); 3119 break; 3120 3121 case OO_Star: // '*' is either unary or binary 3122 if (NumArgs == 1) 3123 goto UnaryStar; 3124 else 3125 goto BinaryStar; 3126 break; 3127 3128 case OO_Plus: // '+' is either unary or binary 3129 if (NumArgs == 1) 3130 goto UnaryPlus; 3131 else 3132 goto BinaryPlus; 3133 break; 3134 3135 case OO_Minus: // '-' is either unary or binary 3136 if (NumArgs == 1) 3137 goto UnaryMinus; 3138 else 3139 goto BinaryMinus; 3140 break; 3141 3142 case OO_Amp: // '&' is either unary or binary 3143 if (NumArgs == 1) 3144 goto UnaryAmp; 3145 else 3146 goto BinaryAmp; 3147 3148 case OO_PlusPlus: 3149 case OO_MinusMinus: 3150 // C++ [over.built]p3: 3151 // 3152 // For every pair (T, VQ), where T is an arithmetic type, and VQ 3153 // is either volatile or empty, there exist candidate operator 3154 // functions of the form 3155 // 3156 // VQ T& operator++(VQ T&); 3157 // T operator++(VQ T&, int); 3158 // 3159 // C++ [over.built]p4: 3160 // 3161 // For every pair (T, VQ), where T is an arithmetic type other 3162 // than bool, and VQ is either volatile or empty, there exist 3163 // candidate operator functions of the form 3164 // 3165 // VQ T& operator--(VQ T&); 3166 // T operator--(VQ T&, int); 3167 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 3168 Arith < NumArithmeticTypes; ++Arith) { 3169 QualType ArithTy = ArithmeticTypes[Arith]; 3170 QualType ParamTypes[2] 3171 = { Context.getLValueReferenceType(ArithTy), Context.IntTy }; 3172 3173 // Non-volatile version. 3174 if (NumArgs == 1) 3175 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3176 else 3177 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3178 3179 // Volatile version 3180 ParamTypes[0] 3181 = Context.getLValueReferenceType(Context.getVolatileType(ArithTy)); 3182 if (NumArgs == 1) 3183 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3184 else 3185 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet); 3186 } 3187 3188 // C++ [over.built]p5: 3189 // 3190 // For every pair (T, VQ), where T is a cv-qualified or 3191 // cv-unqualified object type, and VQ is either volatile or 3192 // empty, there exist candidate operator functions of the form 3193 // 3194 // T*VQ& operator++(T*VQ&); 3195 // T*VQ& operator--(T*VQ&); 3196 // T* operator++(T*VQ&, int); 3197 // T* operator--(T*VQ&, int); 3198 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3199 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3200 // Skip pointer types that aren't pointers to object types. 3201 if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType()) 3202 continue; 3203 3204 QualType ParamTypes[2] = { 3205 Context.getLValueReferenceType(*Ptr), Context.IntTy 3206 }; 3207 3208 // Without volatile 3209 if (NumArgs == 1) 3210 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3211 else 3212 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3213 3214 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { 3215 // With volatile 3216 ParamTypes[0] 3217 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3218 if (NumArgs == 1) 3219 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 3220 else 3221 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3222 } 3223 } 3224 break; 3225 3226 UnaryStar: 3227 // C++ [over.built]p6: 3228 // For every cv-qualified or cv-unqualified object type T, there 3229 // exist candidate operator functions of the form 3230 // 3231 // T& operator*(T*); 3232 // 3233 // C++ [over.built]p7: 3234 // For every function type T, there exist candidate operator 3235 // functions of the form 3236 // T& operator*(T*); 3237 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3238 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3239 QualType ParamTy = *Ptr; 3240 QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType(); 3241 AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy), 3242 &ParamTy, Args, 1, CandidateSet); 3243 } 3244 break; 3245 3246 UnaryPlus: 3247 // C++ [over.built]p8: 3248 // For every type T, there exist candidate operator functions of 3249 // the form 3250 // 3251 // T* operator+(T*); 3252 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3253 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3254 QualType ParamTy = *Ptr; 3255 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 3256 } 3257 3258 // Fall through 3259 3260 UnaryMinus: 3261 // C++ [over.built]p9: 3262 // For every promoted arithmetic type T, there exist candidate 3263 // operator functions of the form 3264 // 3265 // T operator+(T); 3266 // T operator-(T); 3267 for (unsigned Arith = FirstPromotedArithmeticType; 3268 Arith < LastPromotedArithmeticType; ++Arith) { 3269 QualType ArithTy = ArithmeticTypes[Arith]; 3270 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 3271 } 3272 break; 3273 3274 case OO_Tilde: 3275 // C++ [over.built]p10: 3276 // For every promoted integral type T, there exist candidate 3277 // operator functions of the form 3278 // 3279 // T operator~(T); 3280 for (unsigned Int = FirstPromotedIntegralType; 3281 Int < LastPromotedIntegralType; ++Int) { 3282 QualType IntTy = ArithmeticTypes[Int]; 3283 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 3284 } 3285 break; 3286 3287 case OO_New: 3288 case OO_Delete: 3289 case OO_Array_New: 3290 case OO_Array_Delete: 3291 case OO_Call: 3292 assert(false && "Special operators don't use AddBuiltinOperatorCandidates"); 3293 break; 3294 3295 case OO_Comma: 3296 UnaryAmp: 3297 case OO_Arrow: 3298 // C++ [over.match.oper]p3: 3299 // -- For the operator ',', the unary operator '&', or the 3300 // operator '->', the built-in candidates set is empty. 3301 break; 3302 3303 case OO_EqualEqual: 3304 case OO_ExclaimEqual: 3305 // C++ [over.match.oper]p16: 3306 // For every pointer to member type T, there exist candidate operator 3307 // functions of the form 3308 // 3309 // bool operator==(T,T); 3310 // bool operator!=(T,T); 3311 for (BuiltinCandidateTypeSet::iterator 3312 MemPtr = CandidateTypes.member_pointer_begin(), 3313 MemPtrEnd = CandidateTypes.member_pointer_end(); 3314 MemPtr != MemPtrEnd; 3315 ++MemPtr) { 3316 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 3317 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3318 } 3319 3320 // Fall through 3321 3322 case OO_Less: 3323 case OO_Greater: 3324 case OO_LessEqual: 3325 case OO_GreaterEqual: 3326 // C++ [over.built]p15: 3327 // 3328 // For every pointer or enumeration type T, there exist 3329 // candidate operator functions of the form 3330 // 3331 // bool operator<(T, T); 3332 // bool operator>(T, T); 3333 // bool operator<=(T, T); 3334 // bool operator>=(T, T); 3335 // bool operator==(T, T); 3336 // bool operator!=(T, T); 3337 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3338 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3339 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3340 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3341 } 3342 for (BuiltinCandidateTypeSet::iterator Enum 3343 = CandidateTypes.enumeration_begin(); 3344 Enum != CandidateTypes.enumeration_end(); ++Enum) { 3345 QualType ParamTypes[2] = { *Enum, *Enum }; 3346 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet); 3347 } 3348 3349 // Fall through. 3350 isComparison = true; 3351 3352 BinaryPlus: 3353 BinaryMinus: 3354 if (!isComparison) { 3355 // We didn't fall through, so we must have OO_Plus or OO_Minus. 3356 3357 // C++ [over.built]p13: 3358 // 3359 // For every cv-qualified or cv-unqualified object type T 3360 // there exist candidate operator functions of the form 3361 // 3362 // T* operator+(T*, ptrdiff_t); 3363 // T& operator[](T*, ptrdiff_t); [BELOW] 3364 // T* operator-(T*, ptrdiff_t); 3365 // T* operator+(ptrdiff_t, T*); 3366 // T& operator[](ptrdiff_t, T*); [BELOW] 3367 // 3368 // C++ [over.built]p14: 3369 // 3370 // For every T, where T is a pointer to object type, there 3371 // exist candidate operator functions of the form 3372 // 3373 // ptrdiff_t operator-(T, T); 3374 for (BuiltinCandidateTypeSet::iterator Ptr 3375 = CandidateTypes.pointer_begin(); 3376 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3377 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3378 3379 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 3380 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3381 3382 if (Op == OO_Plus) { 3383 // T* operator+(ptrdiff_t, T*); 3384 ParamTypes[0] = ParamTypes[1]; 3385 ParamTypes[1] = *Ptr; 3386 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3387 } else { 3388 // ptrdiff_t operator-(T, T); 3389 ParamTypes[1] = *Ptr; 3390 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes, 3391 Args, 2, CandidateSet); 3392 } 3393 } 3394 } 3395 // Fall through 3396 3397 case OO_Slash: 3398 BinaryStar: 3399 Conditional: 3400 // C++ [over.built]p12: 3401 // 3402 // For every pair of promoted arithmetic types L and R, there 3403 // exist candidate operator functions of the form 3404 // 3405 // LR operator*(L, R); 3406 // LR operator/(L, R); 3407 // LR operator+(L, R); 3408 // LR operator-(L, R); 3409 // bool operator<(L, R); 3410 // bool operator>(L, R); 3411 // bool operator<=(L, R); 3412 // bool operator>=(L, R); 3413 // bool operator==(L, R); 3414 // bool operator!=(L, R); 3415 // 3416 // where LR is the result of the usual arithmetic conversions 3417 // between types L and R. 3418 // 3419 // C++ [over.built]p24: 3420 // 3421 // For every pair of promoted arithmetic types L and R, there exist 3422 // candidate operator functions of the form 3423 // 3424 // LR operator?(bool, L, R); 3425 // 3426 // where LR is the result of the usual arithmetic conversions 3427 // between types L and R. 3428 // Our candidates ignore the first parameter. 3429 for (unsigned Left = FirstPromotedArithmeticType; 3430 Left < LastPromotedArithmeticType; ++Left) { 3431 for (unsigned Right = FirstPromotedArithmeticType; 3432 Right < LastPromotedArithmeticType; ++Right) { 3433 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3434 QualType Result 3435 = isComparison 3436 ? Context.BoolTy 3437 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3438 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3439 } 3440 } 3441 break; 3442 3443 case OO_Percent: 3444 BinaryAmp: 3445 case OO_Caret: 3446 case OO_Pipe: 3447 case OO_LessLess: 3448 case OO_GreaterGreater: 3449 // C++ [over.built]p17: 3450 // 3451 // For every pair of promoted integral types L and R, there 3452 // exist candidate operator functions of the form 3453 // 3454 // LR operator%(L, R); 3455 // LR operator&(L, R); 3456 // LR operator^(L, R); 3457 // LR operator|(L, R); 3458 // L operator<<(L, R); 3459 // L operator>>(L, R); 3460 // 3461 // where LR is the result of the usual arithmetic conversions 3462 // between types L and R. 3463 for (unsigned Left = FirstPromotedIntegralType; 3464 Left < LastPromotedIntegralType; ++Left) { 3465 for (unsigned Right = FirstPromotedIntegralType; 3466 Right < LastPromotedIntegralType; ++Right) { 3467 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] }; 3468 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 3469 ? LandR[0] 3470 : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]); 3471 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 3472 } 3473 } 3474 break; 3475 3476 case OO_Equal: 3477 // C++ [over.built]p20: 3478 // 3479 // For every pair (T, VQ), where T is an enumeration or 3480 // pointer to member type and VQ is either volatile or 3481 // empty, there exist candidate operator functions of the form 3482 // 3483 // VQ T& operator=(VQ T&, T); 3484 for (BuiltinCandidateTypeSet::iterator 3485 Enum = CandidateTypes.enumeration_begin(), 3486 EnumEnd = CandidateTypes.enumeration_end(); 3487 Enum != EnumEnd; ++Enum) 3488 AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2, 3489 CandidateSet); 3490 for (BuiltinCandidateTypeSet::iterator 3491 MemPtr = CandidateTypes.member_pointer_begin(), 3492 MemPtrEnd = CandidateTypes.member_pointer_end(); 3493 MemPtr != MemPtrEnd; ++MemPtr) 3494 AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2, 3495 CandidateSet); 3496 // Fall through. 3497 3498 case OO_PlusEqual: 3499 case OO_MinusEqual: 3500 // C++ [over.built]p19: 3501 // 3502 // For every pair (T, VQ), where T is any type and VQ is either 3503 // volatile or empty, there exist candidate operator functions 3504 // of the form 3505 // 3506 // T*VQ& operator=(T*VQ&, T*); 3507 // 3508 // C++ [over.built]p21: 3509 // 3510 // For every pair (T, VQ), where T is a cv-qualified or 3511 // cv-unqualified object type and VQ is either volatile or 3512 // empty, there exist candidate operator functions of the form 3513 // 3514 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 3515 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 3516 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3517 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3518 QualType ParamTypes[2]; 3519 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType(); 3520 3521 // non-volatile version 3522 ParamTypes[0] = Context.getLValueReferenceType(*Ptr); 3523 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3524 /*IsAssigmentOperator=*/Op == OO_Equal); 3525 3526 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) { 3527 // volatile version 3528 ParamTypes[0] 3529 = Context.getLValueReferenceType(Context.getVolatileType(*Ptr)); 3530 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3531 /*IsAssigmentOperator=*/Op == OO_Equal); 3532 } 3533 } 3534 // Fall through. 3535 3536 case OO_StarEqual: 3537 case OO_SlashEqual: 3538 // C++ [over.built]p18: 3539 // 3540 // For every triple (L, VQ, R), where L is an arithmetic type, 3541 // VQ is either volatile or empty, and R is a promoted 3542 // arithmetic type, there exist candidate operator functions of 3543 // the form 3544 // 3545 // VQ L& operator=(VQ L&, R); 3546 // VQ L& operator*=(VQ L&, R); 3547 // VQ L& operator/=(VQ L&, R); 3548 // VQ L& operator+=(VQ L&, R); 3549 // VQ L& operator-=(VQ L&, R); 3550 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 3551 for (unsigned Right = FirstPromotedArithmeticType; 3552 Right < LastPromotedArithmeticType; ++Right) { 3553 QualType ParamTypes[2]; 3554 ParamTypes[1] = ArithmeticTypes[Right]; 3555 3556 // Add this built-in operator as a candidate (VQ is empty). 3557 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3558 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3559 /*IsAssigmentOperator=*/Op == OO_Equal); 3560 3561 // Add this built-in operator as a candidate (VQ is 'volatile'). 3562 ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]); 3563 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3564 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 3565 /*IsAssigmentOperator=*/Op == OO_Equal); 3566 } 3567 } 3568 break; 3569 3570 case OO_PercentEqual: 3571 case OO_LessLessEqual: 3572 case OO_GreaterGreaterEqual: 3573 case OO_AmpEqual: 3574 case OO_CaretEqual: 3575 case OO_PipeEqual: 3576 // C++ [over.built]p22: 3577 // 3578 // For every triple (L, VQ, R), where L is an integral type, VQ 3579 // is either volatile or empty, and R is a promoted integral 3580 // type, there exist candidate operator functions of the form 3581 // 3582 // VQ L& operator%=(VQ L&, R); 3583 // VQ L& operator<<=(VQ L&, R); 3584 // VQ L& operator>>=(VQ L&, R); 3585 // VQ L& operator&=(VQ L&, R); 3586 // VQ L& operator^=(VQ L&, R); 3587 // VQ L& operator|=(VQ L&, R); 3588 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 3589 for (unsigned Right = FirstPromotedIntegralType; 3590 Right < LastPromotedIntegralType; ++Right) { 3591 QualType ParamTypes[2]; 3592 ParamTypes[1] = ArithmeticTypes[Right]; 3593 3594 // Add this built-in operator as a candidate (VQ is empty). 3595 ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]); 3596 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3597 3598 // Add this built-in operator as a candidate (VQ is 'volatile'). 3599 ParamTypes[0] = ArithmeticTypes[Left]; 3600 ParamTypes[0] = Context.getVolatileType(ParamTypes[0]); 3601 ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]); 3602 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 3603 } 3604 } 3605 break; 3606 3607 case OO_Exclaim: { 3608 // C++ [over.operator]p23: 3609 // 3610 // There also exist candidate operator functions of the form 3611 // 3612 // bool operator!(bool); 3613 // bool operator&&(bool, bool); [BELOW] 3614 // bool operator||(bool, bool); [BELOW] 3615 QualType ParamTy = Context.BoolTy; 3616 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 3617 /*IsAssignmentOperator=*/false, 3618 /*NumContextualBoolArguments=*/1); 3619 break; 3620 } 3621 3622 case OO_AmpAmp: 3623 case OO_PipePipe: { 3624 // C++ [over.operator]p23: 3625 // 3626 // There also exist candidate operator functions of the form 3627 // 3628 // bool operator!(bool); [ABOVE] 3629 // bool operator&&(bool, bool); 3630 // bool operator||(bool, bool); 3631 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy }; 3632 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 3633 /*IsAssignmentOperator=*/false, 3634 /*NumContextualBoolArguments=*/2); 3635 break; 3636 } 3637 3638 case OO_Subscript: 3639 // C++ [over.built]p13: 3640 // 3641 // For every cv-qualified or cv-unqualified object type T there 3642 // exist candidate operator functions of the form 3643 // 3644 // T* operator+(T*, ptrdiff_t); [ABOVE] 3645 // T& operator[](T*, ptrdiff_t); 3646 // T* operator-(T*, ptrdiff_t); [ABOVE] 3647 // T* operator+(ptrdiff_t, T*); [ABOVE] 3648 // T& operator[](ptrdiff_t, T*); 3649 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(); 3650 Ptr != CandidateTypes.pointer_end(); ++Ptr) { 3651 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() }; 3652 QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType(); 3653 QualType ResultTy = Context.getLValueReferenceType(PointeeType); 3654 3655 // T& operator[](T*, ptrdiff_t) 3656 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3657 3658 // T& operator[](ptrdiff_t, T*); 3659 ParamTypes[0] = ParamTypes[1]; 3660 ParamTypes[1] = *Ptr; 3661 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 3662 } 3663 break; 3664 3665 case OO_ArrowStar: 3666 // FIXME: No support for pointer-to-members yet. 3667 break; 3668 3669 case OO_Conditional: 3670 // Note that we don't consider the first argument, since it has been 3671 // contextually converted to bool long ago. The candidates below are 3672 // therefore added as binary. 3673 // 3674 // C++ [over.built]p24: 3675 // For every type T, where T is a pointer or pointer-to-member type, 3676 // there exist candidate operator functions of the form 3677 // 3678 // T operator?(bool, T, T); 3679 // 3680 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(), 3681 E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) { 3682 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3683 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3684 } 3685 for (BuiltinCandidateTypeSet::iterator Ptr = 3686 CandidateTypes.member_pointer_begin(), 3687 E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) { 3688 QualType ParamTypes[2] = { *Ptr, *Ptr }; 3689 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 3690 } 3691 goto Conditional; 3692 } 3693} 3694 3695/// \brief Add function candidates found via argument-dependent lookup 3696/// to the set of overloading candidates. 3697/// 3698/// This routine performs argument-dependent name lookup based on the 3699/// given function name (which may also be an operator name) and adds 3700/// all of the overload candidates found by ADL to the overload 3701/// candidate set (C++ [basic.lookup.argdep]). 3702void 3703Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 3704 Expr **Args, unsigned NumArgs, 3705 bool HasExplicitTemplateArgs, 3706 const TemplateArgument *ExplicitTemplateArgs, 3707 unsigned NumExplicitTemplateArgs, 3708 OverloadCandidateSet& CandidateSet, 3709 bool PartialOverloading) { 3710 FunctionSet Functions; 3711 3712 // FIXME: Should we be trafficking in canonical function decls throughout? 3713 3714 // Record all of the function candidates that we've already 3715 // added to the overload set, so that we don't add those same 3716 // candidates a second time. 3717 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3718 CandEnd = CandidateSet.end(); 3719 Cand != CandEnd; ++Cand) 3720 if (Cand->Function) { 3721 Functions.insert(Cand->Function); 3722 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3723 Functions.insert(FunTmpl); 3724 } 3725 3726 // FIXME: Pass in the explicit template arguments? 3727 ArgumentDependentLookup(Name, Args, NumArgs, Functions); 3728 3729 // Erase all of the candidates we already knew about. 3730 // FIXME: This is suboptimal. Is there a better way? 3731 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3732 CandEnd = CandidateSet.end(); 3733 Cand != CandEnd; ++Cand) 3734 if (Cand->Function) { 3735 Functions.erase(Cand->Function); 3736 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 3737 Functions.erase(FunTmpl); 3738 } 3739 3740 // For each of the ADL candidates we found, add it to the overload 3741 // set. 3742 for (FunctionSet::iterator Func = Functions.begin(), 3743 FuncEnd = Functions.end(); 3744 Func != FuncEnd; ++Func) { 3745 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) { 3746 if (HasExplicitTemplateArgs) 3747 continue; 3748 3749 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet, 3750 false, false, PartialOverloading); 3751 } else 3752 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func), 3753 HasExplicitTemplateArgs, 3754 ExplicitTemplateArgs, 3755 NumExplicitTemplateArgs, 3756 Args, NumArgs, CandidateSet); 3757 } 3758} 3759 3760/// isBetterOverloadCandidate - Determines whether the first overload 3761/// candidate is a better candidate than the second (C++ 13.3.3p1). 3762bool 3763Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1, 3764 const OverloadCandidate& Cand2) { 3765 // Define viable functions to be better candidates than non-viable 3766 // functions. 3767 if (!Cand2.Viable) 3768 return Cand1.Viable; 3769 else if (!Cand1.Viable) 3770 return false; 3771 3772 // C++ [over.match.best]p1: 3773 // 3774 // -- if F is a static member function, ICS1(F) is defined such 3775 // that ICS1(F) is neither better nor worse than ICS1(G) for 3776 // any function G, and, symmetrically, ICS1(G) is neither 3777 // better nor worse than ICS1(F). 3778 unsigned StartArg = 0; 3779 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 3780 StartArg = 1; 3781 3782 // C++ [over.match.best]p1: 3783 // A viable function F1 is defined to be a better function than another 3784 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 3785 // conversion sequence than ICSi(F2), and then... 3786 unsigned NumArgs = Cand1.Conversions.size(); 3787 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 3788 bool HasBetterConversion = false; 3789 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 3790 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx], 3791 Cand2.Conversions[ArgIdx])) { 3792 case ImplicitConversionSequence::Better: 3793 // Cand1 has a better conversion sequence. 3794 HasBetterConversion = true; 3795 break; 3796 3797 case ImplicitConversionSequence::Worse: 3798 // Cand1 can't be better than Cand2. 3799 return false; 3800 3801 case ImplicitConversionSequence::Indistinguishable: 3802 // Do nothing. 3803 break; 3804 } 3805 } 3806 3807 // -- for some argument j, ICSj(F1) is a better conversion sequence than 3808 // ICSj(F2), or, if not that, 3809 if (HasBetterConversion) 3810 return true; 3811 3812 // - F1 is a non-template function and F2 is a function template 3813 // specialization, or, if not that, 3814 if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() && 3815 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 3816 return true; 3817 3818 // -- F1 and F2 are function template specializations, and the function 3819 // template for F1 is more specialized than the template for F2 3820 // according to the partial ordering rules described in 14.5.5.2, or, 3821 // if not that, 3822 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 3823 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 3824 if (FunctionTemplateDecl *BetterTemplate 3825 = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 3826 Cand2.Function->getPrimaryTemplate(), 3827 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 3828 : TPOC_Call)) 3829 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 3830 3831 // -- the context is an initialization by user-defined conversion 3832 // (see 8.5, 13.3.1.5) and the standard conversion sequence 3833 // from the return type of F1 to the destination type (i.e., 3834 // the type of the entity being initialized) is a better 3835 // conversion sequence than the standard conversion sequence 3836 // from the return type of F2 to the destination type. 3837 if (Cand1.Function && Cand2.Function && 3838 isa<CXXConversionDecl>(Cand1.Function) && 3839 isa<CXXConversionDecl>(Cand2.Function)) { 3840 switch (CompareStandardConversionSequences(Cand1.FinalConversion, 3841 Cand2.FinalConversion)) { 3842 case ImplicitConversionSequence::Better: 3843 // Cand1 has a better conversion sequence. 3844 return true; 3845 3846 case ImplicitConversionSequence::Worse: 3847 // Cand1 can't be better than Cand2. 3848 return false; 3849 3850 case ImplicitConversionSequence::Indistinguishable: 3851 // Do nothing 3852 break; 3853 } 3854 } 3855 3856 return false; 3857} 3858 3859/// \brief Computes the best viable function (C++ 13.3.3) 3860/// within an overload candidate set. 3861/// 3862/// \param CandidateSet the set of candidate functions. 3863/// 3864/// \param Loc the location of the function name (or operator symbol) for 3865/// which overload resolution occurs. 3866/// 3867/// \param Best f overload resolution was successful or found a deleted 3868/// function, Best points to the candidate function found. 3869/// 3870/// \returns The result of overload resolution. 3871Sema::OverloadingResult 3872Sema::BestViableFunction(OverloadCandidateSet& CandidateSet, 3873 SourceLocation Loc, 3874 OverloadCandidateSet::iterator& Best) { 3875 // Find the best viable function. 3876 Best = CandidateSet.end(); 3877 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3878 Cand != CandidateSet.end(); ++Cand) { 3879 if (Cand->Viable) { 3880 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best)) 3881 Best = Cand; 3882 } 3883 } 3884 3885 // If we didn't find any viable functions, abort. 3886 if (Best == CandidateSet.end()) 3887 return OR_No_Viable_Function; 3888 3889 // Make sure that this function is better than every other viable 3890 // function. If not, we have an ambiguity. 3891 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3892 Cand != CandidateSet.end(); ++Cand) { 3893 if (Cand->Viable && 3894 Cand != Best && 3895 !isBetterOverloadCandidate(*Best, *Cand)) { 3896 Best = CandidateSet.end(); 3897 return OR_Ambiguous; 3898 } 3899 } 3900 3901 // Best is the best viable function. 3902 if (Best->Function && 3903 (Best->Function->isDeleted() || 3904 Best->Function->getAttr<UnavailableAttr>())) 3905 return OR_Deleted; 3906 3907 // C++ [basic.def.odr]p2: 3908 // An overloaded function is used if it is selected by overload resolution 3909 // when referred to from a potentially-evaluated expression. [Note: this 3910 // covers calls to named functions (5.2.2), operator overloading 3911 // (clause 13), user-defined conversions (12.3.2), allocation function for 3912 // placement new (5.3.4), as well as non-default initialization (8.5). 3913 if (Best->Function) 3914 MarkDeclarationReferenced(Loc, Best->Function); 3915 return OR_Success; 3916} 3917 3918/// PrintOverloadCandidates - When overload resolution fails, prints 3919/// diagnostic messages containing the candidates in the candidate 3920/// set. If OnlyViable is true, only viable candidates will be printed. 3921void 3922Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet, 3923 bool OnlyViable) { 3924 OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 3925 LastCand = CandidateSet.end(); 3926 for (; Cand != LastCand; ++Cand) { 3927 if (Cand->Viable || !OnlyViable) { 3928 if (Cand->Function) { 3929 if (Cand->Function->isDeleted() || 3930 Cand->Function->getAttr<UnavailableAttr>()) { 3931 // Deleted or "unavailable" function. 3932 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted) 3933 << Cand->Function->isDeleted(); 3934 } else if (FunctionTemplateDecl *FunTmpl 3935 = Cand->Function->getPrimaryTemplate()) { 3936 // Function template specialization 3937 // FIXME: Give a better reason! 3938 Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate) 3939 << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(), 3940 *Cand->Function->getTemplateSpecializationArgs()); 3941 } else { 3942 // Normal function 3943 bool errReported = false; 3944 if (!Cand->Viable && Cand->Conversions.size() > 0) { 3945 for (int i = Cand->Conversions.size()-1; i >= 0; i--) { 3946 const ImplicitConversionSequence &Conversion = 3947 Cand->Conversions[i]; 3948 if ((Conversion.ConversionKind != 3949 ImplicitConversionSequence::BadConversion) || 3950 Conversion.ConversionFunctionSet.size() == 0) 3951 continue; 3952 Diag(Cand->Function->getLocation(), 3953 diag::err_ovl_candidate_not_viable) << (i+1); 3954 errReported = true; 3955 for (int j = Conversion.ConversionFunctionSet.size()-1; 3956 j >= 0; j--) { 3957 FunctionDecl *Func = Conversion.ConversionFunctionSet[j]; 3958 Diag(Func->getLocation(), diag::err_ovl_candidate); 3959 } 3960 } 3961 } 3962 if (!errReported) 3963 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate); 3964 } 3965 } else if (Cand->IsSurrogate) { 3966 // Desugar the type of the surrogate down to a function type, 3967 // retaining as many typedefs as possible while still showing 3968 // the function type (and, therefore, its parameter types). 3969 QualType FnType = Cand->Surrogate->getConversionType(); 3970 bool isLValueReference = false; 3971 bool isRValueReference = false; 3972 bool isPointer = false; 3973 if (const LValueReferenceType *FnTypeRef = 3974 FnType->getAs<LValueReferenceType>()) { 3975 FnType = FnTypeRef->getPointeeType(); 3976 isLValueReference = true; 3977 } else if (const RValueReferenceType *FnTypeRef = 3978 FnType->getAs<RValueReferenceType>()) { 3979 FnType = FnTypeRef->getPointeeType(); 3980 isRValueReference = true; 3981 } 3982 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 3983 FnType = FnTypePtr->getPointeeType(); 3984 isPointer = true; 3985 } 3986 // Desugar down to a function type. 3987 FnType = QualType(FnType->getAs<FunctionType>(), 0); 3988 // Reconstruct the pointer/reference as appropriate. 3989 if (isPointer) FnType = Context.getPointerType(FnType); 3990 if (isRValueReference) FnType = Context.getRValueReferenceType(FnType); 3991 if (isLValueReference) FnType = Context.getLValueReferenceType(FnType); 3992 3993 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand) 3994 << FnType; 3995 } else { 3996 // FIXME: We need to get the identifier in here 3997 // FIXME: Do we want the error message to point at the operator? 3998 // (built-ins won't have a location) 3999 QualType FnType 4000 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy, 4001 Cand->BuiltinTypes.ParamTypes, 4002 Cand->Conversions.size(), 4003 false, 0); 4004 4005 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType; 4006 } 4007 } 4008 } 4009} 4010 4011/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 4012/// an overloaded function (C++ [over.over]), where @p From is an 4013/// expression with overloaded function type and @p ToType is the type 4014/// we're trying to resolve to. For example: 4015/// 4016/// @code 4017/// int f(double); 4018/// int f(int); 4019/// 4020/// int (*pfd)(double) = f; // selects f(double) 4021/// @endcode 4022/// 4023/// This routine returns the resulting FunctionDecl if it could be 4024/// resolved, and NULL otherwise. When @p Complain is true, this 4025/// routine will emit diagnostics if there is an error. 4026FunctionDecl * 4027Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType, 4028 bool Complain) { 4029 QualType FunctionType = ToType; 4030 bool IsMember = false; 4031 if (const PointerType *ToTypePtr = ToType->getAs<PointerType>()) 4032 FunctionType = ToTypePtr->getPointeeType(); 4033 else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>()) 4034 FunctionType = ToTypeRef->getPointeeType(); 4035 else if (const MemberPointerType *MemTypePtr = 4036 ToType->getAs<MemberPointerType>()) { 4037 FunctionType = MemTypePtr->getPointeeType(); 4038 IsMember = true; 4039 } 4040 4041 // We only look at pointers or references to functions. 4042 FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType(); 4043 if (!FunctionType->isFunctionType()) 4044 return 0; 4045 4046 // Find the actual overloaded function declaration. 4047 OverloadedFunctionDecl *Ovl = 0; 4048 4049 // C++ [over.over]p1: 4050 // [...] [Note: any redundant set of parentheses surrounding the 4051 // overloaded function name is ignored (5.1). ] 4052 Expr *OvlExpr = From->IgnoreParens(); 4053 4054 // C++ [over.over]p1: 4055 // [...] The overloaded function name can be preceded by the & 4056 // operator. 4057 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) { 4058 if (UnOp->getOpcode() == UnaryOperator::AddrOf) 4059 OvlExpr = UnOp->getSubExpr()->IgnoreParens(); 4060 } 4061 4062 // Try to dig out the overloaded function. 4063 FunctionTemplateDecl *FunctionTemplate = 0; 4064 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) { 4065 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl()); 4066 FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl()); 4067 } 4068 4069 // If there's no overloaded function declaration or function template, 4070 // we're done. 4071 if (!Ovl && !FunctionTemplate) 4072 return 0; 4073 4074 OverloadIterator Fun; 4075 if (Ovl) 4076 Fun = Ovl; 4077 else 4078 Fun = FunctionTemplate; 4079 4080 // Look through all of the overloaded functions, searching for one 4081 // whose type matches exactly. 4082 llvm::SmallPtrSet<FunctionDecl *, 4> Matches; 4083 bool FoundNonTemplateFunction = false; 4084 for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) { 4085 // C++ [over.over]p3: 4086 // Non-member functions and static member functions match 4087 // targets of type "pointer-to-function" or "reference-to-function." 4088 // Nonstatic member functions match targets of 4089 // type "pointer-to-member-function." 4090 // Note that according to DR 247, the containing class does not matter. 4091 4092 if (FunctionTemplateDecl *FunctionTemplate 4093 = dyn_cast<FunctionTemplateDecl>(*Fun)) { 4094 if (CXXMethodDecl *Method 4095 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 4096 // Skip non-static function templates when converting to pointer, and 4097 // static when converting to member pointer. 4098 if (Method->isStatic() == IsMember) 4099 continue; 4100 } else if (IsMember) 4101 continue; 4102 4103 // C++ [over.over]p2: 4104 // If the name is a function template, template argument deduction is 4105 // done (14.8.2.2), and if the argument deduction succeeds, the 4106 // resulting template argument list is used to generate a single 4107 // function template specialization, which is added to the set of 4108 // overloaded functions considered. 4109 // FIXME: We don't really want to build the specialization here, do we? 4110 FunctionDecl *Specialization = 0; 4111 TemplateDeductionInfo Info(Context); 4112 if (TemplateDeductionResult Result 4113 = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false, 4114 /*FIXME:*/0, /*FIXME:*/0, 4115 FunctionType, Specialization, Info)) { 4116 // FIXME: make a note of the failed deduction for diagnostics. 4117 (void)Result; 4118 } else { 4119 // FIXME: If the match isn't exact, shouldn't we just drop this as 4120 // a candidate? Find a testcase before changing the code. 4121 assert(FunctionType 4122 == Context.getCanonicalType(Specialization->getType())); 4123 Matches.insert( 4124 cast<FunctionDecl>(Specialization->getCanonicalDecl())); 4125 } 4126 } 4127 4128 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) { 4129 // Skip non-static functions when converting to pointer, and static 4130 // when converting to member pointer. 4131 if (Method->isStatic() == IsMember) 4132 continue; 4133 } else if (IsMember) 4134 continue; 4135 4136 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) { 4137 if (FunctionType == Context.getCanonicalType(FunDecl->getType())) { 4138 Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl())); 4139 FoundNonTemplateFunction = true; 4140 } 4141 } 4142 } 4143 4144 // If there were 0 or 1 matches, we're done. 4145 if (Matches.empty()) 4146 return 0; 4147 else if (Matches.size() == 1) 4148 return *Matches.begin(); 4149 4150 // C++ [over.over]p4: 4151 // If more than one function is selected, [...] 4152 typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter; 4153 if (!FoundNonTemplateFunction) { 4154 // [...] and any given function template specialization F1 is 4155 // eliminated if the set contains a second function template 4156 // specialization whose function template is more specialized 4157 // than the function template of F1 according to the partial 4158 // ordering rules of 14.5.5.2. 4159 4160 // The algorithm specified above is quadratic. We instead use a 4161 // two-pass algorithm (similar to the one used to identify the 4162 // best viable function in an overload set) that identifies the 4163 // best function template (if it exists). 4164 llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(), 4165 Matches.end()); 4166 return getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(), 4167 TPOC_Other, From->getLocStart(), 4168 PartialDiagnostic(0), 4169 PartialDiagnostic(diag::err_addr_ovl_ambiguous) 4170 << TemplateMatches[0]->getDeclName(), 4171 PartialDiagnostic(diag::err_ovl_template_candidate)); 4172 } 4173 4174 // [...] any function template specializations in the set are 4175 // eliminated if the set also contains a non-template function, [...] 4176 llvm::SmallVector<FunctionDecl *, 4> RemainingMatches; 4177 for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M) 4178 if ((*M)->getPrimaryTemplate() == 0) 4179 RemainingMatches.push_back(*M); 4180 4181 // [...] After such eliminations, if any, there shall remain exactly one 4182 // selected function. 4183 if (RemainingMatches.size() == 1) 4184 return RemainingMatches.front(); 4185 4186 // FIXME: We should probably return the same thing that BestViableFunction 4187 // returns (even if we issue the diagnostics here). 4188 Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous) 4189 << RemainingMatches[0]->getDeclName(); 4190 for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I) 4191 Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate); 4192 return 0; 4193} 4194 4195/// \brief Add a single candidate to the overload set. 4196static void AddOverloadedCallCandidate(Sema &S, 4197 AnyFunctionDecl Callee, 4198 bool &ArgumentDependentLookup, 4199 bool HasExplicitTemplateArgs, 4200 const TemplateArgument *ExplicitTemplateArgs, 4201 unsigned NumExplicitTemplateArgs, 4202 Expr **Args, unsigned NumArgs, 4203 OverloadCandidateSet &CandidateSet, 4204 bool PartialOverloading) { 4205 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 4206 assert(!HasExplicitTemplateArgs && "Explicit template arguments?"); 4207 S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false, 4208 PartialOverloading); 4209 4210 if (Func->getDeclContext()->isRecord() || 4211 Func->getDeclContext()->isFunctionOrMethod()) 4212 ArgumentDependentLookup = false; 4213 return; 4214 } 4215 4216 FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee); 4217 S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs, 4218 ExplicitTemplateArgs, 4219 NumExplicitTemplateArgs, 4220 Args, NumArgs, CandidateSet); 4221 4222 if (FuncTemplate->getDeclContext()->isRecord()) 4223 ArgumentDependentLookup = false; 4224} 4225 4226/// \brief Add the overload candidates named by callee and/or found by argument 4227/// dependent lookup to the given overload set. 4228void Sema::AddOverloadedCallCandidates(NamedDecl *Callee, 4229 DeclarationName &UnqualifiedName, 4230 bool &ArgumentDependentLookup, 4231 bool HasExplicitTemplateArgs, 4232 const TemplateArgument *ExplicitTemplateArgs, 4233 unsigned NumExplicitTemplateArgs, 4234 Expr **Args, unsigned NumArgs, 4235 OverloadCandidateSet &CandidateSet, 4236 bool PartialOverloading) { 4237 // Add the functions denoted by Callee to the set of candidate 4238 // functions. While we're doing so, track whether argument-dependent 4239 // lookup still applies, per: 4240 // 4241 // C++0x [basic.lookup.argdep]p3: 4242 // Let X be the lookup set produced by unqualified lookup (3.4.1) 4243 // and let Y be the lookup set produced by argument dependent 4244 // lookup (defined as follows). If X contains 4245 // 4246 // -- a declaration of a class member, or 4247 // 4248 // -- a block-scope function declaration that is not a 4249 // using-declaration (FIXME: check for using declaration), or 4250 // 4251 // -- a declaration that is neither a function or a function 4252 // template 4253 // 4254 // then Y is empty. 4255 if (!Callee) { 4256 // Nothing to do. 4257 } else if (OverloadedFunctionDecl *Ovl 4258 = dyn_cast<OverloadedFunctionDecl>(Callee)) { 4259 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(), 4260 FuncEnd = Ovl->function_end(); 4261 Func != FuncEnd; ++Func) 4262 AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup, 4263 HasExplicitTemplateArgs, 4264 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4265 Args, NumArgs, CandidateSet, 4266 PartialOverloading); 4267 } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee)) 4268 AddOverloadedCallCandidate(*this, 4269 AnyFunctionDecl::getFromNamedDecl(Callee), 4270 ArgumentDependentLookup, 4271 HasExplicitTemplateArgs, 4272 ExplicitTemplateArgs, NumExplicitTemplateArgs, 4273 Args, NumArgs, CandidateSet, 4274 PartialOverloading); 4275 // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than 4276 // checking dynamically. 4277 4278 if (Callee) 4279 UnqualifiedName = Callee->getDeclName(); 4280 4281 if (ArgumentDependentLookup) 4282 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs, 4283 HasExplicitTemplateArgs, 4284 ExplicitTemplateArgs, 4285 NumExplicitTemplateArgs, 4286 CandidateSet, 4287 PartialOverloading); 4288} 4289 4290/// ResolveOverloadedCallFn - Given the call expression that calls Fn 4291/// (which eventually refers to the declaration Func) and the call 4292/// arguments Args/NumArgs, attempt to resolve the function call down 4293/// to a specific function. If overload resolution succeeds, returns 4294/// the function declaration produced by overload 4295/// resolution. Otherwise, emits diagnostics, deletes all of the 4296/// arguments and Fn, and returns NULL. 4297FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee, 4298 DeclarationName UnqualifiedName, 4299 bool HasExplicitTemplateArgs, 4300 const TemplateArgument *ExplicitTemplateArgs, 4301 unsigned NumExplicitTemplateArgs, 4302 SourceLocation LParenLoc, 4303 Expr **Args, unsigned NumArgs, 4304 SourceLocation *CommaLocs, 4305 SourceLocation RParenLoc, 4306 bool &ArgumentDependentLookup) { 4307 OverloadCandidateSet CandidateSet; 4308 4309 // Add the functions denoted by Callee to the set of candidate 4310 // functions. 4311 AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup, 4312 HasExplicitTemplateArgs, ExplicitTemplateArgs, 4313 NumExplicitTemplateArgs, Args, NumArgs, 4314 CandidateSet); 4315 OverloadCandidateSet::iterator Best; 4316 switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) { 4317 case OR_Success: 4318 return Best->Function; 4319 4320 case OR_No_Viable_Function: 4321 Diag(Fn->getSourceRange().getBegin(), 4322 diag::err_ovl_no_viable_function_in_call) 4323 << UnqualifiedName << Fn->getSourceRange(); 4324 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4325 break; 4326 4327 case OR_Ambiguous: 4328 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 4329 << UnqualifiedName << Fn->getSourceRange(); 4330 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4331 break; 4332 4333 case OR_Deleted: 4334 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 4335 << Best->Function->isDeleted() 4336 << UnqualifiedName 4337 << Fn->getSourceRange(); 4338 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4339 break; 4340 } 4341 4342 // Overload resolution failed. Destroy all of the subexpressions and 4343 // return NULL. 4344 Fn->Destroy(Context); 4345 for (unsigned Arg = 0; Arg < NumArgs; ++Arg) 4346 Args[Arg]->Destroy(Context); 4347 return 0; 4348} 4349 4350/// \brief Create a unary operation that may resolve to an overloaded 4351/// operator. 4352/// 4353/// \param OpLoc The location of the operator itself (e.g., '*'). 4354/// 4355/// \param OpcIn The UnaryOperator::Opcode that describes this 4356/// operator. 4357/// 4358/// \param Functions The set of non-member functions that will be 4359/// considered by overload resolution. The caller needs to build this 4360/// set based on the context using, e.g., 4361/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4362/// set should not contain any member functions; those will be added 4363/// by CreateOverloadedUnaryOp(). 4364/// 4365/// \param input The input argument. 4366Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, 4367 unsigned OpcIn, 4368 FunctionSet &Functions, 4369 ExprArg input) { 4370 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 4371 Expr *Input = (Expr *)input.get(); 4372 4373 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 4374 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 4375 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4376 4377 Expr *Args[2] = { Input, 0 }; 4378 unsigned NumArgs = 1; 4379 4380 // For post-increment and post-decrement, add the implicit '0' as 4381 // the second argument, so that we know this is a post-increment or 4382 // post-decrement. 4383 if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) { 4384 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 4385 Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy, 4386 SourceLocation()); 4387 NumArgs = 2; 4388 } 4389 4390 if (Input->isTypeDependent()) { 4391 OverloadedFunctionDecl *Overloads 4392 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4393 for (FunctionSet::iterator Func = Functions.begin(), 4394 FuncEnd = Functions.end(); 4395 Func != FuncEnd; ++Func) 4396 Overloads->addOverload(*Func); 4397 4398 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4399 OpLoc, false, false); 4400 4401 input.release(); 4402 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4403 &Args[0], NumArgs, 4404 Context.DependentTy, 4405 OpLoc)); 4406 } 4407 4408 // Build an empty overload set. 4409 OverloadCandidateSet CandidateSet; 4410 4411 // Add the candidates from the given function set. 4412 AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false); 4413 4414 // Add operator candidates that are member functions. 4415 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 4416 4417 // Add builtin operator candidates. 4418 AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet); 4419 4420 // Perform overload resolution. 4421 OverloadCandidateSet::iterator Best; 4422 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4423 case OR_Success: { 4424 // We found a built-in operator or an overloaded operator. 4425 FunctionDecl *FnDecl = Best->Function; 4426 4427 if (FnDecl) { 4428 // We matched an overloaded operator. Build a call to that 4429 // operator. 4430 4431 // Convert the arguments. 4432 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4433 if (PerformObjectArgumentInitialization(Input, Method)) 4434 return ExprError(); 4435 } else { 4436 // Convert the arguments. 4437 if (PerformCopyInitialization(Input, 4438 FnDecl->getParamDecl(0)->getType(), 4439 "passing")) 4440 return ExprError(); 4441 } 4442 4443 // Determine the result type 4444 QualType ResultTy 4445 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 4446 ResultTy = ResultTy.getNonReferenceType(); 4447 4448 // Build the actual expression node. 4449 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4450 SourceLocation()); 4451 UsualUnaryConversions(FnExpr); 4452 4453 input.release(); 4454 4455 Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4456 &Input, 1, ResultTy, OpLoc); 4457 return MaybeBindToTemporary(CE); 4458 } else { 4459 // We matched a built-in operator. Convert the arguments, then 4460 // break out so that we will build the appropriate built-in 4461 // operator node. 4462 if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 4463 Best->Conversions[0], "passing")) 4464 return ExprError(); 4465 4466 break; 4467 } 4468 } 4469 4470 case OR_No_Viable_Function: 4471 // No viable function; fall through to handling this as a 4472 // built-in operator, which will produce an error message for us. 4473 break; 4474 4475 case OR_Ambiguous: 4476 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4477 << UnaryOperator::getOpcodeStr(Opc) 4478 << Input->getSourceRange(); 4479 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4480 return ExprError(); 4481 4482 case OR_Deleted: 4483 Diag(OpLoc, diag::err_ovl_deleted_oper) 4484 << Best->Function->isDeleted() 4485 << UnaryOperator::getOpcodeStr(Opc) 4486 << Input->getSourceRange(); 4487 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4488 return ExprError(); 4489 } 4490 4491 // Either we found no viable overloaded operator or we matched a 4492 // built-in operator. In either case, fall through to trying to 4493 // build a built-in operation. 4494 input.release(); 4495 return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input)); 4496} 4497 4498/// \brief Create a binary operation that may resolve to an overloaded 4499/// operator. 4500/// 4501/// \param OpLoc The location of the operator itself (e.g., '+'). 4502/// 4503/// \param OpcIn The BinaryOperator::Opcode that describes this 4504/// operator. 4505/// 4506/// \param Functions The set of non-member functions that will be 4507/// considered by overload resolution. The caller needs to build this 4508/// set based on the context using, e.g., 4509/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 4510/// set should not contain any member functions; those will be added 4511/// by CreateOverloadedBinOp(). 4512/// 4513/// \param LHS Left-hand argument. 4514/// \param RHS Right-hand argument. 4515Sema::OwningExprResult 4516Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 4517 unsigned OpcIn, 4518 FunctionSet &Functions, 4519 Expr *LHS, Expr *RHS) { 4520 Expr *Args[2] = { LHS, RHS }; 4521 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 4522 4523 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 4524 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 4525 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4526 4527 // If either side is type-dependent, create an appropriate dependent 4528 // expression. 4529 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 4530 // .* cannot be overloaded. 4531 if (Opc == BinaryOperator::PtrMemD) 4532 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 4533 Context.DependentTy, OpLoc)); 4534 4535 OverloadedFunctionDecl *Overloads 4536 = OverloadedFunctionDecl::Create(Context, CurContext, OpName); 4537 for (FunctionSet::iterator Func = Functions.begin(), 4538 FuncEnd = Functions.end(); 4539 Func != FuncEnd; ++Func) 4540 Overloads->addOverload(*Func); 4541 4542 DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy, 4543 OpLoc, false, false); 4544 4545 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 4546 Args, 2, 4547 Context.DependentTy, 4548 OpLoc)); 4549 } 4550 4551 // If this is the .* operator, which is not overloadable, just 4552 // create a built-in binary operator. 4553 if (Opc == BinaryOperator::PtrMemD) 4554 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4555 4556 // If this is one of the assignment operators, we only perform 4557 // overload resolution if the left-hand side is a class or 4558 // enumeration type (C++ [expr.ass]p3). 4559 if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign && 4560 !Args[0]->getType()->isOverloadableType()) 4561 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4562 4563 // Build an empty overload set. 4564 OverloadCandidateSet CandidateSet; 4565 4566 // Add the candidates from the given function set. 4567 AddFunctionCandidates(Functions, Args, 2, CandidateSet, false); 4568 4569 // Add operator candidates that are member functions. 4570 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 4571 4572 // Add builtin operator candidates. 4573 AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet); 4574 4575 // Perform overload resolution. 4576 OverloadCandidateSet::iterator Best; 4577 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 4578 case OR_Success: { 4579 // We found a built-in operator or an overloaded operator. 4580 FunctionDecl *FnDecl = Best->Function; 4581 4582 if (FnDecl) { 4583 // We matched an overloaded operator. Build a call to that 4584 // operator. 4585 4586 // Convert the arguments. 4587 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 4588 if (PerformObjectArgumentInitialization(Args[0], Method) || 4589 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(), 4590 "passing")) 4591 return ExprError(); 4592 } else { 4593 // Convert the arguments. 4594 if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(), 4595 "passing") || 4596 PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(), 4597 "passing")) 4598 return ExprError(); 4599 } 4600 4601 // Determine the result type 4602 QualType ResultTy 4603 = FnDecl->getType()->getAs<FunctionType>()->getResultType(); 4604 ResultTy = ResultTy.getNonReferenceType(); 4605 4606 // Build the actual expression node. 4607 Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(), 4608 OpLoc); 4609 UsualUnaryConversions(FnExpr); 4610 4611 Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr, 4612 Args, 2, ResultTy, OpLoc); 4613 return MaybeBindToTemporary(CE); 4614 } else { 4615 // We matched a built-in operator. Convert the arguments, then 4616 // break out so that we will build the appropriate built-in 4617 // operator node. 4618 if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 4619 Best->Conversions[0], "passing") || 4620 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 4621 Best->Conversions[1], "passing")) 4622 return ExprError(); 4623 4624 break; 4625 } 4626 } 4627 4628 case OR_No_Viable_Function: 4629 // For class as left operand for assignment or compound assigment operator 4630 // do not fall through to handling in built-in, but report that no overloaded 4631 // assignment operator found 4632 if (Args[0]->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) { 4633 Diag(OpLoc, diag::err_ovl_no_viable_oper) 4634 << BinaryOperator::getOpcodeStr(Opc) 4635 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4636 return ExprError(); 4637 } 4638 // No viable function; fall through to handling this as a 4639 // built-in operator, which will produce an error message for us. 4640 break; 4641 4642 case OR_Ambiguous: 4643 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 4644 << BinaryOperator::getOpcodeStr(Opc) 4645 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4646 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4647 return ExprError(); 4648 4649 case OR_Deleted: 4650 Diag(OpLoc, diag::err_ovl_deleted_oper) 4651 << Best->Function->isDeleted() 4652 << BinaryOperator::getOpcodeStr(Opc) 4653 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 4654 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4655 return ExprError(); 4656 } 4657 4658 // Either we found no viable overloaded operator or we matched a 4659 // built-in operator. In either case, try to build a built-in 4660 // operation. 4661 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 4662} 4663 4664/// BuildCallToMemberFunction - Build a call to a member 4665/// function. MemExpr is the expression that refers to the member 4666/// function (and includes the object parameter), Args/NumArgs are the 4667/// arguments to the function call (not including the object 4668/// parameter). The caller needs to validate that the member 4669/// expression refers to a member function or an overloaded member 4670/// function. 4671Sema::ExprResult 4672Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 4673 SourceLocation LParenLoc, Expr **Args, 4674 unsigned NumArgs, SourceLocation *CommaLocs, 4675 SourceLocation RParenLoc) { 4676 // Dig out the member expression. This holds both the object 4677 // argument and the member function we're referring to. 4678 MemberExpr *MemExpr = 0; 4679 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE)) 4680 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr()); 4681 else 4682 MemExpr = dyn_cast<MemberExpr>(MemExprE); 4683 assert(MemExpr && "Building member call without member expression"); 4684 4685 // Extract the object argument. 4686 Expr *ObjectArg = MemExpr->getBase(); 4687 4688 CXXMethodDecl *Method = 0; 4689 if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) || 4690 isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) { 4691 // Add overload candidates 4692 OverloadCandidateSet CandidateSet; 4693 DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName(); 4694 4695 for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd; 4696 Func != FuncEnd; ++Func) { 4697 if ((Method = dyn_cast<CXXMethodDecl>(*Func))) 4698 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet, 4699 /*SuppressUserConversions=*/false); 4700 else 4701 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func), 4702 MemExpr->hasExplicitTemplateArgumentList(), 4703 MemExpr->getTemplateArgs(), 4704 MemExpr->getNumTemplateArgs(), 4705 ObjectArg, Args, NumArgs, 4706 CandidateSet, 4707 /*SuppressUsedConversions=*/false); 4708 } 4709 4710 OverloadCandidateSet::iterator Best; 4711 switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) { 4712 case OR_Success: 4713 Method = cast<CXXMethodDecl>(Best->Function); 4714 break; 4715 4716 case OR_No_Viable_Function: 4717 Diag(MemExpr->getSourceRange().getBegin(), 4718 diag::err_ovl_no_viable_member_function_in_call) 4719 << DeclName << MemExprE->getSourceRange(); 4720 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4721 // FIXME: Leaking incoming expressions! 4722 return true; 4723 4724 case OR_Ambiguous: 4725 Diag(MemExpr->getSourceRange().getBegin(), 4726 diag::err_ovl_ambiguous_member_call) 4727 << DeclName << MemExprE->getSourceRange(); 4728 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4729 // FIXME: Leaking incoming expressions! 4730 return true; 4731 4732 case OR_Deleted: 4733 Diag(MemExpr->getSourceRange().getBegin(), 4734 diag::err_ovl_deleted_member_call) 4735 << Best->Function->isDeleted() 4736 << DeclName << MemExprE->getSourceRange(); 4737 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4738 // FIXME: Leaking incoming expressions! 4739 return true; 4740 } 4741 4742 FixOverloadedFunctionReference(MemExpr, Method); 4743 } else { 4744 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 4745 } 4746 4747 assert(Method && "Member call to something that isn't a method?"); 4748 ExprOwningPtr<CXXMemberCallExpr> 4749 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args, 4750 NumArgs, 4751 Method->getResultType().getNonReferenceType(), 4752 RParenLoc)); 4753 4754 // Convert the object argument (for a non-static member function call). 4755 if (!Method->isStatic() && 4756 PerformObjectArgumentInitialization(ObjectArg, Method)) 4757 return true; 4758 MemExpr->setBase(ObjectArg); 4759 4760 // Convert the rest of the arguments 4761 const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType()); 4762 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs, 4763 RParenLoc)) 4764 return true; 4765 4766 if (CheckFunctionCall(Method, TheCall.get())) 4767 return true; 4768 4769 return MaybeBindToTemporary(TheCall.release()).release(); 4770} 4771 4772/// BuildCallToObjectOfClassType - Build a call to an object of class 4773/// type (C++ [over.call.object]), which can end up invoking an 4774/// overloaded function call operator (@c operator()) or performing a 4775/// user-defined conversion on the object argument. 4776Sema::ExprResult 4777Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object, 4778 SourceLocation LParenLoc, 4779 Expr **Args, unsigned NumArgs, 4780 SourceLocation *CommaLocs, 4781 SourceLocation RParenLoc) { 4782 assert(Object->getType()->isRecordType() && "Requires object type argument"); 4783 const RecordType *Record = Object->getType()->getAs<RecordType>(); 4784 4785 // C++ [over.call.object]p1: 4786 // If the primary-expression E in the function call syntax 4787 // evaluates to a class object of type "cv T", then the set of 4788 // candidate functions includes at least the function call 4789 // operators of T. The function call operators of T are obtained by 4790 // ordinary lookup of the name operator() in the context of 4791 // (E).operator(). 4792 OverloadCandidateSet CandidateSet; 4793 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 4794 DeclContext::lookup_const_iterator Oper, OperEnd; 4795 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName); 4796 Oper != OperEnd; ++Oper) 4797 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs, 4798 CandidateSet, /*SuppressUserConversions=*/false); 4799 4800 // C++ [over.call.object]p2: 4801 // In addition, for each conversion function declared in T of the 4802 // form 4803 // 4804 // operator conversion-type-id () cv-qualifier; 4805 // 4806 // where cv-qualifier is the same cv-qualification as, or a 4807 // greater cv-qualification than, cv, and where conversion-type-id 4808 // denotes the type "pointer to function of (P1,...,Pn) returning 4809 // R", or the type "reference to pointer to function of 4810 // (P1,...,Pn) returning R", or the type "reference to function 4811 // of (P1,...,Pn) returning R", a surrogate call function [...] 4812 // is also considered as a candidate function. Similarly, 4813 // surrogate call functions are added to the set of candidate 4814 // functions for each conversion function declared in an 4815 // accessible base class provided the function is not hidden 4816 // within T by another intervening declaration. 4817 4818 if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) { 4819 // FIXME: Look in base classes for more conversion operators! 4820 OverloadedFunctionDecl *Conversions 4821 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions(); 4822 for (OverloadedFunctionDecl::function_iterator 4823 Func = Conversions->function_begin(), 4824 FuncEnd = Conversions->function_end(); 4825 Func != FuncEnd; ++Func) { 4826 CXXConversionDecl *Conv; 4827 FunctionTemplateDecl *ConvTemplate; 4828 GetFunctionAndTemplate(*Func, Conv, ConvTemplate); 4829 4830 // Skip over templated conversion functions; they aren't 4831 // surrogates. 4832 if (ConvTemplate) 4833 continue; 4834 4835 // Strip the reference type (if any) and then the pointer type (if 4836 // any) to get down to what might be a function type. 4837 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 4838 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 4839 ConvType = ConvPtrType->getPointeeType(); 4840 4841 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 4842 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet); 4843 } 4844 } 4845 4846 // Perform overload resolution. 4847 OverloadCandidateSet::iterator Best; 4848 switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) { 4849 case OR_Success: 4850 // Overload resolution succeeded; we'll build the appropriate call 4851 // below. 4852 break; 4853 4854 case OR_No_Viable_Function: 4855 Diag(Object->getSourceRange().getBegin(), 4856 diag::err_ovl_no_viable_object_call) 4857 << Object->getType() << Object->getSourceRange(); 4858 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 4859 break; 4860 4861 case OR_Ambiguous: 4862 Diag(Object->getSourceRange().getBegin(), 4863 diag::err_ovl_ambiguous_object_call) 4864 << Object->getType() << Object->getSourceRange(); 4865 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4866 break; 4867 4868 case OR_Deleted: 4869 Diag(Object->getSourceRange().getBegin(), 4870 diag::err_ovl_deleted_object_call) 4871 << Best->Function->isDeleted() 4872 << Object->getType() << Object->getSourceRange(); 4873 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 4874 break; 4875 } 4876 4877 if (Best == CandidateSet.end()) { 4878 // We had an error; delete all of the subexpressions and return 4879 // the error. 4880 Object->Destroy(Context); 4881 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4882 Args[ArgIdx]->Destroy(Context); 4883 return true; 4884 } 4885 4886 if (Best->Function == 0) { 4887 // Since there is no function declaration, this is one of the 4888 // surrogate candidates. Dig out the conversion function. 4889 CXXConversionDecl *Conv 4890 = cast<CXXConversionDecl>( 4891 Best->Conversions[0].UserDefined.ConversionFunction); 4892 4893 // We selected one of the surrogate functions that converts the 4894 // object parameter to a function pointer. Perform the conversion 4895 // on the object argument, then let ActOnCallExpr finish the job. 4896 4897 // Create an implicit member expr to refer to the conversion operator. 4898 MemberExpr *ME = 4899 new (Context) MemberExpr(Object, /*IsArrow=*/false, Conv, 4900 SourceLocation(), Conv->getType()); 4901 QualType ResultType = Conv->getConversionType().getNonReferenceType(); 4902 CXXMemberCallExpr *CE = 4903 new (Context) CXXMemberCallExpr(Context, ME, 0, 0, 4904 ResultType, 4905 SourceLocation()); 4906 4907 return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc, 4908 MultiExprArg(*this, (ExprTy**)Args, NumArgs), 4909 CommaLocs, RParenLoc).release(); 4910 } 4911 4912 // We found an overloaded operator(). Build a CXXOperatorCallExpr 4913 // that calls this method, using Object for the implicit object 4914 // parameter and passing along the remaining arguments. 4915 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 4916 const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>(); 4917 4918 unsigned NumArgsInProto = Proto->getNumArgs(); 4919 unsigned NumArgsToCheck = NumArgs; 4920 4921 // Build the full argument list for the method call (the 4922 // implicit object parameter is placed at the beginning of the 4923 // list). 4924 Expr **MethodArgs; 4925 if (NumArgs < NumArgsInProto) { 4926 NumArgsToCheck = NumArgsInProto; 4927 MethodArgs = new Expr*[NumArgsInProto + 1]; 4928 } else { 4929 MethodArgs = new Expr*[NumArgs + 1]; 4930 } 4931 MethodArgs[0] = Object; 4932 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4933 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 4934 4935 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(), 4936 SourceLocation()); 4937 UsualUnaryConversions(NewFn); 4938 4939 // Once we've built TheCall, all of the expressions are properly 4940 // owned. 4941 QualType ResultTy = Method->getResultType().getNonReferenceType(); 4942 ExprOwningPtr<CXXOperatorCallExpr> 4943 TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn, 4944 MethodArgs, NumArgs + 1, 4945 ResultTy, RParenLoc)); 4946 delete [] MethodArgs; 4947 4948 // We may have default arguments. If so, we need to allocate more 4949 // slots in the call for them. 4950 if (NumArgs < NumArgsInProto) 4951 TheCall->setNumArgs(Context, NumArgsInProto + 1); 4952 else if (NumArgs > NumArgsInProto) 4953 NumArgsToCheck = NumArgsInProto; 4954 4955 bool IsError = false; 4956 4957 // Initialize the implicit object parameter. 4958 IsError |= PerformObjectArgumentInitialization(Object, Method); 4959 TheCall->setArg(0, Object); 4960 4961 4962 // Check the argument types. 4963 for (unsigned i = 0; i != NumArgsToCheck; i++) { 4964 Expr *Arg; 4965 if (i < NumArgs) { 4966 Arg = Args[i]; 4967 4968 // Pass the argument. 4969 QualType ProtoArgType = Proto->getArgType(i); 4970 IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing"); 4971 } else { 4972 Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i)); 4973 } 4974 4975 TheCall->setArg(i + 1, Arg); 4976 } 4977 4978 // If this is a variadic call, handle args passed through "...". 4979 if (Proto->isVariadic()) { 4980 // Promote the arguments (C99 6.5.2.2p7). 4981 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 4982 Expr *Arg = Args[i]; 4983 IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod); 4984 TheCall->setArg(i + 1, Arg); 4985 } 4986 } 4987 4988 if (IsError) return true; 4989 4990 if (CheckFunctionCall(Method, TheCall.get())) 4991 return true; 4992 4993 return MaybeBindToTemporary(TheCall.release()).release(); 4994} 4995 4996/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 4997/// (if one exists), where @c Base is an expression of class type and 4998/// @c Member is the name of the member we're trying to find. 4999Sema::OwningExprResult 5000Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) { 5001 Expr *Base = static_cast<Expr *>(BaseIn.get()); 5002 assert(Base->getType()->isRecordType() && "left-hand side must have class type"); 5003 5004 // C++ [over.ref]p1: 5005 // 5006 // [...] An expression x->m is interpreted as (x.operator->())->m 5007 // for a class object x of type T if T::operator->() exists and if 5008 // the operator is selected as the best match function by the 5009 // overload resolution mechanism (13.3). 5010 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 5011 OverloadCandidateSet CandidateSet; 5012 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 5013 5014 LookupResult R = LookupQualifiedName(BaseRecord->getDecl(), OpName, 5015 LookupOrdinaryName); 5016 5017 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 5018 Oper != OperEnd; ++Oper) 5019 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet, 5020 /*SuppressUserConversions=*/false); 5021 5022 // Perform overload resolution. 5023 OverloadCandidateSet::iterator Best; 5024 switch (BestViableFunction(CandidateSet, OpLoc, Best)) { 5025 case OR_Success: 5026 // Overload resolution succeeded; we'll build the call below. 5027 break; 5028 5029 case OR_No_Viable_Function: 5030 if (CandidateSet.empty()) 5031 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5032 << Base->getType() << Base->getSourceRange(); 5033 else 5034 Diag(OpLoc, diag::err_ovl_no_viable_oper) 5035 << "operator->" << Base->getSourceRange(); 5036 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); 5037 return ExprError(); 5038 5039 case OR_Ambiguous: 5040 Diag(OpLoc, diag::err_ovl_ambiguous_oper) 5041 << "->" << Base->getSourceRange(); 5042 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5043 return ExprError(); 5044 5045 case OR_Deleted: 5046 Diag(OpLoc, diag::err_ovl_deleted_oper) 5047 << Best->Function->isDeleted() 5048 << "->" << Base->getSourceRange(); 5049 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); 5050 return ExprError(); 5051 } 5052 5053 // Convert the object parameter. 5054 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 5055 if (PerformObjectArgumentInitialization(Base, Method)) 5056 return ExprError(); 5057 5058 // No concerns about early exits now. 5059 BaseIn.release(); 5060 5061 // Build the operator call. 5062 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(), 5063 SourceLocation()); 5064 UsualUnaryConversions(FnExpr); 5065 Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1, 5066 Method->getResultType().getNonReferenceType(), 5067 OpLoc); 5068 return Owned(Base); 5069} 5070 5071/// FixOverloadedFunctionReference - E is an expression that refers to 5072/// a C++ overloaded function (possibly with some parentheses and 5073/// perhaps a '&' around it). We have resolved the overloaded function 5074/// to the function declaration Fn, so patch up the expression E to 5075/// refer (possibly indirectly) to Fn. 5076void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) { 5077 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5078 FixOverloadedFunctionReference(PE->getSubExpr(), Fn); 5079 E->setType(PE->getSubExpr()->getType()); 5080 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 5081 assert(UnOp->getOpcode() == UnaryOperator::AddrOf && 5082 "Can only take the address of an overloaded function"); 5083 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 5084 if (Method->isStatic()) { 5085 // Do nothing: static member functions aren't any different 5086 // from non-member functions. 5087 } else if (QualifiedDeclRefExpr *DRE 5088 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) { 5089 // We have taken the address of a pointer to member 5090 // function. Perform the computation here so that we get the 5091 // appropriate pointer to member type. 5092 DRE->setDecl(Fn); 5093 DRE->setType(Fn->getType()); 5094 QualType ClassType 5095 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 5096 E->setType(Context.getMemberPointerType(Fn->getType(), 5097 ClassType.getTypePtr())); 5098 return; 5099 } 5100 } 5101 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn); 5102 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType())); 5103 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { 5104 assert((isa<OverloadedFunctionDecl>(DR->getDecl()) || 5105 isa<FunctionTemplateDecl>(DR->getDecl())) && 5106 "Expected overloaded function or function template"); 5107 DR->setDecl(Fn); 5108 E->setType(Fn->getType()); 5109 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) { 5110 MemExpr->setMemberDecl(Fn); 5111 E->setType(Fn->getType()); 5112 } else { 5113 assert(false && "Invalid reference to overloaded function"); 5114 } 5115} 5116 5117} // end namespace clang 5118