SemaOverload.cpp revision 8987b2385d9ba63ada66e1344ace79b04d5cb5c3
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file provides Sema routines for C++ overloading. 11// 12//===----------------------------------------------------------------------===// 13 14#include "clang/Sema/SemaInternal.h" 15#include "clang/Sema/Lookup.h" 16#include "clang/Sema/Initialization.h" 17#include "clang/Sema/Template.h" 18#include "clang/Sema/TemplateDeduction.h" 19#include "clang/Basic/Diagnostic.h" 20#include "clang/Lex/Preprocessor.h" 21#include "clang/AST/ASTContext.h" 22#include "clang/AST/CXXInheritance.h" 23#include "clang/AST/DeclObjC.h" 24#include "clang/AST/Expr.h" 25#include "clang/AST/ExprCXX.h" 26#include "clang/AST/ExprObjC.h" 27#include "clang/AST/TypeOrdering.h" 28#include "clang/Basic/PartialDiagnostic.h" 29#include "llvm/ADT/DenseSet.h" 30#include "llvm/ADT/SmallPtrSet.h" 31#include "llvm/ADT/STLExtras.h" 32#include <algorithm> 33 34namespace clang { 35using namespace sema; 36 37/// A convenience routine for creating a decayed reference to a 38/// function. 39static ExprResult 40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, 41 SourceLocation Loc = SourceLocation(), 42 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 43 ExprResult E = S.Owned(new (S.Context) DeclRefExpr(Fn, Fn->getType(), 44 VK_LValue, Loc, LocInfo)); 45 E = S.DefaultFunctionArrayConversion(E.take()); 46 if (E.isInvalid()) 47 return ExprError(); 48 return move(E); 49} 50 51static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 52 bool InOverloadResolution, 53 StandardConversionSequence &SCS, 54 bool CStyle, 55 bool AllowObjCWritebackConversion); 56 57static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 58 QualType &ToType, 59 bool InOverloadResolution, 60 StandardConversionSequence &SCS, 61 bool CStyle); 62static OverloadingResult 63IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 64 UserDefinedConversionSequence& User, 65 OverloadCandidateSet& Conversions, 66 bool AllowExplicit); 67 68 69static ImplicitConversionSequence::CompareKind 70CompareStandardConversionSequences(Sema &S, 71 const StandardConversionSequence& SCS1, 72 const StandardConversionSequence& SCS2); 73 74static ImplicitConversionSequence::CompareKind 75CompareQualificationConversions(Sema &S, 76 const StandardConversionSequence& SCS1, 77 const StandardConversionSequence& SCS2); 78 79static ImplicitConversionSequence::CompareKind 80CompareDerivedToBaseConversions(Sema &S, 81 const StandardConversionSequence& SCS1, 82 const StandardConversionSequence& SCS2); 83 84 85 86/// GetConversionCategory - Retrieve the implicit conversion 87/// category corresponding to the given implicit conversion kind. 88ImplicitConversionCategory 89GetConversionCategory(ImplicitConversionKind Kind) { 90 static const ImplicitConversionCategory 91 Category[(int)ICK_Num_Conversion_Kinds] = { 92 ICC_Identity, 93 ICC_Lvalue_Transformation, 94 ICC_Lvalue_Transformation, 95 ICC_Lvalue_Transformation, 96 ICC_Identity, 97 ICC_Qualification_Adjustment, 98 ICC_Promotion, 99 ICC_Promotion, 100 ICC_Promotion, 101 ICC_Conversion, 102 ICC_Conversion, 103 ICC_Conversion, 104 ICC_Conversion, 105 ICC_Conversion, 106 ICC_Conversion, 107 ICC_Conversion, 108 ICC_Conversion, 109 ICC_Conversion, 110 ICC_Conversion, 111 ICC_Conversion, 112 ICC_Conversion, 113 ICC_Conversion 114 }; 115 return Category[(int)Kind]; 116} 117 118/// GetConversionRank - Retrieve the implicit conversion rank 119/// corresponding to the given implicit conversion kind. 120ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { 121 static const ImplicitConversionRank 122 Rank[(int)ICK_Num_Conversion_Kinds] = { 123 ICR_Exact_Match, 124 ICR_Exact_Match, 125 ICR_Exact_Match, 126 ICR_Exact_Match, 127 ICR_Exact_Match, 128 ICR_Exact_Match, 129 ICR_Promotion, 130 ICR_Promotion, 131 ICR_Promotion, 132 ICR_Conversion, 133 ICR_Conversion, 134 ICR_Conversion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_Conversion, 142 ICR_Conversion, 143 ICR_Complex_Real_Conversion, 144 ICR_Conversion, 145 ICR_Conversion, 146 ICR_Writeback_Conversion 147 }; 148 return Rank[(int)Kind]; 149} 150 151/// GetImplicitConversionName - Return the name of this kind of 152/// implicit conversion. 153const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 154 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 155 "No conversion", 156 "Lvalue-to-rvalue", 157 "Array-to-pointer", 158 "Function-to-pointer", 159 "Noreturn adjustment", 160 "Qualification", 161 "Integral promotion", 162 "Floating point promotion", 163 "Complex promotion", 164 "Integral conversion", 165 "Floating conversion", 166 "Complex conversion", 167 "Floating-integral conversion", 168 "Pointer conversion", 169 "Pointer-to-member conversion", 170 "Boolean conversion", 171 "Compatible-types conversion", 172 "Derived-to-base conversion", 173 "Vector conversion", 174 "Vector splat", 175 "Complex-real conversion", 176 "Block Pointer conversion", 177 "Transparent Union Conversion" 178 "Writeback conversion" 179 }; 180 return Name[Kind]; 181} 182 183/// StandardConversionSequence - Set the standard conversion 184/// sequence to the identity conversion. 185void StandardConversionSequence::setAsIdentityConversion() { 186 First = ICK_Identity; 187 Second = ICK_Identity; 188 Third = ICK_Identity; 189 DeprecatedStringLiteralToCharPtr = false; 190 QualificationIncludesObjCLifetime = false; 191 ReferenceBinding = false; 192 DirectBinding = false; 193 IsLvalueReference = true; 194 BindsToFunctionLvalue = false; 195 BindsToRvalue = false; 196 BindsImplicitObjectArgumentWithoutRefQualifier = false; 197 ObjCLifetimeConversionBinding = false; 198 CopyConstructor = 0; 199} 200 201/// getRank - Retrieve the rank of this standard conversion sequence 202/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 203/// implicit conversions. 204ImplicitConversionRank StandardConversionSequence::getRank() const { 205 ImplicitConversionRank Rank = ICR_Exact_Match; 206 if (GetConversionRank(First) > Rank) 207 Rank = GetConversionRank(First); 208 if (GetConversionRank(Second) > Rank) 209 Rank = GetConversionRank(Second); 210 if (GetConversionRank(Third) > Rank) 211 Rank = GetConversionRank(Third); 212 return Rank; 213} 214 215/// isPointerConversionToBool - Determines whether this conversion is 216/// a conversion of a pointer or pointer-to-member to bool. This is 217/// used as part of the ranking of standard conversion sequences 218/// (C++ 13.3.3.2p4). 219bool StandardConversionSequence::isPointerConversionToBool() const { 220 // Note that FromType has not necessarily been transformed by the 221 // array-to-pointer or function-to-pointer implicit conversions, so 222 // check for their presence as well as checking whether FromType is 223 // a pointer. 224 if (getToType(1)->isBooleanType() && 225 (getFromType()->isPointerType() || 226 getFromType()->isObjCObjectPointerType() || 227 getFromType()->isBlockPointerType() || 228 getFromType()->isNullPtrType() || 229 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 230 return true; 231 232 return false; 233} 234 235/// isPointerConversionToVoidPointer - Determines whether this 236/// conversion is a conversion of a pointer to a void pointer. This is 237/// used as part of the ranking of standard conversion sequences (C++ 238/// 13.3.3.2p4). 239bool 240StandardConversionSequence:: 241isPointerConversionToVoidPointer(ASTContext& Context) const { 242 QualType FromType = getFromType(); 243 QualType ToType = getToType(1); 244 245 // Note that FromType has not necessarily been transformed by the 246 // array-to-pointer implicit conversion, so check for its presence 247 // and redo the conversion to get a pointer. 248 if (First == ICK_Array_To_Pointer) 249 FromType = Context.getArrayDecayedType(FromType); 250 251 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 252 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 253 return ToPtrType->getPointeeType()->isVoidType(); 254 255 return false; 256} 257 258/// DebugPrint - Print this standard conversion sequence to standard 259/// error. Useful for debugging overloading issues. 260void StandardConversionSequence::DebugPrint() const { 261 raw_ostream &OS = llvm::errs(); 262 bool PrintedSomething = false; 263 if (First != ICK_Identity) { 264 OS << GetImplicitConversionName(First); 265 PrintedSomething = true; 266 } 267 268 if (Second != ICK_Identity) { 269 if (PrintedSomething) { 270 OS << " -> "; 271 } 272 OS << GetImplicitConversionName(Second); 273 274 if (CopyConstructor) { 275 OS << " (by copy constructor)"; 276 } else if (DirectBinding) { 277 OS << " (direct reference binding)"; 278 } else if (ReferenceBinding) { 279 OS << " (reference binding)"; 280 } 281 PrintedSomething = true; 282 } 283 284 if (Third != ICK_Identity) { 285 if (PrintedSomething) { 286 OS << " -> "; 287 } 288 OS << GetImplicitConversionName(Third); 289 PrintedSomething = true; 290 } 291 292 if (!PrintedSomething) { 293 OS << "No conversions required"; 294 } 295} 296 297/// DebugPrint - Print this user-defined conversion sequence to standard 298/// error. Useful for debugging overloading issues. 299void UserDefinedConversionSequence::DebugPrint() const { 300 raw_ostream &OS = llvm::errs(); 301 if (Before.First || Before.Second || Before.Third) { 302 Before.DebugPrint(); 303 OS << " -> "; 304 } 305 OS << '\'' << ConversionFunction << '\''; 306 if (After.First || After.Second || After.Third) { 307 OS << " -> "; 308 After.DebugPrint(); 309 } 310} 311 312/// DebugPrint - Print this implicit conversion sequence to standard 313/// error. Useful for debugging overloading issues. 314void ImplicitConversionSequence::DebugPrint() const { 315 raw_ostream &OS = llvm::errs(); 316 switch (ConversionKind) { 317 case StandardConversion: 318 OS << "Standard conversion: "; 319 Standard.DebugPrint(); 320 break; 321 case UserDefinedConversion: 322 OS << "User-defined conversion: "; 323 UserDefined.DebugPrint(); 324 break; 325 case EllipsisConversion: 326 OS << "Ellipsis conversion"; 327 break; 328 case AmbiguousConversion: 329 OS << "Ambiguous conversion"; 330 break; 331 case BadConversion: 332 OS << "Bad conversion"; 333 break; 334 } 335 336 OS << "\n"; 337} 338 339void AmbiguousConversionSequence::construct() { 340 new (&conversions()) ConversionSet(); 341} 342 343void AmbiguousConversionSequence::destruct() { 344 conversions().~ConversionSet(); 345} 346 347void 348AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 349 FromTypePtr = O.FromTypePtr; 350 ToTypePtr = O.ToTypePtr; 351 new (&conversions()) ConversionSet(O.conversions()); 352} 353 354namespace { 355 // Structure used by OverloadCandidate::DeductionFailureInfo to store 356 // template parameter and template argument information. 357 struct DFIParamWithArguments { 358 TemplateParameter Param; 359 TemplateArgument FirstArg; 360 TemplateArgument SecondArg; 361 }; 362} 363 364/// \brief Convert from Sema's representation of template deduction information 365/// to the form used in overload-candidate information. 366OverloadCandidate::DeductionFailureInfo 367static MakeDeductionFailureInfo(ASTContext &Context, 368 Sema::TemplateDeductionResult TDK, 369 TemplateDeductionInfo &Info) { 370 OverloadCandidate::DeductionFailureInfo Result; 371 Result.Result = static_cast<unsigned>(TDK); 372 Result.Data = 0; 373 switch (TDK) { 374 case Sema::TDK_Success: 375 case Sema::TDK_InstantiationDepth: 376 case Sema::TDK_TooManyArguments: 377 case Sema::TDK_TooFewArguments: 378 break; 379 380 case Sema::TDK_Incomplete: 381 case Sema::TDK_InvalidExplicitArguments: 382 Result.Data = Info.Param.getOpaqueValue(); 383 break; 384 385 case Sema::TDK_Inconsistent: 386 case Sema::TDK_Underqualified: { 387 // FIXME: Should allocate from normal heap so that we can free this later. 388 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 389 Saved->Param = Info.Param; 390 Saved->FirstArg = Info.FirstArg; 391 Saved->SecondArg = Info.SecondArg; 392 Result.Data = Saved; 393 break; 394 } 395 396 case Sema::TDK_SubstitutionFailure: 397 Result.Data = Info.take(); 398 break; 399 400 case Sema::TDK_NonDeducedMismatch: 401 case Sema::TDK_FailedOverloadResolution: 402 break; 403 } 404 405 return Result; 406} 407 408void OverloadCandidate::DeductionFailureInfo::Destroy() { 409 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 410 case Sema::TDK_Success: 411 case Sema::TDK_InstantiationDepth: 412 case Sema::TDK_Incomplete: 413 case Sema::TDK_TooManyArguments: 414 case Sema::TDK_TooFewArguments: 415 case Sema::TDK_InvalidExplicitArguments: 416 break; 417 418 case Sema::TDK_Inconsistent: 419 case Sema::TDK_Underqualified: 420 // FIXME: Destroy the data? 421 Data = 0; 422 break; 423 424 case Sema::TDK_SubstitutionFailure: 425 // FIXME: Destroy the template arugment list? 426 Data = 0; 427 break; 428 429 // Unhandled 430 case Sema::TDK_NonDeducedMismatch: 431 case Sema::TDK_FailedOverloadResolution: 432 break; 433 } 434} 435 436TemplateParameter 437OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { 438 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 439 case Sema::TDK_Success: 440 case Sema::TDK_InstantiationDepth: 441 case Sema::TDK_TooManyArguments: 442 case Sema::TDK_TooFewArguments: 443 case Sema::TDK_SubstitutionFailure: 444 return TemplateParameter(); 445 446 case Sema::TDK_Incomplete: 447 case Sema::TDK_InvalidExplicitArguments: 448 return TemplateParameter::getFromOpaqueValue(Data); 449 450 case Sema::TDK_Inconsistent: 451 case Sema::TDK_Underqualified: 452 return static_cast<DFIParamWithArguments*>(Data)->Param; 453 454 // Unhandled 455 case Sema::TDK_NonDeducedMismatch: 456 case Sema::TDK_FailedOverloadResolution: 457 break; 458 } 459 460 return TemplateParameter(); 461} 462 463TemplateArgumentList * 464OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { 465 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 466 case Sema::TDK_Success: 467 case Sema::TDK_InstantiationDepth: 468 case Sema::TDK_TooManyArguments: 469 case Sema::TDK_TooFewArguments: 470 case Sema::TDK_Incomplete: 471 case Sema::TDK_InvalidExplicitArguments: 472 case Sema::TDK_Inconsistent: 473 case Sema::TDK_Underqualified: 474 return 0; 475 476 case Sema::TDK_SubstitutionFailure: 477 return static_cast<TemplateArgumentList*>(Data); 478 479 // Unhandled 480 case Sema::TDK_NonDeducedMismatch: 481 case Sema::TDK_FailedOverloadResolution: 482 break; 483 } 484 485 return 0; 486} 487 488const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { 489 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 490 case Sema::TDK_Success: 491 case Sema::TDK_InstantiationDepth: 492 case Sema::TDK_Incomplete: 493 case Sema::TDK_TooManyArguments: 494 case Sema::TDK_TooFewArguments: 495 case Sema::TDK_InvalidExplicitArguments: 496 case Sema::TDK_SubstitutionFailure: 497 return 0; 498 499 case Sema::TDK_Inconsistent: 500 case Sema::TDK_Underqualified: 501 return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; 502 503 // Unhandled 504 case Sema::TDK_NonDeducedMismatch: 505 case Sema::TDK_FailedOverloadResolution: 506 break; 507 } 508 509 return 0; 510} 511 512const TemplateArgument * 513OverloadCandidate::DeductionFailureInfo::getSecondArg() { 514 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 515 case Sema::TDK_Success: 516 case Sema::TDK_InstantiationDepth: 517 case Sema::TDK_Incomplete: 518 case Sema::TDK_TooManyArguments: 519 case Sema::TDK_TooFewArguments: 520 case Sema::TDK_InvalidExplicitArguments: 521 case Sema::TDK_SubstitutionFailure: 522 return 0; 523 524 case Sema::TDK_Inconsistent: 525 case Sema::TDK_Underqualified: 526 return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; 527 528 // Unhandled 529 case Sema::TDK_NonDeducedMismatch: 530 case Sema::TDK_FailedOverloadResolution: 531 break; 532 } 533 534 return 0; 535} 536 537void OverloadCandidateSet::clear() { 538 inherited::clear(); 539 Functions.clear(); 540} 541 542// IsOverload - Determine whether the given New declaration is an 543// overload of the declarations in Old. This routine returns false if 544// New and Old cannot be overloaded, e.g., if New has the same 545// signature as some function in Old (C++ 1.3.10) or if the Old 546// declarations aren't functions (or function templates) at all. When 547// it does return false, MatchedDecl will point to the decl that New 548// cannot be overloaded with. This decl may be a UsingShadowDecl on 549// top of the underlying declaration. 550// 551// Example: Given the following input: 552// 553// void f(int, float); // #1 554// void f(int, int); // #2 555// int f(int, int); // #3 556// 557// When we process #1, there is no previous declaration of "f", 558// so IsOverload will not be used. 559// 560// When we process #2, Old contains only the FunctionDecl for #1. By 561// comparing the parameter types, we see that #1 and #2 are overloaded 562// (since they have different signatures), so this routine returns 563// false; MatchedDecl is unchanged. 564// 565// When we process #3, Old is an overload set containing #1 and #2. We 566// compare the signatures of #3 to #1 (they're overloaded, so we do 567// nothing) and then #3 to #2. Since the signatures of #3 and #2 are 568// identical (return types of functions are not part of the 569// signature), IsOverload returns false and MatchedDecl will be set to 570// point to the FunctionDecl for #2. 571// 572// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced 573// into a class by a using declaration. The rules for whether to hide 574// shadow declarations ignore some properties which otherwise figure 575// into a function template's signature. 576Sema::OverloadKind 577Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 578 NamedDecl *&Match, bool NewIsUsingDecl) { 579 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 580 I != E; ++I) { 581 NamedDecl *OldD = *I; 582 583 bool OldIsUsingDecl = false; 584 if (isa<UsingShadowDecl>(OldD)) { 585 OldIsUsingDecl = true; 586 587 // We can always introduce two using declarations into the same 588 // context, even if they have identical signatures. 589 if (NewIsUsingDecl) continue; 590 591 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 592 } 593 594 // If either declaration was introduced by a using declaration, 595 // we'll need to use slightly different rules for matching. 596 // Essentially, these rules are the normal rules, except that 597 // function templates hide function templates with different 598 // return types or template parameter lists. 599 bool UseMemberUsingDeclRules = 600 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); 601 602 if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { 603 if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { 604 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 605 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 606 continue; 607 } 608 609 Match = *I; 610 return Ovl_Match; 611 } 612 } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { 613 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 614 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 615 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 616 continue; 617 } 618 619 Match = *I; 620 return Ovl_Match; 621 } 622 } else if (isa<UsingDecl>(OldD)) { 623 // We can overload with these, which can show up when doing 624 // redeclaration checks for UsingDecls. 625 assert(Old.getLookupKind() == LookupUsingDeclName); 626 } else if (isa<TagDecl>(OldD)) { 627 // We can always overload with tags by hiding them. 628 } else if (isa<UnresolvedUsingValueDecl>(OldD)) { 629 // Optimistically assume that an unresolved using decl will 630 // overload; if it doesn't, we'll have to diagnose during 631 // template instantiation. 632 } else { 633 // (C++ 13p1): 634 // Only function declarations can be overloaded; object and type 635 // declarations cannot be overloaded. 636 Match = *I; 637 return Ovl_NonFunction; 638 } 639 } 640 641 return Ovl_Overload; 642} 643 644bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 645 bool UseUsingDeclRules) { 646 // If both of the functions are extern "C", then they are not 647 // overloads. 648 if (Old->isExternC() && New->isExternC()) 649 return false; 650 651 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 652 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 653 654 // C++ [temp.fct]p2: 655 // A function template can be overloaded with other function templates 656 // and with normal (non-template) functions. 657 if ((OldTemplate == 0) != (NewTemplate == 0)) 658 return true; 659 660 // Is the function New an overload of the function Old? 661 QualType OldQType = Context.getCanonicalType(Old->getType()); 662 QualType NewQType = Context.getCanonicalType(New->getType()); 663 664 // Compare the signatures (C++ 1.3.10) of the two functions to 665 // determine whether they are overloads. If we find any mismatch 666 // in the signature, they are overloads. 667 668 // If either of these functions is a K&R-style function (no 669 // prototype), then we consider them to have matching signatures. 670 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 671 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 672 return false; 673 674 const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); 675 const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); 676 677 // The signature of a function includes the types of its 678 // parameters (C++ 1.3.10), which includes the presence or absence 679 // of the ellipsis; see C++ DR 357). 680 if (OldQType != NewQType && 681 (OldType->getNumArgs() != NewType->getNumArgs() || 682 OldType->isVariadic() != NewType->isVariadic() || 683 !FunctionArgTypesAreEqual(OldType, NewType))) 684 return true; 685 686 // C++ [temp.over.link]p4: 687 // The signature of a function template consists of its function 688 // signature, its return type and its template parameter list. The names 689 // of the template parameters are significant only for establishing the 690 // relationship between the template parameters and the rest of the 691 // signature. 692 // 693 // We check the return type and template parameter lists for function 694 // templates first; the remaining checks follow. 695 // 696 // However, we don't consider either of these when deciding whether 697 // a member introduced by a shadow declaration is hidden. 698 if (!UseUsingDeclRules && NewTemplate && 699 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 700 OldTemplate->getTemplateParameters(), 701 false, TPL_TemplateMatch) || 702 OldType->getResultType() != NewType->getResultType())) 703 return true; 704 705 // If the function is a class member, its signature includes the 706 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 707 // 708 // As part of this, also check whether one of the member functions 709 // is static, in which case they are not overloads (C++ 710 // 13.1p2). While not part of the definition of the signature, 711 // this check is important to determine whether these functions 712 // can be overloaded. 713 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); 714 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); 715 if (OldMethod && NewMethod && 716 !OldMethod->isStatic() && !NewMethod->isStatic() && 717 (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || 718 OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) { 719 if (!UseUsingDeclRules && 720 OldMethod->getRefQualifier() != NewMethod->getRefQualifier() && 721 (OldMethod->getRefQualifier() == RQ_None || 722 NewMethod->getRefQualifier() == RQ_None)) { 723 // C++0x [over.load]p2: 724 // - Member function declarations with the same name and the same 725 // parameter-type-list as well as member function template 726 // declarations with the same name, the same parameter-type-list, and 727 // the same template parameter lists cannot be overloaded if any of 728 // them, but not all, have a ref-qualifier (8.3.5). 729 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 730 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 731 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 732 } 733 734 return true; 735 } 736 737 // The signatures match; this is not an overload. 738 return false; 739} 740 741/// \brief Checks availability of the function depending on the current 742/// function context. Inside an unavailable function, unavailability is ignored. 743/// 744/// \returns true if \arg FD is unavailable and current context is inside 745/// an available function, false otherwise. 746bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) { 747 return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable(); 748} 749 750/// TryImplicitConversion - Attempt to perform an implicit conversion 751/// from the given expression (Expr) to the given type (ToType). This 752/// function returns an implicit conversion sequence that can be used 753/// to perform the initialization. Given 754/// 755/// void f(float f); 756/// void g(int i) { f(i); } 757/// 758/// this routine would produce an implicit conversion sequence to 759/// describe the initialization of f from i, which will be a standard 760/// conversion sequence containing an lvalue-to-rvalue conversion (C++ 761/// 4.1) followed by a floating-integral conversion (C++ 4.9). 762// 763/// Note that this routine only determines how the conversion can be 764/// performed; it does not actually perform the conversion. As such, 765/// it will not produce any diagnostics if no conversion is available, 766/// but will instead return an implicit conversion sequence of kind 767/// "BadConversion". 768/// 769/// If @p SuppressUserConversions, then user-defined conversions are 770/// not permitted. 771/// If @p AllowExplicit, then explicit user-defined conversions are 772/// permitted. 773/// 774/// \param AllowObjCWritebackConversion Whether we allow the Objective-C 775/// writeback conversion, which allows __autoreleasing id* parameters to 776/// be initialized with __strong id* or __weak id* arguments. 777static ImplicitConversionSequence 778TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 779 bool SuppressUserConversions, 780 bool AllowExplicit, 781 bool InOverloadResolution, 782 bool CStyle, 783 bool AllowObjCWritebackConversion) { 784 ImplicitConversionSequence ICS; 785 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 786 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 787 ICS.setStandard(); 788 return ICS; 789 } 790 791 if (!S.getLangOptions().CPlusPlus) { 792 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 793 return ICS; 794 } 795 796 // C++ [over.ics.user]p4: 797 // A conversion of an expression of class type to the same class 798 // type is given Exact Match rank, and a conversion of an 799 // expression of class type to a base class of that type is 800 // given Conversion rank, in spite of the fact that a copy/move 801 // constructor (i.e., a user-defined conversion function) is 802 // called for those cases. 803 QualType FromType = From->getType(); 804 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 805 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 806 S.IsDerivedFrom(FromType, ToType))) { 807 ICS.setStandard(); 808 ICS.Standard.setAsIdentityConversion(); 809 ICS.Standard.setFromType(FromType); 810 ICS.Standard.setAllToTypes(ToType); 811 812 // We don't actually check at this point whether there is a valid 813 // copy/move constructor, since overloading just assumes that it 814 // exists. When we actually perform initialization, we'll find the 815 // appropriate constructor to copy the returned object, if needed. 816 ICS.Standard.CopyConstructor = 0; 817 818 // Determine whether this is considered a derived-to-base conversion. 819 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 820 ICS.Standard.Second = ICK_Derived_To_Base; 821 822 return ICS; 823 } 824 825 if (SuppressUserConversions) { 826 // We're not in the case above, so there is no conversion that 827 // we can perform. 828 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 829 return ICS; 830 } 831 832 // Attempt user-defined conversion. 833 OverloadCandidateSet Conversions(From->getExprLoc()); 834 OverloadingResult UserDefResult 835 = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, 836 AllowExplicit); 837 838 if (UserDefResult == OR_Success) { 839 ICS.setUserDefined(); 840 // C++ [over.ics.user]p4: 841 // A conversion of an expression of class type to the same class 842 // type is given Exact Match rank, and a conversion of an 843 // expression of class type to a base class of that type is 844 // given Conversion rank, in spite of the fact that a copy 845 // constructor (i.e., a user-defined conversion function) is 846 // called for those cases. 847 if (CXXConstructorDecl *Constructor 848 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 849 QualType FromCanon 850 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 851 QualType ToCanon 852 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 853 if (Constructor->isCopyConstructor() && 854 (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { 855 // Turn this into a "standard" conversion sequence, so that it 856 // gets ranked with standard conversion sequences. 857 ICS.setStandard(); 858 ICS.Standard.setAsIdentityConversion(); 859 ICS.Standard.setFromType(From->getType()); 860 ICS.Standard.setAllToTypes(ToType); 861 ICS.Standard.CopyConstructor = Constructor; 862 if (ToCanon != FromCanon) 863 ICS.Standard.Second = ICK_Derived_To_Base; 864 } 865 } 866 867 // C++ [over.best.ics]p4: 868 // However, when considering the argument of a user-defined 869 // conversion function that is a candidate by 13.3.1.3 when 870 // invoked for the copying of the temporary in the second step 871 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 872 // 13.3.1.6 in all cases, only standard conversion sequences and 873 // ellipsis conversion sequences are allowed. 874 if (SuppressUserConversions && ICS.isUserDefined()) { 875 ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); 876 } 877 } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { 878 ICS.setAmbiguous(); 879 ICS.Ambiguous.setFromType(From->getType()); 880 ICS.Ambiguous.setToType(ToType); 881 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 882 Cand != Conversions.end(); ++Cand) 883 if (Cand->Viable) 884 ICS.Ambiguous.addConversion(Cand->Function); 885 } else { 886 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 887 } 888 889 return ICS; 890} 891 892ImplicitConversionSequence 893Sema::TryImplicitConversion(Expr *From, QualType ToType, 894 bool SuppressUserConversions, 895 bool AllowExplicit, 896 bool InOverloadResolution, 897 bool CStyle, 898 bool AllowObjCWritebackConversion) { 899 return clang::TryImplicitConversion(*this, From, ToType, 900 SuppressUserConversions, AllowExplicit, 901 InOverloadResolution, CStyle, 902 AllowObjCWritebackConversion); 903} 904 905/// PerformImplicitConversion - Perform an implicit conversion of the 906/// expression From to the type ToType. Returns the 907/// converted expression. Flavor is the kind of conversion we're 908/// performing, used in the error message. If @p AllowExplicit, 909/// explicit user-defined conversions are permitted. 910ExprResult 911Sema::PerformImplicitConversion(Expr *From, QualType ToType, 912 AssignmentAction Action, bool AllowExplicit, 913 bool Diagnose) { 914 ImplicitConversionSequence ICS; 915 return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS, 916 Diagnose); 917} 918 919ExprResult 920Sema::PerformImplicitConversion(Expr *From, QualType ToType, 921 AssignmentAction Action, bool AllowExplicit, 922 ImplicitConversionSequence& ICS, 923 bool Diagnose) { 924 // Objective-C ARC: Determine whether we will allow the writeback conversion. 925 bool AllowObjCWritebackConversion 926 = getLangOptions().ObjCAutoRefCount && 927 (Action == AA_Passing || Action == AA_Sending); 928 929 ICS = clang::TryImplicitConversion(*this, From, ToType, 930 /*SuppressUserConversions=*/false, 931 AllowExplicit, 932 /*InOverloadResolution=*/false, 933 /*CStyle=*/false, 934 AllowObjCWritebackConversion); 935 if (!Diagnose && ICS.isFailure()) 936 return ExprError(); 937 return PerformImplicitConversion(From, ToType, ICS, Action); 938} 939 940/// \brief Determine whether the conversion from FromType to ToType is a valid 941/// conversion that strips "noreturn" off the nested function type. 942bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType, 943 QualType &ResultTy) { 944 if (Context.hasSameUnqualifiedType(FromType, ToType)) 945 return false; 946 947 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 948 // where F adds one of the following at most once: 949 // - a pointer 950 // - a member pointer 951 // - a block pointer 952 CanQualType CanTo = Context.getCanonicalType(ToType); 953 CanQualType CanFrom = Context.getCanonicalType(FromType); 954 Type::TypeClass TyClass = CanTo->getTypeClass(); 955 if (TyClass != CanFrom->getTypeClass()) return false; 956 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 957 if (TyClass == Type::Pointer) { 958 CanTo = CanTo.getAs<PointerType>()->getPointeeType(); 959 CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); 960 } else if (TyClass == Type::BlockPointer) { 961 CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); 962 CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); 963 } else if (TyClass == Type::MemberPointer) { 964 CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); 965 CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); 966 } else { 967 return false; 968 } 969 970 TyClass = CanTo->getTypeClass(); 971 if (TyClass != CanFrom->getTypeClass()) return false; 972 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 973 return false; 974 } 975 976 const FunctionType *FromFn = cast<FunctionType>(CanFrom); 977 FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); 978 if (!EInfo.getNoReturn()) return false; 979 980 FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); 981 assert(QualType(FromFn, 0).isCanonical()); 982 if (QualType(FromFn, 0) != CanTo) return false; 983 984 ResultTy = ToType; 985 return true; 986} 987 988/// \brief Determine whether the conversion from FromType to ToType is a valid 989/// vector conversion. 990/// 991/// \param ICK Will be set to the vector conversion kind, if this is a vector 992/// conversion. 993static bool IsVectorConversion(ASTContext &Context, QualType FromType, 994 QualType ToType, ImplicitConversionKind &ICK) { 995 // We need at least one of these types to be a vector type to have a vector 996 // conversion. 997 if (!ToType->isVectorType() && !FromType->isVectorType()) 998 return false; 999 1000 // Identical types require no conversions. 1001 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1002 return false; 1003 1004 // There are no conversions between extended vector types, only identity. 1005 if (ToType->isExtVectorType()) { 1006 // There are no conversions between extended vector types other than the 1007 // identity conversion. 1008 if (FromType->isExtVectorType()) 1009 return false; 1010 1011 // Vector splat from any arithmetic type to a vector. 1012 if (FromType->isArithmeticType()) { 1013 ICK = ICK_Vector_Splat; 1014 return true; 1015 } 1016 } 1017 1018 // We can perform the conversion between vector types in the following cases: 1019 // 1)vector types are equivalent AltiVec and GCC vector types 1020 // 2)lax vector conversions are permitted and the vector types are of the 1021 // same size 1022 if (ToType->isVectorType() && FromType->isVectorType()) { 1023 if (Context.areCompatibleVectorTypes(FromType, ToType) || 1024 (Context.getLangOptions().LaxVectorConversions && 1025 (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { 1026 ICK = ICK_Vector_Conversion; 1027 return true; 1028 } 1029 } 1030 1031 return false; 1032} 1033 1034/// IsStandardConversion - Determines whether there is a standard 1035/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1036/// expression From to the type ToType. Standard conversion sequences 1037/// only consider non-class types; for conversions that involve class 1038/// types, use TryImplicitConversion. If a conversion exists, SCS will 1039/// contain the standard conversion sequence required to perform this 1040/// conversion and this routine will return true. Otherwise, this 1041/// routine will return false and the value of SCS is unspecified. 1042static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1043 bool InOverloadResolution, 1044 StandardConversionSequence &SCS, 1045 bool CStyle, 1046 bool AllowObjCWritebackConversion) { 1047 QualType FromType = From->getType(); 1048 1049 // Standard conversions (C++ [conv]) 1050 SCS.setAsIdentityConversion(); 1051 SCS.DeprecatedStringLiteralToCharPtr = false; 1052 SCS.IncompatibleObjC = false; 1053 SCS.setFromType(FromType); 1054 SCS.CopyConstructor = 0; 1055 1056 // There are no standard conversions for class types in C++, so 1057 // abort early. When overloading in C, however, we do permit 1058 if (FromType->isRecordType() || ToType->isRecordType()) { 1059 if (S.getLangOptions().CPlusPlus) 1060 return false; 1061 1062 // When we're overloading in C, we allow, as standard conversions, 1063 } 1064 1065 // The first conversion can be an lvalue-to-rvalue conversion, 1066 // array-to-pointer conversion, or function-to-pointer conversion 1067 // (C++ 4p1). 1068 1069 if (FromType == S.Context.OverloadTy) { 1070 DeclAccessPair AccessPair; 1071 if (FunctionDecl *Fn 1072 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1073 AccessPair)) { 1074 // We were able to resolve the address of the overloaded function, 1075 // so we can convert to the type of that function. 1076 FromType = Fn->getType(); 1077 1078 // we can sometimes resolve &foo<int> regardless of ToType, so check 1079 // if the type matches (identity) or we are converting to bool 1080 if (!S.Context.hasSameUnqualifiedType( 1081 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1082 QualType resultTy; 1083 // if the function type matches except for [[noreturn]], it's ok 1084 if (!S.IsNoReturnConversion(FromType, 1085 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1086 // otherwise, only a boolean conversion is standard 1087 if (!ToType->isBooleanType()) 1088 return false; 1089 } 1090 1091 // Check if the "from" expression is taking the address of an overloaded 1092 // function and recompute the FromType accordingly. Take advantage of the 1093 // fact that non-static member functions *must* have such an address-of 1094 // expression. 1095 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1096 if (Method && !Method->isStatic()) { 1097 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1098 "Non-unary operator on non-static member address"); 1099 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1100 == UO_AddrOf && 1101 "Non-address-of operator on non-static member address"); 1102 const Type *ClassType 1103 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1104 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1105 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1106 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1107 UO_AddrOf && 1108 "Non-address-of operator for overloaded function expression"); 1109 FromType = S.Context.getPointerType(FromType); 1110 } 1111 1112 // Check that we've computed the proper type after overload resolution. 1113 assert(S.Context.hasSameType( 1114 FromType, 1115 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1116 } else { 1117 return false; 1118 } 1119 } 1120 // Lvalue-to-rvalue conversion (C++11 4.1): 1121 // A glvalue (3.10) of a non-function, non-array type T can 1122 // be converted to a prvalue. 1123 bool argIsLValue = From->isGLValue(); 1124 if (argIsLValue && 1125 !FromType->isFunctionType() && !FromType->isArrayType() && 1126 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1127 SCS.First = ICK_Lvalue_To_Rvalue; 1128 1129 // If T is a non-class type, the type of the rvalue is the 1130 // cv-unqualified version of T. Otherwise, the type of the rvalue 1131 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1132 // just strip the qualifiers because they don't matter. 1133 FromType = FromType.getUnqualifiedType(); 1134 } else if (FromType->isArrayType()) { 1135 // Array-to-pointer conversion (C++ 4.2) 1136 SCS.First = ICK_Array_To_Pointer; 1137 1138 // An lvalue or rvalue of type "array of N T" or "array of unknown 1139 // bound of T" can be converted to an rvalue of type "pointer to 1140 // T" (C++ 4.2p1). 1141 FromType = S.Context.getArrayDecayedType(FromType); 1142 1143 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1144 // This conversion is deprecated. (C++ D.4). 1145 SCS.DeprecatedStringLiteralToCharPtr = true; 1146 1147 // For the purpose of ranking in overload resolution 1148 // (13.3.3.1.1), this conversion is considered an 1149 // array-to-pointer conversion followed by a qualification 1150 // conversion (4.4). (C++ 4.2p2) 1151 SCS.Second = ICK_Identity; 1152 SCS.Third = ICK_Qualification; 1153 SCS.QualificationIncludesObjCLifetime = false; 1154 SCS.setAllToTypes(FromType); 1155 return true; 1156 } 1157 } else if (FromType->isFunctionType() && argIsLValue) { 1158 // Function-to-pointer conversion (C++ 4.3). 1159 SCS.First = ICK_Function_To_Pointer; 1160 1161 // An lvalue of function type T can be converted to an rvalue of 1162 // type "pointer to T." The result is a pointer to the 1163 // function. (C++ 4.3p1). 1164 FromType = S.Context.getPointerType(FromType); 1165 } else { 1166 // We don't require any conversions for the first step. 1167 SCS.First = ICK_Identity; 1168 } 1169 SCS.setToType(0, FromType); 1170 1171 // The second conversion can be an integral promotion, floating 1172 // point promotion, integral conversion, floating point conversion, 1173 // floating-integral conversion, pointer conversion, 1174 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1175 // For overloading in C, this can also be a "compatible-type" 1176 // conversion. 1177 bool IncompatibleObjC = false; 1178 ImplicitConversionKind SecondICK = ICK_Identity; 1179 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1180 // The unqualified versions of the types are the same: there's no 1181 // conversion to do. 1182 SCS.Second = ICK_Identity; 1183 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1184 // Integral promotion (C++ 4.5). 1185 SCS.Second = ICK_Integral_Promotion; 1186 FromType = ToType.getUnqualifiedType(); 1187 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1188 // Floating point promotion (C++ 4.6). 1189 SCS.Second = ICK_Floating_Promotion; 1190 FromType = ToType.getUnqualifiedType(); 1191 } else if (S.IsComplexPromotion(FromType, ToType)) { 1192 // Complex promotion (Clang extension) 1193 SCS.Second = ICK_Complex_Promotion; 1194 FromType = ToType.getUnqualifiedType(); 1195 } else if (ToType->isBooleanType() && 1196 (FromType->isArithmeticType() || 1197 FromType->isAnyPointerType() || 1198 FromType->isBlockPointerType() || 1199 FromType->isMemberPointerType() || 1200 FromType->isNullPtrType())) { 1201 // Boolean conversions (C++ 4.12). 1202 SCS.Second = ICK_Boolean_Conversion; 1203 FromType = S.Context.BoolTy; 1204 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1205 ToType->isIntegralType(S.Context)) { 1206 // Integral conversions (C++ 4.7). 1207 SCS.Second = ICK_Integral_Conversion; 1208 FromType = ToType.getUnqualifiedType(); 1209 } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { 1210 // Complex conversions (C99 6.3.1.6) 1211 SCS.Second = ICK_Complex_Conversion; 1212 FromType = ToType.getUnqualifiedType(); 1213 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1214 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1215 // Complex-real conversions (C99 6.3.1.7) 1216 SCS.Second = ICK_Complex_Real; 1217 FromType = ToType.getUnqualifiedType(); 1218 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1219 // Floating point conversions (C++ 4.8). 1220 SCS.Second = ICK_Floating_Conversion; 1221 FromType = ToType.getUnqualifiedType(); 1222 } else if ((FromType->isRealFloatingType() && 1223 ToType->isIntegralType(S.Context)) || 1224 (FromType->isIntegralOrUnscopedEnumerationType() && 1225 ToType->isRealFloatingType())) { 1226 // Floating-integral conversions (C++ 4.9). 1227 SCS.Second = ICK_Floating_Integral; 1228 FromType = ToType.getUnqualifiedType(); 1229 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1230 SCS.Second = ICK_Block_Pointer_Conversion; 1231 } else if (AllowObjCWritebackConversion && 1232 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1233 SCS.Second = ICK_Writeback_Conversion; 1234 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1235 FromType, IncompatibleObjC)) { 1236 // Pointer conversions (C++ 4.10). 1237 SCS.Second = ICK_Pointer_Conversion; 1238 SCS.IncompatibleObjC = IncompatibleObjC; 1239 FromType = FromType.getUnqualifiedType(); 1240 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1241 InOverloadResolution, FromType)) { 1242 // Pointer to member conversions (4.11). 1243 SCS.Second = ICK_Pointer_Member; 1244 } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { 1245 SCS.Second = SecondICK; 1246 FromType = ToType.getUnqualifiedType(); 1247 } else if (!S.getLangOptions().CPlusPlus && 1248 S.Context.typesAreCompatible(ToType, FromType)) { 1249 // Compatible conversions (Clang extension for C function overloading) 1250 SCS.Second = ICK_Compatible_Conversion; 1251 FromType = ToType.getUnqualifiedType(); 1252 } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) { 1253 // Treat a conversion that strips "noreturn" as an identity conversion. 1254 SCS.Second = ICK_NoReturn_Adjustment; 1255 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1256 InOverloadResolution, 1257 SCS, CStyle)) { 1258 SCS.Second = ICK_TransparentUnionConversion; 1259 FromType = ToType; 1260 } else { 1261 // No second conversion required. 1262 SCS.Second = ICK_Identity; 1263 } 1264 SCS.setToType(1, FromType); 1265 1266 QualType CanonFrom; 1267 QualType CanonTo; 1268 // The third conversion can be a qualification conversion (C++ 4p1). 1269 bool ObjCLifetimeConversion; 1270 if (S.IsQualificationConversion(FromType, ToType, CStyle, 1271 ObjCLifetimeConversion)) { 1272 SCS.Third = ICK_Qualification; 1273 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1274 FromType = ToType; 1275 CanonFrom = S.Context.getCanonicalType(FromType); 1276 CanonTo = S.Context.getCanonicalType(ToType); 1277 } else { 1278 // No conversion required 1279 SCS.Third = ICK_Identity; 1280 1281 // C++ [over.best.ics]p6: 1282 // [...] Any difference in top-level cv-qualification is 1283 // subsumed by the initialization itself and does not constitute 1284 // a conversion. [...] 1285 CanonFrom = S.Context.getCanonicalType(FromType); 1286 CanonTo = S.Context.getCanonicalType(ToType); 1287 if (CanonFrom.getLocalUnqualifiedType() 1288 == CanonTo.getLocalUnqualifiedType() && 1289 (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() 1290 || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr() 1291 || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) { 1292 FromType = ToType; 1293 CanonFrom = CanonTo; 1294 } 1295 } 1296 SCS.setToType(2, FromType); 1297 1298 // If we have not converted the argument type to the parameter type, 1299 // this is a bad conversion sequence. 1300 if (CanonFrom != CanonTo) 1301 return false; 1302 1303 return true; 1304} 1305 1306static bool 1307IsTransparentUnionStandardConversion(Sema &S, Expr* From, 1308 QualType &ToType, 1309 bool InOverloadResolution, 1310 StandardConversionSequence &SCS, 1311 bool CStyle) { 1312 1313 const RecordType *UT = ToType->getAsUnionType(); 1314 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 1315 return false; 1316 // The field to initialize within the transparent union. 1317 RecordDecl *UD = UT->getDecl(); 1318 // It's compatible if the expression matches any of the fields. 1319 for (RecordDecl::field_iterator it = UD->field_begin(), 1320 itend = UD->field_end(); 1321 it != itend; ++it) { 1322 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 1323 CStyle, /*ObjCWritebackConversion=*/false)) { 1324 ToType = it->getType(); 1325 return true; 1326 } 1327 } 1328 return false; 1329} 1330 1331/// IsIntegralPromotion - Determines whether the conversion from the 1332/// expression From (whose potentially-adjusted type is FromType) to 1333/// ToType is an integral promotion (C++ 4.5). If so, returns true and 1334/// sets PromotedType to the promoted type. 1335bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 1336 const BuiltinType *To = ToType->getAs<BuiltinType>(); 1337 // All integers are built-in. 1338 if (!To) { 1339 return false; 1340 } 1341 1342 // An rvalue of type char, signed char, unsigned char, short int, or 1343 // unsigned short int can be converted to an rvalue of type int if 1344 // int can represent all the values of the source type; otherwise, 1345 // the source rvalue can be converted to an rvalue of type unsigned 1346 // int (C++ 4.5p1). 1347 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 1348 !FromType->isEnumeralType()) { 1349 if (// We can promote any signed, promotable integer type to an int 1350 (FromType->isSignedIntegerType() || 1351 // We can promote any unsigned integer type whose size is 1352 // less than int to an int. 1353 (!FromType->isSignedIntegerType() && 1354 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { 1355 return To->getKind() == BuiltinType::Int; 1356 } 1357 1358 return To->getKind() == BuiltinType::UInt; 1359 } 1360 1361 // C++0x [conv.prom]p3: 1362 // A prvalue of an unscoped enumeration type whose underlying type is not 1363 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 1364 // following types that can represent all the values of the enumeration 1365 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 1366 // unsigned int, long int, unsigned long int, long long int, or unsigned 1367 // long long int. If none of the types in that list can represent all the 1368 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 1369 // type can be converted to an rvalue a prvalue of the extended integer type 1370 // with lowest integer conversion rank (4.13) greater than the rank of long 1371 // long in which all the values of the enumeration can be represented. If 1372 // there are two such extended types, the signed one is chosen. 1373 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 1374 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 1375 // provided for a scoped enumeration. 1376 if (FromEnumType->getDecl()->isScoped()) 1377 return false; 1378 1379 // We have already pre-calculated the promotion type, so this is trivial. 1380 if (ToType->isIntegerType() && 1381 !RequireCompleteType(From->getLocStart(), FromType, PDiag())) 1382 return Context.hasSameUnqualifiedType(ToType, 1383 FromEnumType->getDecl()->getPromotionType()); 1384 } 1385 1386 // C++0x [conv.prom]p2: 1387 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 1388 // to an rvalue a prvalue of the first of the following types that can 1389 // represent all the values of its underlying type: int, unsigned int, 1390 // long int, unsigned long int, long long int, or unsigned long long int. 1391 // If none of the types in that list can represent all the values of its 1392 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 1393 // or wchar_t can be converted to an rvalue a prvalue of its underlying 1394 // type. 1395 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 1396 ToType->isIntegerType()) { 1397 // Determine whether the type we're converting from is signed or 1398 // unsigned. 1399 bool FromIsSigned = FromType->isSignedIntegerType(); 1400 uint64_t FromSize = Context.getTypeSize(FromType); 1401 1402 // The types we'll try to promote to, in the appropriate 1403 // order. Try each of these types. 1404 QualType PromoteTypes[6] = { 1405 Context.IntTy, Context.UnsignedIntTy, 1406 Context.LongTy, Context.UnsignedLongTy , 1407 Context.LongLongTy, Context.UnsignedLongLongTy 1408 }; 1409 for (int Idx = 0; Idx < 6; ++Idx) { 1410 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 1411 if (FromSize < ToSize || 1412 (FromSize == ToSize && 1413 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 1414 // We found the type that we can promote to. If this is the 1415 // type we wanted, we have a promotion. Otherwise, no 1416 // promotion. 1417 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 1418 } 1419 } 1420 } 1421 1422 // An rvalue for an integral bit-field (9.6) can be converted to an 1423 // rvalue of type int if int can represent all the values of the 1424 // bit-field; otherwise, it can be converted to unsigned int if 1425 // unsigned int can represent all the values of the bit-field. If 1426 // the bit-field is larger yet, no integral promotion applies to 1427 // it. If the bit-field has an enumerated type, it is treated as any 1428 // other value of that type for promotion purposes (C++ 4.5p3). 1429 // FIXME: We should delay checking of bit-fields until we actually perform the 1430 // conversion. 1431 using llvm::APSInt; 1432 if (From) 1433 if (FieldDecl *MemberDecl = From->getBitField()) { 1434 APSInt BitWidth; 1435 if (FromType->isIntegralType(Context) && 1436 MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { 1437 APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); 1438 ToSize = Context.getTypeSize(ToType); 1439 1440 // Are we promoting to an int from a bitfield that fits in an int? 1441 if (BitWidth < ToSize || 1442 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { 1443 return To->getKind() == BuiltinType::Int; 1444 } 1445 1446 // Are we promoting to an unsigned int from an unsigned bitfield 1447 // that fits into an unsigned int? 1448 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { 1449 return To->getKind() == BuiltinType::UInt; 1450 } 1451 1452 return false; 1453 } 1454 } 1455 1456 // An rvalue of type bool can be converted to an rvalue of type int, 1457 // with false becoming zero and true becoming one (C++ 4.5p4). 1458 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 1459 return true; 1460 } 1461 1462 return false; 1463} 1464 1465/// IsFloatingPointPromotion - Determines whether the conversion from 1466/// FromType to ToType is a floating point promotion (C++ 4.6). If so, 1467/// returns true and sets PromotedType to the promoted type. 1468bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 1469 /// An rvalue of type float can be converted to an rvalue of type 1470 /// double. (C++ 4.6p1). 1471 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 1472 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 1473 if (FromBuiltin->getKind() == BuiltinType::Float && 1474 ToBuiltin->getKind() == BuiltinType::Double) 1475 return true; 1476 1477 // C99 6.3.1.5p1: 1478 // When a float is promoted to double or long double, or a 1479 // double is promoted to long double [...]. 1480 if (!getLangOptions().CPlusPlus && 1481 (FromBuiltin->getKind() == BuiltinType::Float || 1482 FromBuiltin->getKind() == BuiltinType::Double) && 1483 (ToBuiltin->getKind() == BuiltinType::LongDouble)) 1484 return true; 1485 } 1486 1487 return false; 1488} 1489 1490/// \brief Determine if a conversion is a complex promotion. 1491/// 1492/// A complex promotion is defined as a complex -> complex conversion 1493/// where the conversion between the underlying real types is a 1494/// floating-point or integral promotion. 1495bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 1496 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 1497 if (!FromComplex) 1498 return false; 1499 1500 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 1501 if (!ToComplex) 1502 return false; 1503 1504 return IsFloatingPointPromotion(FromComplex->getElementType(), 1505 ToComplex->getElementType()) || 1506 IsIntegralPromotion(0, FromComplex->getElementType(), 1507 ToComplex->getElementType()); 1508} 1509 1510/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 1511/// the pointer type FromPtr to a pointer to type ToPointee, with the 1512/// same type qualifiers as FromPtr has on its pointee type. ToType, 1513/// if non-empty, will be a pointer to ToType that may or may not have 1514/// the right set of qualifiers on its pointee. 1515/// 1516static QualType 1517BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 1518 QualType ToPointee, QualType ToType, 1519 ASTContext &Context, 1520 bool StripObjCLifetime = false) { 1521 assert((FromPtr->getTypeClass() == Type::Pointer || 1522 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 1523 "Invalid similarly-qualified pointer type"); 1524 1525 /// Conversions to 'id' subsume cv-qualifier conversions. 1526 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 1527 return ToType.getUnqualifiedType(); 1528 1529 QualType CanonFromPointee 1530 = Context.getCanonicalType(FromPtr->getPointeeType()); 1531 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 1532 Qualifiers Quals = CanonFromPointee.getQualifiers(); 1533 1534 if (StripObjCLifetime) 1535 Quals.removeObjCLifetime(); 1536 1537 // Exact qualifier match -> return the pointer type we're converting to. 1538 if (CanonToPointee.getLocalQualifiers() == Quals) { 1539 // ToType is exactly what we need. Return it. 1540 if (!ToType.isNull()) 1541 return ToType.getUnqualifiedType(); 1542 1543 // Build a pointer to ToPointee. It has the right qualifiers 1544 // already. 1545 if (isa<ObjCObjectPointerType>(ToType)) 1546 return Context.getObjCObjectPointerType(ToPointee); 1547 return Context.getPointerType(ToPointee); 1548 } 1549 1550 // Just build a canonical type that has the right qualifiers. 1551 QualType QualifiedCanonToPointee 1552 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 1553 1554 if (isa<ObjCObjectPointerType>(ToType)) 1555 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 1556 return Context.getPointerType(QualifiedCanonToPointee); 1557} 1558 1559static bool isNullPointerConstantForConversion(Expr *Expr, 1560 bool InOverloadResolution, 1561 ASTContext &Context) { 1562 // Handle value-dependent integral null pointer constants correctly. 1563 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 1564 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 1565 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 1566 return !InOverloadResolution; 1567 1568 return Expr->isNullPointerConstant(Context, 1569 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 1570 : Expr::NPC_ValueDependentIsNull); 1571} 1572 1573/// IsPointerConversion - Determines whether the conversion of the 1574/// expression From, which has the (possibly adjusted) type FromType, 1575/// can be converted to the type ToType via a pointer conversion (C++ 1576/// 4.10). If so, returns true and places the converted type (that 1577/// might differ from ToType in its cv-qualifiers at some level) into 1578/// ConvertedType. 1579/// 1580/// This routine also supports conversions to and from block pointers 1581/// and conversions with Objective-C's 'id', 'id<protocols...>', and 1582/// pointers to interfaces. FIXME: Once we've determined the 1583/// appropriate overloading rules for Objective-C, we may want to 1584/// split the Objective-C checks into a different routine; however, 1585/// GCC seems to consider all of these conversions to be pointer 1586/// conversions, so for now they live here. IncompatibleObjC will be 1587/// set if the conversion is an allowed Objective-C conversion that 1588/// should result in a warning. 1589bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 1590 bool InOverloadResolution, 1591 QualType& ConvertedType, 1592 bool &IncompatibleObjC) { 1593 IncompatibleObjC = false; 1594 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 1595 IncompatibleObjC)) 1596 return true; 1597 1598 // Conversion from a null pointer constant to any Objective-C pointer type. 1599 if (ToType->isObjCObjectPointerType() && 1600 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1601 ConvertedType = ToType; 1602 return true; 1603 } 1604 1605 // Blocks: Block pointers can be converted to void*. 1606 if (FromType->isBlockPointerType() && ToType->isPointerType() && 1607 ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { 1608 ConvertedType = ToType; 1609 return true; 1610 } 1611 // Blocks: A null pointer constant can be converted to a block 1612 // pointer type. 1613 if (ToType->isBlockPointerType() && 1614 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1615 ConvertedType = ToType; 1616 return true; 1617 } 1618 1619 // If the left-hand-side is nullptr_t, the right side can be a null 1620 // pointer constant. 1621 if (ToType->isNullPtrType() && 1622 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1623 ConvertedType = ToType; 1624 return true; 1625 } 1626 1627 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 1628 if (!ToTypePtr) 1629 return false; 1630 1631 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 1632 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 1633 ConvertedType = ToType; 1634 return true; 1635 } 1636 1637 // Beyond this point, both types need to be pointers 1638 // , including objective-c pointers. 1639 QualType ToPointeeType = ToTypePtr->getPointeeType(); 1640 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 1641 !getLangOptions().ObjCAutoRefCount) { 1642 ConvertedType = BuildSimilarlyQualifiedPointerType( 1643 FromType->getAs<ObjCObjectPointerType>(), 1644 ToPointeeType, 1645 ToType, Context); 1646 return true; 1647 } 1648 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 1649 if (!FromTypePtr) 1650 return false; 1651 1652 QualType FromPointeeType = FromTypePtr->getPointeeType(); 1653 1654 // If the unqualified pointee types are the same, this can't be a 1655 // pointer conversion, so don't do all of the work below. 1656 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 1657 return false; 1658 1659 // An rvalue of type "pointer to cv T," where T is an object type, 1660 // can be converted to an rvalue of type "pointer to cv void" (C++ 1661 // 4.10p2). 1662 if (FromPointeeType->isIncompleteOrObjectType() && 1663 ToPointeeType->isVoidType()) { 1664 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1665 ToPointeeType, 1666 ToType, Context, 1667 /*StripObjCLifetime=*/true); 1668 return true; 1669 } 1670 1671 // MSVC allows implicit function to void* type conversion. 1672 if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() && 1673 ToPointeeType->isVoidType()) { 1674 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1675 ToPointeeType, 1676 ToType, Context); 1677 return true; 1678 } 1679 1680 // When we're overloading in C, we allow a special kind of pointer 1681 // conversion for compatible-but-not-identical pointee types. 1682 if (!getLangOptions().CPlusPlus && 1683 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 1684 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1685 ToPointeeType, 1686 ToType, Context); 1687 return true; 1688 } 1689 1690 // C++ [conv.ptr]p3: 1691 // 1692 // An rvalue of type "pointer to cv D," where D is a class type, 1693 // can be converted to an rvalue of type "pointer to cv B," where 1694 // B is a base class (clause 10) of D. If B is an inaccessible 1695 // (clause 11) or ambiguous (10.2) base class of D, a program that 1696 // necessitates this conversion is ill-formed. The result of the 1697 // conversion is a pointer to the base class sub-object of the 1698 // derived class object. The null pointer value is converted to 1699 // the null pointer value of the destination type. 1700 // 1701 // Note that we do not check for ambiguity or inaccessibility 1702 // here. That is handled by CheckPointerConversion. 1703 if (getLangOptions().CPlusPlus && 1704 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 1705 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 1706 !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && 1707 IsDerivedFrom(FromPointeeType, ToPointeeType)) { 1708 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1709 ToPointeeType, 1710 ToType, Context); 1711 return true; 1712 } 1713 1714 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 1715 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 1716 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 1717 ToPointeeType, 1718 ToType, Context); 1719 return true; 1720 } 1721 1722 return false; 1723} 1724 1725/// \brief Adopt the given qualifiers for the given type. 1726static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 1727 Qualifiers TQs = T.getQualifiers(); 1728 1729 // Check whether qualifiers already match. 1730 if (TQs == Qs) 1731 return T; 1732 1733 if (Qs.compatiblyIncludes(TQs)) 1734 return Context.getQualifiedType(T, Qs); 1735 1736 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 1737} 1738 1739/// isObjCPointerConversion - Determines whether this is an 1740/// Objective-C pointer conversion. Subroutine of IsPointerConversion, 1741/// with the same arguments and return values. 1742bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 1743 QualType& ConvertedType, 1744 bool &IncompatibleObjC) { 1745 if (!getLangOptions().ObjC1) 1746 return false; 1747 1748 // The set of qualifiers on the type we're converting from. 1749 Qualifiers FromQualifiers = FromType.getQualifiers(); 1750 1751 // First, we handle all conversions on ObjC object pointer types. 1752 const ObjCObjectPointerType* ToObjCPtr = 1753 ToType->getAs<ObjCObjectPointerType>(); 1754 const ObjCObjectPointerType *FromObjCPtr = 1755 FromType->getAs<ObjCObjectPointerType>(); 1756 1757 if (ToObjCPtr && FromObjCPtr) { 1758 // If the pointee types are the same (ignoring qualifications), 1759 // then this is not a pointer conversion. 1760 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 1761 FromObjCPtr->getPointeeType())) 1762 return false; 1763 1764 // Check for compatible 1765 // Objective C++: We're able to convert between "id" or "Class" and a 1766 // pointer to any interface (in both directions). 1767 if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { 1768 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1769 return true; 1770 } 1771 // Conversions with Objective-C's id<...>. 1772 if ((FromObjCPtr->isObjCQualifiedIdType() || 1773 ToObjCPtr->isObjCQualifiedIdType()) && 1774 Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, 1775 /*compare=*/false)) { 1776 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1777 return true; 1778 } 1779 // Objective C++: We're able to convert from a pointer to an 1780 // interface to a pointer to a different interface. 1781 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 1782 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 1783 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 1784 if (getLangOptions().CPlusPlus && LHS && RHS && 1785 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 1786 FromObjCPtr->getPointeeType())) 1787 return false; 1788 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1789 ToObjCPtr->getPointeeType(), 1790 ToType, Context); 1791 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1792 return true; 1793 } 1794 1795 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 1796 // Okay: this is some kind of implicit downcast of Objective-C 1797 // interfaces, which is permitted. However, we're going to 1798 // complain about it. 1799 IncompatibleObjC = true; 1800 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 1801 ToObjCPtr->getPointeeType(), 1802 ToType, Context); 1803 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1804 return true; 1805 } 1806 } 1807 // Beyond this point, both types need to be C pointers or block pointers. 1808 QualType ToPointeeType; 1809 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 1810 ToPointeeType = ToCPtr->getPointeeType(); 1811 else if (const BlockPointerType *ToBlockPtr = 1812 ToType->getAs<BlockPointerType>()) { 1813 // Objective C++: We're able to convert from a pointer to any object 1814 // to a block pointer type. 1815 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 1816 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1817 return true; 1818 } 1819 ToPointeeType = ToBlockPtr->getPointeeType(); 1820 } 1821 else if (FromType->getAs<BlockPointerType>() && 1822 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 1823 // Objective C++: We're able to convert from a block pointer type to a 1824 // pointer to any object. 1825 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1826 return true; 1827 } 1828 else 1829 return false; 1830 1831 QualType FromPointeeType; 1832 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 1833 FromPointeeType = FromCPtr->getPointeeType(); 1834 else if (const BlockPointerType *FromBlockPtr = 1835 FromType->getAs<BlockPointerType>()) 1836 FromPointeeType = FromBlockPtr->getPointeeType(); 1837 else 1838 return false; 1839 1840 // If we have pointers to pointers, recursively check whether this 1841 // is an Objective-C conversion. 1842 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 1843 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1844 IncompatibleObjC)) { 1845 // We always complain about this conversion. 1846 IncompatibleObjC = true; 1847 ConvertedType = Context.getPointerType(ConvertedType); 1848 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1849 return true; 1850 } 1851 // Allow conversion of pointee being objective-c pointer to another one; 1852 // as in I* to id. 1853 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 1854 ToPointeeType->getAs<ObjCObjectPointerType>() && 1855 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 1856 IncompatibleObjC)) { 1857 1858 ConvertedType = Context.getPointerType(ConvertedType); 1859 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 1860 return true; 1861 } 1862 1863 // If we have pointers to functions or blocks, check whether the only 1864 // differences in the argument and result types are in Objective-C 1865 // pointer conversions. If so, we permit the conversion (but 1866 // complain about it). 1867 const FunctionProtoType *FromFunctionType 1868 = FromPointeeType->getAs<FunctionProtoType>(); 1869 const FunctionProtoType *ToFunctionType 1870 = ToPointeeType->getAs<FunctionProtoType>(); 1871 if (FromFunctionType && ToFunctionType) { 1872 // If the function types are exactly the same, this isn't an 1873 // Objective-C pointer conversion. 1874 if (Context.getCanonicalType(FromPointeeType) 1875 == Context.getCanonicalType(ToPointeeType)) 1876 return false; 1877 1878 // Perform the quick checks that will tell us whether these 1879 // function types are obviously different. 1880 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 1881 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 1882 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) 1883 return false; 1884 1885 bool HasObjCConversion = false; 1886 if (Context.getCanonicalType(FromFunctionType->getResultType()) 1887 == Context.getCanonicalType(ToFunctionType->getResultType())) { 1888 // Okay, the types match exactly. Nothing to do. 1889 } else if (isObjCPointerConversion(FromFunctionType->getResultType(), 1890 ToFunctionType->getResultType(), 1891 ConvertedType, IncompatibleObjC)) { 1892 // Okay, we have an Objective-C pointer conversion. 1893 HasObjCConversion = true; 1894 } else { 1895 // Function types are too different. Abort. 1896 return false; 1897 } 1898 1899 // Check argument types. 1900 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 1901 ArgIdx != NumArgs; ++ArgIdx) { 1902 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 1903 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 1904 if (Context.getCanonicalType(FromArgType) 1905 == Context.getCanonicalType(ToArgType)) { 1906 // Okay, the types match exactly. Nothing to do. 1907 } else if (isObjCPointerConversion(FromArgType, ToArgType, 1908 ConvertedType, IncompatibleObjC)) { 1909 // Okay, we have an Objective-C pointer conversion. 1910 HasObjCConversion = true; 1911 } else { 1912 // Argument types are too different. Abort. 1913 return false; 1914 } 1915 } 1916 1917 if (HasObjCConversion) { 1918 // We had an Objective-C conversion. Allow this pointer 1919 // conversion, but complain about it. 1920 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 1921 IncompatibleObjC = true; 1922 return true; 1923 } 1924 } 1925 1926 return false; 1927} 1928 1929/// \brief Determine whether this is an Objective-C writeback conversion, 1930/// used for parameter passing when performing automatic reference counting. 1931/// 1932/// \param FromType The type we're converting form. 1933/// 1934/// \param ToType The type we're converting to. 1935/// 1936/// \param ConvertedType The type that will be produced after applying 1937/// this conversion. 1938bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 1939 QualType &ConvertedType) { 1940 if (!getLangOptions().ObjCAutoRefCount || 1941 Context.hasSameUnqualifiedType(FromType, ToType)) 1942 return false; 1943 1944 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 1945 QualType ToPointee; 1946 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 1947 ToPointee = ToPointer->getPointeeType(); 1948 else 1949 return false; 1950 1951 Qualifiers ToQuals = ToPointee.getQualifiers(); 1952 if (!ToPointee->isObjCLifetimeType() || 1953 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 1954 !ToQuals.withoutObjCGLifetime().empty()) 1955 return false; 1956 1957 // Argument must be a pointer to __strong to __weak. 1958 QualType FromPointee; 1959 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 1960 FromPointee = FromPointer->getPointeeType(); 1961 else 1962 return false; 1963 1964 Qualifiers FromQuals = FromPointee.getQualifiers(); 1965 if (!FromPointee->isObjCLifetimeType() || 1966 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 1967 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 1968 return false; 1969 1970 // Make sure that we have compatible qualifiers. 1971 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 1972 if (!ToQuals.compatiblyIncludes(FromQuals)) 1973 return false; 1974 1975 // Remove qualifiers from the pointee type we're converting from; they 1976 // aren't used in the compatibility check belong, and we'll be adding back 1977 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 1978 FromPointee = FromPointee.getUnqualifiedType(); 1979 1980 // The unqualified form of the pointee types must be compatible. 1981 ToPointee = ToPointee.getUnqualifiedType(); 1982 bool IncompatibleObjC; 1983 if (Context.typesAreCompatible(FromPointee, ToPointee)) 1984 FromPointee = ToPointee; 1985 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 1986 IncompatibleObjC)) 1987 return false; 1988 1989 /// \brief Construct the type we're converting to, which is a pointer to 1990 /// __autoreleasing pointee. 1991 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 1992 ConvertedType = Context.getPointerType(FromPointee); 1993 return true; 1994} 1995 1996bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 1997 QualType& ConvertedType) { 1998 QualType ToPointeeType; 1999 if (const BlockPointerType *ToBlockPtr = 2000 ToType->getAs<BlockPointerType>()) 2001 ToPointeeType = ToBlockPtr->getPointeeType(); 2002 else 2003 return false; 2004 2005 QualType FromPointeeType; 2006 if (const BlockPointerType *FromBlockPtr = 2007 FromType->getAs<BlockPointerType>()) 2008 FromPointeeType = FromBlockPtr->getPointeeType(); 2009 else 2010 return false; 2011 // We have pointer to blocks, check whether the only 2012 // differences in the argument and result types are in Objective-C 2013 // pointer conversions. If so, we permit the conversion. 2014 2015 const FunctionProtoType *FromFunctionType 2016 = FromPointeeType->getAs<FunctionProtoType>(); 2017 const FunctionProtoType *ToFunctionType 2018 = ToPointeeType->getAs<FunctionProtoType>(); 2019 2020 if (!FromFunctionType || !ToFunctionType) 2021 return false; 2022 2023 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2024 return true; 2025 2026 // Perform the quick checks that will tell us whether these 2027 // function types are obviously different. 2028 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || 2029 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2030 return false; 2031 2032 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2033 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2034 if (FromEInfo != ToEInfo) 2035 return false; 2036 2037 bool IncompatibleObjC = false; 2038 if (Context.hasSameType(FromFunctionType->getResultType(), 2039 ToFunctionType->getResultType())) { 2040 // Okay, the types match exactly. Nothing to do. 2041 } else { 2042 QualType RHS = FromFunctionType->getResultType(); 2043 QualType LHS = ToFunctionType->getResultType(); 2044 if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) && 2045 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2046 LHS = LHS.getUnqualifiedType(); 2047 2048 if (Context.hasSameType(RHS,LHS)) { 2049 // OK exact match. 2050 } else if (isObjCPointerConversion(RHS, LHS, 2051 ConvertedType, IncompatibleObjC)) { 2052 if (IncompatibleObjC) 2053 return false; 2054 // Okay, we have an Objective-C pointer conversion. 2055 } 2056 else 2057 return false; 2058 } 2059 2060 // Check argument types. 2061 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); 2062 ArgIdx != NumArgs; ++ArgIdx) { 2063 IncompatibleObjC = false; 2064 QualType FromArgType = FromFunctionType->getArgType(ArgIdx); 2065 QualType ToArgType = ToFunctionType->getArgType(ArgIdx); 2066 if (Context.hasSameType(FromArgType, ToArgType)) { 2067 // Okay, the types match exactly. Nothing to do. 2068 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2069 ConvertedType, IncompatibleObjC)) { 2070 if (IncompatibleObjC) 2071 return false; 2072 // Okay, we have an Objective-C pointer conversion. 2073 } else 2074 // Argument types are too different. Abort. 2075 return false; 2076 } 2077 ConvertedType = ToType; 2078 return true; 2079} 2080 2081/// FunctionArgTypesAreEqual - This routine checks two function proto types 2082/// for equlity of their argument types. Caller has already checked that 2083/// they have same number of arguments. This routine assumes that Objective-C 2084/// pointer types which only differ in their protocol qualifiers are equal. 2085bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, 2086 const FunctionProtoType *NewType) { 2087 if (!getLangOptions().ObjC1) 2088 return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(), 2089 NewType->arg_type_begin()); 2090 2091 for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), 2092 N = NewType->arg_type_begin(), 2093 E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { 2094 QualType ToType = (*O); 2095 QualType FromType = (*N); 2096 if (ToType != FromType) { 2097 if (const PointerType *PTTo = ToType->getAs<PointerType>()) { 2098 if (const PointerType *PTFr = FromType->getAs<PointerType>()) 2099 if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && 2100 PTFr->getPointeeType()->isObjCQualifiedIdType()) || 2101 (PTTo->getPointeeType()->isObjCQualifiedClassType() && 2102 PTFr->getPointeeType()->isObjCQualifiedClassType())) 2103 continue; 2104 } 2105 else if (const ObjCObjectPointerType *PTTo = 2106 ToType->getAs<ObjCObjectPointerType>()) { 2107 if (const ObjCObjectPointerType *PTFr = 2108 FromType->getAs<ObjCObjectPointerType>()) 2109 if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl()) 2110 continue; 2111 } 2112 return false; 2113 } 2114 } 2115 return true; 2116} 2117 2118/// CheckPointerConversion - Check the pointer conversion from the 2119/// expression From to the type ToType. This routine checks for 2120/// ambiguous or inaccessible derived-to-base pointer 2121/// conversions for which IsPointerConversion has already returned 2122/// true. It returns true and produces a diagnostic if there was an 2123/// error, or returns false otherwise. 2124bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2125 CastKind &Kind, 2126 CXXCastPath& BasePath, 2127 bool IgnoreBaseAccess) { 2128 QualType FromType = From->getType(); 2129 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2130 2131 Kind = CK_BitCast; 2132 2133 if (!IsCStyleOrFunctionalCast && 2134 Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) && 2135 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) 2136 DiagRuntimeBehavior(From->getExprLoc(), From, 2137 PDiag(diag::warn_impcast_bool_to_null_pointer) 2138 << ToType << From->getSourceRange()); 2139 2140 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 2141 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 2142 QualType FromPointeeType = FromPtrType->getPointeeType(), 2143 ToPointeeType = ToPtrType->getPointeeType(); 2144 2145 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 2146 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 2147 // We must have a derived-to-base conversion. Check an 2148 // ambiguous or inaccessible conversion. 2149 if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, 2150 From->getExprLoc(), 2151 From->getSourceRange(), &BasePath, 2152 IgnoreBaseAccess)) 2153 return true; 2154 2155 // The conversion was successful. 2156 Kind = CK_DerivedToBase; 2157 } 2158 } 2159 } else if (const ObjCObjectPointerType *ToPtrType = 2160 ToType->getAs<ObjCObjectPointerType>()) { 2161 if (const ObjCObjectPointerType *FromPtrType = 2162 FromType->getAs<ObjCObjectPointerType>()) { 2163 // Objective-C++ conversions are always okay. 2164 // FIXME: We should have a different class of conversions for the 2165 // Objective-C++ implicit conversions. 2166 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 2167 return false; 2168 } else if (FromType->isBlockPointerType()) { 2169 Kind = CK_BlockPointerToObjCPointerCast; 2170 } else { 2171 Kind = CK_CPointerToObjCPointerCast; 2172 } 2173 } else if (ToType->isBlockPointerType()) { 2174 if (!FromType->isBlockPointerType()) 2175 Kind = CK_AnyPointerToBlockPointerCast; 2176 } 2177 2178 // We shouldn't fall into this case unless it's valid for other 2179 // reasons. 2180 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 2181 Kind = CK_NullToPointer; 2182 2183 return false; 2184} 2185 2186/// IsMemberPointerConversion - Determines whether the conversion of the 2187/// expression From, which has the (possibly adjusted) type FromType, can be 2188/// converted to the type ToType via a member pointer conversion (C++ 4.11). 2189/// If so, returns true and places the converted type (that might differ from 2190/// ToType in its cv-qualifiers at some level) into ConvertedType. 2191bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 2192 QualType ToType, 2193 bool InOverloadResolution, 2194 QualType &ConvertedType) { 2195 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 2196 if (!ToTypePtr) 2197 return false; 2198 2199 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 2200 if (From->isNullPointerConstant(Context, 2201 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2202 : Expr::NPC_ValueDependentIsNull)) { 2203 ConvertedType = ToType; 2204 return true; 2205 } 2206 2207 // Otherwise, both types have to be member pointers. 2208 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 2209 if (!FromTypePtr) 2210 return false; 2211 2212 // A pointer to member of B can be converted to a pointer to member of D, 2213 // where D is derived from B (C++ 4.11p2). 2214 QualType FromClass(FromTypePtr->getClass(), 0); 2215 QualType ToClass(ToTypePtr->getClass(), 0); 2216 2217 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 2218 !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) && 2219 IsDerivedFrom(ToClass, FromClass)) { 2220 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 2221 ToClass.getTypePtr()); 2222 return true; 2223 } 2224 2225 return false; 2226} 2227 2228/// CheckMemberPointerConversion - Check the member pointer conversion from the 2229/// expression From to the type ToType. This routine checks for ambiguous or 2230/// virtual or inaccessible base-to-derived member pointer conversions 2231/// for which IsMemberPointerConversion has already returned true. It returns 2232/// true and produces a diagnostic if there was an error, or returns false 2233/// otherwise. 2234bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 2235 CastKind &Kind, 2236 CXXCastPath &BasePath, 2237 bool IgnoreBaseAccess) { 2238 QualType FromType = From->getType(); 2239 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 2240 if (!FromPtrType) { 2241 // This must be a null pointer to member pointer conversion 2242 assert(From->isNullPointerConstant(Context, 2243 Expr::NPC_ValueDependentIsNull) && 2244 "Expr must be null pointer constant!"); 2245 Kind = CK_NullToMemberPointer; 2246 return false; 2247 } 2248 2249 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 2250 assert(ToPtrType && "No member pointer cast has a target type " 2251 "that is not a member pointer."); 2252 2253 QualType FromClass = QualType(FromPtrType->getClass(), 0); 2254 QualType ToClass = QualType(ToPtrType->getClass(), 0); 2255 2256 // FIXME: What about dependent types? 2257 assert(FromClass->isRecordType() && "Pointer into non-class."); 2258 assert(ToClass->isRecordType() && "Pointer into non-class."); 2259 2260 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 2261 /*DetectVirtual=*/true); 2262 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); 2263 assert(DerivationOkay && 2264 "Should not have been called if derivation isn't OK."); 2265 (void)DerivationOkay; 2266 2267 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 2268 getUnqualifiedType())) { 2269 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 2270 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 2271 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 2272 return true; 2273 } 2274 2275 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 2276 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 2277 << FromClass << ToClass << QualType(VBase, 0) 2278 << From->getSourceRange(); 2279 return true; 2280 } 2281 2282 if (!IgnoreBaseAccess) 2283 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 2284 Paths.front(), 2285 diag::err_downcast_from_inaccessible_base); 2286 2287 // Must be a base to derived member conversion. 2288 BuildBasePathArray(Paths, BasePath); 2289 Kind = CK_BaseToDerivedMemberPointer; 2290 return false; 2291} 2292 2293/// IsQualificationConversion - Determines whether the conversion from 2294/// an rvalue of type FromType to ToType is a qualification conversion 2295/// (C++ 4.4). 2296/// 2297/// \param ObjCLifetimeConversion Output parameter that will be set to indicate 2298/// when the qualification conversion involves a change in the Objective-C 2299/// object lifetime. 2300bool 2301Sema::IsQualificationConversion(QualType FromType, QualType ToType, 2302 bool CStyle, bool &ObjCLifetimeConversion) { 2303 FromType = Context.getCanonicalType(FromType); 2304 ToType = Context.getCanonicalType(ToType); 2305 ObjCLifetimeConversion = false; 2306 2307 // If FromType and ToType are the same type, this is not a 2308 // qualification conversion. 2309 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 2310 return false; 2311 2312 // (C++ 4.4p4): 2313 // A conversion can add cv-qualifiers at levels other than the first 2314 // in multi-level pointers, subject to the following rules: [...] 2315 bool PreviousToQualsIncludeConst = true; 2316 bool UnwrappedAnyPointer = false; 2317 while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { 2318 // Within each iteration of the loop, we check the qualifiers to 2319 // determine if this still looks like a qualification 2320 // conversion. Then, if all is well, we unwrap one more level of 2321 // pointers or pointers-to-members and do it all again 2322 // until there are no more pointers or pointers-to-members left to 2323 // unwrap. 2324 UnwrappedAnyPointer = true; 2325 2326 Qualifiers FromQuals = FromType.getQualifiers(); 2327 Qualifiers ToQuals = ToType.getQualifiers(); 2328 2329 // Objective-C ARC: 2330 // Check Objective-C lifetime conversions. 2331 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && 2332 UnwrappedAnyPointer) { 2333 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 2334 ObjCLifetimeConversion = true; 2335 FromQuals.removeObjCLifetime(); 2336 ToQuals.removeObjCLifetime(); 2337 } else { 2338 // Qualification conversions cannot cast between different 2339 // Objective-C lifetime qualifiers. 2340 return false; 2341 } 2342 } 2343 2344 // Allow addition/removal of GC attributes but not changing GC attributes. 2345 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 2346 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 2347 FromQuals.removeObjCGCAttr(); 2348 ToQuals.removeObjCGCAttr(); 2349 } 2350 2351 // -- for every j > 0, if const is in cv 1,j then const is in cv 2352 // 2,j, and similarly for volatile. 2353 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 2354 return false; 2355 2356 // -- if the cv 1,j and cv 2,j are different, then const is in 2357 // every cv for 0 < k < j. 2358 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() 2359 && !PreviousToQualsIncludeConst) 2360 return false; 2361 2362 // Keep track of whether all prior cv-qualifiers in the "to" type 2363 // include const. 2364 PreviousToQualsIncludeConst 2365 = PreviousToQualsIncludeConst && ToQuals.hasConst(); 2366 } 2367 2368 // We are left with FromType and ToType being the pointee types 2369 // after unwrapping the original FromType and ToType the same number 2370 // of types. If we unwrapped any pointers, and if FromType and 2371 // ToType have the same unqualified type (since we checked 2372 // qualifiers above), then this is a qualification conversion. 2373 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 2374} 2375 2376/// Determines whether there is a user-defined conversion sequence 2377/// (C++ [over.ics.user]) that converts expression From to the type 2378/// ToType. If such a conversion exists, User will contain the 2379/// user-defined conversion sequence that performs such a conversion 2380/// and this routine will return true. Otherwise, this routine returns 2381/// false and User is unspecified. 2382/// 2383/// \param AllowExplicit true if the conversion should consider C++0x 2384/// "explicit" conversion functions as well as non-explicit conversion 2385/// functions (C++0x [class.conv.fct]p2). 2386static OverloadingResult 2387IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 2388 UserDefinedConversionSequence& User, 2389 OverloadCandidateSet& CandidateSet, 2390 bool AllowExplicit) { 2391 // Whether we will only visit constructors. 2392 bool ConstructorsOnly = false; 2393 2394 // If the type we are conversion to is a class type, enumerate its 2395 // constructors. 2396 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 2397 // C++ [over.match.ctor]p1: 2398 // When objects of class type are direct-initialized (8.5), or 2399 // copy-initialized from an expression of the same or a 2400 // derived class type (8.5), overload resolution selects the 2401 // constructor. [...] For copy-initialization, the candidate 2402 // functions are all the converting constructors (12.3.1) of 2403 // that class. The argument list is the expression-list within 2404 // the parentheses of the initializer. 2405 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 2406 (From->getType()->getAs<RecordType>() && 2407 S.IsDerivedFrom(From->getType(), ToType))) 2408 ConstructorsOnly = true; 2409 2410 S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()); 2411 // RequireCompleteType may have returned true due to some invalid decl 2412 // during template instantiation, but ToType may be complete enough now 2413 // to try to recover. 2414 if (ToType->isIncompleteType()) { 2415 // We're not going to find any constructors. 2416 } else if (CXXRecordDecl *ToRecordDecl 2417 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 2418 DeclContext::lookup_iterator Con, ConEnd; 2419 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); 2420 Con != ConEnd; ++Con) { 2421 NamedDecl *D = *Con; 2422 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2423 2424 // Find the constructor (which may be a template). 2425 CXXConstructorDecl *Constructor = 0; 2426 FunctionTemplateDecl *ConstructorTmpl 2427 = dyn_cast<FunctionTemplateDecl>(D); 2428 if (ConstructorTmpl) 2429 Constructor 2430 = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); 2431 else 2432 Constructor = cast<CXXConstructorDecl>(D); 2433 2434 if (!Constructor->isInvalidDecl() && 2435 Constructor->isConvertingConstructor(AllowExplicit)) { 2436 if (ConstructorTmpl) 2437 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2438 /*ExplicitArgs*/ 0, 2439 &From, 1, CandidateSet, 2440 /*SuppressUserConversions=*/ 2441 !ConstructorsOnly); 2442 else 2443 // Allow one user-defined conversion when user specifies a 2444 // From->ToType conversion via an static cast (c-style, etc). 2445 S.AddOverloadCandidate(Constructor, FoundDecl, 2446 &From, 1, CandidateSet, 2447 /*SuppressUserConversions=*/ 2448 !ConstructorsOnly); 2449 } 2450 } 2451 } 2452 } 2453 2454 // Enumerate conversion functions, if we're allowed to. 2455 if (ConstructorsOnly) { 2456 } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), 2457 S.PDiag(0) << From->getSourceRange())) { 2458 // No conversion functions from incomplete types. 2459 } else if (const RecordType *FromRecordType 2460 = From->getType()->getAs<RecordType>()) { 2461 if (CXXRecordDecl *FromRecordDecl 2462 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 2463 // Add all of the conversion functions as candidates. 2464 const UnresolvedSetImpl *Conversions 2465 = FromRecordDecl->getVisibleConversionFunctions(); 2466 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 2467 E = Conversions->end(); I != E; ++I) { 2468 DeclAccessPair FoundDecl = I.getPair(); 2469 NamedDecl *D = FoundDecl.getDecl(); 2470 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 2471 if (isa<UsingShadowDecl>(D)) 2472 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 2473 2474 CXXConversionDecl *Conv; 2475 FunctionTemplateDecl *ConvTemplate; 2476 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 2477 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 2478 else 2479 Conv = cast<CXXConversionDecl>(D); 2480 2481 if (AllowExplicit || !Conv->isExplicit()) { 2482 if (ConvTemplate) 2483 S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, 2484 ActingContext, From, ToType, 2485 CandidateSet); 2486 else 2487 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, 2488 From, ToType, CandidateSet); 2489 } 2490 } 2491 } 2492 } 2493 2494 OverloadCandidateSet::iterator Best; 2495 switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { 2496 case OR_Success: 2497 // Record the standard conversion we used and the conversion function. 2498 if (CXXConstructorDecl *Constructor 2499 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 2500 S.MarkDeclarationReferenced(From->getLocStart(), Constructor); 2501 2502 // C++ [over.ics.user]p1: 2503 // If the user-defined conversion is specified by a 2504 // constructor (12.3.1), the initial standard conversion 2505 // sequence converts the source type to the type required by 2506 // the argument of the constructor. 2507 // 2508 QualType ThisType = Constructor->getThisType(S.Context); 2509 if (Best->Conversions[0].isEllipsis()) 2510 User.EllipsisConversion = true; 2511 else { 2512 User.Before = Best->Conversions[0].Standard; 2513 User.EllipsisConversion = false; 2514 } 2515 User.ConversionFunction = Constructor; 2516 User.FoundConversionFunction = Best->FoundDecl; 2517 User.After.setAsIdentityConversion(); 2518 User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); 2519 User.After.setAllToTypes(ToType); 2520 return OR_Success; 2521 } else if (CXXConversionDecl *Conversion 2522 = dyn_cast<CXXConversionDecl>(Best->Function)) { 2523 S.MarkDeclarationReferenced(From->getLocStart(), Conversion); 2524 2525 // C++ [over.ics.user]p1: 2526 // 2527 // [...] If the user-defined conversion is specified by a 2528 // conversion function (12.3.2), the initial standard 2529 // conversion sequence converts the source type to the 2530 // implicit object parameter of the conversion function. 2531 User.Before = Best->Conversions[0].Standard; 2532 User.ConversionFunction = Conversion; 2533 User.FoundConversionFunction = Best->FoundDecl; 2534 User.EllipsisConversion = false; 2535 2536 // C++ [over.ics.user]p2: 2537 // The second standard conversion sequence converts the 2538 // result of the user-defined conversion to the target type 2539 // for the sequence. Since an implicit conversion sequence 2540 // is an initialization, the special rules for 2541 // initialization by user-defined conversion apply when 2542 // selecting the best user-defined conversion for a 2543 // user-defined conversion sequence (see 13.3.3 and 2544 // 13.3.3.1). 2545 User.After = Best->FinalConversion; 2546 return OR_Success; 2547 } else { 2548 llvm_unreachable("Not a constructor or conversion function?"); 2549 return OR_No_Viable_Function; 2550 } 2551 2552 case OR_No_Viable_Function: 2553 return OR_No_Viable_Function; 2554 case OR_Deleted: 2555 // No conversion here! We're done. 2556 return OR_Deleted; 2557 2558 case OR_Ambiguous: 2559 return OR_Ambiguous; 2560 } 2561 2562 return OR_No_Viable_Function; 2563} 2564 2565bool 2566Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 2567 ImplicitConversionSequence ICS; 2568 OverloadCandidateSet CandidateSet(From->getExprLoc()); 2569 OverloadingResult OvResult = 2570 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 2571 CandidateSet, false); 2572 if (OvResult == OR_Ambiguous) 2573 Diag(From->getSourceRange().getBegin(), 2574 diag::err_typecheck_ambiguous_condition) 2575 << From->getType() << ToType << From->getSourceRange(); 2576 else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) 2577 Diag(From->getSourceRange().getBegin(), 2578 diag::err_typecheck_nonviable_condition) 2579 << From->getType() << ToType << From->getSourceRange(); 2580 else 2581 return false; 2582 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); 2583 return true; 2584} 2585 2586/// CompareImplicitConversionSequences - Compare two implicit 2587/// conversion sequences to determine whether one is better than the 2588/// other or if they are indistinguishable (C++ 13.3.3.2). 2589static ImplicitConversionSequence::CompareKind 2590CompareImplicitConversionSequences(Sema &S, 2591 const ImplicitConversionSequence& ICS1, 2592 const ImplicitConversionSequence& ICS2) 2593{ 2594 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 2595 // conversion sequences (as defined in 13.3.3.1) 2596 // -- a standard conversion sequence (13.3.3.1.1) is a better 2597 // conversion sequence than a user-defined conversion sequence or 2598 // an ellipsis conversion sequence, and 2599 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 2600 // conversion sequence than an ellipsis conversion sequence 2601 // (13.3.3.1.3). 2602 // 2603 // C++0x [over.best.ics]p10: 2604 // For the purpose of ranking implicit conversion sequences as 2605 // described in 13.3.3.2, the ambiguous conversion sequence is 2606 // treated as a user-defined sequence that is indistinguishable 2607 // from any other user-defined conversion sequence. 2608 if (ICS1.getKindRank() < ICS2.getKindRank()) 2609 return ImplicitConversionSequence::Better; 2610 else if (ICS2.getKindRank() < ICS1.getKindRank()) 2611 return ImplicitConversionSequence::Worse; 2612 2613 // The following checks require both conversion sequences to be of 2614 // the same kind. 2615 if (ICS1.getKind() != ICS2.getKind()) 2616 return ImplicitConversionSequence::Indistinguishable; 2617 2618 // Two implicit conversion sequences of the same form are 2619 // indistinguishable conversion sequences unless one of the 2620 // following rules apply: (C++ 13.3.3.2p3): 2621 if (ICS1.isStandard()) 2622 return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard); 2623 else if (ICS1.isUserDefined()) { 2624 // User-defined conversion sequence U1 is a better conversion 2625 // sequence than another user-defined conversion sequence U2 if 2626 // they contain the same user-defined conversion function or 2627 // constructor and if the second standard conversion sequence of 2628 // U1 is better than the second standard conversion sequence of 2629 // U2 (C++ 13.3.3.2p3). 2630 if (ICS1.UserDefined.ConversionFunction == 2631 ICS2.UserDefined.ConversionFunction) 2632 return CompareStandardConversionSequences(S, 2633 ICS1.UserDefined.After, 2634 ICS2.UserDefined.After); 2635 } 2636 2637 return ImplicitConversionSequence::Indistinguishable; 2638} 2639 2640static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { 2641 while (Context.UnwrapSimilarPointerTypes(T1, T2)) { 2642 Qualifiers Quals; 2643 T1 = Context.getUnqualifiedArrayType(T1, Quals); 2644 T2 = Context.getUnqualifiedArrayType(T2, Quals); 2645 } 2646 2647 return Context.hasSameUnqualifiedType(T1, T2); 2648} 2649 2650// Per 13.3.3.2p3, compare the given standard conversion sequences to 2651// determine if one is a proper subset of the other. 2652static ImplicitConversionSequence::CompareKind 2653compareStandardConversionSubsets(ASTContext &Context, 2654 const StandardConversionSequence& SCS1, 2655 const StandardConversionSequence& SCS2) { 2656 ImplicitConversionSequence::CompareKind Result 2657 = ImplicitConversionSequence::Indistinguishable; 2658 2659 // the identity conversion sequence is considered to be a subsequence of 2660 // any non-identity conversion sequence 2661 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 2662 return ImplicitConversionSequence::Better; 2663 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 2664 return ImplicitConversionSequence::Worse; 2665 2666 if (SCS1.Second != SCS2.Second) { 2667 if (SCS1.Second == ICK_Identity) 2668 Result = ImplicitConversionSequence::Better; 2669 else if (SCS2.Second == ICK_Identity) 2670 Result = ImplicitConversionSequence::Worse; 2671 else 2672 return ImplicitConversionSequence::Indistinguishable; 2673 } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) 2674 return ImplicitConversionSequence::Indistinguishable; 2675 2676 if (SCS1.Third == SCS2.Third) { 2677 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 2678 : ImplicitConversionSequence::Indistinguishable; 2679 } 2680 2681 if (SCS1.Third == ICK_Identity) 2682 return Result == ImplicitConversionSequence::Worse 2683 ? ImplicitConversionSequence::Indistinguishable 2684 : ImplicitConversionSequence::Better; 2685 2686 if (SCS2.Third == ICK_Identity) 2687 return Result == ImplicitConversionSequence::Better 2688 ? ImplicitConversionSequence::Indistinguishable 2689 : ImplicitConversionSequence::Worse; 2690 2691 return ImplicitConversionSequence::Indistinguishable; 2692} 2693 2694/// \brief Determine whether one of the given reference bindings is better 2695/// than the other based on what kind of bindings they are. 2696static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 2697 const StandardConversionSequence &SCS2) { 2698 // C++0x [over.ics.rank]p3b4: 2699 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 2700 // implicit object parameter of a non-static member function declared 2701 // without a ref-qualifier, and *either* S1 binds an rvalue reference 2702 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 2703 // lvalue reference to a function lvalue and S2 binds an rvalue 2704 // reference*. 2705 // 2706 // FIXME: Rvalue references. We're going rogue with the above edits, 2707 // because the semantics in the current C++0x working paper (N3225 at the 2708 // time of this writing) break the standard definition of std::forward 2709 // and std::reference_wrapper when dealing with references to functions. 2710 // Proposed wording changes submitted to CWG for consideration. 2711 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 2712 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 2713 return false; 2714 2715 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 2716 SCS2.IsLvalueReference) || 2717 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 2718 !SCS2.IsLvalueReference); 2719} 2720 2721/// CompareStandardConversionSequences - Compare two standard 2722/// conversion sequences to determine whether one is better than the 2723/// other or if they are indistinguishable (C++ 13.3.3.2p3). 2724static ImplicitConversionSequence::CompareKind 2725CompareStandardConversionSequences(Sema &S, 2726 const StandardConversionSequence& SCS1, 2727 const StandardConversionSequence& SCS2) 2728{ 2729 // Standard conversion sequence S1 is a better conversion sequence 2730 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 2731 2732 // -- S1 is a proper subsequence of S2 (comparing the conversion 2733 // sequences in the canonical form defined by 13.3.3.1.1, 2734 // excluding any Lvalue Transformation; the identity conversion 2735 // sequence is considered to be a subsequence of any 2736 // non-identity conversion sequence) or, if not that, 2737 if (ImplicitConversionSequence::CompareKind CK 2738 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 2739 return CK; 2740 2741 // -- the rank of S1 is better than the rank of S2 (by the rules 2742 // defined below), or, if not that, 2743 ImplicitConversionRank Rank1 = SCS1.getRank(); 2744 ImplicitConversionRank Rank2 = SCS2.getRank(); 2745 if (Rank1 < Rank2) 2746 return ImplicitConversionSequence::Better; 2747 else if (Rank2 < Rank1) 2748 return ImplicitConversionSequence::Worse; 2749 2750 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 2751 // are indistinguishable unless one of the following rules 2752 // applies: 2753 2754 // A conversion that is not a conversion of a pointer, or 2755 // pointer to member, to bool is better than another conversion 2756 // that is such a conversion. 2757 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 2758 return SCS2.isPointerConversionToBool() 2759 ? ImplicitConversionSequence::Better 2760 : ImplicitConversionSequence::Worse; 2761 2762 // C++ [over.ics.rank]p4b2: 2763 // 2764 // If class B is derived directly or indirectly from class A, 2765 // conversion of B* to A* is better than conversion of B* to 2766 // void*, and conversion of A* to void* is better than conversion 2767 // of B* to void*. 2768 bool SCS1ConvertsToVoid 2769 = SCS1.isPointerConversionToVoidPointer(S.Context); 2770 bool SCS2ConvertsToVoid 2771 = SCS2.isPointerConversionToVoidPointer(S.Context); 2772 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 2773 // Exactly one of the conversion sequences is a conversion to 2774 // a void pointer; it's the worse conversion. 2775 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 2776 : ImplicitConversionSequence::Worse; 2777 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 2778 // Neither conversion sequence converts to a void pointer; compare 2779 // their derived-to-base conversions. 2780 if (ImplicitConversionSequence::CompareKind DerivedCK 2781 = CompareDerivedToBaseConversions(S, SCS1, SCS2)) 2782 return DerivedCK; 2783 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 2784 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 2785 // Both conversion sequences are conversions to void 2786 // pointers. Compare the source types to determine if there's an 2787 // inheritance relationship in their sources. 2788 QualType FromType1 = SCS1.getFromType(); 2789 QualType FromType2 = SCS2.getFromType(); 2790 2791 // Adjust the types we're converting from via the array-to-pointer 2792 // conversion, if we need to. 2793 if (SCS1.First == ICK_Array_To_Pointer) 2794 FromType1 = S.Context.getArrayDecayedType(FromType1); 2795 if (SCS2.First == ICK_Array_To_Pointer) 2796 FromType2 = S.Context.getArrayDecayedType(FromType2); 2797 2798 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 2799 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 2800 2801 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 2802 return ImplicitConversionSequence::Better; 2803 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 2804 return ImplicitConversionSequence::Worse; 2805 2806 // Objective-C++: If one interface is more specific than the 2807 // other, it is the better one. 2808 const ObjCObjectPointerType* FromObjCPtr1 2809 = FromType1->getAs<ObjCObjectPointerType>(); 2810 const ObjCObjectPointerType* FromObjCPtr2 2811 = FromType2->getAs<ObjCObjectPointerType>(); 2812 if (FromObjCPtr1 && FromObjCPtr2) { 2813 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 2814 FromObjCPtr2); 2815 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 2816 FromObjCPtr1); 2817 if (AssignLeft != AssignRight) { 2818 return AssignLeft? ImplicitConversionSequence::Better 2819 : ImplicitConversionSequence::Worse; 2820 } 2821 } 2822 } 2823 2824 // Compare based on qualification conversions (C++ 13.3.3.2p3, 2825 // bullet 3). 2826 if (ImplicitConversionSequence::CompareKind QualCK 2827 = CompareQualificationConversions(S, SCS1, SCS2)) 2828 return QualCK; 2829 2830 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 2831 // Check for a better reference binding based on the kind of bindings. 2832 if (isBetterReferenceBindingKind(SCS1, SCS2)) 2833 return ImplicitConversionSequence::Better; 2834 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 2835 return ImplicitConversionSequence::Worse; 2836 2837 // C++ [over.ics.rank]p3b4: 2838 // -- S1 and S2 are reference bindings (8.5.3), and the types to 2839 // which the references refer are the same type except for 2840 // top-level cv-qualifiers, and the type to which the reference 2841 // initialized by S2 refers is more cv-qualified than the type 2842 // to which the reference initialized by S1 refers. 2843 QualType T1 = SCS1.getToType(2); 2844 QualType T2 = SCS2.getToType(2); 2845 T1 = S.Context.getCanonicalType(T1); 2846 T2 = S.Context.getCanonicalType(T2); 2847 Qualifiers T1Quals, T2Quals; 2848 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2849 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2850 if (UnqualT1 == UnqualT2) { 2851 // Objective-C++ ARC: If the references refer to objects with different 2852 // lifetimes, prefer bindings that don't change lifetime. 2853 if (SCS1.ObjCLifetimeConversionBinding != 2854 SCS2.ObjCLifetimeConversionBinding) { 2855 return SCS1.ObjCLifetimeConversionBinding 2856 ? ImplicitConversionSequence::Worse 2857 : ImplicitConversionSequence::Better; 2858 } 2859 2860 // If the type is an array type, promote the element qualifiers to the 2861 // type for comparison. 2862 if (isa<ArrayType>(T1) && T1Quals) 2863 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2864 if (isa<ArrayType>(T2) && T2Quals) 2865 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2866 if (T2.isMoreQualifiedThan(T1)) 2867 return ImplicitConversionSequence::Better; 2868 else if (T1.isMoreQualifiedThan(T2)) 2869 return ImplicitConversionSequence::Worse; 2870 } 2871 } 2872 2873 // In Microsoft mode, prefer an integral conversion to a 2874 // floating-to-integral conversion if the integral conversion 2875 // is between types of the same size. 2876 // For example: 2877 // void f(float); 2878 // void f(int); 2879 // int main { 2880 // long a; 2881 // f(a); 2882 // } 2883 // Here, MSVC will call f(int) instead of generating a compile error 2884 // as clang will do in standard mode. 2885 if (S.getLangOptions().MicrosoftMode && 2886 SCS1.Second == ICK_Integral_Conversion && 2887 SCS2.Second == ICK_Floating_Integral && 2888 S.Context.getTypeSize(SCS1.getFromType()) == 2889 S.Context.getTypeSize(SCS1.getToType(2))) 2890 return ImplicitConversionSequence::Better; 2891 2892 return ImplicitConversionSequence::Indistinguishable; 2893} 2894 2895/// CompareQualificationConversions - Compares two standard conversion 2896/// sequences to determine whether they can be ranked based on their 2897/// qualification conversions (C++ 13.3.3.2p3 bullet 3). 2898ImplicitConversionSequence::CompareKind 2899CompareQualificationConversions(Sema &S, 2900 const StandardConversionSequence& SCS1, 2901 const StandardConversionSequence& SCS2) { 2902 // C++ 13.3.3.2p3: 2903 // -- S1 and S2 differ only in their qualification conversion and 2904 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 2905 // cv-qualification signature of type T1 is a proper subset of 2906 // the cv-qualification signature of type T2, and S1 is not the 2907 // deprecated string literal array-to-pointer conversion (4.2). 2908 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 2909 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 2910 return ImplicitConversionSequence::Indistinguishable; 2911 2912 // FIXME: the example in the standard doesn't use a qualification 2913 // conversion (!) 2914 QualType T1 = SCS1.getToType(2); 2915 QualType T2 = SCS2.getToType(2); 2916 T1 = S.Context.getCanonicalType(T1); 2917 T2 = S.Context.getCanonicalType(T2); 2918 Qualifiers T1Quals, T2Quals; 2919 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 2920 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 2921 2922 // If the types are the same, we won't learn anything by unwrapped 2923 // them. 2924 if (UnqualT1 == UnqualT2) 2925 return ImplicitConversionSequence::Indistinguishable; 2926 2927 // If the type is an array type, promote the element qualifiers to the type 2928 // for comparison. 2929 if (isa<ArrayType>(T1) && T1Quals) 2930 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 2931 if (isa<ArrayType>(T2) && T2Quals) 2932 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 2933 2934 ImplicitConversionSequence::CompareKind Result 2935 = ImplicitConversionSequence::Indistinguishable; 2936 2937 // Objective-C++ ARC: 2938 // Prefer qualification conversions not involving a change in lifetime 2939 // to qualification conversions that do not change lifetime. 2940 if (SCS1.QualificationIncludesObjCLifetime != 2941 SCS2.QualificationIncludesObjCLifetime) { 2942 Result = SCS1.QualificationIncludesObjCLifetime 2943 ? ImplicitConversionSequence::Worse 2944 : ImplicitConversionSequence::Better; 2945 } 2946 2947 while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { 2948 // Within each iteration of the loop, we check the qualifiers to 2949 // determine if this still looks like a qualification 2950 // conversion. Then, if all is well, we unwrap one more level of 2951 // pointers or pointers-to-members and do it all again 2952 // until there are no more pointers or pointers-to-members left 2953 // to unwrap. This essentially mimics what 2954 // IsQualificationConversion does, but here we're checking for a 2955 // strict subset of qualifiers. 2956 if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) 2957 // The qualifiers are the same, so this doesn't tell us anything 2958 // about how the sequences rank. 2959 ; 2960 else if (T2.isMoreQualifiedThan(T1)) { 2961 // T1 has fewer qualifiers, so it could be the better sequence. 2962 if (Result == ImplicitConversionSequence::Worse) 2963 // Neither has qualifiers that are a subset of the other's 2964 // qualifiers. 2965 return ImplicitConversionSequence::Indistinguishable; 2966 2967 Result = ImplicitConversionSequence::Better; 2968 } else if (T1.isMoreQualifiedThan(T2)) { 2969 // T2 has fewer qualifiers, so it could be the better sequence. 2970 if (Result == ImplicitConversionSequence::Better) 2971 // Neither has qualifiers that are a subset of the other's 2972 // qualifiers. 2973 return ImplicitConversionSequence::Indistinguishable; 2974 2975 Result = ImplicitConversionSequence::Worse; 2976 } else { 2977 // Qualifiers are disjoint. 2978 return ImplicitConversionSequence::Indistinguishable; 2979 } 2980 2981 // If the types after this point are equivalent, we're done. 2982 if (S.Context.hasSameUnqualifiedType(T1, T2)) 2983 break; 2984 } 2985 2986 // Check that the winning standard conversion sequence isn't using 2987 // the deprecated string literal array to pointer conversion. 2988 switch (Result) { 2989 case ImplicitConversionSequence::Better: 2990 if (SCS1.DeprecatedStringLiteralToCharPtr) 2991 Result = ImplicitConversionSequence::Indistinguishable; 2992 break; 2993 2994 case ImplicitConversionSequence::Indistinguishable: 2995 break; 2996 2997 case ImplicitConversionSequence::Worse: 2998 if (SCS2.DeprecatedStringLiteralToCharPtr) 2999 Result = ImplicitConversionSequence::Indistinguishable; 3000 break; 3001 } 3002 3003 return Result; 3004} 3005 3006/// CompareDerivedToBaseConversions - Compares two standard conversion 3007/// sequences to determine whether they can be ranked based on their 3008/// various kinds of derived-to-base conversions (C++ 3009/// [over.ics.rank]p4b3). As part of these checks, we also look at 3010/// conversions between Objective-C interface types. 3011ImplicitConversionSequence::CompareKind 3012CompareDerivedToBaseConversions(Sema &S, 3013 const StandardConversionSequence& SCS1, 3014 const StandardConversionSequence& SCS2) { 3015 QualType FromType1 = SCS1.getFromType(); 3016 QualType ToType1 = SCS1.getToType(1); 3017 QualType FromType2 = SCS2.getFromType(); 3018 QualType ToType2 = SCS2.getToType(1); 3019 3020 // Adjust the types we're converting from via the array-to-pointer 3021 // conversion, if we need to. 3022 if (SCS1.First == ICK_Array_To_Pointer) 3023 FromType1 = S.Context.getArrayDecayedType(FromType1); 3024 if (SCS2.First == ICK_Array_To_Pointer) 3025 FromType2 = S.Context.getArrayDecayedType(FromType2); 3026 3027 // Canonicalize all of the types. 3028 FromType1 = S.Context.getCanonicalType(FromType1); 3029 ToType1 = S.Context.getCanonicalType(ToType1); 3030 FromType2 = S.Context.getCanonicalType(FromType2); 3031 ToType2 = S.Context.getCanonicalType(ToType2); 3032 3033 // C++ [over.ics.rank]p4b3: 3034 // 3035 // If class B is derived directly or indirectly from class A and 3036 // class C is derived directly or indirectly from B, 3037 // 3038 // Compare based on pointer conversions. 3039 if (SCS1.Second == ICK_Pointer_Conversion && 3040 SCS2.Second == ICK_Pointer_Conversion && 3041 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 3042 FromType1->isPointerType() && FromType2->isPointerType() && 3043 ToType1->isPointerType() && ToType2->isPointerType()) { 3044 QualType FromPointee1 3045 = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3046 QualType ToPointee1 3047 = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3048 QualType FromPointee2 3049 = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3050 QualType ToPointee2 3051 = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); 3052 3053 // -- conversion of C* to B* is better than conversion of C* to A*, 3054 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3055 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3056 return ImplicitConversionSequence::Better; 3057 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3058 return ImplicitConversionSequence::Worse; 3059 } 3060 3061 // -- conversion of B* to A* is better than conversion of C* to A*, 3062 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 3063 if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3064 return ImplicitConversionSequence::Better; 3065 else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3066 return ImplicitConversionSequence::Worse; 3067 } 3068 } else if (SCS1.Second == ICK_Pointer_Conversion && 3069 SCS2.Second == ICK_Pointer_Conversion) { 3070 const ObjCObjectPointerType *FromPtr1 3071 = FromType1->getAs<ObjCObjectPointerType>(); 3072 const ObjCObjectPointerType *FromPtr2 3073 = FromType2->getAs<ObjCObjectPointerType>(); 3074 const ObjCObjectPointerType *ToPtr1 3075 = ToType1->getAs<ObjCObjectPointerType>(); 3076 const ObjCObjectPointerType *ToPtr2 3077 = ToType2->getAs<ObjCObjectPointerType>(); 3078 3079 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 3080 // Apply the same conversion ranking rules for Objective-C pointer types 3081 // that we do for C++ pointers to class types. However, we employ the 3082 // Objective-C pseudo-subtyping relationship used for assignment of 3083 // Objective-C pointer types. 3084 bool FromAssignLeft 3085 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 3086 bool FromAssignRight 3087 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 3088 bool ToAssignLeft 3089 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 3090 bool ToAssignRight 3091 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 3092 3093 // A conversion to an a non-id object pointer type or qualified 'id' 3094 // type is better than a conversion to 'id'. 3095 if (ToPtr1->isObjCIdType() && 3096 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 3097 return ImplicitConversionSequence::Worse; 3098 if (ToPtr2->isObjCIdType() && 3099 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 3100 return ImplicitConversionSequence::Better; 3101 3102 // A conversion to a non-id object pointer type is better than a 3103 // conversion to a qualified 'id' type 3104 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 3105 return ImplicitConversionSequence::Worse; 3106 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 3107 return ImplicitConversionSequence::Better; 3108 3109 // A conversion to an a non-Class object pointer type or qualified 'Class' 3110 // type is better than a conversion to 'Class'. 3111 if (ToPtr1->isObjCClassType() && 3112 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 3113 return ImplicitConversionSequence::Worse; 3114 if (ToPtr2->isObjCClassType() && 3115 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 3116 return ImplicitConversionSequence::Better; 3117 3118 // A conversion to a non-Class object pointer type is better than a 3119 // conversion to a qualified 'Class' type. 3120 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 3121 return ImplicitConversionSequence::Worse; 3122 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 3123 return ImplicitConversionSequence::Better; 3124 3125 // -- "conversion of C* to B* is better than conversion of C* to A*," 3126 if (S.Context.hasSameType(FromType1, FromType2) && 3127 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 3128 (ToAssignLeft != ToAssignRight)) 3129 return ToAssignLeft? ImplicitConversionSequence::Worse 3130 : ImplicitConversionSequence::Better; 3131 3132 // -- "conversion of B* to A* is better than conversion of C* to A*," 3133 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 3134 (FromAssignLeft != FromAssignRight)) 3135 return FromAssignLeft? ImplicitConversionSequence::Better 3136 : ImplicitConversionSequence::Worse; 3137 } 3138 } 3139 3140 // Ranking of member-pointer types. 3141 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 3142 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 3143 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 3144 const MemberPointerType * FromMemPointer1 = 3145 FromType1->getAs<MemberPointerType>(); 3146 const MemberPointerType * ToMemPointer1 = 3147 ToType1->getAs<MemberPointerType>(); 3148 const MemberPointerType * FromMemPointer2 = 3149 FromType2->getAs<MemberPointerType>(); 3150 const MemberPointerType * ToMemPointer2 = 3151 ToType2->getAs<MemberPointerType>(); 3152 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 3153 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 3154 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 3155 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 3156 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 3157 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 3158 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 3159 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 3160 // conversion of A::* to B::* is better than conversion of A::* to C::*, 3161 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 3162 if (S.IsDerivedFrom(ToPointee1, ToPointee2)) 3163 return ImplicitConversionSequence::Worse; 3164 else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) 3165 return ImplicitConversionSequence::Better; 3166 } 3167 // conversion of B::* to C::* is better than conversion of A::* to C::* 3168 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 3169 if (S.IsDerivedFrom(FromPointee1, FromPointee2)) 3170 return ImplicitConversionSequence::Better; 3171 else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) 3172 return ImplicitConversionSequence::Worse; 3173 } 3174 } 3175 3176 if (SCS1.Second == ICK_Derived_To_Base) { 3177 // -- conversion of C to B is better than conversion of C to A, 3178 // -- binding of an expression of type C to a reference of type 3179 // B& is better than binding an expression of type C to a 3180 // reference of type A&, 3181 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3182 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3183 if (S.IsDerivedFrom(ToType1, ToType2)) 3184 return ImplicitConversionSequence::Better; 3185 else if (S.IsDerivedFrom(ToType2, ToType1)) 3186 return ImplicitConversionSequence::Worse; 3187 } 3188 3189 // -- conversion of B to A is better than conversion of C to A. 3190 // -- binding of an expression of type B to a reference of type 3191 // A& is better than binding an expression of type C to a 3192 // reference of type A&, 3193 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 3194 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 3195 if (S.IsDerivedFrom(FromType2, FromType1)) 3196 return ImplicitConversionSequence::Better; 3197 else if (S.IsDerivedFrom(FromType1, FromType2)) 3198 return ImplicitConversionSequence::Worse; 3199 } 3200 } 3201 3202 return ImplicitConversionSequence::Indistinguishable; 3203} 3204 3205/// CompareReferenceRelationship - Compare the two types T1 and T2 to 3206/// determine whether they are reference-related, 3207/// reference-compatible, reference-compatible with added 3208/// qualification, or incompatible, for use in C++ initialization by 3209/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 3210/// type, and the first type (T1) is the pointee type of the reference 3211/// type being initialized. 3212Sema::ReferenceCompareResult 3213Sema::CompareReferenceRelationship(SourceLocation Loc, 3214 QualType OrigT1, QualType OrigT2, 3215 bool &DerivedToBase, 3216 bool &ObjCConversion, 3217 bool &ObjCLifetimeConversion) { 3218 assert(!OrigT1->isReferenceType() && 3219 "T1 must be the pointee type of the reference type"); 3220 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 3221 3222 QualType T1 = Context.getCanonicalType(OrigT1); 3223 QualType T2 = Context.getCanonicalType(OrigT2); 3224 Qualifiers T1Quals, T2Quals; 3225 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 3226 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 3227 3228 // C++ [dcl.init.ref]p4: 3229 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 3230 // reference-related to "cv2 T2" if T1 is the same type as T2, or 3231 // T1 is a base class of T2. 3232 DerivedToBase = false; 3233 ObjCConversion = false; 3234 ObjCLifetimeConversion = false; 3235 if (UnqualT1 == UnqualT2) { 3236 // Nothing to do. 3237 } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && 3238 IsDerivedFrom(UnqualT2, UnqualT1)) 3239 DerivedToBase = true; 3240 else if (UnqualT1->isObjCObjectOrInterfaceType() && 3241 UnqualT2->isObjCObjectOrInterfaceType() && 3242 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 3243 ObjCConversion = true; 3244 else 3245 return Ref_Incompatible; 3246 3247 // At this point, we know that T1 and T2 are reference-related (at 3248 // least). 3249 3250 // If the type is an array type, promote the element qualifiers to the type 3251 // for comparison. 3252 if (isa<ArrayType>(T1) && T1Quals) 3253 T1 = Context.getQualifiedType(UnqualT1, T1Quals); 3254 if (isa<ArrayType>(T2) && T2Quals) 3255 T2 = Context.getQualifiedType(UnqualT2, T2Quals); 3256 3257 // C++ [dcl.init.ref]p4: 3258 // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is 3259 // reference-related to T2 and cv1 is the same cv-qualification 3260 // as, or greater cv-qualification than, cv2. For purposes of 3261 // overload resolution, cases for which cv1 is greater 3262 // cv-qualification than cv2 are identified as 3263 // reference-compatible with added qualification (see 13.3.3.2). 3264 // 3265 // Note that we also require equivalence of Objective-C GC and address-space 3266 // qualifiers when performing these computations, so that e.g., an int in 3267 // address space 1 is not reference-compatible with an int in address 3268 // space 2. 3269 if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && 3270 T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { 3271 T1Quals.removeObjCLifetime(); 3272 T2Quals.removeObjCLifetime(); 3273 ObjCLifetimeConversion = true; 3274 } 3275 3276 if (T1Quals == T2Quals) 3277 return Ref_Compatible; 3278 else if (T1Quals.compatiblyIncludes(T2Quals)) 3279 return Ref_Compatible_With_Added_Qualification; 3280 else 3281 return Ref_Related; 3282} 3283 3284/// \brief Look for a user-defined conversion to an value reference-compatible 3285/// with DeclType. Return true if something definite is found. 3286static bool 3287FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 3288 QualType DeclType, SourceLocation DeclLoc, 3289 Expr *Init, QualType T2, bool AllowRvalues, 3290 bool AllowExplicit) { 3291 assert(T2->isRecordType() && "Can only find conversions of record types."); 3292 CXXRecordDecl *T2RecordDecl 3293 = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); 3294 3295 OverloadCandidateSet CandidateSet(DeclLoc); 3296 const UnresolvedSetImpl *Conversions 3297 = T2RecordDecl->getVisibleConversionFunctions(); 3298 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 3299 E = Conversions->end(); I != E; ++I) { 3300 NamedDecl *D = *I; 3301 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3302 if (isa<UsingShadowDecl>(D)) 3303 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3304 3305 FunctionTemplateDecl *ConvTemplate 3306 = dyn_cast<FunctionTemplateDecl>(D); 3307 CXXConversionDecl *Conv; 3308 if (ConvTemplate) 3309 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3310 else 3311 Conv = cast<CXXConversionDecl>(D); 3312 3313 // If this is an explicit conversion, and we're not allowed to consider 3314 // explicit conversions, skip it. 3315 if (!AllowExplicit && Conv->isExplicit()) 3316 continue; 3317 3318 if (AllowRvalues) { 3319 bool DerivedToBase = false; 3320 bool ObjCConversion = false; 3321 bool ObjCLifetimeConversion = false; 3322 if (!ConvTemplate && 3323 S.CompareReferenceRelationship( 3324 DeclLoc, 3325 Conv->getConversionType().getNonReferenceType() 3326 .getUnqualifiedType(), 3327 DeclType.getNonReferenceType().getUnqualifiedType(), 3328 DerivedToBase, ObjCConversion, ObjCLifetimeConversion) == 3329 Sema::Ref_Incompatible) 3330 continue; 3331 } else { 3332 // If the conversion function doesn't return a reference type, 3333 // it can't be considered for this conversion. An rvalue reference 3334 // is only acceptable if its referencee is a function type. 3335 3336 const ReferenceType *RefType = 3337 Conv->getConversionType()->getAs<ReferenceType>(); 3338 if (!RefType || 3339 (!RefType->isLValueReferenceType() && 3340 !RefType->getPointeeType()->isFunctionType())) 3341 continue; 3342 } 3343 3344 if (ConvTemplate) 3345 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, 3346 Init, DeclType, CandidateSet); 3347 else 3348 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, 3349 DeclType, CandidateSet); 3350 } 3351 3352 OverloadCandidateSet::iterator Best; 3353 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 3354 case OR_Success: 3355 // C++ [over.ics.ref]p1: 3356 // 3357 // [...] If the parameter binds directly to the result of 3358 // applying a conversion function to the argument 3359 // expression, the implicit conversion sequence is a 3360 // user-defined conversion sequence (13.3.3.1.2), with the 3361 // second standard conversion sequence either an identity 3362 // conversion or, if the conversion function returns an 3363 // entity of a type that is a derived class of the parameter 3364 // type, a derived-to-base Conversion. 3365 if (!Best->FinalConversion.DirectBinding) 3366 return false; 3367 3368 if (Best->Function) 3369 S.MarkDeclarationReferenced(DeclLoc, Best->Function); 3370 ICS.setUserDefined(); 3371 ICS.UserDefined.Before = Best->Conversions[0].Standard; 3372 ICS.UserDefined.After = Best->FinalConversion; 3373 ICS.UserDefined.ConversionFunction = Best->Function; 3374 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 3375 ICS.UserDefined.EllipsisConversion = false; 3376 assert(ICS.UserDefined.After.ReferenceBinding && 3377 ICS.UserDefined.After.DirectBinding && 3378 "Expected a direct reference binding!"); 3379 return true; 3380 3381 case OR_Ambiguous: 3382 ICS.setAmbiguous(); 3383 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 3384 Cand != CandidateSet.end(); ++Cand) 3385 if (Cand->Viable) 3386 ICS.Ambiguous.addConversion(Cand->Function); 3387 return true; 3388 3389 case OR_No_Viable_Function: 3390 case OR_Deleted: 3391 // There was no suitable conversion, or we found a deleted 3392 // conversion; continue with other checks. 3393 return false; 3394 } 3395 3396 return false; 3397} 3398 3399/// \brief Compute an implicit conversion sequence for reference 3400/// initialization. 3401static ImplicitConversionSequence 3402TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType, 3403 SourceLocation DeclLoc, 3404 bool SuppressUserConversions, 3405 bool AllowExplicit) { 3406 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 3407 3408 // Most paths end in a failed conversion. 3409 ImplicitConversionSequence ICS; 3410 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3411 3412 QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); 3413 QualType T2 = Init->getType(); 3414 3415 // If the initializer is the address of an overloaded function, try 3416 // to resolve the overloaded function. If all goes well, T2 is the 3417 // type of the resulting function. 3418 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 3419 DeclAccessPair Found; 3420 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 3421 false, Found)) 3422 T2 = Fn->getType(); 3423 } 3424 3425 // Compute some basic properties of the types and the initializer. 3426 bool isRValRef = DeclType->isRValueReferenceType(); 3427 bool DerivedToBase = false; 3428 bool ObjCConversion = false; 3429 bool ObjCLifetimeConversion = false; 3430 Expr::Classification InitCategory = Init->Classify(S.Context); 3431 Sema::ReferenceCompareResult RefRelationship 3432 = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, 3433 ObjCConversion, ObjCLifetimeConversion); 3434 3435 3436 // C++0x [dcl.init.ref]p5: 3437 // A reference to type "cv1 T1" is initialized by an expression 3438 // of type "cv2 T2" as follows: 3439 3440 // -- If reference is an lvalue reference and the initializer expression 3441 if (!isRValRef) { 3442 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 3443 // reference-compatible with "cv2 T2," or 3444 // 3445 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 3446 if (InitCategory.isLValue() && 3447 RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { 3448 // C++ [over.ics.ref]p1: 3449 // When a parameter of reference type binds directly (8.5.3) 3450 // to an argument expression, the implicit conversion sequence 3451 // is the identity conversion, unless the argument expression 3452 // has a type that is a derived class of the parameter type, 3453 // in which case the implicit conversion sequence is a 3454 // derived-to-base Conversion (13.3.3.1). 3455 ICS.setStandard(); 3456 ICS.Standard.First = ICK_Identity; 3457 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3458 : ObjCConversion? ICK_Compatible_Conversion 3459 : ICK_Identity; 3460 ICS.Standard.Third = ICK_Identity; 3461 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3462 ICS.Standard.setToType(0, T2); 3463 ICS.Standard.setToType(1, T1); 3464 ICS.Standard.setToType(2, T1); 3465 ICS.Standard.ReferenceBinding = true; 3466 ICS.Standard.DirectBinding = true; 3467 ICS.Standard.IsLvalueReference = !isRValRef; 3468 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3469 ICS.Standard.BindsToRvalue = false; 3470 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3471 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 3472 ICS.Standard.CopyConstructor = 0; 3473 3474 // Nothing more to do: the inaccessibility/ambiguity check for 3475 // derived-to-base conversions is suppressed when we're 3476 // computing the implicit conversion sequence (C++ 3477 // [over.best.ics]p2). 3478 return ICS; 3479 } 3480 3481 // -- has a class type (i.e., T2 is a class type), where T1 is 3482 // not reference-related to T2, and can be implicitly 3483 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 3484 // is reference-compatible with "cv3 T3" 92) (this 3485 // conversion is selected by enumerating the applicable 3486 // conversion functions (13.3.1.6) and choosing the best 3487 // one through overload resolution (13.3)), 3488 if (!SuppressUserConversions && T2->isRecordType() && 3489 !S.RequireCompleteType(DeclLoc, T2, 0) && 3490 RefRelationship == Sema::Ref_Incompatible) { 3491 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3492 Init, T2, /*AllowRvalues=*/false, 3493 AllowExplicit)) 3494 return ICS; 3495 } 3496 } 3497 3498 // -- Otherwise, the reference shall be an lvalue reference to a 3499 // non-volatile const type (i.e., cv1 shall be const), or the reference 3500 // shall be an rvalue reference. 3501 // 3502 // We actually handle one oddity of C++ [over.ics.ref] at this 3503 // point, which is that, due to p2 (which short-circuits reference 3504 // binding by only attempting a simple conversion for non-direct 3505 // bindings) and p3's strange wording, we allow a const volatile 3506 // reference to bind to an rvalue. Hence the check for the presence 3507 // of "const" rather than checking for "const" being the only 3508 // qualifier. 3509 // This is also the point where rvalue references and lvalue inits no longer 3510 // go together. 3511 if (!isRValRef && !T1.isConstQualified()) 3512 return ICS; 3513 3514 // -- If the initializer expression 3515 // 3516 // -- is an xvalue, class prvalue, array prvalue or function 3517 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 3518 if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && 3519 (InitCategory.isXValue() || 3520 (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || 3521 (InitCategory.isLValue() && T2->isFunctionType()))) { 3522 ICS.setStandard(); 3523 ICS.Standard.First = ICK_Identity; 3524 ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base 3525 : ObjCConversion? ICK_Compatible_Conversion 3526 : ICK_Identity; 3527 ICS.Standard.Third = ICK_Identity; 3528 ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); 3529 ICS.Standard.setToType(0, T2); 3530 ICS.Standard.setToType(1, T1); 3531 ICS.Standard.setToType(2, T1); 3532 ICS.Standard.ReferenceBinding = true; 3533 // In C++0x, this is always a direct binding. In C++98/03, it's a direct 3534 // binding unless we're binding to a class prvalue. 3535 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 3536 // allow the use of rvalue references in C++98/03 for the benefit of 3537 // standard library implementors; therefore, we need the xvalue check here. 3538 ICS.Standard.DirectBinding = 3539 S.getLangOptions().CPlusPlus0x || 3540 (InitCategory.isPRValue() && !T2->isRecordType()); 3541 ICS.Standard.IsLvalueReference = !isRValRef; 3542 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3543 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 3544 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3545 ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; 3546 ICS.Standard.CopyConstructor = 0; 3547 return ICS; 3548 } 3549 3550 // -- has a class type (i.e., T2 is a class type), where T1 is not 3551 // reference-related to T2, and can be implicitly converted to 3552 // an xvalue, class prvalue, or function lvalue of type 3553 // "cv3 T3", where "cv1 T1" is reference-compatible with 3554 // "cv3 T3", 3555 // 3556 // then the reference is bound to the value of the initializer 3557 // expression in the first case and to the result of the conversion 3558 // in the second case (or, in either case, to an appropriate base 3559 // class subobject). 3560 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3561 T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && 3562 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 3563 Init, T2, /*AllowRvalues=*/true, 3564 AllowExplicit)) { 3565 // In the second case, if the reference is an rvalue reference 3566 // and the second standard conversion sequence of the 3567 // user-defined conversion sequence includes an lvalue-to-rvalue 3568 // conversion, the program is ill-formed. 3569 if (ICS.isUserDefined() && isRValRef && 3570 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 3571 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 3572 3573 return ICS; 3574 } 3575 3576 // -- Otherwise, a temporary of type "cv1 T1" is created and 3577 // initialized from the initializer expression using the 3578 // rules for a non-reference copy initialization (8.5). The 3579 // reference is then bound to the temporary. If T1 is 3580 // reference-related to T2, cv1 must be the same 3581 // cv-qualification as, or greater cv-qualification than, 3582 // cv2; otherwise, the program is ill-formed. 3583 if (RefRelationship == Sema::Ref_Related) { 3584 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 3585 // we would be reference-compatible or reference-compatible with 3586 // added qualification. But that wasn't the case, so the reference 3587 // initialization fails. 3588 // 3589 // Note that we only want to check address spaces and cvr-qualifiers here. 3590 // ObjC GC and lifetime qualifiers aren't important. 3591 Qualifiers T1Quals = T1.getQualifiers(); 3592 Qualifiers T2Quals = T2.getQualifiers(); 3593 T1Quals.removeObjCGCAttr(); 3594 T1Quals.removeObjCLifetime(); 3595 T2Quals.removeObjCGCAttr(); 3596 T2Quals.removeObjCLifetime(); 3597 if (!T1Quals.compatiblyIncludes(T2Quals)) 3598 return ICS; 3599 } 3600 3601 // If at least one of the types is a class type, the types are not 3602 // related, and we aren't allowed any user conversions, the 3603 // reference binding fails. This case is important for breaking 3604 // recursion, since TryImplicitConversion below will attempt to 3605 // create a temporary through the use of a copy constructor. 3606 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 3607 (T1->isRecordType() || T2->isRecordType())) 3608 return ICS; 3609 3610 // If T1 is reference-related to T2 and the reference is an rvalue 3611 // reference, the initializer expression shall not be an lvalue. 3612 if (RefRelationship >= Sema::Ref_Related && 3613 isRValRef && Init->Classify(S.Context).isLValue()) 3614 return ICS; 3615 3616 // C++ [over.ics.ref]p2: 3617 // When a parameter of reference type is not bound directly to 3618 // an argument expression, the conversion sequence is the one 3619 // required to convert the argument expression to the 3620 // underlying type of the reference according to 3621 // 13.3.3.1. Conceptually, this conversion sequence corresponds 3622 // to copy-initializing a temporary of the underlying type with 3623 // the argument expression. Any difference in top-level 3624 // cv-qualification is subsumed by the initialization itself 3625 // and does not constitute a conversion. 3626 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 3627 /*AllowExplicit=*/false, 3628 /*InOverloadResolution=*/false, 3629 /*CStyle=*/false, 3630 /*AllowObjCWritebackConversion=*/false); 3631 3632 // Of course, that's still a reference binding. 3633 if (ICS.isStandard()) { 3634 ICS.Standard.ReferenceBinding = true; 3635 ICS.Standard.IsLvalueReference = !isRValRef; 3636 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 3637 ICS.Standard.BindsToRvalue = true; 3638 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3639 ICS.Standard.ObjCLifetimeConversionBinding = false; 3640 } else if (ICS.isUserDefined()) { 3641 ICS.UserDefined.After.ReferenceBinding = true; 3642 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 3643 ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType(); 3644 ICS.UserDefined.After.BindsToRvalue = true; 3645 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 3646 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 3647 } 3648 3649 return ICS; 3650} 3651 3652/// TryCopyInitialization - Try to copy-initialize a value of type 3653/// ToType from the expression From. Return the implicit conversion 3654/// sequence required to pass this argument, which may be a bad 3655/// conversion sequence (meaning that the argument cannot be passed to 3656/// a parameter of this type). If @p SuppressUserConversions, then we 3657/// do not permit any user-defined conversion sequences. 3658static ImplicitConversionSequence 3659TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 3660 bool SuppressUserConversions, 3661 bool InOverloadResolution, 3662 bool AllowObjCWritebackConversion) { 3663 if (ToType->isReferenceType()) 3664 return TryReferenceInit(S, From, ToType, 3665 /*FIXME:*/From->getLocStart(), 3666 SuppressUserConversions, 3667 /*AllowExplicit=*/false); 3668 3669 return TryImplicitConversion(S, From, ToType, 3670 SuppressUserConversions, 3671 /*AllowExplicit=*/false, 3672 InOverloadResolution, 3673 /*CStyle=*/false, 3674 AllowObjCWritebackConversion); 3675} 3676 3677static bool TryCopyInitialization(const CanQualType FromQTy, 3678 const CanQualType ToQTy, 3679 Sema &S, 3680 SourceLocation Loc, 3681 ExprValueKind FromVK) { 3682 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 3683 ImplicitConversionSequence ICS = 3684 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 3685 3686 return !ICS.isBad(); 3687} 3688 3689/// TryObjectArgumentInitialization - Try to initialize the object 3690/// parameter of the given member function (@c Method) from the 3691/// expression @p From. 3692static ImplicitConversionSequence 3693TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, 3694 Expr::Classification FromClassification, 3695 CXXMethodDecl *Method, 3696 CXXRecordDecl *ActingContext) { 3697 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 3698 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 3699 // const volatile object. 3700 unsigned Quals = isa<CXXDestructorDecl>(Method) ? 3701 Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); 3702 QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); 3703 3704 // Set up the conversion sequence as a "bad" conversion, to allow us 3705 // to exit early. 3706 ImplicitConversionSequence ICS; 3707 3708 // We need to have an object of class type. 3709 QualType FromType = OrigFromType; 3710 if (const PointerType *PT = FromType->getAs<PointerType>()) { 3711 FromType = PT->getPointeeType(); 3712 3713 // When we had a pointer, it's implicitly dereferenced, so we 3714 // better have an lvalue. 3715 assert(FromClassification.isLValue()); 3716 } 3717 3718 assert(FromType->isRecordType()); 3719 3720 // C++0x [over.match.funcs]p4: 3721 // For non-static member functions, the type of the implicit object 3722 // parameter is 3723 // 3724 // - "lvalue reference to cv X" for functions declared without a 3725 // ref-qualifier or with the & ref-qualifier 3726 // - "rvalue reference to cv X" for functions declared with the && 3727 // ref-qualifier 3728 // 3729 // where X is the class of which the function is a member and cv is the 3730 // cv-qualification on the member function declaration. 3731 // 3732 // However, when finding an implicit conversion sequence for the argument, we 3733 // are not allowed to create temporaries or perform user-defined conversions 3734 // (C++ [over.match.funcs]p5). We perform a simplified version of 3735 // reference binding here, that allows class rvalues to bind to 3736 // non-constant references. 3737 3738 // First check the qualifiers. 3739 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 3740 if (ImplicitParamType.getCVRQualifiers() 3741 != FromTypeCanon.getLocalCVRQualifiers() && 3742 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 3743 ICS.setBad(BadConversionSequence::bad_qualifiers, 3744 OrigFromType, ImplicitParamType); 3745 return ICS; 3746 } 3747 3748 // Check that we have either the same type or a derived type. It 3749 // affects the conversion rank. 3750 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 3751 ImplicitConversionKind SecondKind; 3752 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 3753 SecondKind = ICK_Identity; 3754 } else if (S.IsDerivedFrom(FromType, ClassType)) 3755 SecondKind = ICK_Derived_To_Base; 3756 else { 3757 ICS.setBad(BadConversionSequence::unrelated_class, 3758 FromType, ImplicitParamType); 3759 return ICS; 3760 } 3761 3762 // Check the ref-qualifier. 3763 switch (Method->getRefQualifier()) { 3764 case RQ_None: 3765 // Do nothing; we don't care about lvalueness or rvalueness. 3766 break; 3767 3768 case RQ_LValue: 3769 if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { 3770 // non-const lvalue reference cannot bind to an rvalue 3771 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 3772 ImplicitParamType); 3773 return ICS; 3774 } 3775 break; 3776 3777 case RQ_RValue: 3778 if (!FromClassification.isRValue()) { 3779 // rvalue reference cannot bind to an lvalue 3780 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 3781 ImplicitParamType); 3782 return ICS; 3783 } 3784 break; 3785 } 3786 3787 // Success. Mark this as a reference binding. 3788 ICS.setStandard(); 3789 ICS.Standard.setAsIdentityConversion(); 3790 ICS.Standard.Second = SecondKind; 3791 ICS.Standard.setFromType(FromType); 3792 ICS.Standard.setAllToTypes(ImplicitParamType); 3793 ICS.Standard.ReferenceBinding = true; 3794 ICS.Standard.DirectBinding = true; 3795 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 3796 ICS.Standard.BindsToFunctionLvalue = false; 3797 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 3798 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 3799 = (Method->getRefQualifier() == RQ_None); 3800 return ICS; 3801} 3802 3803/// PerformObjectArgumentInitialization - Perform initialization of 3804/// the implicit object parameter for the given Method with the given 3805/// expression. 3806ExprResult 3807Sema::PerformObjectArgumentInitialization(Expr *From, 3808 NestedNameSpecifier *Qualifier, 3809 NamedDecl *FoundDecl, 3810 CXXMethodDecl *Method) { 3811 QualType FromRecordType, DestType; 3812 QualType ImplicitParamRecordType = 3813 Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); 3814 3815 Expr::Classification FromClassification; 3816 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 3817 FromRecordType = PT->getPointeeType(); 3818 DestType = Method->getThisType(Context); 3819 FromClassification = Expr::Classification::makeSimpleLValue(); 3820 } else { 3821 FromRecordType = From->getType(); 3822 DestType = ImplicitParamRecordType; 3823 FromClassification = From->Classify(Context); 3824 } 3825 3826 // Note that we always use the true parent context when performing 3827 // the actual argument initialization. 3828 ImplicitConversionSequence ICS 3829 = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, 3830 Method, Method->getParent()); 3831 if (ICS.isBad()) { 3832 if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { 3833 Qualifiers FromQs = FromRecordType.getQualifiers(); 3834 Qualifiers ToQs = DestType.getQualifiers(); 3835 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 3836 if (CVR) { 3837 Diag(From->getSourceRange().getBegin(), 3838 diag::err_member_function_call_bad_cvr) 3839 << Method->getDeclName() << FromRecordType << (CVR - 1) 3840 << From->getSourceRange(); 3841 Diag(Method->getLocation(), diag::note_previous_decl) 3842 << Method->getDeclName(); 3843 return ExprError(); 3844 } 3845 } 3846 3847 return Diag(From->getSourceRange().getBegin(), 3848 diag::err_implicit_object_parameter_init) 3849 << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); 3850 } 3851 3852 if (ICS.Standard.Second == ICK_Derived_To_Base) { 3853 ExprResult FromRes = 3854 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 3855 if (FromRes.isInvalid()) 3856 return ExprError(); 3857 From = FromRes.take(); 3858 } 3859 3860 if (!Context.hasSameType(From->getType(), DestType)) 3861 From = ImpCastExprToType(From, DestType, CK_NoOp, 3862 From->getType()->isPointerType() ? VK_RValue : VK_LValue).take(); 3863 return Owned(From); 3864} 3865 3866/// TryContextuallyConvertToBool - Attempt to contextually convert the 3867/// expression From to bool (C++0x [conv]p3). 3868static ImplicitConversionSequence 3869TryContextuallyConvertToBool(Sema &S, Expr *From) { 3870 // FIXME: This is pretty broken. 3871 return TryImplicitConversion(S, From, S.Context.BoolTy, 3872 // FIXME: Are these flags correct? 3873 /*SuppressUserConversions=*/false, 3874 /*AllowExplicit=*/true, 3875 /*InOverloadResolution=*/false, 3876 /*CStyle=*/false, 3877 /*AllowObjCWritebackConversion=*/false); 3878} 3879 3880/// PerformContextuallyConvertToBool - Perform a contextual conversion 3881/// of the expression From to bool (C++0x [conv]p3). 3882ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 3883 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 3884 if (!ICS.isBad()) 3885 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 3886 3887 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 3888 return Diag(From->getSourceRange().getBegin(), 3889 diag::err_typecheck_bool_condition) 3890 << From->getType() << From->getSourceRange(); 3891 return ExprError(); 3892} 3893 3894/// dropPointerConversions - If the given standard conversion sequence 3895/// involves any pointer conversions, remove them. This may change 3896/// the result type of the conversion sequence. 3897static void dropPointerConversion(StandardConversionSequence &SCS) { 3898 if (SCS.Second == ICK_Pointer_Conversion) { 3899 SCS.Second = ICK_Identity; 3900 SCS.Third = ICK_Identity; 3901 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 3902 } 3903} 3904 3905/// TryContextuallyConvertToObjCPointer - Attempt to contextually 3906/// convert the expression From to an Objective-C pointer type. 3907static ImplicitConversionSequence 3908TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 3909 // Do an implicit conversion to 'id'. 3910 QualType Ty = S.Context.getObjCIdType(); 3911 ImplicitConversionSequence ICS 3912 = TryImplicitConversion(S, From, Ty, 3913 // FIXME: Are these flags correct? 3914 /*SuppressUserConversions=*/false, 3915 /*AllowExplicit=*/true, 3916 /*InOverloadResolution=*/false, 3917 /*CStyle=*/false, 3918 /*AllowObjCWritebackConversion=*/false); 3919 3920 // Strip off any final conversions to 'id'. 3921 switch (ICS.getKind()) { 3922 case ImplicitConversionSequence::BadConversion: 3923 case ImplicitConversionSequence::AmbiguousConversion: 3924 case ImplicitConversionSequence::EllipsisConversion: 3925 break; 3926 3927 case ImplicitConversionSequence::UserDefinedConversion: 3928 dropPointerConversion(ICS.UserDefined.After); 3929 break; 3930 3931 case ImplicitConversionSequence::StandardConversion: 3932 dropPointerConversion(ICS.Standard); 3933 break; 3934 } 3935 3936 return ICS; 3937} 3938 3939/// PerformContextuallyConvertToObjCPointer - Perform a contextual 3940/// conversion of the expression From to an Objective-C pointer type. 3941ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 3942 QualType Ty = Context.getObjCIdType(); 3943 ImplicitConversionSequence ICS = 3944 TryContextuallyConvertToObjCPointer(*this, From); 3945 if (!ICS.isBad()) 3946 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 3947 return ExprError(); 3948} 3949 3950/// \brief Attempt to convert the given expression to an integral or 3951/// enumeration type. 3952/// 3953/// This routine will attempt to convert an expression of class type to an 3954/// integral or enumeration type, if that class type only has a single 3955/// conversion to an integral or enumeration type. 3956/// 3957/// \param Loc The source location of the construct that requires the 3958/// conversion. 3959/// 3960/// \param FromE The expression we're converting from. 3961/// 3962/// \param NotIntDiag The diagnostic to be emitted if the expression does not 3963/// have integral or enumeration type. 3964/// 3965/// \param IncompleteDiag The diagnostic to be emitted if the expression has 3966/// incomplete class type. 3967/// 3968/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an 3969/// explicit conversion function (because no implicit conversion functions 3970/// were available). This is a recovery mode. 3971/// 3972/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, 3973/// showing which conversion was picked. 3974/// 3975/// \param AmbigDiag The diagnostic to be emitted if there is more than one 3976/// conversion function that could convert to integral or enumeration type. 3977/// 3978/// \param AmbigNote The note to be emitted with \p AmbigDiag for each 3979/// usable conversion function. 3980/// 3981/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion 3982/// function, which may be an extension in this case. 3983/// 3984/// \returns The expression, converted to an integral or enumeration type if 3985/// successful. 3986ExprResult 3987Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, 3988 const PartialDiagnostic &NotIntDiag, 3989 const PartialDiagnostic &IncompleteDiag, 3990 const PartialDiagnostic &ExplicitConvDiag, 3991 const PartialDiagnostic &ExplicitConvNote, 3992 const PartialDiagnostic &AmbigDiag, 3993 const PartialDiagnostic &AmbigNote, 3994 const PartialDiagnostic &ConvDiag) { 3995 // We can't perform any more checking for type-dependent expressions. 3996 if (From->isTypeDependent()) 3997 return Owned(From); 3998 3999 // If the expression already has integral or enumeration type, we're golden. 4000 QualType T = From->getType(); 4001 if (T->isIntegralOrEnumerationType()) 4002 return Owned(From); 4003 4004 // FIXME: Check for missing '()' if T is a function type? 4005 4006 // If we don't have a class type in C++, there's no way we can get an 4007 // expression of integral or enumeration type. 4008 const RecordType *RecordTy = T->getAs<RecordType>(); 4009 if (!RecordTy || !getLangOptions().CPlusPlus) { 4010 Diag(Loc, NotIntDiag) 4011 << T << From->getSourceRange(); 4012 return Owned(From); 4013 } 4014 4015 // We must have a complete class type. 4016 if (RequireCompleteType(Loc, T, IncompleteDiag)) 4017 return Owned(From); 4018 4019 // Look for a conversion to an integral or enumeration type. 4020 UnresolvedSet<4> ViableConversions; 4021 UnresolvedSet<4> ExplicitConversions; 4022 const UnresolvedSetImpl *Conversions 4023 = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 4024 4025 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 4026 E = Conversions->end(); 4027 I != E; 4028 ++I) { 4029 if (CXXConversionDecl *Conversion 4030 = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) 4031 if (Conversion->getConversionType().getNonReferenceType() 4032 ->isIntegralOrEnumerationType()) { 4033 if (Conversion->isExplicit()) 4034 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 4035 else 4036 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 4037 } 4038 } 4039 4040 switch (ViableConversions.size()) { 4041 case 0: 4042 if (ExplicitConversions.size() == 1) { 4043 DeclAccessPair Found = ExplicitConversions[0]; 4044 CXXConversionDecl *Conversion 4045 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 4046 4047 // The user probably meant to invoke the given explicit 4048 // conversion; use it. 4049 QualType ConvTy 4050 = Conversion->getConversionType().getNonReferenceType(); 4051 std::string TypeStr; 4052 ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy()); 4053 4054 Diag(Loc, ExplicitConvDiag) 4055 << T << ConvTy 4056 << FixItHint::CreateInsertion(From->getLocStart(), 4057 "static_cast<" + TypeStr + ">(") 4058 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), 4059 ")"); 4060 Diag(Conversion->getLocation(), ExplicitConvNote) 4061 << ConvTy->isEnumeralType() << ConvTy; 4062 4063 // If we aren't in a SFINAE context, build a call to the 4064 // explicit conversion function. 4065 if (isSFINAEContext()) 4066 return ExprError(); 4067 4068 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 4069 ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion); 4070 if (Result.isInvalid()) 4071 return ExprError(); 4072 4073 From = Result.get(); 4074 } 4075 4076 // We'll complain below about a non-integral condition type. 4077 break; 4078 4079 case 1: { 4080 // Apply this conversion. 4081 DeclAccessPair Found = ViableConversions[0]; 4082 CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); 4083 4084 CXXConversionDecl *Conversion 4085 = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 4086 QualType ConvTy 4087 = Conversion->getConversionType().getNonReferenceType(); 4088 if (ConvDiag.getDiagID()) { 4089 if (isSFINAEContext()) 4090 return ExprError(); 4091 4092 Diag(Loc, ConvDiag) 4093 << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); 4094 } 4095 4096 ExprResult Result = BuildCXXMemberCallExpr(From, Found, 4097 cast<CXXConversionDecl>(Found->getUnderlyingDecl())); 4098 if (Result.isInvalid()) 4099 return ExprError(); 4100 4101 From = Result.get(); 4102 break; 4103 } 4104 4105 default: 4106 Diag(Loc, AmbigDiag) 4107 << T << From->getSourceRange(); 4108 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 4109 CXXConversionDecl *Conv 4110 = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 4111 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 4112 Diag(Conv->getLocation(), AmbigNote) 4113 << ConvTy->isEnumeralType() << ConvTy; 4114 } 4115 return Owned(From); 4116 } 4117 4118 if (!From->getType()->isIntegralOrEnumerationType()) 4119 Diag(Loc, NotIntDiag) 4120 << From->getType() << From->getSourceRange(); 4121 4122 return Owned(From); 4123} 4124 4125/// AddOverloadCandidate - Adds the given function to the set of 4126/// candidate functions, using the given function call arguments. If 4127/// @p SuppressUserConversions, then don't allow user-defined 4128/// conversions via constructors or conversion operators. 4129/// 4130/// \para PartialOverloading true if we are performing "partial" overloading 4131/// based on an incomplete set of function arguments. This feature is used by 4132/// code completion. 4133void 4134Sema::AddOverloadCandidate(FunctionDecl *Function, 4135 DeclAccessPair FoundDecl, 4136 Expr **Args, unsigned NumArgs, 4137 OverloadCandidateSet& CandidateSet, 4138 bool SuppressUserConversions, 4139 bool PartialOverloading) { 4140 const FunctionProtoType* Proto 4141 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 4142 assert(Proto && "Functions without a prototype cannot be overloaded"); 4143 assert(!Function->getDescribedFunctionTemplate() && 4144 "Use AddTemplateOverloadCandidate for function templates"); 4145 4146 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 4147 if (!isa<CXXConstructorDecl>(Method)) { 4148 // If we get here, it's because we're calling a member function 4149 // that is named without a member access expression (e.g., 4150 // "this->f") that was either written explicitly or created 4151 // implicitly. This can happen with a qualified call to a member 4152 // function, e.g., X::f(). We use an empty type for the implied 4153 // object argument (C++ [over.call.func]p3), and the acting context 4154 // is irrelevant. 4155 AddMethodCandidate(Method, FoundDecl, Method->getParent(), 4156 QualType(), Expr::Classification::makeSimpleLValue(), 4157 Args, NumArgs, CandidateSet, 4158 SuppressUserConversions); 4159 return; 4160 } 4161 // We treat a constructor like a non-member function, since its object 4162 // argument doesn't participate in overload resolution. 4163 } 4164 4165 if (!CandidateSet.isNewCandidate(Function)) 4166 return; 4167 4168 // Overload resolution is always an unevaluated context. 4169 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4170 4171 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ 4172 // C++ [class.copy]p3: 4173 // A member function template is never instantiated to perform the copy 4174 // of a class object to an object of its class type. 4175 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 4176 if (NumArgs == 1 && 4177 Constructor->isSpecializationCopyingObject() && 4178 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 4179 IsDerivedFrom(Args[0]->getType(), ClassType))) 4180 return; 4181 } 4182 4183 // Add this candidate 4184 CandidateSet.push_back(OverloadCandidate()); 4185 OverloadCandidate& Candidate = CandidateSet.back(); 4186 Candidate.FoundDecl = FoundDecl; 4187 Candidate.Function = Function; 4188 Candidate.Viable = true; 4189 Candidate.IsSurrogate = false; 4190 Candidate.IgnoreObjectArgument = false; 4191 Candidate.ExplicitCallArguments = NumArgs; 4192 4193 unsigned NumArgsInProto = Proto->getNumArgs(); 4194 4195 // (C++ 13.3.2p2): A candidate function having fewer than m 4196 // parameters is viable only if it has an ellipsis in its parameter 4197 // list (8.3.5). 4198 if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && 4199 !Proto->isVariadic()) { 4200 Candidate.Viable = false; 4201 Candidate.FailureKind = ovl_fail_too_many_arguments; 4202 return; 4203 } 4204 4205 // (C++ 13.3.2p2): A candidate function having more than m parameters 4206 // is viable only if the (m+1)st parameter has a default argument 4207 // (8.3.6). For the purposes of overload resolution, the 4208 // parameter list is truncated on the right, so that there are 4209 // exactly m parameters. 4210 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 4211 if (NumArgs < MinRequiredArgs && !PartialOverloading) { 4212 // Not enough arguments. 4213 Candidate.Viable = false; 4214 Candidate.FailureKind = ovl_fail_too_few_arguments; 4215 return; 4216 } 4217 4218 // Determine the implicit conversion sequences for each of the 4219 // arguments. 4220 Candidate.Conversions.resize(NumArgs); 4221 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4222 if (ArgIdx < NumArgsInProto) { 4223 // (C++ 13.3.2p3): for F to be a viable function, there shall 4224 // exist for each argument an implicit conversion sequence 4225 // (13.3.3.1) that converts that argument to the corresponding 4226 // parameter of F. 4227 QualType ParamType = Proto->getArgType(ArgIdx); 4228 Candidate.Conversions[ArgIdx] 4229 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4230 SuppressUserConversions, 4231 /*InOverloadResolution=*/true, 4232 /*AllowObjCWritebackConversion=*/ 4233 getLangOptions().ObjCAutoRefCount); 4234 if (Candidate.Conversions[ArgIdx].isBad()) { 4235 Candidate.Viable = false; 4236 Candidate.FailureKind = ovl_fail_bad_conversion; 4237 break; 4238 } 4239 } else { 4240 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4241 // argument for which there is no corresponding parameter is 4242 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4243 Candidate.Conversions[ArgIdx].setEllipsis(); 4244 } 4245 } 4246} 4247 4248/// \brief Add all of the function declarations in the given function set to 4249/// the overload canddiate set. 4250void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 4251 Expr **Args, unsigned NumArgs, 4252 OverloadCandidateSet& CandidateSet, 4253 bool SuppressUserConversions) { 4254 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 4255 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 4256 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 4257 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 4258 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 4259 cast<CXXMethodDecl>(FD)->getParent(), 4260 Args[0]->getType(), Args[0]->Classify(Context), 4261 Args + 1, NumArgs - 1, 4262 CandidateSet, SuppressUserConversions); 4263 else 4264 AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, 4265 SuppressUserConversions); 4266 } else { 4267 FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); 4268 if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && 4269 !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) 4270 AddMethodTemplateCandidate(FunTmpl, F.getPair(), 4271 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 4272 /*FIXME: explicit args */ 0, 4273 Args[0]->getType(), 4274 Args[0]->Classify(Context), 4275 Args + 1, NumArgs - 1, 4276 CandidateSet, 4277 SuppressUserConversions); 4278 else 4279 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 4280 /*FIXME: explicit args */ 0, 4281 Args, NumArgs, CandidateSet, 4282 SuppressUserConversions); 4283 } 4284 } 4285} 4286 4287/// AddMethodCandidate - Adds a named decl (which is some kind of 4288/// method) as a method candidate to the given overload set. 4289void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, 4290 QualType ObjectType, 4291 Expr::Classification ObjectClassification, 4292 Expr **Args, unsigned NumArgs, 4293 OverloadCandidateSet& CandidateSet, 4294 bool SuppressUserConversions) { 4295 NamedDecl *Decl = FoundDecl.getDecl(); 4296 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 4297 4298 if (isa<UsingShadowDecl>(Decl)) 4299 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 4300 4301 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 4302 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 4303 "Expected a member function template"); 4304 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 4305 /*ExplicitArgs*/ 0, 4306 ObjectType, ObjectClassification, Args, NumArgs, 4307 CandidateSet, 4308 SuppressUserConversions); 4309 } else { 4310 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 4311 ObjectType, ObjectClassification, Args, NumArgs, 4312 CandidateSet, SuppressUserConversions); 4313 } 4314} 4315 4316/// AddMethodCandidate - Adds the given C++ member function to the set 4317/// of candidate functions, using the given function call arguments 4318/// and the object argument (@c Object). For example, in a call 4319/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 4320/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 4321/// allow user-defined conversions via constructors or conversion 4322/// operators. 4323void 4324Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 4325 CXXRecordDecl *ActingContext, QualType ObjectType, 4326 Expr::Classification ObjectClassification, 4327 Expr **Args, unsigned NumArgs, 4328 OverloadCandidateSet& CandidateSet, 4329 bool SuppressUserConversions) { 4330 const FunctionProtoType* Proto 4331 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 4332 assert(Proto && "Methods without a prototype cannot be overloaded"); 4333 assert(!isa<CXXConstructorDecl>(Method) && 4334 "Use AddOverloadCandidate for constructors"); 4335 4336 if (!CandidateSet.isNewCandidate(Method)) 4337 return; 4338 4339 // Overload resolution is always an unevaluated context. 4340 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4341 4342 // Add this candidate 4343 CandidateSet.push_back(OverloadCandidate()); 4344 OverloadCandidate& Candidate = CandidateSet.back(); 4345 Candidate.FoundDecl = FoundDecl; 4346 Candidate.Function = Method; 4347 Candidate.IsSurrogate = false; 4348 Candidate.IgnoreObjectArgument = false; 4349 Candidate.ExplicitCallArguments = NumArgs; 4350 4351 unsigned NumArgsInProto = Proto->getNumArgs(); 4352 4353 // (C++ 13.3.2p2): A candidate function having fewer than m 4354 // parameters is viable only if it has an ellipsis in its parameter 4355 // list (8.3.5). 4356 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 4357 Candidate.Viable = false; 4358 Candidate.FailureKind = ovl_fail_too_many_arguments; 4359 return; 4360 } 4361 4362 // (C++ 13.3.2p2): A candidate function having more than m parameters 4363 // is viable only if the (m+1)st parameter has a default argument 4364 // (8.3.6). For the purposes of overload resolution, the 4365 // parameter list is truncated on the right, so that there are 4366 // exactly m parameters. 4367 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 4368 if (NumArgs < MinRequiredArgs) { 4369 // Not enough arguments. 4370 Candidate.Viable = false; 4371 Candidate.FailureKind = ovl_fail_too_few_arguments; 4372 return; 4373 } 4374 4375 Candidate.Viable = true; 4376 Candidate.Conversions.resize(NumArgs + 1); 4377 4378 if (Method->isStatic() || ObjectType.isNull()) 4379 // The implicit object argument is ignored. 4380 Candidate.IgnoreObjectArgument = true; 4381 else { 4382 // Determine the implicit conversion sequence for the object 4383 // parameter. 4384 Candidate.Conversions[0] 4385 = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, 4386 Method, ActingContext); 4387 if (Candidate.Conversions[0].isBad()) { 4388 Candidate.Viable = false; 4389 Candidate.FailureKind = ovl_fail_bad_conversion; 4390 return; 4391 } 4392 } 4393 4394 // Determine the implicit conversion sequences for each of the 4395 // arguments. 4396 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4397 if (ArgIdx < NumArgsInProto) { 4398 // (C++ 13.3.2p3): for F to be a viable function, there shall 4399 // exist for each argument an implicit conversion sequence 4400 // (13.3.3.1) that converts that argument to the corresponding 4401 // parameter of F. 4402 QualType ParamType = Proto->getArgType(ArgIdx); 4403 Candidate.Conversions[ArgIdx + 1] 4404 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4405 SuppressUserConversions, 4406 /*InOverloadResolution=*/true, 4407 /*AllowObjCWritebackConversion=*/ 4408 getLangOptions().ObjCAutoRefCount); 4409 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4410 Candidate.Viable = false; 4411 Candidate.FailureKind = ovl_fail_bad_conversion; 4412 break; 4413 } 4414 } else { 4415 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4416 // argument for which there is no corresponding parameter is 4417 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4418 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4419 } 4420 } 4421} 4422 4423/// \brief Add a C++ member function template as a candidate to the candidate 4424/// set, using template argument deduction to produce an appropriate member 4425/// function template specialization. 4426void 4427Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, 4428 DeclAccessPair FoundDecl, 4429 CXXRecordDecl *ActingContext, 4430 TemplateArgumentListInfo *ExplicitTemplateArgs, 4431 QualType ObjectType, 4432 Expr::Classification ObjectClassification, 4433 Expr **Args, unsigned NumArgs, 4434 OverloadCandidateSet& CandidateSet, 4435 bool SuppressUserConversions) { 4436 if (!CandidateSet.isNewCandidate(MethodTmpl)) 4437 return; 4438 4439 // C++ [over.match.funcs]p7: 4440 // In each case where a candidate is a function template, candidate 4441 // function template specializations are generated using template argument 4442 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 4443 // candidate functions in the usual way.113) A given name can refer to one 4444 // or more function templates and also to a set of overloaded non-template 4445 // functions. In such a case, the candidate functions generated from each 4446 // function template are combined with the set of non-template candidate 4447 // functions. 4448 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4449 FunctionDecl *Specialization = 0; 4450 if (TemplateDeductionResult Result 4451 = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, 4452 Args, NumArgs, Specialization, Info)) { 4453 CandidateSet.push_back(OverloadCandidate()); 4454 OverloadCandidate &Candidate = CandidateSet.back(); 4455 Candidate.FoundDecl = FoundDecl; 4456 Candidate.Function = MethodTmpl->getTemplatedDecl(); 4457 Candidate.Viable = false; 4458 Candidate.FailureKind = ovl_fail_bad_deduction; 4459 Candidate.IsSurrogate = false; 4460 Candidate.IgnoreObjectArgument = false; 4461 Candidate.ExplicitCallArguments = NumArgs; 4462 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4463 Info); 4464 return; 4465 } 4466 4467 // Add the function template specialization produced by template argument 4468 // deduction as a candidate. 4469 assert(Specialization && "Missing member function template specialization?"); 4470 assert(isa<CXXMethodDecl>(Specialization) && 4471 "Specialization is not a member function?"); 4472 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 4473 ActingContext, ObjectType, ObjectClassification, 4474 Args, NumArgs, CandidateSet, SuppressUserConversions); 4475} 4476 4477/// \brief Add a C++ function template specialization as a candidate 4478/// in the candidate set, using template argument deduction to produce 4479/// an appropriate function template specialization. 4480void 4481Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, 4482 DeclAccessPair FoundDecl, 4483 TemplateArgumentListInfo *ExplicitTemplateArgs, 4484 Expr **Args, unsigned NumArgs, 4485 OverloadCandidateSet& CandidateSet, 4486 bool SuppressUserConversions) { 4487 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 4488 return; 4489 4490 // C++ [over.match.funcs]p7: 4491 // In each case where a candidate is a function template, candidate 4492 // function template specializations are generated using template argument 4493 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 4494 // candidate functions in the usual way.113) A given name can refer to one 4495 // or more function templates and also to a set of overloaded non-template 4496 // functions. In such a case, the candidate functions generated from each 4497 // function template are combined with the set of non-template candidate 4498 // functions. 4499 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4500 FunctionDecl *Specialization = 0; 4501 if (TemplateDeductionResult Result 4502 = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 4503 Args, NumArgs, Specialization, Info)) { 4504 CandidateSet.push_back(OverloadCandidate()); 4505 OverloadCandidate &Candidate = CandidateSet.back(); 4506 Candidate.FoundDecl = FoundDecl; 4507 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 4508 Candidate.Viable = false; 4509 Candidate.FailureKind = ovl_fail_bad_deduction; 4510 Candidate.IsSurrogate = false; 4511 Candidate.IgnoreObjectArgument = false; 4512 Candidate.ExplicitCallArguments = NumArgs; 4513 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4514 Info); 4515 return; 4516 } 4517 4518 // Add the function template specialization produced by template argument 4519 // deduction as a candidate. 4520 assert(Specialization && "Missing function template specialization?"); 4521 AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, 4522 SuppressUserConversions); 4523} 4524 4525/// AddConversionCandidate - Add a C++ conversion function as a 4526/// candidate in the candidate set (C++ [over.match.conv], 4527/// C++ [over.match.copy]). From is the expression we're converting from, 4528/// and ToType is the type that we're eventually trying to convert to 4529/// (which may or may not be the same type as the type that the 4530/// conversion function produces). 4531void 4532Sema::AddConversionCandidate(CXXConversionDecl *Conversion, 4533 DeclAccessPair FoundDecl, 4534 CXXRecordDecl *ActingContext, 4535 Expr *From, QualType ToType, 4536 OverloadCandidateSet& CandidateSet) { 4537 assert(!Conversion->getDescribedFunctionTemplate() && 4538 "Conversion function templates use AddTemplateConversionCandidate"); 4539 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 4540 if (!CandidateSet.isNewCandidate(Conversion)) 4541 return; 4542 4543 // Overload resolution is always an unevaluated context. 4544 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4545 4546 // Add this candidate 4547 CandidateSet.push_back(OverloadCandidate()); 4548 OverloadCandidate& Candidate = CandidateSet.back(); 4549 Candidate.FoundDecl = FoundDecl; 4550 Candidate.Function = Conversion; 4551 Candidate.IsSurrogate = false; 4552 Candidate.IgnoreObjectArgument = false; 4553 Candidate.FinalConversion.setAsIdentityConversion(); 4554 Candidate.FinalConversion.setFromType(ConvType); 4555 Candidate.FinalConversion.setAllToTypes(ToType); 4556 Candidate.Viable = true; 4557 Candidate.Conversions.resize(1); 4558 Candidate.ExplicitCallArguments = 1; 4559 4560 // C++ [over.match.funcs]p4: 4561 // For conversion functions, the function is considered to be a member of 4562 // the class of the implicit implied object argument for the purpose of 4563 // defining the type of the implicit object parameter. 4564 // 4565 // Determine the implicit conversion sequence for the implicit 4566 // object parameter. 4567 QualType ImplicitParamType = From->getType(); 4568 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 4569 ImplicitParamType = FromPtrType->getPointeeType(); 4570 CXXRecordDecl *ConversionContext 4571 = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); 4572 4573 Candidate.Conversions[0] 4574 = TryObjectArgumentInitialization(*this, From->getType(), 4575 From->Classify(Context), 4576 Conversion, ConversionContext); 4577 4578 if (Candidate.Conversions[0].isBad()) { 4579 Candidate.Viable = false; 4580 Candidate.FailureKind = ovl_fail_bad_conversion; 4581 return; 4582 } 4583 4584 // We won't go through a user-define type conversion function to convert a 4585 // derived to base as such conversions are given Conversion Rank. They only 4586 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 4587 QualType FromCanon 4588 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 4589 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 4590 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { 4591 Candidate.Viable = false; 4592 Candidate.FailureKind = ovl_fail_trivial_conversion; 4593 return; 4594 } 4595 4596 // To determine what the conversion from the result of calling the 4597 // conversion function to the type we're eventually trying to 4598 // convert to (ToType), we need to synthesize a call to the 4599 // conversion function and attempt copy initialization from it. This 4600 // makes sure that we get the right semantics with respect to 4601 // lvalues/rvalues and the type. Fortunately, we can allocate this 4602 // call on the stack and we don't need its arguments to be 4603 // well-formed. 4604 DeclRefExpr ConversionRef(Conversion, Conversion->getType(), 4605 VK_LValue, From->getLocStart()); 4606 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 4607 Context.getPointerType(Conversion->getType()), 4608 CK_FunctionToPointerDecay, 4609 &ConversionRef, VK_RValue); 4610 4611 QualType ConversionType = Conversion->getConversionType(); 4612 if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) { 4613 Candidate.Viable = false; 4614 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4615 return; 4616 } 4617 4618 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 4619 4620 // Note that it is safe to allocate CallExpr on the stack here because 4621 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 4622 // allocator). 4623 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 4624 CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, 4625 From->getLocStart()); 4626 ImplicitConversionSequence ICS = 4627 TryCopyInitialization(*this, &Call, ToType, 4628 /*SuppressUserConversions=*/true, 4629 /*InOverloadResolution=*/false, 4630 /*AllowObjCWritebackConversion=*/false); 4631 4632 switch (ICS.getKind()) { 4633 case ImplicitConversionSequence::StandardConversion: 4634 Candidate.FinalConversion = ICS.Standard; 4635 4636 // C++ [over.ics.user]p3: 4637 // If the user-defined conversion is specified by a specialization of a 4638 // conversion function template, the second standard conversion sequence 4639 // shall have exact match rank. 4640 if (Conversion->getPrimaryTemplate() && 4641 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 4642 Candidate.Viable = false; 4643 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 4644 } 4645 4646 // C++0x [dcl.init.ref]p5: 4647 // In the second case, if the reference is an rvalue reference and 4648 // the second standard conversion sequence of the user-defined 4649 // conversion sequence includes an lvalue-to-rvalue conversion, the 4650 // program is ill-formed. 4651 if (ToType->isRValueReferenceType() && 4652 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4653 Candidate.Viable = false; 4654 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4655 } 4656 break; 4657 4658 case ImplicitConversionSequence::BadConversion: 4659 Candidate.Viable = false; 4660 Candidate.FailureKind = ovl_fail_bad_final_conversion; 4661 break; 4662 4663 default: 4664 llvm_unreachable( 4665 "Can only end up with a standard conversion sequence or failure"); 4666 } 4667} 4668 4669/// \brief Adds a conversion function template specialization 4670/// candidate to the overload set, using template argument deduction 4671/// to deduce the template arguments of the conversion function 4672/// template from the type that we are converting to (C++ 4673/// [temp.deduct.conv]). 4674void 4675Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, 4676 DeclAccessPair FoundDecl, 4677 CXXRecordDecl *ActingDC, 4678 Expr *From, QualType ToType, 4679 OverloadCandidateSet &CandidateSet) { 4680 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 4681 "Only conversion function templates permitted here"); 4682 4683 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 4684 return; 4685 4686 TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); 4687 CXXConversionDecl *Specialization = 0; 4688 if (TemplateDeductionResult Result 4689 = DeduceTemplateArguments(FunctionTemplate, ToType, 4690 Specialization, Info)) { 4691 CandidateSet.push_back(OverloadCandidate()); 4692 OverloadCandidate &Candidate = CandidateSet.back(); 4693 Candidate.FoundDecl = FoundDecl; 4694 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 4695 Candidate.Viable = false; 4696 Candidate.FailureKind = ovl_fail_bad_deduction; 4697 Candidate.IsSurrogate = false; 4698 Candidate.IgnoreObjectArgument = false; 4699 Candidate.ExplicitCallArguments = 1; 4700 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 4701 Info); 4702 return; 4703 } 4704 4705 // Add the conversion function template specialization produced by 4706 // template argument deduction as a candidate. 4707 assert(Specialization && "Missing function template specialization?"); 4708 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 4709 CandidateSet); 4710} 4711 4712/// AddSurrogateCandidate - Adds a "surrogate" candidate function that 4713/// converts the given @c Object to a function pointer via the 4714/// conversion function @c Conversion, and then attempts to call it 4715/// with the given arguments (C++ [over.call.object]p2-4). Proto is 4716/// the type of function that we'll eventually be calling. 4717void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 4718 DeclAccessPair FoundDecl, 4719 CXXRecordDecl *ActingContext, 4720 const FunctionProtoType *Proto, 4721 Expr *Object, 4722 Expr **Args, unsigned NumArgs, 4723 OverloadCandidateSet& CandidateSet) { 4724 if (!CandidateSet.isNewCandidate(Conversion)) 4725 return; 4726 4727 // Overload resolution is always an unevaluated context. 4728 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4729 4730 CandidateSet.push_back(OverloadCandidate()); 4731 OverloadCandidate& Candidate = CandidateSet.back(); 4732 Candidate.FoundDecl = FoundDecl; 4733 Candidate.Function = 0; 4734 Candidate.Surrogate = Conversion; 4735 Candidate.Viable = true; 4736 Candidate.IsSurrogate = true; 4737 Candidate.IgnoreObjectArgument = false; 4738 Candidate.Conversions.resize(NumArgs + 1); 4739 Candidate.ExplicitCallArguments = NumArgs; 4740 4741 // Determine the implicit conversion sequence for the implicit 4742 // object parameter. 4743 ImplicitConversionSequence ObjectInit 4744 = TryObjectArgumentInitialization(*this, Object->getType(), 4745 Object->Classify(Context), 4746 Conversion, ActingContext); 4747 if (ObjectInit.isBad()) { 4748 Candidate.Viable = false; 4749 Candidate.FailureKind = ovl_fail_bad_conversion; 4750 Candidate.Conversions[0] = ObjectInit; 4751 return; 4752 } 4753 4754 // The first conversion is actually a user-defined conversion whose 4755 // first conversion is ObjectInit's standard conversion (which is 4756 // effectively a reference binding). Record it as such. 4757 Candidate.Conversions[0].setUserDefined(); 4758 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 4759 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 4760 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 4761 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 4762 Candidate.Conversions[0].UserDefined.After 4763 = Candidate.Conversions[0].UserDefined.Before; 4764 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 4765 4766 // Find the 4767 unsigned NumArgsInProto = Proto->getNumArgs(); 4768 4769 // (C++ 13.3.2p2): A candidate function having fewer than m 4770 // parameters is viable only if it has an ellipsis in its parameter 4771 // list (8.3.5). 4772 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { 4773 Candidate.Viable = false; 4774 Candidate.FailureKind = ovl_fail_too_many_arguments; 4775 return; 4776 } 4777 4778 // Function types don't have any default arguments, so just check if 4779 // we have enough arguments. 4780 if (NumArgs < NumArgsInProto) { 4781 // Not enough arguments. 4782 Candidate.Viable = false; 4783 Candidate.FailureKind = ovl_fail_too_few_arguments; 4784 return; 4785 } 4786 4787 // Determine the implicit conversion sequences for each of the 4788 // arguments. 4789 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4790 if (ArgIdx < NumArgsInProto) { 4791 // (C++ 13.3.2p3): for F to be a viable function, there shall 4792 // exist for each argument an implicit conversion sequence 4793 // (13.3.3.1) that converts that argument to the corresponding 4794 // parameter of F. 4795 QualType ParamType = Proto->getArgType(ArgIdx); 4796 Candidate.Conversions[ArgIdx + 1] 4797 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 4798 /*SuppressUserConversions=*/false, 4799 /*InOverloadResolution=*/false, 4800 /*AllowObjCWritebackConversion=*/ 4801 getLangOptions().ObjCAutoRefCount); 4802 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 4803 Candidate.Viable = false; 4804 Candidate.FailureKind = ovl_fail_bad_conversion; 4805 break; 4806 } 4807 } else { 4808 // (C++ 13.3.2p2): For the purposes of overload resolution, any 4809 // argument for which there is no corresponding parameter is 4810 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 4811 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 4812 } 4813 } 4814} 4815 4816/// \brief Add overload candidates for overloaded operators that are 4817/// member functions. 4818/// 4819/// Add the overloaded operator candidates that are member functions 4820/// for the operator Op that was used in an operator expression such 4821/// as "x Op y". , Args/NumArgs provides the operator arguments, and 4822/// CandidateSet will store the added overload candidates. (C++ 4823/// [over.match.oper]). 4824void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 4825 SourceLocation OpLoc, 4826 Expr **Args, unsigned NumArgs, 4827 OverloadCandidateSet& CandidateSet, 4828 SourceRange OpRange) { 4829 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 4830 4831 // C++ [over.match.oper]p3: 4832 // For a unary operator @ with an operand of a type whose 4833 // cv-unqualified version is T1, and for a binary operator @ with 4834 // a left operand of a type whose cv-unqualified version is T1 and 4835 // a right operand of a type whose cv-unqualified version is T2, 4836 // three sets of candidate functions, designated member 4837 // candidates, non-member candidates and built-in candidates, are 4838 // constructed as follows: 4839 QualType T1 = Args[0]->getType(); 4840 4841 // -- If T1 is a class type, the set of member candidates is the 4842 // result of the qualified lookup of T1::operator@ 4843 // (13.3.1.1.1); otherwise, the set of member candidates is 4844 // empty. 4845 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 4846 // Complete the type if it can be completed. Otherwise, we're done. 4847 if (RequireCompleteType(OpLoc, T1, PDiag())) 4848 return; 4849 4850 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 4851 LookupQualifiedName(Operators, T1Rec->getDecl()); 4852 Operators.suppressDiagnostics(); 4853 4854 for (LookupResult::iterator Oper = Operators.begin(), 4855 OperEnd = Operators.end(); 4856 Oper != OperEnd; 4857 ++Oper) 4858 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 4859 Args[0]->Classify(Context), Args + 1, NumArgs - 1, 4860 CandidateSet, 4861 /* SuppressUserConversions = */ false); 4862 } 4863} 4864 4865/// AddBuiltinCandidate - Add a candidate for a built-in 4866/// operator. ResultTy and ParamTys are the result and parameter types 4867/// of the built-in candidate, respectively. Args and NumArgs are the 4868/// arguments being passed to the candidate. IsAssignmentOperator 4869/// should be true when this built-in candidate is an assignment 4870/// operator. NumContextualBoolArguments is the number of arguments 4871/// (at the beginning of the argument list) that will be contextually 4872/// converted to bool. 4873void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, 4874 Expr **Args, unsigned NumArgs, 4875 OverloadCandidateSet& CandidateSet, 4876 bool IsAssignmentOperator, 4877 unsigned NumContextualBoolArguments) { 4878 // Overload resolution is always an unevaluated context. 4879 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 4880 4881 // Add this candidate 4882 CandidateSet.push_back(OverloadCandidate()); 4883 OverloadCandidate& Candidate = CandidateSet.back(); 4884 Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); 4885 Candidate.Function = 0; 4886 Candidate.IsSurrogate = false; 4887 Candidate.IgnoreObjectArgument = false; 4888 Candidate.BuiltinTypes.ResultTy = ResultTy; 4889 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 4890 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; 4891 4892 // Determine the implicit conversion sequences for each of the 4893 // arguments. 4894 Candidate.Viable = true; 4895 Candidate.Conversions.resize(NumArgs); 4896 Candidate.ExplicitCallArguments = NumArgs; 4897 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 4898 // C++ [over.match.oper]p4: 4899 // For the built-in assignment operators, conversions of the 4900 // left operand are restricted as follows: 4901 // -- no temporaries are introduced to hold the left operand, and 4902 // -- no user-defined conversions are applied to the left 4903 // operand to achieve a type match with the left-most 4904 // parameter of a built-in candidate. 4905 // 4906 // We block these conversions by turning off user-defined 4907 // conversions, since that is the only way that initialization of 4908 // a reference to a non-class type can occur from something that 4909 // is not of the same type. 4910 if (ArgIdx < NumContextualBoolArguments) { 4911 assert(ParamTys[ArgIdx] == Context.BoolTy && 4912 "Contextual conversion to bool requires bool type"); 4913 Candidate.Conversions[ArgIdx] 4914 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 4915 } else { 4916 Candidate.Conversions[ArgIdx] 4917 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 4918 ArgIdx == 0 && IsAssignmentOperator, 4919 /*InOverloadResolution=*/false, 4920 /*AllowObjCWritebackConversion=*/ 4921 getLangOptions().ObjCAutoRefCount); 4922 } 4923 if (Candidate.Conversions[ArgIdx].isBad()) { 4924 Candidate.Viable = false; 4925 Candidate.FailureKind = ovl_fail_bad_conversion; 4926 break; 4927 } 4928 } 4929} 4930 4931/// BuiltinCandidateTypeSet - A set of types that will be used for the 4932/// candidate operator functions for built-in operators (C++ 4933/// [over.built]). The types are separated into pointer types and 4934/// enumeration types. 4935class BuiltinCandidateTypeSet { 4936 /// TypeSet - A set of types. 4937 typedef llvm::SmallPtrSet<QualType, 8> TypeSet; 4938 4939 /// PointerTypes - The set of pointer types that will be used in the 4940 /// built-in candidates. 4941 TypeSet PointerTypes; 4942 4943 /// MemberPointerTypes - The set of member pointer types that will be 4944 /// used in the built-in candidates. 4945 TypeSet MemberPointerTypes; 4946 4947 /// EnumerationTypes - The set of enumeration types that will be 4948 /// used in the built-in candidates. 4949 TypeSet EnumerationTypes; 4950 4951 /// \brief The set of vector types that will be used in the built-in 4952 /// candidates. 4953 TypeSet VectorTypes; 4954 4955 /// \brief A flag indicating non-record types are viable candidates 4956 bool HasNonRecordTypes; 4957 4958 /// \brief A flag indicating whether either arithmetic or enumeration types 4959 /// were present in the candidate set. 4960 bool HasArithmeticOrEnumeralTypes; 4961 4962 /// \brief A flag indicating whether the nullptr type was present in the 4963 /// candidate set. 4964 bool HasNullPtrType; 4965 4966 /// Sema - The semantic analysis instance where we are building the 4967 /// candidate type set. 4968 Sema &SemaRef; 4969 4970 /// Context - The AST context in which we will build the type sets. 4971 ASTContext &Context; 4972 4973 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 4974 const Qualifiers &VisibleQuals); 4975 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 4976 4977public: 4978 /// iterator - Iterates through the types that are part of the set. 4979 typedef TypeSet::iterator iterator; 4980 4981 BuiltinCandidateTypeSet(Sema &SemaRef) 4982 : HasNonRecordTypes(false), 4983 HasArithmeticOrEnumeralTypes(false), 4984 HasNullPtrType(false), 4985 SemaRef(SemaRef), 4986 Context(SemaRef.Context) { } 4987 4988 void AddTypesConvertedFrom(QualType Ty, 4989 SourceLocation Loc, 4990 bool AllowUserConversions, 4991 bool AllowExplicitConversions, 4992 const Qualifiers &VisibleTypeConversionsQuals); 4993 4994 /// pointer_begin - First pointer type found; 4995 iterator pointer_begin() { return PointerTypes.begin(); } 4996 4997 /// pointer_end - Past the last pointer type found; 4998 iterator pointer_end() { return PointerTypes.end(); } 4999 5000 /// member_pointer_begin - First member pointer type found; 5001 iterator member_pointer_begin() { return MemberPointerTypes.begin(); } 5002 5003 /// member_pointer_end - Past the last member pointer type found; 5004 iterator member_pointer_end() { return MemberPointerTypes.end(); } 5005 5006 /// enumeration_begin - First enumeration type found; 5007 iterator enumeration_begin() { return EnumerationTypes.begin(); } 5008 5009 /// enumeration_end - Past the last enumeration type found; 5010 iterator enumeration_end() { return EnumerationTypes.end(); } 5011 5012 iterator vector_begin() { return VectorTypes.begin(); } 5013 iterator vector_end() { return VectorTypes.end(); } 5014 5015 bool hasNonRecordTypes() { return HasNonRecordTypes; } 5016 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 5017 bool hasNullPtrType() const { return HasNullPtrType; } 5018}; 5019 5020/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 5021/// the set of pointer types along with any more-qualified variants of 5022/// that type. For example, if @p Ty is "int const *", this routine 5023/// will add "int const *", "int const volatile *", "int const 5024/// restrict *", and "int const volatile restrict *" to the set of 5025/// pointer types. Returns true if the add of @p Ty itself succeeded, 5026/// false otherwise. 5027/// 5028/// FIXME: what to do about extended qualifiers? 5029bool 5030BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 5031 const Qualifiers &VisibleQuals) { 5032 5033 // Insert this type. 5034 if (!PointerTypes.insert(Ty)) 5035 return false; 5036 5037 QualType PointeeTy; 5038 const PointerType *PointerTy = Ty->getAs<PointerType>(); 5039 bool buildObjCPtr = false; 5040 if (!PointerTy) { 5041 if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { 5042 PointeeTy = PTy->getPointeeType(); 5043 buildObjCPtr = true; 5044 } 5045 else 5046 llvm_unreachable("type was not a pointer type!"); 5047 } 5048 else 5049 PointeeTy = PointerTy->getPointeeType(); 5050 5051 // Don't add qualified variants of arrays. For one, they're not allowed 5052 // (the qualifier would sink to the element type), and for another, the 5053 // only overload situation where it matters is subscript or pointer +- int, 5054 // and those shouldn't have qualifier variants anyway. 5055 if (PointeeTy->isArrayType()) 5056 return true; 5057 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 5058 if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) 5059 BaseCVR = Array->getElementType().getCVRQualifiers(); 5060 bool hasVolatile = VisibleQuals.hasVolatile(); 5061 bool hasRestrict = VisibleQuals.hasRestrict(); 5062 5063 // Iterate through all strict supersets of BaseCVR. 5064 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 5065 if ((CVR | BaseCVR) != CVR) continue; 5066 // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere 5067 // in the types. 5068 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 5069 if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; 5070 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 5071 if (!buildObjCPtr) 5072 PointerTypes.insert(Context.getPointerType(QPointeeTy)); 5073 else 5074 PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); 5075 } 5076 5077 return true; 5078} 5079 5080/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 5081/// to the set of pointer types along with any more-qualified variants of 5082/// that type. For example, if @p Ty is "int const *", this routine 5083/// will add "int const *", "int const volatile *", "int const 5084/// restrict *", and "int const volatile restrict *" to the set of 5085/// pointer types. Returns true if the add of @p Ty itself succeeded, 5086/// false otherwise. 5087/// 5088/// FIXME: what to do about extended qualifiers? 5089bool 5090BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 5091 QualType Ty) { 5092 // Insert this type. 5093 if (!MemberPointerTypes.insert(Ty)) 5094 return false; 5095 5096 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 5097 assert(PointerTy && "type was not a member pointer type!"); 5098 5099 QualType PointeeTy = PointerTy->getPointeeType(); 5100 // Don't add qualified variants of arrays. For one, they're not allowed 5101 // (the qualifier would sink to the element type), and for another, the 5102 // only overload situation where it matters is subscript or pointer +- int, 5103 // and those shouldn't have qualifier variants anyway. 5104 if (PointeeTy->isArrayType()) 5105 return true; 5106 const Type *ClassTy = PointerTy->getClass(); 5107 5108 // Iterate through all strict supersets of the pointee type's CVR 5109 // qualifiers. 5110 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 5111 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 5112 if ((CVR | BaseCVR) != CVR) continue; 5113 5114 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 5115 MemberPointerTypes.insert( 5116 Context.getMemberPointerType(QPointeeTy, ClassTy)); 5117 } 5118 5119 return true; 5120} 5121 5122/// AddTypesConvertedFrom - Add each of the types to which the type @p 5123/// Ty can be implicit converted to the given set of @p Types. We're 5124/// primarily interested in pointer types and enumeration types. We also 5125/// take member pointer types, for the conditional operator. 5126/// AllowUserConversions is true if we should look at the conversion 5127/// functions of a class type, and AllowExplicitConversions if we 5128/// should also include the explicit conversion functions of a class 5129/// type. 5130void 5131BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 5132 SourceLocation Loc, 5133 bool AllowUserConversions, 5134 bool AllowExplicitConversions, 5135 const Qualifiers &VisibleQuals) { 5136 // Only deal with canonical types. 5137 Ty = Context.getCanonicalType(Ty); 5138 5139 // Look through reference types; they aren't part of the type of an 5140 // expression for the purposes of conversions. 5141 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 5142 Ty = RefTy->getPointeeType(); 5143 5144 // If we're dealing with an array type, decay to the pointer. 5145 if (Ty->isArrayType()) 5146 Ty = SemaRef.Context.getArrayDecayedType(Ty); 5147 5148 // Otherwise, we don't care about qualifiers on the type. 5149 Ty = Ty.getLocalUnqualifiedType(); 5150 5151 // Flag if we ever add a non-record type. 5152 const RecordType *TyRec = Ty->getAs<RecordType>(); 5153 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 5154 5155 // Flag if we encounter an arithmetic type. 5156 HasArithmeticOrEnumeralTypes = 5157 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 5158 5159 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 5160 PointerTypes.insert(Ty); 5161 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 5162 // Insert our type, and its more-qualified variants, into the set 5163 // of types. 5164 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 5165 return; 5166 } else if (Ty->isMemberPointerType()) { 5167 // Member pointers are far easier, since the pointee can't be converted. 5168 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 5169 return; 5170 } else if (Ty->isEnumeralType()) { 5171 HasArithmeticOrEnumeralTypes = true; 5172 EnumerationTypes.insert(Ty); 5173 } else if (Ty->isVectorType()) { 5174 // We treat vector types as arithmetic types in many contexts as an 5175 // extension. 5176 HasArithmeticOrEnumeralTypes = true; 5177 VectorTypes.insert(Ty); 5178 } else if (Ty->isNullPtrType()) { 5179 HasNullPtrType = true; 5180 } else if (AllowUserConversions && TyRec) { 5181 // No conversion functions in incomplete types. 5182 if (SemaRef.RequireCompleteType(Loc, Ty, 0)) 5183 return; 5184 5185 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 5186 const UnresolvedSetImpl *Conversions 5187 = ClassDecl->getVisibleConversionFunctions(); 5188 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 5189 E = Conversions->end(); I != E; ++I) { 5190 NamedDecl *D = I.getDecl(); 5191 if (isa<UsingShadowDecl>(D)) 5192 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5193 5194 // Skip conversion function templates; they don't tell us anything 5195 // about which builtin types we can convert to. 5196 if (isa<FunctionTemplateDecl>(D)) 5197 continue; 5198 5199 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 5200 if (AllowExplicitConversions || !Conv->isExplicit()) { 5201 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 5202 VisibleQuals); 5203 } 5204 } 5205 } 5206} 5207 5208/// \brief Helper function for AddBuiltinOperatorCandidates() that adds 5209/// the volatile- and non-volatile-qualified assignment operators for the 5210/// given type to the candidate set. 5211static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 5212 QualType T, 5213 Expr **Args, 5214 unsigned NumArgs, 5215 OverloadCandidateSet &CandidateSet) { 5216 QualType ParamTypes[2]; 5217 5218 // T& operator=(T&, T) 5219 ParamTypes[0] = S.Context.getLValueReferenceType(T); 5220 ParamTypes[1] = T; 5221 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5222 /*IsAssignmentOperator=*/true); 5223 5224 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 5225 // volatile T& operator=(volatile T&, T) 5226 ParamTypes[0] 5227 = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); 5228 ParamTypes[1] = T; 5229 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5230 /*IsAssignmentOperator=*/true); 5231 } 5232} 5233 5234/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 5235/// if any, found in visible type conversion functions found in ArgExpr's type. 5236static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 5237 Qualifiers VRQuals; 5238 const RecordType *TyRec; 5239 if (const MemberPointerType *RHSMPType = 5240 ArgExpr->getType()->getAs<MemberPointerType>()) 5241 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 5242 else 5243 TyRec = ArgExpr->getType()->getAs<RecordType>(); 5244 if (!TyRec) { 5245 // Just to be safe, assume the worst case. 5246 VRQuals.addVolatile(); 5247 VRQuals.addRestrict(); 5248 return VRQuals; 5249 } 5250 5251 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 5252 if (!ClassDecl->hasDefinition()) 5253 return VRQuals; 5254 5255 const UnresolvedSetImpl *Conversions = 5256 ClassDecl->getVisibleConversionFunctions(); 5257 5258 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 5259 E = Conversions->end(); I != E; ++I) { 5260 NamedDecl *D = I.getDecl(); 5261 if (isa<UsingShadowDecl>(D)) 5262 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5263 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 5264 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 5265 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 5266 CanTy = ResTypeRef->getPointeeType(); 5267 // Need to go down the pointer/mempointer chain and add qualifiers 5268 // as see them. 5269 bool done = false; 5270 while (!done) { 5271 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 5272 CanTy = ResTypePtr->getPointeeType(); 5273 else if (const MemberPointerType *ResTypeMPtr = 5274 CanTy->getAs<MemberPointerType>()) 5275 CanTy = ResTypeMPtr->getPointeeType(); 5276 else 5277 done = true; 5278 if (CanTy.isVolatileQualified()) 5279 VRQuals.addVolatile(); 5280 if (CanTy.isRestrictQualified()) 5281 VRQuals.addRestrict(); 5282 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 5283 return VRQuals; 5284 } 5285 } 5286 } 5287 return VRQuals; 5288} 5289 5290namespace { 5291 5292/// \brief Helper class to manage the addition of builtin operator overload 5293/// candidates. It provides shared state and utility methods used throughout 5294/// the process, as well as a helper method to add each group of builtin 5295/// operator overloads from the standard to a candidate set. 5296class BuiltinOperatorOverloadBuilder { 5297 // Common instance state available to all overload candidate addition methods. 5298 Sema &S; 5299 Expr **Args; 5300 unsigned NumArgs; 5301 Qualifiers VisibleTypeConversionsQuals; 5302 bool HasArithmeticOrEnumeralCandidateType; 5303 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 5304 OverloadCandidateSet &CandidateSet; 5305 5306 // Define some constants used to index and iterate over the arithemetic types 5307 // provided via the getArithmeticType() method below. 5308 // The "promoted arithmetic types" are the arithmetic 5309 // types are that preserved by promotion (C++ [over.built]p2). 5310 static const unsigned FirstIntegralType = 3; 5311 static const unsigned LastIntegralType = 18; 5312 static const unsigned FirstPromotedIntegralType = 3, 5313 LastPromotedIntegralType = 9; 5314 static const unsigned FirstPromotedArithmeticType = 0, 5315 LastPromotedArithmeticType = 9; 5316 static const unsigned NumArithmeticTypes = 18; 5317 5318 /// \brief Get the canonical type for a given arithmetic type index. 5319 CanQualType getArithmeticType(unsigned index) { 5320 assert(index < NumArithmeticTypes); 5321 static CanQualType ASTContext::* const 5322 ArithmeticTypes[NumArithmeticTypes] = { 5323 // Start of promoted types. 5324 &ASTContext::FloatTy, 5325 &ASTContext::DoubleTy, 5326 &ASTContext::LongDoubleTy, 5327 5328 // Start of integral types. 5329 &ASTContext::IntTy, 5330 &ASTContext::LongTy, 5331 &ASTContext::LongLongTy, 5332 &ASTContext::UnsignedIntTy, 5333 &ASTContext::UnsignedLongTy, 5334 &ASTContext::UnsignedLongLongTy, 5335 // End of promoted types. 5336 5337 &ASTContext::BoolTy, 5338 &ASTContext::CharTy, 5339 &ASTContext::WCharTy, 5340 &ASTContext::Char16Ty, 5341 &ASTContext::Char32Ty, 5342 &ASTContext::SignedCharTy, 5343 &ASTContext::ShortTy, 5344 &ASTContext::UnsignedCharTy, 5345 &ASTContext::UnsignedShortTy, 5346 // End of integral types. 5347 // FIXME: What about complex? 5348 }; 5349 return S.Context.*ArithmeticTypes[index]; 5350 } 5351 5352 /// \brief Gets the canonical type resulting from the usual arithemetic 5353 /// converions for the given arithmetic types. 5354 CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { 5355 // Accelerator table for performing the usual arithmetic conversions. 5356 // The rules are basically: 5357 // - if either is floating-point, use the wider floating-point 5358 // - if same signedness, use the higher rank 5359 // - if same size, use unsigned of the higher rank 5360 // - use the larger type 5361 // These rules, together with the axiom that higher ranks are 5362 // never smaller, are sufficient to precompute all of these results 5363 // *except* when dealing with signed types of higher rank. 5364 // (we could precompute SLL x UI for all known platforms, but it's 5365 // better not to make any assumptions). 5366 enum PromotedType { 5367 Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 5368 }; 5369 static PromotedType ConversionsTable[LastPromotedArithmeticType] 5370 [LastPromotedArithmeticType] = { 5371 /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, 5372 /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, 5373 /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, 5374 /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, 5375 /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, 5376 /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, 5377 /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, 5378 /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, 5379 /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL }, 5380 }; 5381 5382 assert(L < LastPromotedArithmeticType); 5383 assert(R < LastPromotedArithmeticType); 5384 int Idx = ConversionsTable[L][R]; 5385 5386 // Fast path: the table gives us a concrete answer. 5387 if (Idx != Dep) return getArithmeticType(Idx); 5388 5389 // Slow path: we need to compare widths. 5390 // An invariant is that the signed type has higher rank. 5391 CanQualType LT = getArithmeticType(L), 5392 RT = getArithmeticType(R); 5393 unsigned LW = S.Context.getIntWidth(LT), 5394 RW = S.Context.getIntWidth(RT); 5395 5396 // If they're different widths, use the signed type. 5397 if (LW > RW) return LT; 5398 else if (LW < RW) return RT; 5399 5400 // Otherwise, use the unsigned type of the signed type's rank. 5401 if (L == SL || R == SL) return S.Context.UnsignedLongTy; 5402 assert(L == SLL || R == SLL); 5403 return S.Context.UnsignedLongLongTy; 5404 } 5405 5406 /// \brief Helper method to factor out the common pattern of adding overloads 5407 /// for '++' and '--' builtin operators. 5408 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 5409 bool HasVolatile) { 5410 QualType ParamTypes[2] = { 5411 S.Context.getLValueReferenceType(CandidateTy), 5412 S.Context.IntTy 5413 }; 5414 5415 // Non-volatile version. 5416 if (NumArgs == 1) 5417 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 5418 else 5419 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 5420 5421 // Use a heuristic to reduce number of builtin candidates in the set: 5422 // add volatile version only if there are conversions to a volatile type. 5423 if (HasVolatile) { 5424 ParamTypes[0] = 5425 S.Context.getLValueReferenceType( 5426 S.Context.getVolatileType(CandidateTy)); 5427 if (NumArgs == 1) 5428 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); 5429 else 5430 S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); 5431 } 5432 } 5433 5434public: 5435 BuiltinOperatorOverloadBuilder( 5436 Sema &S, Expr **Args, unsigned NumArgs, 5437 Qualifiers VisibleTypeConversionsQuals, 5438 bool HasArithmeticOrEnumeralCandidateType, 5439 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 5440 OverloadCandidateSet &CandidateSet) 5441 : S(S), Args(Args), NumArgs(NumArgs), 5442 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 5443 HasArithmeticOrEnumeralCandidateType( 5444 HasArithmeticOrEnumeralCandidateType), 5445 CandidateTypes(CandidateTypes), 5446 CandidateSet(CandidateSet) { 5447 // Validate some of our static helper constants in debug builds. 5448 assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && 5449 "Invalid first promoted integral type"); 5450 assert(getArithmeticType(LastPromotedIntegralType - 1) 5451 == S.Context.UnsignedLongLongTy && 5452 "Invalid last promoted integral type"); 5453 assert(getArithmeticType(FirstPromotedArithmeticType) 5454 == S.Context.FloatTy && 5455 "Invalid first promoted arithmetic type"); 5456 assert(getArithmeticType(LastPromotedArithmeticType - 1) 5457 == S.Context.UnsignedLongLongTy && 5458 "Invalid last promoted arithmetic type"); 5459 } 5460 5461 // C++ [over.built]p3: 5462 // 5463 // For every pair (T, VQ), where T is an arithmetic type, and VQ 5464 // is either volatile or empty, there exist candidate operator 5465 // functions of the form 5466 // 5467 // VQ T& operator++(VQ T&); 5468 // T operator++(VQ T&, int); 5469 // 5470 // C++ [over.built]p4: 5471 // 5472 // For every pair (T, VQ), where T is an arithmetic type other 5473 // than bool, and VQ is either volatile or empty, there exist 5474 // candidate operator functions of the form 5475 // 5476 // VQ T& operator--(VQ T&); 5477 // T operator--(VQ T&, int); 5478 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 5479 if (!HasArithmeticOrEnumeralCandidateType) 5480 return; 5481 5482 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); 5483 Arith < NumArithmeticTypes; ++Arith) { 5484 addPlusPlusMinusMinusStyleOverloads( 5485 getArithmeticType(Arith), 5486 VisibleTypeConversionsQuals.hasVolatile()); 5487 } 5488 } 5489 5490 // C++ [over.built]p5: 5491 // 5492 // For every pair (T, VQ), where T is a cv-qualified or 5493 // cv-unqualified object type, and VQ is either volatile or 5494 // empty, there exist candidate operator functions of the form 5495 // 5496 // T*VQ& operator++(T*VQ&); 5497 // T*VQ& operator--(T*VQ&); 5498 // T* operator++(T*VQ&, int); 5499 // T* operator--(T*VQ&, int); 5500 void addPlusPlusMinusMinusPointerOverloads() { 5501 for (BuiltinCandidateTypeSet::iterator 5502 Ptr = CandidateTypes[0].pointer_begin(), 5503 PtrEnd = CandidateTypes[0].pointer_end(); 5504 Ptr != PtrEnd; ++Ptr) { 5505 // Skip pointer types that aren't pointers to object types. 5506 if (!(*Ptr)->getPointeeType()->isObjectType()) 5507 continue; 5508 5509 addPlusPlusMinusMinusStyleOverloads(*Ptr, 5510 (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5511 VisibleTypeConversionsQuals.hasVolatile())); 5512 } 5513 } 5514 5515 // C++ [over.built]p6: 5516 // For every cv-qualified or cv-unqualified object type T, there 5517 // exist candidate operator functions of the form 5518 // 5519 // T& operator*(T*); 5520 // 5521 // C++ [over.built]p7: 5522 // For every function type T that does not have cv-qualifiers or a 5523 // ref-qualifier, there exist candidate operator functions of the form 5524 // T& operator*(T*); 5525 void addUnaryStarPointerOverloads() { 5526 for (BuiltinCandidateTypeSet::iterator 5527 Ptr = CandidateTypes[0].pointer_begin(), 5528 PtrEnd = CandidateTypes[0].pointer_end(); 5529 Ptr != PtrEnd; ++Ptr) { 5530 QualType ParamTy = *Ptr; 5531 QualType PointeeTy = ParamTy->getPointeeType(); 5532 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 5533 continue; 5534 5535 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 5536 if (Proto->getTypeQuals() || Proto->getRefQualifier()) 5537 continue; 5538 5539 S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), 5540 &ParamTy, Args, 1, CandidateSet); 5541 } 5542 } 5543 5544 // C++ [over.built]p9: 5545 // For every promoted arithmetic type T, there exist candidate 5546 // operator functions of the form 5547 // 5548 // T operator+(T); 5549 // T operator-(T); 5550 void addUnaryPlusOrMinusArithmeticOverloads() { 5551 if (!HasArithmeticOrEnumeralCandidateType) 5552 return; 5553 5554 for (unsigned Arith = FirstPromotedArithmeticType; 5555 Arith < LastPromotedArithmeticType; ++Arith) { 5556 QualType ArithTy = getArithmeticType(Arith); 5557 S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); 5558 } 5559 5560 // Extension: We also add these operators for vector types. 5561 for (BuiltinCandidateTypeSet::iterator 5562 Vec = CandidateTypes[0].vector_begin(), 5563 VecEnd = CandidateTypes[0].vector_end(); 5564 Vec != VecEnd; ++Vec) { 5565 QualType VecTy = *Vec; 5566 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5567 } 5568 } 5569 5570 // C++ [over.built]p8: 5571 // For every type T, there exist candidate operator functions of 5572 // the form 5573 // 5574 // T* operator+(T*); 5575 void addUnaryPlusPointerOverloads() { 5576 for (BuiltinCandidateTypeSet::iterator 5577 Ptr = CandidateTypes[0].pointer_begin(), 5578 PtrEnd = CandidateTypes[0].pointer_end(); 5579 Ptr != PtrEnd; ++Ptr) { 5580 QualType ParamTy = *Ptr; 5581 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); 5582 } 5583 } 5584 5585 // C++ [over.built]p10: 5586 // For every promoted integral type T, there exist candidate 5587 // operator functions of the form 5588 // 5589 // T operator~(T); 5590 void addUnaryTildePromotedIntegralOverloads() { 5591 if (!HasArithmeticOrEnumeralCandidateType) 5592 return; 5593 5594 for (unsigned Int = FirstPromotedIntegralType; 5595 Int < LastPromotedIntegralType; ++Int) { 5596 QualType IntTy = getArithmeticType(Int); 5597 S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); 5598 } 5599 5600 // Extension: We also add this operator for vector types. 5601 for (BuiltinCandidateTypeSet::iterator 5602 Vec = CandidateTypes[0].vector_begin(), 5603 VecEnd = CandidateTypes[0].vector_end(); 5604 Vec != VecEnd; ++Vec) { 5605 QualType VecTy = *Vec; 5606 S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); 5607 } 5608 } 5609 5610 // C++ [over.match.oper]p16: 5611 // For every pointer to member type T, there exist candidate operator 5612 // functions of the form 5613 // 5614 // bool operator==(T,T); 5615 // bool operator!=(T,T); 5616 void addEqualEqualOrNotEqualMemberPointerOverloads() { 5617 /// Set of (canonical) types that we've already handled. 5618 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5619 5620 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5621 for (BuiltinCandidateTypeSet::iterator 5622 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5623 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5624 MemPtr != MemPtrEnd; 5625 ++MemPtr) { 5626 // Don't add the same builtin candidate twice. 5627 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5628 continue; 5629 5630 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 5631 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5632 CandidateSet); 5633 } 5634 } 5635 } 5636 5637 // C++ [over.built]p15: 5638 // 5639 // For every T, where T is an enumeration type, a pointer type, or 5640 // std::nullptr_t, there exist candidate operator functions of the form 5641 // 5642 // bool operator<(T, T); 5643 // bool operator>(T, T); 5644 // bool operator<=(T, T); 5645 // bool operator>=(T, T); 5646 // bool operator==(T, T); 5647 // bool operator!=(T, T); 5648 void addRelationalPointerOrEnumeralOverloads() { 5649 // C++ [over.built]p1: 5650 // If there is a user-written candidate with the same name and parameter 5651 // types as a built-in candidate operator function, the built-in operator 5652 // function is hidden and is not included in the set of candidate 5653 // functions. 5654 // 5655 // The text is actually in a note, but if we don't implement it then we end 5656 // up with ambiguities when the user provides an overloaded operator for 5657 // an enumeration type. Note that only enumeration types have this problem, 5658 // so we track which enumeration types we've seen operators for. Also, the 5659 // only other overloaded operator with enumeration argumenst, operator=, 5660 // cannot be overloaded for enumeration types, so this is the only place 5661 // where we must suppress candidates like this. 5662 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 5663 UserDefinedBinaryOperators; 5664 5665 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5666 if (CandidateTypes[ArgIdx].enumeration_begin() != 5667 CandidateTypes[ArgIdx].enumeration_end()) { 5668 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 5669 CEnd = CandidateSet.end(); 5670 C != CEnd; ++C) { 5671 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 5672 continue; 5673 5674 QualType FirstParamType = 5675 C->Function->getParamDecl(0)->getType().getUnqualifiedType(); 5676 QualType SecondParamType = 5677 C->Function->getParamDecl(1)->getType().getUnqualifiedType(); 5678 5679 // Skip if either parameter isn't of enumeral type. 5680 if (!FirstParamType->isEnumeralType() || 5681 !SecondParamType->isEnumeralType()) 5682 continue; 5683 5684 // Add this operator to the set of known user-defined operators. 5685 UserDefinedBinaryOperators.insert( 5686 std::make_pair(S.Context.getCanonicalType(FirstParamType), 5687 S.Context.getCanonicalType(SecondParamType))); 5688 } 5689 } 5690 } 5691 5692 /// Set of (canonical) types that we've already handled. 5693 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5694 5695 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 5696 for (BuiltinCandidateTypeSet::iterator 5697 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 5698 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 5699 Ptr != PtrEnd; ++Ptr) { 5700 // Don't add the same builtin candidate twice. 5701 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5702 continue; 5703 5704 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5705 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5706 CandidateSet); 5707 } 5708 for (BuiltinCandidateTypeSet::iterator 5709 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5710 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5711 Enum != EnumEnd; ++Enum) { 5712 CanQualType CanonType = S.Context.getCanonicalType(*Enum); 5713 5714 // Don't add the same builtin candidate twice, or if a user defined 5715 // candidate exists. 5716 if (!AddedTypes.insert(CanonType) || 5717 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 5718 CanonType))) 5719 continue; 5720 5721 QualType ParamTypes[2] = { *Enum, *Enum }; 5722 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5723 CandidateSet); 5724 } 5725 5726 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 5727 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 5728 if (AddedTypes.insert(NullPtrTy) && 5729 !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy, 5730 NullPtrTy))) { 5731 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 5732 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, 5733 CandidateSet); 5734 } 5735 } 5736 } 5737 } 5738 5739 // C++ [over.built]p13: 5740 // 5741 // For every cv-qualified or cv-unqualified object type T 5742 // there exist candidate operator functions of the form 5743 // 5744 // T* operator+(T*, ptrdiff_t); 5745 // T& operator[](T*, ptrdiff_t); [BELOW] 5746 // T* operator-(T*, ptrdiff_t); 5747 // T* operator+(ptrdiff_t, T*); 5748 // T& operator[](ptrdiff_t, T*); [BELOW] 5749 // 5750 // C++ [over.built]p14: 5751 // 5752 // For every T, where T is a pointer to object type, there 5753 // exist candidate operator functions of the form 5754 // 5755 // ptrdiff_t operator-(T, T); 5756 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 5757 /// Set of (canonical) types that we've already handled. 5758 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5759 5760 for (int Arg = 0; Arg < 2; ++Arg) { 5761 QualType AsymetricParamTypes[2] = { 5762 S.Context.getPointerDiffType(), 5763 S.Context.getPointerDiffType(), 5764 }; 5765 for (BuiltinCandidateTypeSet::iterator 5766 Ptr = CandidateTypes[Arg].pointer_begin(), 5767 PtrEnd = CandidateTypes[Arg].pointer_end(); 5768 Ptr != PtrEnd; ++Ptr) { 5769 QualType PointeeTy = (*Ptr)->getPointeeType(); 5770 if (!PointeeTy->isObjectType()) 5771 continue; 5772 5773 AsymetricParamTypes[Arg] = *Ptr; 5774 if (Arg == 0 || Op == OO_Plus) { 5775 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 5776 // T* operator+(ptrdiff_t, T*); 5777 S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, 5778 CandidateSet); 5779 } 5780 if (Op == OO_Minus) { 5781 // ptrdiff_t operator-(T, T); 5782 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5783 continue; 5784 5785 QualType ParamTypes[2] = { *Ptr, *Ptr }; 5786 S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, 5787 Args, 2, CandidateSet); 5788 } 5789 } 5790 } 5791 } 5792 5793 // C++ [over.built]p12: 5794 // 5795 // For every pair of promoted arithmetic types L and R, there 5796 // exist candidate operator functions of the form 5797 // 5798 // LR operator*(L, R); 5799 // LR operator/(L, R); 5800 // LR operator+(L, R); 5801 // LR operator-(L, R); 5802 // bool operator<(L, R); 5803 // bool operator>(L, R); 5804 // bool operator<=(L, R); 5805 // bool operator>=(L, R); 5806 // bool operator==(L, R); 5807 // bool operator!=(L, R); 5808 // 5809 // where LR is the result of the usual arithmetic conversions 5810 // between types L and R. 5811 // 5812 // C++ [over.built]p24: 5813 // 5814 // For every pair of promoted arithmetic types L and R, there exist 5815 // candidate operator functions of the form 5816 // 5817 // LR operator?(bool, L, R); 5818 // 5819 // where LR is the result of the usual arithmetic conversions 5820 // between types L and R. 5821 // Our candidates ignore the first parameter. 5822 void addGenericBinaryArithmeticOverloads(bool isComparison) { 5823 if (!HasArithmeticOrEnumeralCandidateType) 5824 return; 5825 5826 for (unsigned Left = FirstPromotedArithmeticType; 5827 Left < LastPromotedArithmeticType; ++Left) { 5828 for (unsigned Right = FirstPromotedArithmeticType; 5829 Right < LastPromotedArithmeticType; ++Right) { 5830 QualType LandR[2] = { getArithmeticType(Left), 5831 getArithmeticType(Right) }; 5832 QualType Result = 5833 isComparison ? S.Context.BoolTy 5834 : getUsualArithmeticConversions(Left, Right); 5835 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5836 } 5837 } 5838 5839 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 5840 // conditional operator for vector types. 5841 for (BuiltinCandidateTypeSet::iterator 5842 Vec1 = CandidateTypes[0].vector_begin(), 5843 Vec1End = CandidateTypes[0].vector_end(); 5844 Vec1 != Vec1End; ++Vec1) { 5845 for (BuiltinCandidateTypeSet::iterator 5846 Vec2 = CandidateTypes[1].vector_begin(), 5847 Vec2End = CandidateTypes[1].vector_end(); 5848 Vec2 != Vec2End; ++Vec2) { 5849 QualType LandR[2] = { *Vec1, *Vec2 }; 5850 QualType Result = S.Context.BoolTy; 5851 if (!isComparison) { 5852 if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) 5853 Result = *Vec1; 5854 else 5855 Result = *Vec2; 5856 } 5857 5858 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5859 } 5860 } 5861 } 5862 5863 // C++ [over.built]p17: 5864 // 5865 // For every pair of promoted integral types L and R, there 5866 // exist candidate operator functions of the form 5867 // 5868 // LR operator%(L, R); 5869 // LR operator&(L, R); 5870 // LR operator^(L, R); 5871 // LR operator|(L, R); 5872 // L operator<<(L, R); 5873 // L operator>>(L, R); 5874 // 5875 // where LR is the result of the usual arithmetic conversions 5876 // between types L and R. 5877 void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { 5878 if (!HasArithmeticOrEnumeralCandidateType) 5879 return; 5880 5881 for (unsigned Left = FirstPromotedIntegralType; 5882 Left < LastPromotedIntegralType; ++Left) { 5883 for (unsigned Right = FirstPromotedIntegralType; 5884 Right < LastPromotedIntegralType; ++Right) { 5885 QualType LandR[2] = { getArithmeticType(Left), 5886 getArithmeticType(Right) }; 5887 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) 5888 ? LandR[0] 5889 : getUsualArithmeticConversions(Left, Right); 5890 S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); 5891 } 5892 } 5893 } 5894 5895 // C++ [over.built]p20: 5896 // 5897 // For every pair (T, VQ), where T is an enumeration or 5898 // pointer to member type and VQ is either volatile or 5899 // empty, there exist candidate operator functions of the form 5900 // 5901 // VQ T& operator=(VQ T&, T); 5902 void addAssignmentMemberPointerOrEnumeralOverloads() { 5903 /// Set of (canonical) types that we've already handled. 5904 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5905 5906 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 5907 for (BuiltinCandidateTypeSet::iterator 5908 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 5909 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 5910 Enum != EnumEnd; ++Enum) { 5911 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 5912 continue; 5913 5914 AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, 5915 CandidateSet); 5916 } 5917 5918 for (BuiltinCandidateTypeSet::iterator 5919 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 5920 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 5921 MemPtr != MemPtrEnd; ++MemPtr) { 5922 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 5923 continue; 5924 5925 AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, 5926 CandidateSet); 5927 } 5928 } 5929 } 5930 5931 // C++ [over.built]p19: 5932 // 5933 // For every pair (T, VQ), where T is any type and VQ is either 5934 // volatile or empty, there exist candidate operator functions 5935 // of the form 5936 // 5937 // T*VQ& operator=(T*VQ&, T*); 5938 // 5939 // C++ [over.built]p21: 5940 // 5941 // For every pair (T, VQ), where T is a cv-qualified or 5942 // cv-unqualified object type and VQ is either volatile or 5943 // empty, there exist candidate operator functions of the form 5944 // 5945 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 5946 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 5947 void addAssignmentPointerOverloads(bool isEqualOp) { 5948 /// Set of (canonical) types that we've already handled. 5949 llvm::SmallPtrSet<QualType, 8> AddedTypes; 5950 5951 for (BuiltinCandidateTypeSet::iterator 5952 Ptr = CandidateTypes[0].pointer_begin(), 5953 PtrEnd = CandidateTypes[0].pointer_end(); 5954 Ptr != PtrEnd; ++Ptr) { 5955 // If this is operator=, keep track of the builtin candidates we added. 5956 if (isEqualOp) 5957 AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); 5958 else if (!(*Ptr)->getPointeeType()->isObjectType()) 5959 continue; 5960 5961 // non-volatile version 5962 QualType ParamTypes[2] = { 5963 S.Context.getLValueReferenceType(*Ptr), 5964 isEqualOp ? *Ptr : S.Context.getPointerDiffType(), 5965 }; 5966 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5967 /*IsAssigmentOperator=*/ isEqualOp); 5968 5969 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5970 VisibleTypeConversionsQuals.hasVolatile()) { 5971 // volatile version 5972 ParamTypes[0] = 5973 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 5974 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5975 /*IsAssigmentOperator=*/isEqualOp); 5976 } 5977 } 5978 5979 if (isEqualOp) { 5980 for (BuiltinCandidateTypeSet::iterator 5981 Ptr = CandidateTypes[1].pointer_begin(), 5982 PtrEnd = CandidateTypes[1].pointer_end(); 5983 Ptr != PtrEnd; ++Ptr) { 5984 // Make sure we don't add the same candidate twice. 5985 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 5986 continue; 5987 5988 QualType ParamTypes[2] = { 5989 S.Context.getLValueReferenceType(*Ptr), 5990 *Ptr, 5991 }; 5992 5993 // non-volatile version 5994 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 5995 /*IsAssigmentOperator=*/true); 5996 5997 if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && 5998 VisibleTypeConversionsQuals.hasVolatile()) { 5999 // volatile version 6000 ParamTypes[0] = 6001 S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); 6002 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6003 CandidateSet, /*IsAssigmentOperator=*/true); 6004 } 6005 } 6006 } 6007 } 6008 6009 // C++ [over.built]p18: 6010 // 6011 // For every triple (L, VQ, R), where L is an arithmetic type, 6012 // VQ is either volatile or empty, and R is a promoted 6013 // arithmetic type, there exist candidate operator functions of 6014 // the form 6015 // 6016 // VQ L& operator=(VQ L&, R); 6017 // VQ L& operator*=(VQ L&, R); 6018 // VQ L& operator/=(VQ L&, R); 6019 // VQ L& operator+=(VQ L&, R); 6020 // VQ L& operator-=(VQ L&, R); 6021 void addAssignmentArithmeticOverloads(bool isEqualOp) { 6022 if (!HasArithmeticOrEnumeralCandidateType) 6023 return; 6024 6025 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 6026 for (unsigned Right = FirstPromotedArithmeticType; 6027 Right < LastPromotedArithmeticType; ++Right) { 6028 QualType ParamTypes[2]; 6029 ParamTypes[1] = getArithmeticType(Right); 6030 6031 // Add this built-in operator as a candidate (VQ is empty). 6032 ParamTypes[0] = 6033 S.Context.getLValueReferenceType(getArithmeticType(Left)); 6034 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6035 /*IsAssigmentOperator=*/isEqualOp); 6036 6037 // Add this built-in operator as a candidate (VQ is 'volatile'). 6038 if (VisibleTypeConversionsQuals.hasVolatile()) { 6039 ParamTypes[0] = 6040 S.Context.getVolatileType(getArithmeticType(Left)); 6041 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6042 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6043 CandidateSet, 6044 /*IsAssigmentOperator=*/isEqualOp); 6045 } 6046 } 6047 } 6048 6049 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 6050 for (BuiltinCandidateTypeSet::iterator 6051 Vec1 = CandidateTypes[0].vector_begin(), 6052 Vec1End = CandidateTypes[0].vector_end(); 6053 Vec1 != Vec1End; ++Vec1) { 6054 for (BuiltinCandidateTypeSet::iterator 6055 Vec2 = CandidateTypes[1].vector_begin(), 6056 Vec2End = CandidateTypes[1].vector_end(); 6057 Vec2 != Vec2End; ++Vec2) { 6058 QualType ParamTypes[2]; 6059 ParamTypes[1] = *Vec2; 6060 // Add this built-in operator as a candidate (VQ is empty). 6061 ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); 6062 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, 6063 /*IsAssigmentOperator=*/isEqualOp); 6064 6065 // Add this built-in operator as a candidate (VQ is 'volatile'). 6066 if (VisibleTypeConversionsQuals.hasVolatile()) { 6067 ParamTypes[0] = S.Context.getVolatileType(*Vec1); 6068 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6069 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6070 CandidateSet, 6071 /*IsAssigmentOperator=*/isEqualOp); 6072 } 6073 } 6074 } 6075 } 6076 6077 // C++ [over.built]p22: 6078 // 6079 // For every triple (L, VQ, R), where L is an integral type, VQ 6080 // is either volatile or empty, and R is a promoted integral 6081 // type, there exist candidate operator functions of the form 6082 // 6083 // VQ L& operator%=(VQ L&, R); 6084 // VQ L& operator<<=(VQ L&, R); 6085 // VQ L& operator>>=(VQ L&, R); 6086 // VQ L& operator&=(VQ L&, R); 6087 // VQ L& operator^=(VQ L&, R); 6088 // VQ L& operator|=(VQ L&, R); 6089 void addAssignmentIntegralOverloads() { 6090 if (!HasArithmeticOrEnumeralCandidateType) 6091 return; 6092 6093 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 6094 for (unsigned Right = FirstPromotedIntegralType; 6095 Right < LastPromotedIntegralType; ++Right) { 6096 QualType ParamTypes[2]; 6097 ParamTypes[1] = getArithmeticType(Right); 6098 6099 // Add this built-in operator as a candidate (VQ is empty). 6100 ParamTypes[0] = 6101 S.Context.getLValueReferenceType(getArithmeticType(Left)); 6102 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); 6103 if (VisibleTypeConversionsQuals.hasVolatile()) { 6104 // Add this built-in operator as a candidate (VQ is 'volatile'). 6105 ParamTypes[0] = getArithmeticType(Left); 6106 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 6107 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 6108 S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, 6109 CandidateSet); 6110 } 6111 } 6112 } 6113 } 6114 6115 // C++ [over.operator]p23: 6116 // 6117 // There also exist candidate operator functions of the form 6118 // 6119 // bool operator!(bool); 6120 // bool operator&&(bool, bool); 6121 // bool operator||(bool, bool); 6122 void addExclaimOverload() { 6123 QualType ParamTy = S.Context.BoolTy; 6124 S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, 6125 /*IsAssignmentOperator=*/false, 6126 /*NumContextualBoolArguments=*/1); 6127 } 6128 void addAmpAmpOrPipePipeOverload() { 6129 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 6130 S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, 6131 /*IsAssignmentOperator=*/false, 6132 /*NumContextualBoolArguments=*/2); 6133 } 6134 6135 // C++ [over.built]p13: 6136 // 6137 // For every cv-qualified or cv-unqualified object type T there 6138 // exist candidate operator functions of the form 6139 // 6140 // T* operator+(T*, ptrdiff_t); [ABOVE] 6141 // T& operator[](T*, ptrdiff_t); 6142 // T* operator-(T*, ptrdiff_t); [ABOVE] 6143 // T* operator+(ptrdiff_t, T*); [ABOVE] 6144 // T& operator[](ptrdiff_t, T*); 6145 void addSubscriptOverloads() { 6146 for (BuiltinCandidateTypeSet::iterator 6147 Ptr = CandidateTypes[0].pointer_begin(), 6148 PtrEnd = CandidateTypes[0].pointer_end(); 6149 Ptr != PtrEnd; ++Ptr) { 6150 QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; 6151 QualType PointeeType = (*Ptr)->getPointeeType(); 6152 if (!PointeeType->isObjectType()) 6153 continue; 6154 6155 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 6156 6157 // T& operator[](T*, ptrdiff_t) 6158 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 6159 } 6160 6161 for (BuiltinCandidateTypeSet::iterator 6162 Ptr = CandidateTypes[1].pointer_begin(), 6163 PtrEnd = CandidateTypes[1].pointer_end(); 6164 Ptr != PtrEnd; ++Ptr) { 6165 QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; 6166 QualType PointeeType = (*Ptr)->getPointeeType(); 6167 if (!PointeeType->isObjectType()) 6168 continue; 6169 6170 QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); 6171 6172 // T& operator[](ptrdiff_t, T*) 6173 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 6174 } 6175 } 6176 6177 // C++ [over.built]p11: 6178 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 6179 // C1 is the same type as C2 or is a derived class of C2, T is an object 6180 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 6181 // there exist candidate operator functions of the form 6182 // 6183 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 6184 // 6185 // where CV12 is the union of CV1 and CV2. 6186 void addArrowStarOverloads() { 6187 for (BuiltinCandidateTypeSet::iterator 6188 Ptr = CandidateTypes[0].pointer_begin(), 6189 PtrEnd = CandidateTypes[0].pointer_end(); 6190 Ptr != PtrEnd; ++Ptr) { 6191 QualType C1Ty = (*Ptr); 6192 QualType C1; 6193 QualifierCollector Q1; 6194 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 6195 if (!isa<RecordType>(C1)) 6196 continue; 6197 // heuristic to reduce number of builtin candidates in the set. 6198 // Add volatile/restrict version only if there are conversions to a 6199 // volatile/restrict type. 6200 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 6201 continue; 6202 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 6203 continue; 6204 for (BuiltinCandidateTypeSet::iterator 6205 MemPtr = CandidateTypes[1].member_pointer_begin(), 6206 MemPtrEnd = CandidateTypes[1].member_pointer_end(); 6207 MemPtr != MemPtrEnd; ++MemPtr) { 6208 const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); 6209 QualType C2 = QualType(mptr->getClass(), 0); 6210 C2 = C2.getUnqualifiedType(); 6211 if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) 6212 break; 6213 QualType ParamTypes[2] = { *Ptr, *MemPtr }; 6214 // build CV12 T& 6215 QualType T = mptr->getPointeeType(); 6216 if (!VisibleTypeConversionsQuals.hasVolatile() && 6217 T.isVolatileQualified()) 6218 continue; 6219 if (!VisibleTypeConversionsQuals.hasRestrict() && 6220 T.isRestrictQualified()) 6221 continue; 6222 T = Q1.apply(S.Context, T); 6223 QualType ResultTy = S.Context.getLValueReferenceType(T); 6224 S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); 6225 } 6226 } 6227 } 6228 6229 // Note that we don't consider the first argument, since it has been 6230 // contextually converted to bool long ago. The candidates below are 6231 // therefore added as binary. 6232 // 6233 // C++ [over.built]p25: 6234 // For every type T, where T is a pointer, pointer-to-member, or scoped 6235 // enumeration type, there exist candidate operator functions of the form 6236 // 6237 // T operator?(bool, T, T); 6238 // 6239 void addConditionalOperatorOverloads() { 6240 /// Set of (canonical) types that we've already handled. 6241 llvm::SmallPtrSet<QualType, 8> AddedTypes; 6242 6243 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 6244 for (BuiltinCandidateTypeSet::iterator 6245 Ptr = CandidateTypes[ArgIdx].pointer_begin(), 6246 PtrEnd = CandidateTypes[ArgIdx].pointer_end(); 6247 Ptr != PtrEnd; ++Ptr) { 6248 if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) 6249 continue; 6250 6251 QualType ParamTypes[2] = { *Ptr, *Ptr }; 6252 S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); 6253 } 6254 6255 for (BuiltinCandidateTypeSet::iterator 6256 MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), 6257 MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); 6258 MemPtr != MemPtrEnd; ++MemPtr) { 6259 if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) 6260 continue; 6261 6262 QualType ParamTypes[2] = { *MemPtr, *MemPtr }; 6263 S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); 6264 } 6265 6266 if (S.getLangOptions().CPlusPlus0x) { 6267 for (BuiltinCandidateTypeSet::iterator 6268 Enum = CandidateTypes[ArgIdx].enumeration_begin(), 6269 EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); 6270 Enum != EnumEnd; ++Enum) { 6271 if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) 6272 continue; 6273 6274 if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) 6275 continue; 6276 6277 QualType ParamTypes[2] = { *Enum, *Enum }; 6278 S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); 6279 } 6280 } 6281 } 6282 } 6283}; 6284 6285} // end anonymous namespace 6286 6287/// AddBuiltinOperatorCandidates - Add the appropriate built-in 6288/// operator overloads to the candidate set (C++ [over.built]), based 6289/// on the operator @p Op and the arguments given. For example, if the 6290/// operator is a binary '+', this routine might add "int 6291/// operator+(int, int)" to cover integer addition. 6292void 6293Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 6294 SourceLocation OpLoc, 6295 Expr **Args, unsigned NumArgs, 6296 OverloadCandidateSet& CandidateSet) { 6297 // Find all of the types that the arguments can convert to, but only 6298 // if the operator we're looking at has built-in operator candidates 6299 // that make use of these types. Also record whether we encounter non-record 6300 // candidate types or either arithmetic or enumeral candidate types. 6301 Qualifiers VisibleTypeConversionsQuals; 6302 VisibleTypeConversionsQuals.addConst(); 6303 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 6304 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 6305 6306 bool HasNonRecordCandidateType = false; 6307 bool HasArithmeticOrEnumeralCandidateType = false; 6308 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 6309 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { 6310 CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); 6311 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 6312 OpLoc, 6313 true, 6314 (Op == OO_Exclaim || 6315 Op == OO_AmpAmp || 6316 Op == OO_PipePipe), 6317 VisibleTypeConversionsQuals); 6318 HasNonRecordCandidateType = HasNonRecordCandidateType || 6319 CandidateTypes[ArgIdx].hasNonRecordTypes(); 6320 HasArithmeticOrEnumeralCandidateType = 6321 HasArithmeticOrEnumeralCandidateType || 6322 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 6323 } 6324 6325 // Exit early when no non-record types have been added to the candidate set 6326 // for any of the arguments to the operator. 6327 if (!HasNonRecordCandidateType) 6328 return; 6329 6330 // Setup an object to manage the common state for building overloads. 6331 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, 6332 VisibleTypeConversionsQuals, 6333 HasArithmeticOrEnumeralCandidateType, 6334 CandidateTypes, CandidateSet); 6335 6336 // Dispatch over the operation to add in only those overloads which apply. 6337 switch (Op) { 6338 case OO_None: 6339 case NUM_OVERLOADED_OPERATORS: 6340 llvm_unreachable("Expected an overloaded operator"); 6341 6342 case OO_New: 6343 case OO_Delete: 6344 case OO_Array_New: 6345 case OO_Array_Delete: 6346 case OO_Call: 6347 llvm_unreachable( 6348 "Special operators don't use AddBuiltinOperatorCandidates"); 6349 6350 case OO_Comma: 6351 case OO_Arrow: 6352 // C++ [over.match.oper]p3: 6353 // -- For the operator ',', the unary operator '&', or the 6354 // operator '->', the built-in candidates set is empty. 6355 break; 6356 6357 case OO_Plus: // '+' is either unary or binary 6358 if (NumArgs == 1) 6359 OpBuilder.addUnaryPlusPointerOverloads(); 6360 // Fall through. 6361 6362 case OO_Minus: // '-' is either unary or binary 6363 if (NumArgs == 1) { 6364 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 6365 } else { 6366 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 6367 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6368 } 6369 break; 6370 6371 case OO_Star: // '*' is either unary or binary 6372 if (NumArgs == 1) 6373 OpBuilder.addUnaryStarPointerOverloads(); 6374 else 6375 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6376 break; 6377 6378 case OO_Slash: 6379 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6380 break; 6381 6382 case OO_PlusPlus: 6383 case OO_MinusMinus: 6384 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 6385 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 6386 break; 6387 6388 case OO_EqualEqual: 6389 case OO_ExclaimEqual: 6390 OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); 6391 // Fall through. 6392 6393 case OO_Less: 6394 case OO_Greater: 6395 case OO_LessEqual: 6396 case OO_GreaterEqual: 6397 OpBuilder.addRelationalPointerOrEnumeralOverloads(); 6398 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); 6399 break; 6400 6401 case OO_Percent: 6402 case OO_Caret: 6403 case OO_Pipe: 6404 case OO_LessLess: 6405 case OO_GreaterGreater: 6406 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 6407 break; 6408 6409 case OO_Amp: // '&' is either unary or binary 6410 if (NumArgs == 1) 6411 // C++ [over.match.oper]p3: 6412 // -- For the operator ',', the unary operator '&', or the 6413 // operator '->', the built-in candidates set is empty. 6414 break; 6415 6416 OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); 6417 break; 6418 6419 case OO_Tilde: 6420 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 6421 break; 6422 6423 case OO_Equal: 6424 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 6425 // Fall through. 6426 6427 case OO_PlusEqual: 6428 case OO_MinusEqual: 6429 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 6430 // Fall through. 6431 6432 case OO_StarEqual: 6433 case OO_SlashEqual: 6434 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 6435 break; 6436 6437 case OO_PercentEqual: 6438 case OO_LessLessEqual: 6439 case OO_GreaterGreaterEqual: 6440 case OO_AmpEqual: 6441 case OO_CaretEqual: 6442 case OO_PipeEqual: 6443 OpBuilder.addAssignmentIntegralOverloads(); 6444 break; 6445 6446 case OO_Exclaim: 6447 OpBuilder.addExclaimOverload(); 6448 break; 6449 6450 case OO_AmpAmp: 6451 case OO_PipePipe: 6452 OpBuilder.addAmpAmpOrPipePipeOverload(); 6453 break; 6454 6455 case OO_Subscript: 6456 OpBuilder.addSubscriptOverloads(); 6457 break; 6458 6459 case OO_ArrowStar: 6460 OpBuilder.addArrowStarOverloads(); 6461 break; 6462 6463 case OO_Conditional: 6464 OpBuilder.addConditionalOperatorOverloads(); 6465 OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); 6466 break; 6467 } 6468} 6469 6470/// \brief Add function candidates found via argument-dependent lookup 6471/// to the set of overloading candidates. 6472/// 6473/// This routine performs argument-dependent name lookup based on the 6474/// given function name (which may also be an operator name) and adds 6475/// all of the overload candidates found by ADL to the overload 6476/// candidate set (C++ [basic.lookup.argdep]). 6477void 6478Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 6479 bool Operator, 6480 Expr **Args, unsigned NumArgs, 6481 TemplateArgumentListInfo *ExplicitTemplateArgs, 6482 OverloadCandidateSet& CandidateSet, 6483 bool PartialOverloading, 6484 bool StdNamespaceIsAssociated) { 6485 ADLResult Fns; 6486 6487 // FIXME: This approach for uniquing ADL results (and removing 6488 // redundant candidates from the set) relies on pointer-equality, 6489 // which means we need to key off the canonical decl. However, 6490 // always going back to the canonical decl might not get us the 6491 // right set of default arguments. What default arguments are 6492 // we supposed to consider on ADL candidates, anyway? 6493 6494 // FIXME: Pass in the explicit template arguments? 6495 ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns, 6496 StdNamespaceIsAssociated); 6497 6498 // Erase all of the candidates we already knew about. 6499 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 6500 CandEnd = CandidateSet.end(); 6501 Cand != CandEnd; ++Cand) 6502 if (Cand->Function) { 6503 Fns.erase(Cand->Function); 6504 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 6505 Fns.erase(FunTmpl); 6506 } 6507 6508 // For each of the ADL candidates we found, add it to the overload 6509 // set. 6510 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 6511 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 6512 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 6513 if (ExplicitTemplateArgs) 6514 continue; 6515 6516 AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, 6517 false, PartialOverloading); 6518 } else 6519 AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), 6520 FoundDecl, ExplicitTemplateArgs, 6521 Args, NumArgs, CandidateSet); 6522 } 6523} 6524 6525/// isBetterOverloadCandidate - Determines whether the first overload 6526/// candidate is a better candidate than the second (C++ 13.3.3p1). 6527bool 6528isBetterOverloadCandidate(Sema &S, 6529 const OverloadCandidate &Cand1, 6530 const OverloadCandidate &Cand2, 6531 SourceLocation Loc, 6532 bool UserDefinedConversion) { 6533 // Define viable functions to be better candidates than non-viable 6534 // functions. 6535 if (!Cand2.Viable) 6536 return Cand1.Viable; 6537 else if (!Cand1.Viable) 6538 return false; 6539 6540 // C++ [over.match.best]p1: 6541 // 6542 // -- if F is a static member function, ICS1(F) is defined such 6543 // that ICS1(F) is neither better nor worse than ICS1(G) for 6544 // any function G, and, symmetrically, ICS1(G) is neither 6545 // better nor worse than ICS1(F). 6546 unsigned StartArg = 0; 6547 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 6548 StartArg = 1; 6549 6550 // C++ [over.match.best]p1: 6551 // A viable function F1 is defined to be a better function than another 6552 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 6553 // conversion sequence than ICSi(F2), and then... 6554 unsigned NumArgs = Cand1.Conversions.size(); 6555 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 6556 bool HasBetterConversion = false; 6557 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 6558 switch (CompareImplicitConversionSequences(S, 6559 Cand1.Conversions[ArgIdx], 6560 Cand2.Conversions[ArgIdx])) { 6561 case ImplicitConversionSequence::Better: 6562 // Cand1 has a better conversion sequence. 6563 HasBetterConversion = true; 6564 break; 6565 6566 case ImplicitConversionSequence::Worse: 6567 // Cand1 can't be better than Cand2. 6568 return false; 6569 6570 case ImplicitConversionSequence::Indistinguishable: 6571 // Do nothing. 6572 break; 6573 } 6574 } 6575 6576 // -- for some argument j, ICSj(F1) is a better conversion sequence than 6577 // ICSj(F2), or, if not that, 6578 if (HasBetterConversion) 6579 return true; 6580 6581 // - F1 is a non-template function and F2 is a function template 6582 // specialization, or, if not that, 6583 if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && 6584 Cand2.Function && Cand2.Function->getPrimaryTemplate()) 6585 return true; 6586 6587 // -- F1 and F2 are function template specializations, and the function 6588 // template for F1 is more specialized than the template for F2 6589 // according to the partial ordering rules described in 14.5.5.2, or, 6590 // if not that, 6591 if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && 6592 Cand2.Function && Cand2.Function->getPrimaryTemplate()) { 6593 if (FunctionTemplateDecl *BetterTemplate 6594 = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), 6595 Cand2.Function->getPrimaryTemplate(), 6596 Loc, 6597 isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion 6598 : TPOC_Call, 6599 Cand1.ExplicitCallArguments)) 6600 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 6601 } 6602 6603 // -- the context is an initialization by user-defined conversion 6604 // (see 8.5, 13.3.1.5) and the standard conversion sequence 6605 // from the return type of F1 to the destination type (i.e., 6606 // the type of the entity being initialized) is a better 6607 // conversion sequence than the standard conversion sequence 6608 // from the return type of F2 to the destination type. 6609 if (UserDefinedConversion && Cand1.Function && Cand2.Function && 6610 isa<CXXConversionDecl>(Cand1.Function) && 6611 isa<CXXConversionDecl>(Cand2.Function)) { 6612 switch (CompareStandardConversionSequences(S, 6613 Cand1.FinalConversion, 6614 Cand2.FinalConversion)) { 6615 case ImplicitConversionSequence::Better: 6616 // Cand1 has a better conversion sequence. 6617 return true; 6618 6619 case ImplicitConversionSequence::Worse: 6620 // Cand1 can't be better than Cand2. 6621 return false; 6622 6623 case ImplicitConversionSequence::Indistinguishable: 6624 // Do nothing 6625 break; 6626 } 6627 } 6628 6629 return false; 6630} 6631 6632/// \brief Computes the best viable function (C++ 13.3.3) 6633/// within an overload candidate set. 6634/// 6635/// \param CandidateSet the set of candidate functions. 6636/// 6637/// \param Loc the location of the function name (or operator symbol) for 6638/// which overload resolution occurs. 6639/// 6640/// \param Best f overload resolution was successful or found a deleted 6641/// function, Best points to the candidate function found. 6642/// 6643/// \returns The result of overload resolution. 6644OverloadingResult 6645OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 6646 iterator &Best, 6647 bool UserDefinedConversion) { 6648 // Find the best viable function. 6649 Best = end(); 6650 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6651 if (Cand->Viable) 6652 if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, 6653 UserDefinedConversion)) 6654 Best = Cand; 6655 } 6656 6657 // If we didn't find any viable functions, abort. 6658 if (Best == end()) 6659 return OR_No_Viable_Function; 6660 6661 // Make sure that this function is better than every other viable 6662 // function. If not, we have an ambiguity. 6663 for (iterator Cand = begin(); Cand != end(); ++Cand) { 6664 if (Cand->Viable && 6665 Cand != Best && 6666 !isBetterOverloadCandidate(S, *Best, *Cand, Loc, 6667 UserDefinedConversion)) { 6668 Best = end(); 6669 return OR_Ambiguous; 6670 } 6671 } 6672 6673 // Best is the best viable function. 6674 if (Best->Function && 6675 (Best->Function->isDeleted() || 6676 S.isFunctionConsideredUnavailable(Best->Function))) 6677 return OR_Deleted; 6678 6679 return OR_Success; 6680} 6681 6682namespace { 6683 6684enum OverloadCandidateKind { 6685 oc_function, 6686 oc_method, 6687 oc_constructor, 6688 oc_function_template, 6689 oc_method_template, 6690 oc_constructor_template, 6691 oc_implicit_default_constructor, 6692 oc_implicit_copy_constructor, 6693 oc_implicit_move_constructor, 6694 oc_implicit_copy_assignment, 6695 oc_implicit_move_assignment, 6696 oc_implicit_inherited_constructor 6697}; 6698 6699OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, 6700 FunctionDecl *Fn, 6701 std::string &Description) { 6702 bool isTemplate = false; 6703 6704 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 6705 isTemplate = true; 6706 Description = S.getTemplateArgumentBindingsText( 6707 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 6708 } 6709 6710 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 6711 if (!Ctor->isImplicit()) 6712 return isTemplate ? oc_constructor_template : oc_constructor; 6713 6714 if (Ctor->getInheritedConstructor()) 6715 return oc_implicit_inherited_constructor; 6716 6717 if (Ctor->isDefaultConstructor()) 6718 return oc_implicit_default_constructor; 6719 6720 if (Ctor->isMoveConstructor()) 6721 return oc_implicit_move_constructor; 6722 6723 assert(Ctor->isCopyConstructor() && 6724 "unexpected sort of implicit constructor"); 6725 return oc_implicit_copy_constructor; 6726 } 6727 6728 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 6729 // This actually gets spelled 'candidate function' for now, but 6730 // it doesn't hurt to split it out. 6731 if (!Meth->isImplicit()) 6732 return isTemplate ? oc_method_template : oc_method; 6733 6734 if (Meth->isMoveAssignmentOperator()) 6735 return oc_implicit_move_assignment; 6736 6737 assert(Meth->isCopyAssignmentOperator() 6738 && "implicit method is not copy assignment operator?"); 6739 return oc_implicit_copy_assignment; 6740 } 6741 6742 return isTemplate ? oc_function_template : oc_function; 6743} 6744 6745void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) { 6746 const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn); 6747 if (!Ctor) return; 6748 6749 Ctor = Ctor->getInheritedConstructor(); 6750 if (!Ctor) return; 6751 6752 S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor); 6753} 6754 6755} // end anonymous namespace 6756 6757// Notes the location of an overload candidate. 6758void Sema::NoteOverloadCandidate(FunctionDecl *Fn) { 6759 std::string FnDesc; 6760 OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); 6761 Diag(Fn->getLocation(), diag::note_ovl_candidate) 6762 << (unsigned) K << FnDesc; 6763 MaybeEmitInheritedConstructorNote(*this, Fn); 6764} 6765 6766//Notes the location of all overload candidates designated through 6767// OverloadedExpr 6768void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) { 6769 assert(OverloadedExpr->getType() == Context.OverloadTy); 6770 6771 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 6772 OverloadExpr *OvlExpr = Ovl.Expression; 6773 6774 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 6775 IEnd = OvlExpr->decls_end(); 6776 I != IEnd; ++I) { 6777 if (FunctionTemplateDecl *FunTmpl = 6778 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 6779 NoteOverloadCandidate(FunTmpl->getTemplatedDecl()); 6780 } else if (FunctionDecl *Fun 6781 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 6782 NoteOverloadCandidate(Fun); 6783 } 6784 } 6785} 6786 6787/// Diagnoses an ambiguous conversion. The partial diagnostic is the 6788/// "lead" diagnostic; it will be given two arguments, the source and 6789/// target types of the conversion. 6790void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 6791 Sema &S, 6792 SourceLocation CaretLoc, 6793 const PartialDiagnostic &PDiag) const { 6794 S.Diag(CaretLoc, PDiag) 6795 << Ambiguous.getFromType() << Ambiguous.getToType(); 6796 for (AmbiguousConversionSequence::const_iterator 6797 I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 6798 S.NoteOverloadCandidate(*I); 6799 } 6800} 6801 6802namespace { 6803 6804void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { 6805 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 6806 assert(Conv.isBad()); 6807 assert(Cand->Function && "for now, candidate must be a function"); 6808 FunctionDecl *Fn = Cand->Function; 6809 6810 // There's a conversion slot for the object argument if this is a 6811 // non-constructor method. Note that 'I' corresponds the 6812 // conversion-slot index. 6813 bool isObjectArgument = false; 6814 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 6815 if (I == 0) 6816 isObjectArgument = true; 6817 else 6818 I--; 6819 } 6820 6821 std::string FnDesc; 6822 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 6823 6824 Expr *FromExpr = Conv.Bad.FromExpr; 6825 QualType FromTy = Conv.Bad.getFromType(); 6826 QualType ToTy = Conv.Bad.getToType(); 6827 6828 if (FromTy == S.Context.OverloadTy) { 6829 assert(FromExpr && "overload set argument came from implicit argument?"); 6830 Expr *E = FromExpr->IgnoreParens(); 6831 if (isa<UnaryOperator>(E)) 6832 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 6833 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 6834 6835 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 6836 << (unsigned) FnKind << FnDesc 6837 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6838 << ToTy << Name << I+1; 6839 MaybeEmitInheritedConstructorNote(S, Fn); 6840 return; 6841 } 6842 6843 // Do some hand-waving analysis to see if the non-viability is due 6844 // to a qualifier mismatch. 6845 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 6846 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 6847 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 6848 CToTy = RT->getPointeeType(); 6849 else { 6850 // TODO: detect and diagnose the full richness of const mismatches. 6851 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 6852 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) 6853 CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); 6854 } 6855 6856 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 6857 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 6858 // It is dumb that we have to do this here. 6859 while (isa<ArrayType>(CFromTy)) 6860 CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); 6861 while (isa<ArrayType>(CToTy)) 6862 CToTy = CFromTy->getAs<ArrayType>()->getElementType(); 6863 6864 Qualifiers FromQs = CFromTy.getQualifiers(); 6865 Qualifiers ToQs = CToTy.getQualifiers(); 6866 6867 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 6868 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 6869 << (unsigned) FnKind << FnDesc 6870 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6871 << FromTy 6872 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 6873 << (unsigned) isObjectArgument << I+1; 6874 MaybeEmitInheritedConstructorNote(S, Fn); 6875 return; 6876 } 6877 6878 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 6879 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 6880 << (unsigned) FnKind << FnDesc 6881 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6882 << FromTy 6883 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 6884 << (unsigned) isObjectArgument << I+1; 6885 MaybeEmitInheritedConstructorNote(S, Fn); 6886 return; 6887 } 6888 6889 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 6890 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 6891 << (unsigned) FnKind << FnDesc 6892 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6893 << FromTy 6894 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 6895 << (unsigned) isObjectArgument << I+1; 6896 MaybeEmitInheritedConstructorNote(S, Fn); 6897 return; 6898 } 6899 6900 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 6901 assert(CVR && "unexpected qualifiers mismatch"); 6902 6903 if (isObjectArgument) { 6904 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 6905 << (unsigned) FnKind << FnDesc 6906 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6907 << FromTy << (CVR - 1); 6908 } else { 6909 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 6910 << (unsigned) FnKind << FnDesc 6911 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6912 << FromTy << (CVR - 1) << I+1; 6913 } 6914 MaybeEmitInheritedConstructorNote(S, Fn); 6915 return; 6916 } 6917 6918 // Special diagnostic for failure to convert an initializer list, since 6919 // telling the user that it has type void is not useful. 6920 if (FromExpr && isa<InitListExpr>(FromExpr)) { 6921 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 6922 << (unsigned) FnKind << FnDesc 6923 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6924 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6925 MaybeEmitInheritedConstructorNote(S, Fn); 6926 return; 6927 } 6928 6929 // Diagnose references or pointers to incomplete types differently, 6930 // since it's far from impossible that the incompleteness triggered 6931 // the failure. 6932 QualType TempFromTy = FromTy.getNonReferenceType(); 6933 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 6934 TempFromTy = PTy->getPointeeType(); 6935 if (TempFromTy->isIncompleteType()) { 6936 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 6937 << (unsigned) FnKind << FnDesc 6938 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6939 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6940 MaybeEmitInheritedConstructorNote(S, Fn); 6941 return; 6942 } 6943 6944 // Diagnose base -> derived pointer conversions. 6945 unsigned BaseToDerivedConversion = 0; 6946 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 6947 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 6948 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6949 FromPtrTy->getPointeeType()) && 6950 !FromPtrTy->getPointeeType()->isIncompleteType() && 6951 !ToPtrTy->getPointeeType()->isIncompleteType() && 6952 S.IsDerivedFrom(ToPtrTy->getPointeeType(), 6953 FromPtrTy->getPointeeType())) 6954 BaseToDerivedConversion = 1; 6955 } 6956 } else if (const ObjCObjectPointerType *FromPtrTy 6957 = FromTy->getAs<ObjCObjectPointerType>()) { 6958 if (const ObjCObjectPointerType *ToPtrTy 6959 = ToTy->getAs<ObjCObjectPointerType>()) 6960 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 6961 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 6962 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 6963 FromPtrTy->getPointeeType()) && 6964 FromIface->isSuperClassOf(ToIface)) 6965 BaseToDerivedConversion = 2; 6966 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 6967 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 6968 !FromTy->isIncompleteType() && 6969 !ToRefTy->getPointeeType()->isIncompleteType() && 6970 S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) 6971 BaseToDerivedConversion = 3; 6972 } 6973 6974 if (BaseToDerivedConversion) { 6975 S.Diag(Fn->getLocation(), 6976 diag::note_ovl_candidate_bad_base_to_derived_conv) 6977 << (unsigned) FnKind << FnDesc 6978 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6979 << (BaseToDerivedConversion - 1) 6980 << FromTy << ToTy << I+1; 6981 MaybeEmitInheritedConstructorNote(S, Fn); 6982 return; 6983 } 6984 6985 if (isa<ObjCObjectPointerType>(CFromTy) && 6986 isa<PointerType>(CToTy)) { 6987 Qualifiers FromQs = CFromTy.getQualifiers(); 6988 Qualifiers ToQs = CToTy.getQualifiers(); 6989 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 6990 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 6991 << (unsigned) FnKind << FnDesc 6992 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 6993 << FromTy << ToTy << (unsigned) isObjectArgument << I+1; 6994 MaybeEmitInheritedConstructorNote(S, Fn); 6995 return; 6996 } 6997 } 6998 6999 // Emit the generic diagnostic and, optionally, add the hints to it. 7000 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 7001 FDiag << (unsigned) FnKind << FnDesc 7002 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 7003 << FromTy << ToTy << (unsigned) isObjectArgument << I + 1 7004 << (unsigned) (Cand->Fix.Kind); 7005 7006 // If we can fix the conversion, suggest the FixIts. 7007 for (SmallVector<FixItHint, 1>::iterator 7008 HI = Cand->Fix.Hints.begin(), HE = Cand->Fix.Hints.end(); 7009 HI != HE; ++HI) 7010 FDiag << *HI; 7011 S.Diag(Fn->getLocation(), FDiag); 7012 7013 MaybeEmitInheritedConstructorNote(S, Fn); 7014} 7015 7016void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 7017 unsigned NumFormalArgs) { 7018 // TODO: treat calls to a missing default constructor as a special case 7019 7020 FunctionDecl *Fn = Cand->Function; 7021 const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); 7022 7023 unsigned MinParams = Fn->getMinRequiredArguments(); 7024 7025 // With invalid overloaded operators, it's possible that we think we 7026 // have an arity mismatch when it fact it looks like we have the 7027 // right number of arguments, because only overloaded operators have 7028 // the weird behavior of overloading member and non-member functions. 7029 // Just don't report anything. 7030 if (Fn->isInvalidDecl() && 7031 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 7032 return; 7033 7034 // at least / at most / exactly 7035 unsigned mode, modeCount; 7036 if (NumFormalArgs < MinParams) { 7037 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 7038 (Cand->FailureKind == ovl_fail_bad_deduction && 7039 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 7040 if (MinParams != FnTy->getNumArgs() || 7041 FnTy->isVariadic() || FnTy->isTemplateVariadic()) 7042 mode = 0; // "at least" 7043 else 7044 mode = 2; // "exactly" 7045 modeCount = MinParams; 7046 } else { 7047 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 7048 (Cand->FailureKind == ovl_fail_bad_deduction && 7049 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 7050 if (MinParams != FnTy->getNumArgs()) 7051 mode = 1; // "at most" 7052 else 7053 mode = 2; // "exactly" 7054 modeCount = FnTy->getNumArgs(); 7055 } 7056 7057 std::string Description; 7058 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); 7059 7060 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 7061 << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode 7062 << modeCount << NumFormalArgs; 7063 MaybeEmitInheritedConstructorNote(S, Fn); 7064} 7065 7066/// Diagnose a failed template-argument deduction. 7067void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 7068 Expr **Args, unsigned NumArgs) { 7069 FunctionDecl *Fn = Cand->Function; // pattern 7070 7071 TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); 7072 NamedDecl *ParamD; 7073 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 7074 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 7075 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 7076 switch (Cand->DeductionFailure.Result) { 7077 case Sema::TDK_Success: 7078 llvm_unreachable("TDK_success while diagnosing bad deduction"); 7079 7080 case Sema::TDK_Incomplete: { 7081 assert(ParamD && "no parameter found for incomplete deduction result"); 7082 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) 7083 << ParamD->getDeclName(); 7084 MaybeEmitInheritedConstructorNote(S, Fn); 7085 return; 7086 } 7087 7088 case Sema::TDK_Underqualified: { 7089 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 7090 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 7091 7092 QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); 7093 7094 // Param will have been canonicalized, but it should just be a 7095 // qualified version of ParamD, so move the qualifiers to that. 7096 QualifierCollector Qs; 7097 Qs.strip(Param); 7098 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 7099 assert(S.Context.hasSameType(Param, NonCanonParam)); 7100 7101 // Arg has also been canonicalized, but there's nothing we can do 7102 // about that. It also doesn't matter as much, because it won't 7103 // have any template parameters in it (because deduction isn't 7104 // done on dependent types). 7105 QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); 7106 7107 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) 7108 << ParamD->getDeclName() << Arg << NonCanonParam; 7109 MaybeEmitInheritedConstructorNote(S, Fn); 7110 return; 7111 } 7112 7113 case Sema::TDK_Inconsistent: { 7114 assert(ParamD && "no parameter found for inconsistent deduction result"); 7115 int which = 0; 7116 if (isa<TemplateTypeParmDecl>(ParamD)) 7117 which = 0; 7118 else if (isa<NonTypeTemplateParmDecl>(ParamD)) 7119 which = 1; 7120 else { 7121 which = 2; 7122 } 7123 7124 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) 7125 << which << ParamD->getDeclName() 7126 << *Cand->DeductionFailure.getFirstArg() 7127 << *Cand->DeductionFailure.getSecondArg(); 7128 MaybeEmitInheritedConstructorNote(S, Fn); 7129 return; 7130 } 7131 7132 case Sema::TDK_InvalidExplicitArguments: 7133 assert(ParamD && "no parameter found for invalid explicit arguments"); 7134 if (ParamD->getDeclName()) 7135 S.Diag(Fn->getLocation(), 7136 diag::note_ovl_candidate_explicit_arg_mismatch_named) 7137 << ParamD->getDeclName(); 7138 else { 7139 int index = 0; 7140 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 7141 index = TTP->getIndex(); 7142 else if (NonTypeTemplateParmDecl *NTTP 7143 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 7144 index = NTTP->getIndex(); 7145 else 7146 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 7147 S.Diag(Fn->getLocation(), 7148 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 7149 << (index + 1); 7150 } 7151 MaybeEmitInheritedConstructorNote(S, Fn); 7152 return; 7153 7154 case Sema::TDK_TooManyArguments: 7155 case Sema::TDK_TooFewArguments: 7156 DiagnoseArityMismatch(S, Cand, NumArgs); 7157 return; 7158 7159 case Sema::TDK_InstantiationDepth: 7160 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); 7161 MaybeEmitInheritedConstructorNote(S, Fn); 7162 return; 7163 7164 case Sema::TDK_SubstitutionFailure: { 7165 std::string ArgString; 7166 if (TemplateArgumentList *Args 7167 = Cand->DeductionFailure.getTemplateArgumentList()) 7168 ArgString = S.getTemplateArgumentBindingsText( 7169 Fn->getDescribedFunctionTemplate()->getTemplateParameters(), 7170 *Args); 7171 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) 7172 << ArgString; 7173 MaybeEmitInheritedConstructorNote(S, Fn); 7174 return; 7175 } 7176 7177 // TODO: diagnose these individually, then kill off 7178 // note_ovl_candidate_bad_deduction, which is uselessly vague. 7179 case Sema::TDK_NonDeducedMismatch: 7180 case Sema::TDK_FailedOverloadResolution: 7181 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); 7182 MaybeEmitInheritedConstructorNote(S, Fn); 7183 return; 7184 } 7185} 7186 7187/// Generates a 'note' diagnostic for an overload candidate. We've 7188/// already generated a primary error at the call site. 7189/// 7190/// It really does need to be a single diagnostic with its caret 7191/// pointed at the candidate declaration. Yes, this creates some 7192/// major challenges of technical writing. Yes, this makes pointing 7193/// out problems with specific arguments quite awkward. It's still 7194/// better than generating twenty screens of text for every failed 7195/// overload. 7196/// 7197/// It would be great to be able to express per-candidate problems 7198/// more richly for those diagnostic clients that cared, but we'd 7199/// still have to be just as careful with the default diagnostics. 7200void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 7201 Expr **Args, unsigned NumArgs) { 7202 FunctionDecl *Fn = Cand->Function; 7203 7204 // Note deleted candidates, but only if they're viable. 7205 if (Cand->Viable && (Fn->isDeleted() || 7206 S.isFunctionConsideredUnavailable(Fn))) { 7207 std::string FnDesc; 7208 OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); 7209 7210 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 7211 << FnKind << FnDesc << Fn->isDeleted(); 7212 MaybeEmitInheritedConstructorNote(S, Fn); 7213 return; 7214 } 7215 7216 // We don't really have anything else to say about viable candidates. 7217 if (Cand->Viable) { 7218 S.NoteOverloadCandidate(Fn); 7219 return; 7220 } 7221 7222 switch (Cand->FailureKind) { 7223 case ovl_fail_too_many_arguments: 7224 case ovl_fail_too_few_arguments: 7225 return DiagnoseArityMismatch(S, Cand, NumArgs); 7226 7227 case ovl_fail_bad_deduction: 7228 return DiagnoseBadDeduction(S, Cand, Args, NumArgs); 7229 7230 case ovl_fail_trivial_conversion: 7231 case ovl_fail_bad_final_conversion: 7232 case ovl_fail_final_conversion_not_exact: 7233 return S.NoteOverloadCandidate(Fn); 7234 7235 case ovl_fail_bad_conversion: { 7236 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 7237 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 7238 if (Cand->Conversions[I].isBad()) 7239 return DiagnoseBadConversion(S, Cand, I); 7240 7241 // FIXME: this currently happens when we're called from SemaInit 7242 // when user-conversion overload fails. Figure out how to handle 7243 // those conditions and diagnose them well. 7244 return S.NoteOverloadCandidate(Fn); 7245 } 7246 } 7247} 7248 7249void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 7250 // Desugar the type of the surrogate down to a function type, 7251 // retaining as many typedefs as possible while still showing 7252 // the function type (and, therefore, its parameter types). 7253 QualType FnType = Cand->Surrogate->getConversionType(); 7254 bool isLValueReference = false; 7255 bool isRValueReference = false; 7256 bool isPointer = false; 7257 if (const LValueReferenceType *FnTypeRef = 7258 FnType->getAs<LValueReferenceType>()) { 7259 FnType = FnTypeRef->getPointeeType(); 7260 isLValueReference = true; 7261 } else if (const RValueReferenceType *FnTypeRef = 7262 FnType->getAs<RValueReferenceType>()) { 7263 FnType = FnTypeRef->getPointeeType(); 7264 isRValueReference = true; 7265 } 7266 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 7267 FnType = FnTypePtr->getPointeeType(); 7268 isPointer = true; 7269 } 7270 // Desugar down to a function type. 7271 FnType = QualType(FnType->getAs<FunctionType>(), 0); 7272 // Reconstruct the pointer/reference as appropriate. 7273 if (isPointer) FnType = S.Context.getPointerType(FnType); 7274 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 7275 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 7276 7277 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 7278 << FnType; 7279 MaybeEmitInheritedConstructorNote(S, Cand->Surrogate); 7280} 7281 7282void NoteBuiltinOperatorCandidate(Sema &S, 7283 const char *Opc, 7284 SourceLocation OpLoc, 7285 OverloadCandidate *Cand) { 7286 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 7287 std::string TypeStr("operator"); 7288 TypeStr += Opc; 7289 TypeStr += "("; 7290 TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); 7291 if (Cand->Conversions.size() == 1) { 7292 TypeStr += ")"; 7293 S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; 7294 } else { 7295 TypeStr += ", "; 7296 TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); 7297 TypeStr += ")"; 7298 S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; 7299 } 7300} 7301 7302void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 7303 OverloadCandidate *Cand) { 7304 unsigned NoOperands = Cand->Conversions.size(); 7305 for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { 7306 const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; 7307 if (ICS.isBad()) break; // all meaningless after first invalid 7308 if (!ICS.isAmbiguous()) continue; 7309 7310 ICS.DiagnoseAmbiguousConversion(S, OpLoc, 7311 S.PDiag(diag::note_ambiguous_type_conversion)); 7312 } 7313} 7314 7315SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 7316 if (Cand->Function) 7317 return Cand->Function->getLocation(); 7318 if (Cand->IsSurrogate) 7319 return Cand->Surrogate->getLocation(); 7320 return SourceLocation(); 7321} 7322 7323static unsigned 7324RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) { 7325 switch ((Sema::TemplateDeductionResult)DFI.Result) { 7326 case Sema::TDK_Success: 7327 llvm_unreachable("TDK_success while diagnosing bad deduction"); 7328 7329 case Sema::TDK_Incomplete: 7330 return 1; 7331 7332 case Sema::TDK_Underqualified: 7333 case Sema::TDK_Inconsistent: 7334 return 2; 7335 7336 case Sema::TDK_SubstitutionFailure: 7337 case Sema::TDK_NonDeducedMismatch: 7338 return 3; 7339 7340 case Sema::TDK_InstantiationDepth: 7341 case Sema::TDK_FailedOverloadResolution: 7342 return 4; 7343 7344 case Sema::TDK_InvalidExplicitArguments: 7345 return 5; 7346 7347 case Sema::TDK_TooManyArguments: 7348 case Sema::TDK_TooFewArguments: 7349 return 6; 7350 } 7351 llvm_unreachable("Unhandled deduction result"); 7352} 7353 7354struct CompareOverloadCandidatesForDisplay { 7355 Sema &S; 7356 CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} 7357 7358 bool operator()(const OverloadCandidate *L, 7359 const OverloadCandidate *R) { 7360 // Fast-path this check. 7361 if (L == R) return false; 7362 7363 // Order first by viability. 7364 if (L->Viable) { 7365 if (!R->Viable) return true; 7366 7367 // TODO: introduce a tri-valued comparison for overload 7368 // candidates. Would be more worthwhile if we had a sort 7369 // that could exploit it. 7370 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; 7371 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; 7372 } else if (R->Viable) 7373 return false; 7374 7375 assert(L->Viable == R->Viable); 7376 7377 // Criteria by which we can sort non-viable candidates: 7378 if (!L->Viable) { 7379 // 1. Arity mismatches come after other candidates. 7380 if (L->FailureKind == ovl_fail_too_many_arguments || 7381 L->FailureKind == ovl_fail_too_few_arguments) 7382 return false; 7383 if (R->FailureKind == ovl_fail_too_many_arguments || 7384 R->FailureKind == ovl_fail_too_few_arguments) 7385 return true; 7386 7387 // 2. Bad conversions come first and are ordered by the number 7388 // of bad conversions and quality of good conversions. 7389 if (L->FailureKind == ovl_fail_bad_conversion) { 7390 if (R->FailureKind != ovl_fail_bad_conversion) 7391 return true; 7392 7393 // The conversion that can be fixed with a smaller number of changes, 7394 // comes first. 7395 unsigned numLFixes = L->Fix.NumConversionsFixed; 7396 unsigned numRFixes = R->Fix.NumConversionsFixed; 7397 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 7398 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 7399 if (numLFixes != numRFixes) { 7400 if (numLFixes < numRFixes) 7401 return true; 7402 else 7403 return false; 7404 } 7405 7406 // If there's any ordering between the defined conversions... 7407 // FIXME: this might not be transitive. 7408 assert(L->Conversions.size() == R->Conversions.size()); 7409 7410 int leftBetter = 0; 7411 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 7412 for (unsigned E = L->Conversions.size(); I != E; ++I) { 7413 switch (CompareImplicitConversionSequences(S, 7414 L->Conversions[I], 7415 R->Conversions[I])) { 7416 case ImplicitConversionSequence::Better: 7417 leftBetter++; 7418 break; 7419 7420 case ImplicitConversionSequence::Worse: 7421 leftBetter--; 7422 break; 7423 7424 case ImplicitConversionSequence::Indistinguishable: 7425 break; 7426 } 7427 } 7428 if (leftBetter > 0) return true; 7429 if (leftBetter < 0) return false; 7430 7431 } else if (R->FailureKind == ovl_fail_bad_conversion) 7432 return false; 7433 7434 if (L->FailureKind == ovl_fail_bad_deduction) { 7435 if (R->FailureKind != ovl_fail_bad_deduction) 7436 return true; 7437 7438 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 7439 return RankDeductionFailure(L->DeductionFailure) 7440 <= RankDeductionFailure(R->DeductionFailure); 7441 } 7442 7443 // TODO: others? 7444 } 7445 7446 // Sort everything else by location. 7447 SourceLocation LLoc = GetLocationForCandidate(L); 7448 SourceLocation RLoc = GetLocationForCandidate(R); 7449 7450 // Put candidates without locations (e.g. builtins) at the end. 7451 if (LLoc.isInvalid()) return false; 7452 if (RLoc.isInvalid()) return true; 7453 7454 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 7455 } 7456}; 7457 7458/// CompleteNonViableCandidate - Normally, overload resolution only 7459/// computes up to the first. Produces the FixIt set if possible. 7460void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 7461 Expr **Args, unsigned NumArgs) { 7462 assert(!Cand->Viable); 7463 7464 // Don't do anything on failures other than bad conversion. 7465 if (Cand->FailureKind != ovl_fail_bad_conversion) return; 7466 7467 // We only want the FixIts if all the arguments can be corrected. 7468 bool Unfixable = false; 7469 // Use a implicit copy initialization to check conversion fixes. 7470 Cand->Fix.setConversionChecker(TryCopyInitialization); 7471 7472 // Skip forward to the first bad conversion. 7473 unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); 7474 unsigned ConvCount = Cand->Conversions.size(); 7475 while (true) { 7476 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 7477 ConvIdx++; 7478 if (Cand->Conversions[ConvIdx - 1].isBad()) { 7479 Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S); 7480 break; 7481 } 7482 } 7483 7484 if (ConvIdx == ConvCount) 7485 return; 7486 7487 assert(!Cand->Conversions[ConvIdx].isInitialized() && 7488 "remaining conversion is initialized?"); 7489 7490 // FIXME: this should probably be preserved from the overload 7491 // operation somehow. 7492 bool SuppressUserConversions = false; 7493 7494 const FunctionProtoType* Proto; 7495 unsigned ArgIdx = ConvIdx; 7496 7497 if (Cand->IsSurrogate) { 7498 QualType ConvType 7499 = Cand->Surrogate->getConversionType().getNonReferenceType(); 7500 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 7501 ConvType = ConvPtrType->getPointeeType(); 7502 Proto = ConvType->getAs<FunctionProtoType>(); 7503 ArgIdx--; 7504 } else if (Cand->Function) { 7505 Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); 7506 if (isa<CXXMethodDecl>(Cand->Function) && 7507 !isa<CXXConstructorDecl>(Cand->Function)) 7508 ArgIdx--; 7509 } else { 7510 // Builtin binary operator with a bad first conversion. 7511 assert(ConvCount <= 3); 7512 for (; ConvIdx != ConvCount; ++ConvIdx) 7513 Cand->Conversions[ConvIdx] 7514 = TryCopyInitialization(S, Args[ConvIdx], 7515 Cand->BuiltinTypes.ParamTypes[ConvIdx], 7516 SuppressUserConversions, 7517 /*InOverloadResolution*/ true, 7518 /*AllowObjCWritebackConversion=*/ 7519 S.getLangOptions().ObjCAutoRefCount); 7520 return; 7521 } 7522 7523 // Fill in the rest of the conversions. 7524 unsigned NumArgsInProto = Proto->getNumArgs(); 7525 for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { 7526 if (ArgIdx < NumArgsInProto) { 7527 Cand->Conversions[ConvIdx] 7528 = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), 7529 SuppressUserConversions, 7530 /*InOverloadResolution=*/true, 7531 /*AllowObjCWritebackConversion=*/ 7532 S.getLangOptions().ObjCAutoRefCount); 7533 // Store the FixIt in the candidate if it exists. 7534 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 7535 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 7536 } 7537 else 7538 Cand->Conversions[ConvIdx].setEllipsis(); 7539 } 7540} 7541 7542} // end anonymous namespace 7543 7544/// PrintOverloadCandidates - When overload resolution fails, prints 7545/// diagnostic messages containing the candidates in the candidate 7546/// set. 7547void OverloadCandidateSet::NoteCandidates(Sema &S, 7548 OverloadCandidateDisplayKind OCD, 7549 Expr **Args, unsigned NumArgs, 7550 const char *Opc, 7551 SourceLocation OpLoc) { 7552 // Sort the candidates by viability and position. Sorting directly would 7553 // be prohibitive, so we make a set of pointers and sort those. 7554 SmallVector<OverloadCandidate*, 32> Cands; 7555 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 7556 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 7557 if (Cand->Viable) 7558 Cands.push_back(Cand); 7559 else if (OCD == OCD_AllCandidates) { 7560 CompleteNonViableCandidate(S, Cand, Args, NumArgs); 7561 if (Cand->Function || Cand->IsSurrogate) 7562 Cands.push_back(Cand); 7563 // Otherwise, this a non-viable builtin candidate. We do not, in general, 7564 // want to list every possible builtin candidate. 7565 } 7566 } 7567 7568 std::sort(Cands.begin(), Cands.end(), 7569 CompareOverloadCandidatesForDisplay(S)); 7570 7571 bool ReportedAmbiguousConversions = false; 7572 7573 SmallVectorImpl<OverloadCandidate*>::iterator I, E; 7574 const DiagnosticsEngine::OverloadsShown ShowOverloads = 7575 S.Diags.getShowOverloads(); 7576 unsigned CandsShown = 0; 7577 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 7578 OverloadCandidate *Cand = *I; 7579 7580 // Set an arbitrary limit on the number of candidate functions we'll spam 7581 // the user with. FIXME: This limit should depend on details of the 7582 // candidate list. 7583 if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) { 7584 break; 7585 } 7586 ++CandsShown; 7587 7588 if (Cand->Function) 7589 NoteFunctionCandidate(S, Cand, Args, NumArgs); 7590 else if (Cand->IsSurrogate) 7591 NoteSurrogateCandidate(S, Cand); 7592 else { 7593 assert(Cand->Viable && 7594 "Non-viable built-in candidates are not added to Cands."); 7595 // Generally we only see ambiguities including viable builtin 7596 // operators if overload resolution got screwed up by an 7597 // ambiguous user-defined conversion. 7598 // 7599 // FIXME: It's quite possible for different conversions to see 7600 // different ambiguities, though. 7601 if (!ReportedAmbiguousConversions) { 7602 NoteAmbiguousUserConversions(S, OpLoc, Cand); 7603 ReportedAmbiguousConversions = true; 7604 } 7605 7606 // If this is a viable builtin, print it. 7607 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 7608 } 7609 } 7610 7611 if (I != E) 7612 S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); 7613} 7614 7615// [PossiblyAFunctionType] --> [Return] 7616// NonFunctionType --> NonFunctionType 7617// R (A) --> R(A) 7618// R (*)(A) --> R (A) 7619// R (&)(A) --> R (A) 7620// R (S::*)(A) --> R (A) 7621QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 7622 QualType Ret = PossiblyAFunctionType; 7623 if (const PointerType *ToTypePtr = 7624 PossiblyAFunctionType->getAs<PointerType>()) 7625 Ret = ToTypePtr->getPointeeType(); 7626 else if (const ReferenceType *ToTypeRef = 7627 PossiblyAFunctionType->getAs<ReferenceType>()) 7628 Ret = ToTypeRef->getPointeeType(); 7629 else if (const MemberPointerType *MemTypePtr = 7630 PossiblyAFunctionType->getAs<MemberPointerType>()) 7631 Ret = MemTypePtr->getPointeeType(); 7632 Ret = 7633 Context.getCanonicalType(Ret).getUnqualifiedType(); 7634 return Ret; 7635} 7636 7637// A helper class to help with address of function resolution 7638// - allows us to avoid passing around all those ugly parameters 7639class AddressOfFunctionResolver 7640{ 7641 Sema& S; 7642 Expr* SourceExpr; 7643 const QualType& TargetType; 7644 QualType TargetFunctionType; // Extracted function type from target type 7645 7646 bool Complain; 7647 //DeclAccessPair& ResultFunctionAccessPair; 7648 ASTContext& Context; 7649 7650 bool TargetTypeIsNonStaticMemberFunction; 7651 bool FoundNonTemplateFunction; 7652 7653 OverloadExpr::FindResult OvlExprInfo; 7654 OverloadExpr *OvlExpr; 7655 TemplateArgumentListInfo OvlExplicitTemplateArgs; 7656 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 7657 7658public: 7659 AddressOfFunctionResolver(Sema &S, Expr* SourceExpr, 7660 const QualType& TargetType, bool Complain) 7661 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 7662 Complain(Complain), Context(S.getASTContext()), 7663 TargetTypeIsNonStaticMemberFunction( 7664 !!TargetType->getAs<MemberPointerType>()), 7665 FoundNonTemplateFunction(false), 7666 OvlExprInfo(OverloadExpr::find(SourceExpr)), 7667 OvlExpr(OvlExprInfo.Expression) 7668 { 7669 ExtractUnqualifiedFunctionTypeFromTargetType(); 7670 7671 if (!TargetFunctionType->isFunctionType()) { 7672 if (OvlExpr->hasExplicitTemplateArgs()) { 7673 DeclAccessPair dap; 7674 if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization( 7675 OvlExpr, false, &dap) ) { 7676 7677 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7678 if (!Method->isStatic()) { 7679 // If the target type is a non-function type and the function 7680 // found is a non-static member function, pretend as if that was 7681 // the target, it's the only possible type to end up with. 7682 TargetTypeIsNonStaticMemberFunction = true; 7683 7684 // And skip adding the function if its not in the proper form. 7685 // We'll diagnose this due to an empty set of functions. 7686 if (!OvlExprInfo.HasFormOfMemberPointer) 7687 return; 7688 } 7689 } 7690 7691 Matches.push_back(std::make_pair(dap,Fn)); 7692 } 7693 } 7694 return; 7695 } 7696 7697 if (OvlExpr->hasExplicitTemplateArgs()) 7698 OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs); 7699 7700 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 7701 // C++ [over.over]p4: 7702 // If more than one function is selected, [...] 7703 if (Matches.size() > 1) { 7704 if (FoundNonTemplateFunction) 7705 EliminateAllTemplateMatches(); 7706 else 7707 EliminateAllExceptMostSpecializedTemplate(); 7708 } 7709 } 7710 } 7711 7712private: 7713 bool isTargetTypeAFunction() const { 7714 return TargetFunctionType->isFunctionType(); 7715 } 7716 7717 // [ToType] [Return] 7718 7719 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 7720 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 7721 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 7722 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 7723 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 7724 } 7725 7726 // return true if any matching specializations were found 7727 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 7728 const DeclAccessPair& CurAccessFunPair) { 7729 if (CXXMethodDecl *Method 7730 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 7731 // Skip non-static function templates when converting to pointer, and 7732 // static when converting to member pointer. 7733 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 7734 return false; 7735 } 7736 else if (TargetTypeIsNonStaticMemberFunction) 7737 return false; 7738 7739 // C++ [over.over]p2: 7740 // If the name is a function template, template argument deduction is 7741 // done (14.8.2.2), and if the argument deduction succeeds, the 7742 // resulting template argument list is used to generate a single 7743 // function template specialization, which is added to the set of 7744 // overloaded functions considered. 7745 FunctionDecl *Specialization = 0; 7746 TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); 7747 if (Sema::TemplateDeductionResult Result 7748 = S.DeduceTemplateArguments(FunctionTemplate, 7749 &OvlExplicitTemplateArgs, 7750 TargetFunctionType, Specialization, 7751 Info)) { 7752 // FIXME: make a note of the failed deduction for diagnostics. 7753 (void)Result; 7754 return false; 7755 } 7756 7757 // Template argument deduction ensures that we have an exact match. 7758 // This function template specicalization works. 7759 Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); 7760 assert(TargetFunctionType 7761 == Context.getCanonicalType(Specialization->getType())); 7762 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 7763 return true; 7764 } 7765 7766 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 7767 const DeclAccessPair& CurAccessFunPair) { 7768 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 7769 // Skip non-static functions when converting to pointer, and static 7770 // when converting to member pointer. 7771 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 7772 return false; 7773 } 7774 else if (TargetTypeIsNonStaticMemberFunction) 7775 return false; 7776 7777 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 7778 QualType ResultTy; 7779 if (Context.hasSameUnqualifiedType(TargetFunctionType, 7780 FunDecl->getType()) || 7781 S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType, 7782 ResultTy)) { 7783 Matches.push_back(std::make_pair(CurAccessFunPair, 7784 cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 7785 FoundNonTemplateFunction = true; 7786 return true; 7787 } 7788 } 7789 7790 return false; 7791 } 7792 7793 bool FindAllFunctionsThatMatchTargetTypeExactly() { 7794 bool Ret = false; 7795 7796 // If the overload expression doesn't have the form of a pointer to 7797 // member, don't try to convert it to a pointer-to-member type. 7798 if (IsInvalidFormOfPointerToMemberFunction()) 7799 return false; 7800 7801 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 7802 E = OvlExpr->decls_end(); 7803 I != E; ++I) { 7804 // Look through any using declarations to find the underlying function. 7805 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 7806 7807 // C++ [over.over]p3: 7808 // Non-member functions and static member functions match 7809 // targets of type "pointer-to-function" or "reference-to-function." 7810 // Nonstatic member functions match targets of 7811 // type "pointer-to-member-function." 7812 // Note that according to DR 247, the containing class does not matter. 7813 if (FunctionTemplateDecl *FunctionTemplate 7814 = dyn_cast<FunctionTemplateDecl>(Fn)) { 7815 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 7816 Ret = true; 7817 } 7818 // If we have explicit template arguments supplied, skip non-templates. 7819 else if (!OvlExpr->hasExplicitTemplateArgs() && 7820 AddMatchingNonTemplateFunction(Fn, I.getPair())) 7821 Ret = true; 7822 } 7823 assert(Ret || Matches.empty()); 7824 return Ret; 7825 } 7826 7827 void EliminateAllExceptMostSpecializedTemplate() { 7828 // [...] and any given function template specialization F1 is 7829 // eliminated if the set contains a second function template 7830 // specialization whose function template is more specialized 7831 // than the function template of F1 according to the partial 7832 // ordering rules of 14.5.5.2. 7833 7834 // The algorithm specified above is quadratic. We instead use a 7835 // two-pass algorithm (similar to the one used to identify the 7836 // best viable function in an overload set) that identifies the 7837 // best function template (if it exists). 7838 7839 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 7840 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 7841 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 7842 7843 UnresolvedSetIterator Result = 7844 S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), 7845 TPOC_Other, 0, SourceExpr->getLocStart(), 7846 S.PDiag(), 7847 S.PDiag(diag::err_addr_ovl_ambiguous) 7848 << Matches[0].second->getDeclName(), 7849 S.PDiag(diag::note_ovl_candidate) 7850 << (unsigned) oc_function_template, 7851 Complain); 7852 7853 if (Result != MatchesCopy.end()) { 7854 // Make it the first and only element 7855 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 7856 Matches[0].second = cast<FunctionDecl>(*Result); 7857 Matches.resize(1); 7858 } 7859 } 7860 7861 void EliminateAllTemplateMatches() { 7862 // [...] any function template specializations in the set are 7863 // eliminated if the set also contains a non-template function, [...] 7864 for (unsigned I = 0, N = Matches.size(); I != N; ) { 7865 if (Matches[I].second->getPrimaryTemplate() == 0) 7866 ++I; 7867 else { 7868 Matches[I] = Matches[--N]; 7869 Matches.set_size(N); 7870 } 7871 } 7872 } 7873 7874public: 7875 void ComplainNoMatchesFound() const { 7876 assert(Matches.empty()); 7877 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) 7878 << OvlExpr->getName() << TargetFunctionType 7879 << OvlExpr->getSourceRange(); 7880 S.NoteAllOverloadCandidates(OvlExpr); 7881 } 7882 7883 bool IsInvalidFormOfPointerToMemberFunction() const { 7884 return TargetTypeIsNonStaticMemberFunction && 7885 !OvlExprInfo.HasFormOfMemberPointer; 7886 } 7887 7888 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 7889 // TODO: Should we condition this on whether any functions might 7890 // have matched, or is it more appropriate to do that in callers? 7891 // TODO: a fixit wouldn't hurt. 7892 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 7893 << TargetType << OvlExpr->getSourceRange(); 7894 } 7895 7896 void ComplainOfInvalidConversion() const { 7897 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) 7898 << OvlExpr->getName() << TargetType; 7899 } 7900 7901 void ComplainMultipleMatchesFound() const { 7902 assert(Matches.size() > 1); 7903 S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) 7904 << OvlExpr->getName() 7905 << OvlExpr->getSourceRange(); 7906 S.NoteAllOverloadCandidates(OvlExpr); 7907 } 7908 7909 int getNumMatches() const { return Matches.size(); } 7910 7911 FunctionDecl* getMatchingFunctionDecl() const { 7912 if (Matches.size() != 1) return 0; 7913 return Matches[0].second; 7914 } 7915 7916 const DeclAccessPair* getMatchingFunctionAccessPair() const { 7917 if (Matches.size() != 1) return 0; 7918 return &Matches[0].first; 7919 } 7920}; 7921 7922/// ResolveAddressOfOverloadedFunction - Try to resolve the address of 7923/// an overloaded function (C++ [over.over]), where @p From is an 7924/// expression with overloaded function type and @p ToType is the type 7925/// we're trying to resolve to. For example: 7926/// 7927/// @code 7928/// int f(double); 7929/// int f(int); 7930/// 7931/// int (*pfd)(double) = f; // selects f(double) 7932/// @endcode 7933/// 7934/// This routine returns the resulting FunctionDecl if it could be 7935/// resolved, and NULL otherwise. When @p Complain is true, this 7936/// routine will emit diagnostics if there is an error. 7937FunctionDecl * 7938Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType, 7939 bool Complain, 7940 DeclAccessPair &FoundResult) { 7941 7942 assert(AddressOfExpr->getType() == Context.OverloadTy); 7943 7944 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain); 7945 int NumMatches = Resolver.getNumMatches(); 7946 FunctionDecl* Fn = 0; 7947 if ( NumMatches == 0 && Complain) { 7948 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 7949 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 7950 else 7951 Resolver.ComplainNoMatchesFound(); 7952 } 7953 else if (NumMatches > 1 && Complain) 7954 Resolver.ComplainMultipleMatchesFound(); 7955 else if (NumMatches == 1) { 7956 Fn = Resolver.getMatchingFunctionDecl(); 7957 assert(Fn); 7958 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 7959 MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn); 7960 if (Complain) 7961 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 7962 } 7963 7964 return Fn; 7965} 7966 7967/// \brief Given an expression that refers to an overloaded function, try to 7968/// resolve that overloaded function expression down to a single function. 7969/// 7970/// This routine can only resolve template-ids that refer to a single function 7971/// template, where that template-id refers to a single template whose template 7972/// arguments are either provided by the template-id or have defaults, 7973/// as described in C++0x [temp.arg.explicit]p3. 7974FunctionDecl * 7975Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 7976 bool Complain, 7977 DeclAccessPair *FoundResult) { 7978 // C++ [over.over]p1: 7979 // [...] [Note: any redundant set of parentheses surrounding the 7980 // overloaded function name is ignored (5.1). ] 7981 // C++ [over.over]p1: 7982 // [...] The overloaded function name can be preceded by the & 7983 // operator. 7984 7985 // If we didn't actually find any template-ids, we're done. 7986 if (!ovl->hasExplicitTemplateArgs()) 7987 return 0; 7988 7989 TemplateArgumentListInfo ExplicitTemplateArgs; 7990 ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 7991 7992 // Look through all of the overloaded functions, searching for one 7993 // whose type matches exactly. 7994 FunctionDecl *Matched = 0; 7995 for (UnresolvedSetIterator I = ovl->decls_begin(), 7996 E = ovl->decls_end(); I != E; ++I) { 7997 // C++0x [temp.arg.explicit]p3: 7998 // [...] In contexts where deduction is done and fails, or in contexts 7999 // where deduction is not done, if a template argument list is 8000 // specified and it, along with any default template arguments, 8001 // identifies a single function template specialization, then the 8002 // template-id is an lvalue for the function template specialization. 8003 FunctionTemplateDecl *FunctionTemplate 8004 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 8005 8006 // C++ [over.over]p2: 8007 // If the name is a function template, template argument deduction is 8008 // done (14.8.2.2), and if the argument deduction succeeds, the 8009 // resulting template argument list is used to generate a single 8010 // function template specialization, which is added to the set of 8011 // overloaded functions considered. 8012 FunctionDecl *Specialization = 0; 8013 TemplateDeductionInfo Info(Context, ovl->getNameLoc()); 8014 if (TemplateDeductionResult Result 8015 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 8016 Specialization, Info)) { 8017 // FIXME: make a note of the failed deduction for diagnostics. 8018 (void)Result; 8019 continue; 8020 } 8021 8022 assert(Specialization && "no specialization and no error?"); 8023 8024 // Multiple matches; we can't resolve to a single declaration. 8025 if (Matched) { 8026 if (Complain) { 8027 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 8028 << ovl->getName(); 8029 NoteAllOverloadCandidates(ovl); 8030 } 8031 return 0; 8032 } 8033 8034 Matched = Specialization; 8035 if (FoundResult) *FoundResult = I.getPair(); 8036 } 8037 8038 return Matched; 8039} 8040 8041 8042 8043 8044// Resolve and fix an overloaded expression that 8045// can be resolved because it identifies a single function 8046// template specialization 8047// Last three arguments should only be supplied if Complain = true 8048ExprResult Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 8049 Expr *SrcExpr, bool doFunctionPointerConverion, bool complain, 8050 const SourceRange& OpRangeForComplaining, 8051 QualType DestTypeForComplaining, 8052 unsigned DiagIDForComplaining) { 8053 assert(SrcExpr->getType() == Context.OverloadTy); 8054 8055 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr); 8056 8057 DeclAccessPair found; 8058 ExprResult SingleFunctionExpression; 8059 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 8060 ovl.Expression, /*complain*/ false, &found)) { 8061 if (DiagnoseUseOfDecl(fn, SrcExpr->getSourceRange().getBegin())) 8062 return ExprError(); 8063 8064 // It is only correct to resolve to an instance method if we're 8065 // resolving a form that's permitted to be a pointer to member. 8066 // Otherwise we'll end up making a bound member expression, which 8067 // is illegal in all the contexts we resolve like this. 8068 if (!ovl.HasFormOfMemberPointer && 8069 isa<CXXMethodDecl>(fn) && 8070 cast<CXXMethodDecl>(fn)->isInstance()) { 8071 if (complain) { 8072 Diag(ovl.Expression->getExprLoc(), 8073 diag::err_invalid_use_of_bound_member_func) 8074 << ovl.Expression->getSourceRange(); 8075 // TODO: I believe we only end up here if there's a mix of 8076 // static and non-static candidates (otherwise the expression 8077 // would have 'bound member' type, not 'overload' type). 8078 // Ideally we would note which candidate was chosen and why 8079 // the static candidates were rejected. 8080 } 8081 8082 return ExprError(); 8083 } 8084 8085 // Fix the expresion to refer to 'fn'. 8086 SingleFunctionExpression = 8087 Owned(FixOverloadedFunctionReference(SrcExpr, found, fn)); 8088 8089 // If desired, do function-to-pointer decay. 8090 if (doFunctionPointerConverion) 8091 SingleFunctionExpression = 8092 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take()); 8093 } 8094 8095 if (!SingleFunctionExpression.isUsable()) { 8096 if (complain) { 8097 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 8098 << ovl.Expression->getName() 8099 << DestTypeForComplaining 8100 << OpRangeForComplaining 8101 << ovl.Expression->getQualifierLoc().getSourceRange(); 8102 NoteAllOverloadCandidates(SrcExpr); 8103 } 8104 return ExprError(); 8105 } 8106 8107 return SingleFunctionExpression; 8108} 8109 8110/// \brief Add a single candidate to the overload set. 8111static void AddOverloadedCallCandidate(Sema &S, 8112 DeclAccessPair FoundDecl, 8113 TemplateArgumentListInfo *ExplicitTemplateArgs, 8114 Expr **Args, unsigned NumArgs, 8115 OverloadCandidateSet &CandidateSet, 8116 bool PartialOverloading, 8117 bool KnownValid) { 8118 NamedDecl *Callee = FoundDecl.getDecl(); 8119 if (isa<UsingShadowDecl>(Callee)) 8120 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 8121 8122 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 8123 if (ExplicitTemplateArgs) { 8124 assert(!KnownValid && "Explicit template arguments?"); 8125 return; 8126 } 8127 S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, 8128 false, PartialOverloading); 8129 return; 8130 } 8131 8132 if (FunctionTemplateDecl *FuncTemplate 8133 = dyn_cast<FunctionTemplateDecl>(Callee)) { 8134 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 8135 ExplicitTemplateArgs, 8136 Args, NumArgs, CandidateSet); 8137 return; 8138 } 8139 8140 assert(!KnownValid && "unhandled case in overloaded call candidate"); 8141} 8142 8143/// \brief Add the overload candidates named by callee and/or found by argument 8144/// dependent lookup to the given overload set. 8145void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 8146 Expr **Args, unsigned NumArgs, 8147 OverloadCandidateSet &CandidateSet, 8148 bool PartialOverloading) { 8149 8150#ifndef NDEBUG 8151 // Verify that ArgumentDependentLookup is consistent with the rules 8152 // in C++0x [basic.lookup.argdep]p3: 8153 // 8154 // Let X be the lookup set produced by unqualified lookup (3.4.1) 8155 // and let Y be the lookup set produced by argument dependent 8156 // lookup (defined as follows). If X contains 8157 // 8158 // -- a declaration of a class member, or 8159 // 8160 // -- a block-scope function declaration that is not a 8161 // using-declaration, or 8162 // 8163 // -- a declaration that is neither a function or a function 8164 // template 8165 // 8166 // then Y is empty. 8167 8168 if (ULE->requiresADL()) { 8169 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 8170 E = ULE->decls_end(); I != E; ++I) { 8171 assert(!(*I)->getDeclContext()->isRecord()); 8172 assert(isa<UsingShadowDecl>(*I) || 8173 !(*I)->getDeclContext()->isFunctionOrMethod()); 8174 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 8175 } 8176 } 8177#endif 8178 8179 // It would be nice to avoid this copy. 8180 TemplateArgumentListInfo TABuffer; 8181 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 8182 if (ULE->hasExplicitTemplateArgs()) { 8183 ULE->copyTemplateArgumentsInto(TABuffer); 8184 ExplicitTemplateArgs = &TABuffer; 8185 } 8186 8187 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 8188 E = ULE->decls_end(); I != E; ++I) 8189 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, 8190 Args, NumArgs, CandidateSet, 8191 PartialOverloading, /*KnownValid*/ true); 8192 8193 if (ULE->requiresADL()) 8194 AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, 8195 Args, NumArgs, 8196 ExplicitTemplateArgs, 8197 CandidateSet, 8198 PartialOverloading, 8199 ULE->isStdAssociatedNamespace()); 8200} 8201 8202/// Attempt to recover from an ill-formed use of a non-dependent name in a 8203/// template, where the non-dependent name was declared after the template 8204/// was defined. This is common in code written for a compilers which do not 8205/// correctly implement two-stage name lookup. 8206/// 8207/// Returns true if a viable candidate was found and a diagnostic was issued. 8208static bool 8209DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc, 8210 const CXXScopeSpec &SS, LookupResult &R, 8211 TemplateArgumentListInfo *ExplicitTemplateArgs, 8212 Expr **Args, unsigned NumArgs) { 8213 if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty()) 8214 return false; 8215 8216 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 8217 SemaRef.LookupQualifiedName(R, DC); 8218 8219 if (!R.empty()) { 8220 R.suppressDiagnostics(); 8221 8222 if (isa<CXXRecordDecl>(DC)) { 8223 // Don't diagnose names we find in classes; we get much better 8224 // diagnostics for these from DiagnoseEmptyLookup. 8225 R.clear(); 8226 return false; 8227 } 8228 8229 OverloadCandidateSet Candidates(FnLoc); 8230 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 8231 AddOverloadedCallCandidate(SemaRef, I.getPair(), 8232 ExplicitTemplateArgs, Args, NumArgs, 8233 Candidates, false, /*KnownValid*/ false); 8234 8235 OverloadCandidateSet::iterator Best; 8236 if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) { 8237 // No viable functions. Don't bother the user with notes for functions 8238 // which don't work and shouldn't be found anyway. 8239 R.clear(); 8240 return false; 8241 } 8242 8243 // Find the namespaces where ADL would have looked, and suggest 8244 // declaring the function there instead. 8245 Sema::AssociatedNamespaceSet AssociatedNamespaces; 8246 Sema::AssociatedClassSet AssociatedClasses; 8247 SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs, 8248 AssociatedNamespaces, 8249 AssociatedClasses); 8250 // Never suggest declaring a function within namespace 'std'. 8251 Sema::AssociatedNamespaceSet SuggestedNamespaces; 8252 if (DeclContext *Std = SemaRef.getStdNamespace()) { 8253 for (Sema::AssociatedNamespaceSet::iterator 8254 it = AssociatedNamespaces.begin(), 8255 end = AssociatedNamespaces.end(); it != end; ++it) { 8256 if (!Std->Encloses(*it)) 8257 SuggestedNamespaces.insert(*it); 8258 } 8259 } else { 8260 // Lacking the 'std::' namespace, use all of the associated namespaces. 8261 SuggestedNamespaces = AssociatedNamespaces; 8262 } 8263 8264 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 8265 << R.getLookupName(); 8266 if (SuggestedNamespaces.empty()) { 8267 SemaRef.Diag(Best->Function->getLocation(), 8268 diag::note_not_found_by_two_phase_lookup) 8269 << R.getLookupName() << 0; 8270 } else if (SuggestedNamespaces.size() == 1) { 8271 SemaRef.Diag(Best->Function->getLocation(), 8272 diag::note_not_found_by_two_phase_lookup) 8273 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 8274 } else { 8275 // FIXME: It would be useful to list the associated namespaces here, 8276 // but the diagnostics infrastructure doesn't provide a way to produce 8277 // a localized representation of a list of items. 8278 SemaRef.Diag(Best->Function->getLocation(), 8279 diag::note_not_found_by_two_phase_lookup) 8280 << R.getLookupName() << 2; 8281 } 8282 8283 // Try to recover by calling this function. 8284 return true; 8285 } 8286 8287 R.clear(); 8288 } 8289 8290 return false; 8291} 8292 8293/// Attempt to recover from ill-formed use of a non-dependent operator in a 8294/// template, where the non-dependent operator was declared after the template 8295/// was defined. 8296/// 8297/// Returns true if a viable candidate was found and a diagnostic was issued. 8298static bool 8299DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 8300 SourceLocation OpLoc, 8301 Expr **Args, unsigned NumArgs) { 8302 DeclarationName OpName = 8303 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 8304 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 8305 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 8306 /*ExplicitTemplateArgs=*/0, Args, NumArgs); 8307} 8308 8309/// Attempts to recover from a call where no functions were found. 8310/// 8311/// Returns true if new candidates were found. 8312static ExprResult 8313BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 8314 UnresolvedLookupExpr *ULE, 8315 SourceLocation LParenLoc, 8316 Expr **Args, unsigned NumArgs, 8317 SourceLocation RParenLoc, 8318 bool EmptyLookup) { 8319 8320 CXXScopeSpec SS; 8321 SS.Adopt(ULE->getQualifierLoc()); 8322 8323 TemplateArgumentListInfo TABuffer; 8324 TemplateArgumentListInfo *ExplicitTemplateArgs = 0; 8325 if (ULE->hasExplicitTemplateArgs()) { 8326 ULE->copyTemplateArgumentsInto(TABuffer); 8327 ExplicitTemplateArgs = &TABuffer; 8328 } 8329 8330 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 8331 Sema::LookupOrdinaryName); 8332 if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 8333 ExplicitTemplateArgs, Args, NumArgs) && 8334 (!EmptyLookup || 8335 SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression, 8336 ExplicitTemplateArgs, Args, NumArgs))) 8337 return ExprError(); 8338 8339 assert(!R.empty() && "lookup results empty despite recovery"); 8340 8341 // Build an implicit member call if appropriate. Just drop the 8342 // casts and such from the call, we don't really care. 8343 ExprResult NewFn = ExprError(); 8344 if ((*R.begin())->isCXXClassMember()) 8345 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, 8346 ExplicitTemplateArgs); 8347 else if (ExplicitTemplateArgs) 8348 NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); 8349 else 8350 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 8351 8352 if (NewFn.isInvalid()) 8353 return ExprError(); 8354 8355 // This shouldn't cause an infinite loop because we're giving it 8356 // an expression with viable lookup results, which should never 8357 // end up here. 8358 return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, 8359 MultiExprArg(Args, NumArgs), RParenLoc); 8360} 8361 8362/// ResolveOverloadedCallFn - Given the call expression that calls Fn 8363/// (which eventually refers to the declaration Func) and the call 8364/// arguments Args/NumArgs, attempt to resolve the function call down 8365/// to a specific function. If overload resolution succeeds, returns 8366/// the function declaration produced by overload 8367/// resolution. Otherwise, emits diagnostics, deletes all of the 8368/// arguments and Fn, and returns NULL. 8369ExprResult 8370Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, 8371 SourceLocation LParenLoc, 8372 Expr **Args, unsigned NumArgs, 8373 SourceLocation RParenLoc, 8374 Expr *ExecConfig) { 8375#ifndef NDEBUG 8376 if (ULE->requiresADL()) { 8377 // To do ADL, we must have found an unqualified name. 8378 assert(!ULE->getQualifier() && "qualified name with ADL"); 8379 8380 // We don't perform ADL for implicit declarations of builtins. 8381 // Verify that this was correctly set up. 8382 FunctionDecl *F; 8383 if (ULE->decls_begin() + 1 == ULE->decls_end() && 8384 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 8385 F->getBuiltinID() && F->isImplicit()) 8386 llvm_unreachable("performing ADL for builtin"); 8387 8388 // We don't perform ADL in C. 8389 assert(getLangOptions().CPlusPlus && "ADL enabled in C"); 8390 } else 8391 assert(!ULE->isStdAssociatedNamespace() && 8392 "std is associated namespace but not doing ADL"); 8393#endif 8394 8395 OverloadCandidateSet CandidateSet(Fn->getExprLoc()); 8396 8397 // Add the functions denoted by the callee to the set of candidate 8398 // functions, including those from argument-dependent lookup. 8399 AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); 8400 8401 // If we found nothing, try to recover. 8402 // BuildRecoveryCallExpr diagnoses the error itself, so we just bail 8403 // out if it fails. 8404 if (CandidateSet.empty()) { 8405 // In Microsoft mode, if we are inside a template class member function then 8406 // create a type dependent CallExpr. The goal is to postpone name lookup 8407 // to instantiation time to be able to search into type dependent base 8408 // classes. 8409 if (getLangOptions().MicrosoftExt && CurContext->isDependentContext() && 8410 isa<CXXMethodDecl>(CurContext)) { 8411 CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs, 8412 Context.DependentTy, VK_RValue, 8413 RParenLoc); 8414 CE->setTypeDependent(true); 8415 return Owned(CE); 8416 } 8417 return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, 8418 RParenLoc, /*EmptyLookup=*/true); 8419 } 8420 8421 OverloadCandidateSet::iterator Best; 8422 switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { 8423 case OR_Success: { 8424 FunctionDecl *FDecl = Best->Function; 8425 MarkDeclarationReferenced(Fn->getExprLoc(), FDecl); 8426 CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); 8427 DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(), 8428 ULE->getNameLoc()); 8429 Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); 8430 return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc, 8431 ExecConfig); 8432 } 8433 8434 case OR_No_Viable_Function: { 8435 // Try to recover by looking for viable functions which the user might 8436 // have meant to call. 8437 ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, 8438 Args, NumArgs, RParenLoc, 8439 /*EmptyLookup=*/false); 8440 if (!Recovery.isInvalid()) 8441 return Recovery; 8442 8443 Diag(Fn->getSourceRange().getBegin(), 8444 diag::err_ovl_no_viable_function_in_call) 8445 << ULE->getName() << Fn->getSourceRange(); 8446 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8447 break; 8448 } 8449 8450 case OR_Ambiguous: 8451 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) 8452 << ULE->getName() << Fn->getSourceRange(); 8453 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 8454 break; 8455 8456 case OR_Deleted: 8457 { 8458 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) 8459 << Best->Function->isDeleted() 8460 << ULE->getName() 8461 << getDeletedOrUnavailableSuffix(Best->Function) 8462 << Fn->getSourceRange(); 8463 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 8464 } 8465 break; 8466 } 8467 8468 // Overload resolution failed. 8469 return ExprError(); 8470} 8471 8472static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 8473 return Functions.size() > 1 || 8474 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 8475} 8476 8477/// \brief Create a unary operation that may resolve to an overloaded 8478/// operator. 8479/// 8480/// \param OpLoc The location of the operator itself (e.g., '*'). 8481/// 8482/// \param OpcIn The UnaryOperator::Opcode that describes this 8483/// operator. 8484/// 8485/// \param Functions The set of non-member functions that will be 8486/// considered by overload resolution. The caller needs to build this 8487/// set based on the context using, e.g., 8488/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 8489/// set should not contain any member functions; those will be added 8490/// by CreateOverloadedUnaryOp(). 8491/// 8492/// \param input The input argument. 8493ExprResult 8494Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, 8495 const UnresolvedSetImpl &Fns, 8496 Expr *Input) { 8497 UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); 8498 8499 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 8500 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 8501 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 8502 // TODO: provide better source location info. 8503 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 8504 8505 if (Input->getObjectKind() == OK_ObjCProperty) { 8506 ExprResult Result = ConvertPropertyForRValue(Input); 8507 if (Result.isInvalid()) 8508 return ExprError(); 8509 Input = Result.take(); 8510 } 8511 8512 Expr *Args[2] = { Input, 0 }; 8513 unsigned NumArgs = 1; 8514 8515 // For post-increment and post-decrement, add the implicit '0' as 8516 // the second argument, so that we know this is a post-increment or 8517 // post-decrement. 8518 if (Opc == UO_PostInc || Opc == UO_PostDec) { 8519 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 8520 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 8521 SourceLocation()); 8522 NumArgs = 2; 8523 } 8524 8525 if (Input->isTypeDependent()) { 8526 if (Fns.empty()) 8527 return Owned(new (Context) UnaryOperator(Input, 8528 Opc, 8529 Context.DependentTy, 8530 VK_RValue, OK_Ordinary, 8531 OpLoc)); 8532 8533 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 8534 UnresolvedLookupExpr *Fn 8535 = UnresolvedLookupExpr::Create(Context, NamingClass, 8536 NestedNameSpecifierLoc(), OpNameInfo, 8537 /*ADL*/ true, IsOverloaded(Fns), 8538 Fns.begin(), Fns.end()); 8539 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 8540 &Args[0], NumArgs, 8541 Context.DependentTy, 8542 VK_RValue, 8543 OpLoc)); 8544 } 8545 8546 // Build an empty overload set. 8547 OverloadCandidateSet CandidateSet(OpLoc); 8548 8549 // Add the candidates from the given function set. 8550 AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); 8551 8552 // Add operator candidates that are member functions. 8553 AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 8554 8555 // Add candidates from ADL. 8556 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 8557 Args, NumArgs, 8558 /*ExplicitTemplateArgs*/ 0, 8559 CandidateSet); 8560 8561 // Add builtin operator candidates. 8562 AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); 8563 8564 // Perform overload resolution. 8565 OverloadCandidateSet::iterator Best; 8566 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 8567 case OR_Success: { 8568 // We found a built-in operator or an overloaded operator. 8569 FunctionDecl *FnDecl = Best->Function; 8570 8571 if (FnDecl) { 8572 // We matched an overloaded operator. Build a call to that 8573 // operator. 8574 8575 MarkDeclarationReferenced(OpLoc, FnDecl); 8576 8577 // Convert the arguments. 8578 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 8579 CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); 8580 8581 ExprResult InputRes = 8582 PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, 8583 Best->FoundDecl, Method); 8584 if (InputRes.isInvalid()) 8585 return ExprError(); 8586 Input = InputRes.take(); 8587 } else { 8588 // Convert the arguments. 8589 ExprResult InputInit 8590 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 8591 Context, 8592 FnDecl->getParamDecl(0)), 8593 SourceLocation(), 8594 Input); 8595 if (InputInit.isInvalid()) 8596 return ExprError(); 8597 Input = InputInit.take(); 8598 } 8599 8600 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 8601 8602 // Determine the result type. 8603 QualType ResultTy = FnDecl->getResultType(); 8604 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8605 ResultTy = ResultTy.getNonLValueExprType(Context); 8606 8607 // Build the actual expression node. 8608 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl); 8609 if (FnExpr.isInvalid()) 8610 return ExprError(); 8611 8612 Args[0] = Input; 8613 CallExpr *TheCall = 8614 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 8615 Args, NumArgs, ResultTy, VK, OpLoc); 8616 8617 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 8618 FnDecl)) 8619 return ExprError(); 8620 8621 return MaybeBindToTemporary(TheCall); 8622 } else { 8623 // We matched a built-in operator. Convert the arguments, then 8624 // break out so that we will build the appropriate built-in 8625 // operator node. 8626 ExprResult InputRes = 8627 PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], 8628 Best->Conversions[0], AA_Passing); 8629 if (InputRes.isInvalid()) 8630 return ExprError(); 8631 Input = InputRes.take(); 8632 break; 8633 } 8634 } 8635 8636 case OR_No_Viable_Function: 8637 // This is an erroneous use of an operator which can be overloaded by 8638 // a non-member function. Check for non-member operators which were 8639 // defined too late to be candidates. 8640 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs)) 8641 // FIXME: Recover by calling the found function. 8642 return ExprError(); 8643 8644 // No viable function; fall through to handling this as a 8645 // built-in operator, which will produce an error message for us. 8646 break; 8647 8648 case OR_Ambiguous: 8649 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 8650 << UnaryOperator::getOpcodeStr(Opc) 8651 << Input->getType() 8652 << Input->getSourceRange(); 8653 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs, 8654 UnaryOperator::getOpcodeStr(Opc), OpLoc); 8655 return ExprError(); 8656 8657 case OR_Deleted: 8658 Diag(OpLoc, diag::err_ovl_deleted_oper) 8659 << Best->Function->isDeleted() 8660 << UnaryOperator::getOpcodeStr(Opc) 8661 << getDeletedOrUnavailableSuffix(Best->Function) 8662 << Input->getSourceRange(); 8663 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs, 8664 UnaryOperator::getOpcodeStr(Opc), OpLoc); 8665 return ExprError(); 8666 } 8667 8668 // Either we found no viable overloaded operator or we matched a 8669 // built-in operator. In either case, fall through to trying to 8670 // build a built-in operation. 8671 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 8672} 8673 8674/// \brief Create a binary operation that may resolve to an overloaded 8675/// operator. 8676/// 8677/// \param OpLoc The location of the operator itself (e.g., '+'). 8678/// 8679/// \param OpcIn The BinaryOperator::Opcode that describes this 8680/// operator. 8681/// 8682/// \param Functions The set of non-member functions that will be 8683/// considered by overload resolution. The caller needs to build this 8684/// set based on the context using, e.g., 8685/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 8686/// set should not contain any member functions; those will be added 8687/// by CreateOverloadedBinOp(). 8688/// 8689/// \param LHS Left-hand argument. 8690/// \param RHS Right-hand argument. 8691ExprResult 8692Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 8693 unsigned OpcIn, 8694 const UnresolvedSetImpl &Fns, 8695 Expr *LHS, Expr *RHS) { 8696 Expr *Args[2] = { LHS, RHS }; 8697 LHS=RHS=0; //Please use only Args instead of LHS/RHS couple 8698 8699 BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); 8700 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 8701 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 8702 8703 // If either side is type-dependent, create an appropriate dependent 8704 // expression. 8705 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 8706 if (Fns.empty()) { 8707 // If there are no functions to store, just build a dependent 8708 // BinaryOperator or CompoundAssignment. 8709 if (Opc <= BO_Assign || Opc > BO_OrAssign) 8710 return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, 8711 Context.DependentTy, 8712 VK_RValue, OK_Ordinary, 8713 OpLoc)); 8714 8715 return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, 8716 Context.DependentTy, 8717 VK_LValue, 8718 OK_Ordinary, 8719 Context.DependentTy, 8720 Context.DependentTy, 8721 OpLoc)); 8722 } 8723 8724 // FIXME: save results of ADL from here? 8725 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 8726 // TODO: provide better source location info in DNLoc component. 8727 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 8728 UnresolvedLookupExpr *Fn 8729 = UnresolvedLookupExpr::Create(Context, NamingClass, 8730 NestedNameSpecifierLoc(), OpNameInfo, 8731 /*ADL*/ true, IsOverloaded(Fns), 8732 Fns.begin(), Fns.end()); 8733 return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, 8734 Args, 2, 8735 Context.DependentTy, 8736 VK_RValue, 8737 OpLoc)); 8738 } 8739 8740 // Always do property rvalue conversions on the RHS. 8741 if (Args[1]->getObjectKind() == OK_ObjCProperty) { 8742 ExprResult Result = ConvertPropertyForRValue(Args[1]); 8743 if (Result.isInvalid()) 8744 return ExprError(); 8745 Args[1] = Result.take(); 8746 } 8747 8748 // The LHS is more complicated. 8749 if (Args[0]->getObjectKind() == OK_ObjCProperty) { 8750 8751 // There's a tension for assignment operators between primitive 8752 // property assignment and the overloaded operators. 8753 if (BinaryOperator::isAssignmentOp(Opc)) { 8754 const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty(); 8755 8756 // Is the property "logically" settable? 8757 bool Settable = (PRE->isExplicitProperty() || 8758 PRE->getImplicitPropertySetter()); 8759 8760 // To avoid gratuitously inventing semantics, use the primitive 8761 // unless it isn't. Thoughts in case we ever really care: 8762 // - If the property isn't logically settable, we have to 8763 // load and hope. 8764 // - If the property is settable and this is simple assignment, 8765 // we really should use the primitive. 8766 // - If the property is settable, then we could try overloading 8767 // on a generic lvalue of the appropriate type; if it works 8768 // out to a builtin candidate, we would do that same operation 8769 // on the property, and otherwise just error. 8770 if (Settable) 8771 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8772 } 8773 8774 ExprResult Result = ConvertPropertyForRValue(Args[0]); 8775 if (Result.isInvalid()) 8776 return ExprError(); 8777 Args[0] = Result.take(); 8778 } 8779 8780 // If this is the assignment operator, we only perform overload resolution 8781 // if the left-hand side is a class or enumeration type. This is actually 8782 // a hack. The standard requires that we do overload resolution between the 8783 // various built-in candidates, but as DR507 points out, this can lead to 8784 // problems. So we do it this way, which pretty much follows what GCC does. 8785 // Note that we go the traditional code path for compound assignment forms. 8786 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 8787 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8788 8789 // If this is the .* operator, which is not overloadable, just 8790 // create a built-in binary operator. 8791 if (Opc == BO_PtrMemD) 8792 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8793 8794 // Build an empty overload set. 8795 OverloadCandidateSet CandidateSet(OpLoc); 8796 8797 // Add the candidates from the given function set. 8798 AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); 8799 8800 // Add operator candidates that are member functions. 8801 AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 8802 8803 // Add candidates from ADL. 8804 AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, 8805 Args, 2, 8806 /*ExplicitTemplateArgs*/ 0, 8807 CandidateSet); 8808 8809 // Add builtin operator candidates. 8810 AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); 8811 8812 // Perform overload resolution. 8813 OverloadCandidateSet::iterator Best; 8814 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 8815 case OR_Success: { 8816 // We found a built-in operator or an overloaded operator. 8817 FunctionDecl *FnDecl = Best->Function; 8818 8819 if (FnDecl) { 8820 // We matched an overloaded operator. Build a call to that 8821 // operator. 8822 8823 MarkDeclarationReferenced(OpLoc, FnDecl); 8824 8825 // Convert the arguments. 8826 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 8827 // Best->Access is only meaningful for class members. 8828 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 8829 8830 ExprResult Arg1 = 8831 PerformCopyInitialization( 8832 InitializedEntity::InitializeParameter(Context, 8833 FnDecl->getParamDecl(0)), 8834 SourceLocation(), Owned(Args[1])); 8835 if (Arg1.isInvalid()) 8836 return ExprError(); 8837 8838 ExprResult Arg0 = 8839 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 8840 Best->FoundDecl, Method); 8841 if (Arg0.isInvalid()) 8842 return ExprError(); 8843 Args[0] = Arg0.takeAs<Expr>(); 8844 Args[1] = RHS = Arg1.takeAs<Expr>(); 8845 } else { 8846 // Convert the arguments. 8847 ExprResult Arg0 = PerformCopyInitialization( 8848 InitializedEntity::InitializeParameter(Context, 8849 FnDecl->getParamDecl(0)), 8850 SourceLocation(), Owned(Args[0])); 8851 if (Arg0.isInvalid()) 8852 return ExprError(); 8853 8854 ExprResult Arg1 = 8855 PerformCopyInitialization( 8856 InitializedEntity::InitializeParameter(Context, 8857 FnDecl->getParamDecl(1)), 8858 SourceLocation(), Owned(Args[1])); 8859 if (Arg1.isInvalid()) 8860 return ExprError(); 8861 Args[0] = LHS = Arg0.takeAs<Expr>(); 8862 Args[1] = RHS = Arg1.takeAs<Expr>(); 8863 } 8864 8865 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 8866 8867 // Determine the result type. 8868 QualType ResultTy = FnDecl->getResultType(); 8869 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 8870 ResultTy = ResultTy.getNonLValueExprType(Context); 8871 8872 // Build the actual expression node. 8873 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, OpLoc); 8874 if (FnExpr.isInvalid()) 8875 return ExprError(); 8876 8877 CXXOperatorCallExpr *TheCall = 8878 new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), 8879 Args, 2, ResultTy, VK, OpLoc); 8880 8881 if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, 8882 FnDecl)) 8883 return ExprError(); 8884 8885 return MaybeBindToTemporary(TheCall); 8886 } else { 8887 // We matched a built-in operator. Convert the arguments, then 8888 // break out so that we will build the appropriate built-in 8889 // operator node. 8890 ExprResult ArgsRes0 = 8891 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 8892 Best->Conversions[0], AA_Passing); 8893 if (ArgsRes0.isInvalid()) 8894 return ExprError(); 8895 Args[0] = ArgsRes0.take(); 8896 8897 ExprResult ArgsRes1 = 8898 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 8899 Best->Conversions[1], AA_Passing); 8900 if (ArgsRes1.isInvalid()) 8901 return ExprError(); 8902 Args[1] = ArgsRes1.take(); 8903 break; 8904 } 8905 } 8906 8907 case OR_No_Viable_Function: { 8908 // C++ [over.match.oper]p9: 8909 // If the operator is the operator , [...] and there are no 8910 // viable functions, then the operator is assumed to be the 8911 // built-in operator and interpreted according to clause 5. 8912 if (Opc == BO_Comma) 8913 break; 8914 8915 // For class as left operand for assignment or compound assigment 8916 // operator do not fall through to handling in built-in, but report that 8917 // no overloaded assignment operator found 8918 ExprResult Result = ExprError(); 8919 if (Args[0]->getType()->isRecordType() && 8920 Opc >= BO_Assign && Opc <= BO_OrAssign) { 8921 Diag(OpLoc, diag::err_ovl_no_viable_oper) 8922 << BinaryOperator::getOpcodeStr(Opc) 8923 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8924 } else { 8925 // This is an erroneous use of an operator which can be overloaded by 8926 // a non-member function. Check for non-member operators which were 8927 // defined too late to be candidates. 8928 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2)) 8929 // FIXME: Recover by calling the found function. 8930 return ExprError(); 8931 8932 // No viable function; try to create a built-in operation, which will 8933 // produce an error. Then, show the non-viable candidates. 8934 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8935 } 8936 assert(Result.isInvalid() && 8937 "C++ binary operator overloading is missing candidates!"); 8938 if (Result.isInvalid()) 8939 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 8940 BinaryOperator::getOpcodeStr(Opc), OpLoc); 8941 return move(Result); 8942 } 8943 8944 case OR_Ambiguous: 8945 Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) 8946 << BinaryOperator::getOpcodeStr(Opc) 8947 << Args[0]->getType() << Args[1]->getType() 8948 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8949 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 8950 BinaryOperator::getOpcodeStr(Opc), OpLoc); 8951 return ExprError(); 8952 8953 case OR_Deleted: 8954 Diag(OpLoc, diag::err_ovl_deleted_oper) 8955 << Best->Function->isDeleted() 8956 << BinaryOperator::getOpcodeStr(Opc) 8957 << getDeletedOrUnavailableSuffix(Best->Function) 8958 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 8959 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 8960 BinaryOperator::getOpcodeStr(Opc), OpLoc); 8961 return ExprError(); 8962 } 8963 8964 // We matched a built-in operator; build it. 8965 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 8966} 8967 8968ExprResult 8969Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 8970 SourceLocation RLoc, 8971 Expr *Base, Expr *Idx) { 8972 Expr *Args[2] = { Base, Idx }; 8973 DeclarationName OpName = 8974 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 8975 8976 // If either side is type-dependent, create an appropriate dependent 8977 // expression. 8978 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 8979 8980 CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators 8981 // CHECKME: no 'operator' keyword? 8982 DeclarationNameInfo OpNameInfo(OpName, LLoc); 8983 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 8984 UnresolvedLookupExpr *Fn 8985 = UnresolvedLookupExpr::Create(Context, NamingClass, 8986 NestedNameSpecifierLoc(), OpNameInfo, 8987 /*ADL*/ true, /*Overloaded*/ false, 8988 UnresolvedSetIterator(), 8989 UnresolvedSetIterator()); 8990 // Can't add any actual overloads yet 8991 8992 return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, 8993 Args, 2, 8994 Context.DependentTy, 8995 VK_RValue, 8996 RLoc)); 8997 } 8998 8999 if (Args[0]->getObjectKind() == OK_ObjCProperty) { 9000 ExprResult Result = ConvertPropertyForRValue(Args[0]); 9001 if (Result.isInvalid()) 9002 return ExprError(); 9003 Args[0] = Result.take(); 9004 } 9005 if (Args[1]->getObjectKind() == OK_ObjCProperty) { 9006 ExprResult Result = ConvertPropertyForRValue(Args[1]); 9007 if (Result.isInvalid()) 9008 return ExprError(); 9009 Args[1] = Result.take(); 9010 } 9011 9012 // Build an empty overload set. 9013 OverloadCandidateSet CandidateSet(LLoc); 9014 9015 // Subscript can only be overloaded as a member function. 9016 9017 // Add operator candidates that are member functions. 9018 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 9019 9020 // Add builtin operator candidates. 9021 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); 9022 9023 // Perform overload resolution. 9024 OverloadCandidateSet::iterator Best; 9025 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 9026 case OR_Success: { 9027 // We found a built-in operator or an overloaded operator. 9028 FunctionDecl *FnDecl = Best->Function; 9029 9030 if (FnDecl) { 9031 // We matched an overloaded operator. Build a call to that 9032 // operator. 9033 9034 MarkDeclarationReferenced(LLoc, FnDecl); 9035 9036 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 9037 DiagnoseUseOfDecl(Best->FoundDecl, LLoc); 9038 9039 // Convert the arguments. 9040 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 9041 ExprResult Arg0 = 9042 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, 9043 Best->FoundDecl, Method); 9044 if (Arg0.isInvalid()) 9045 return ExprError(); 9046 Args[0] = Arg0.take(); 9047 9048 // Convert the arguments. 9049 ExprResult InputInit 9050 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 9051 Context, 9052 FnDecl->getParamDecl(0)), 9053 SourceLocation(), 9054 Owned(Args[1])); 9055 if (InputInit.isInvalid()) 9056 return ExprError(); 9057 9058 Args[1] = InputInit.takeAs<Expr>(); 9059 9060 // Determine the result type 9061 QualType ResultTy = FnDecl->getResultType(); 9062 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9063 ResultTy = ResultTy.getNonLValueExprType(Context); 9064 9065 // Build the actual expression node. 9066 DeclarationNameLoc LocInfo; 9067 LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding(); 9068 LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding(); 9069 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, LLoc, LocInfo); 9070 if (FnExpr.isInvalid()) 9071 return ExprError(); 9072 9073 CXXOperatorCallExpr *TheCall = 9074 new (Context) CXXOperatorCallExpr(Context, OO_Subscript, 9075 FnExpr.take(), Args, 2, 9076 ResultTy, VK, RLoc); 9077 9078 if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, 9079 FnDecl)) 9080 return ExprError(); 9081 9082 return MaybeBindToTemporary(TheCall); 9083 } else { 9084 // We matched a built-in operator. Convert the arguments, then 9085 // break out so that we will build the appropriate built-in 9086 // operator node. 9087 ExprResult ArgsRes0 = 9088 PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], 9089 Best->Conversions[0], AA_Passing); 9090 if (ArgsRes0.isInvalid()) 9091 return ExprError(); 9092 Args[0] = ArgsRes0.take(); 9093 9094 ExprResult ArgsRes1 = 9095 PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], 9096 Best->Conversions[1], AA_Passing); 9097 if (ArgsRes1.isInvalid()) 9098 return ExprError(); 9099 Args[1] = ArgsRes1.take(); 9100 9101 break; 9102 } 9103 } 9104 9105 case OR_No_Viable_Function: { 9106 if (CandidateSet.empty()) 9107 Diag(LLoc, diag::err_ovl_no_oper) 9108 << Args[0]->getType() << /*subscript*/ 0 9109 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9110 else 9111 Diag(LLoc, diag::err_ovl_no_viable_subscript) 9112 << Args[0]->getType() 9113 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9114 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9115 "[]", LLoc); 9116 return ExprError(); 9117 } 9118 9119 case OR_Ambiguous: 9120 Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) 9121 << "[]" 9122 << Args[0]->getType() << Args[1]->getType() 9123 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9124 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, 9125 "[]", LLoc); 9126 return ExprError(); 9127 9128 case OR_Deleted: 9129 Diag(LLoc, diag::err_ovl_deleted_oper) 9130 << Best->Function->isDeleted() << "[]" 9131 << getDeletedOrUnavailableSuffix(Best->Function) 9132 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 9133 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, 9134 "[]", LLoc); 9135 return ExprError(); 9136 } 9137 9138 // We matched a built-in operator; build it. 9139 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 9140} 9141 9142/// BuildCallToMemberFunction - Build a call to a member 9143/// function. MemExpr is the expression that refers to the member 9144/// function (and includes the object parameter), Args/NumArgs are the 9145/// arguments to the function call (not including the object 9146/// parameter). The caller needs to validate that the member 9147/// expression refers to a non-static member function or an overloaded 9148/// member function. 9149ExprResult 9150Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 9151 SourceLocation LParenLoc, Expr **Args, 9152 unsigned NumArgs, SourceLocation RParenLoc) { 9153 assert(MemExprE->getType() == Context.BoundMemberTy || 9154 MemExprE->getType() == Context.OverloadTy); 9155 9156 // Dig out the member expression. This holds both the object 9157 // argument and the member function we're referring to. 9158 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 9159 9160 // Determine whether this is a call to a pointer-to-member function. 9161 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 9162 assert(op->getType() == Context.BoundMemberTy); 9163 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 9164 9165 QualType fnType = 9166 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 9167 9168 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 9169 QualType resultType = proto->getCallResultType(Context); 9170 ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType()); 9171 9172 // Check that the object type isn't more qualified than the 9173 // member function we're calling. 9174 Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals()); 9175 9176 QualType objectType = op->getLHS()->getType(); 9177 if (op->getOpcode() == BO_PtrMemI) 9178 objectType = objectType->castAs<PointerType>()->getPointeeType(); 9179 Qualifiers objectQuals = objectType.getQualifiers(); 9180 9181 Qualifiers difference = objectQuals - funcQuals; 9182 difference.removeObjCGCAttr(); 9183 difference.removeAddressSpace(); 9184 if (difference) { 9185 std::string qualsString = difference.getAsString(); 9186 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 9187 << fnType.getUnqualifiedType() 9188 << qualsString 9189 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 9190 } 9191 9192 CXXMemberCallExpr *call 9193 = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 9194 resultType, valueKind, RParenLoc); 9195 9196 if (CheckCallReturnType(proto->getResultType(), 9197 op->getRHS()->getSourceRange().getBegin(), 9198 call, 0)) 9199 return ExprError(); 9200 9201 if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc)) 9202 return ExprError(); 9203 9204 return MaybeBindToTemporary(call); 9205 } 9206 9207 MemberExpr *MemExpr; 9208 CXXMethodDecl *Method = 0; 9209 DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); 9210 NestedNameSpecifier *Qualifier = 0; 9211 if (isa<MemberExpr>(NakedMemExpr)) { 9212 MemExpr = cast<MemberExpr>(NakedMemExpr); 9213 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 9214 FoundDecl = MemExpr->getFoundDecl(); 9215 Qualifier = MemExpr->getQualifier(); 9216 } else { 9217 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 9218 Qualifier = UnresExpr->getQualifier(); 9219 9220 QualType ObjectType = UnresExpr->getBaseType(); 9221 Expr::Classification ObjectClassification 9222 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 9223 : UnresExpr->getBase()->Classify(Context); 9224 9225 // Add overload candidates 9226 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); 9227 9228 // FIXME: avoid copy. 9229 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 9230 if (UnresExpr->hasExplicitTemplateArgs()) { 9231 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 9232 TemplateArgs = &TemplateArgsBuffer; 9233 } 9234 9235 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 9236 E = UnresExpr->decls_end(); I != E; ++I) { 9237 9238 NamedDecl *Func = *I; 9239 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 9240 if (isa<UsingShadowDecl>(Func)) 9241 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 9242 9243 9244 // Microsoft supports direct constructor calls. 9245 if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 9246 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs, 9247 CandidateSet); 9248 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 9249 // If explicit template arguments were provided, we can't call a 9250 // non-template member function. 9251 if (TemplateArgs) 9252 continue; 9253 9254 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 9255 ObjectClassification, 9256 Args, NumArgs, CandidateSet, 9257 /*SuppressUserConversions=*/false); 9258 } else { 9259 AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), 9260 I.getPair(), ActingDC, TemplateArgs, 9261 ObjectType, ObjectClassification, 9262 Args, NumArgs, CandidateSet, 9263 /*SuppressUsedConversions=*/false); 9264 } 9265 } 9266 9267 DeclarationName DeclName = UnresExpr->getMemberName(); 9268 9269 OverloadCandidateSet::iterator Best; 9270 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), 9271 Best)) { 9272 case OR_Success: 9273 Method = cast<CXXMethodDecl>(Best->Function); 9274 MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method); 9275 FoundDecl = Best->FoundDecl; 9276 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 9277 DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); 9278 break; 9279 9280 case OR_No_Viable_Function: 9281 Diag(UnresExpr->getMemberLoc(), 9282 diag::err_ovl_no_viable_member_function_in_call) 9283 << DeclName << MemExprE->getSourceRange(); 9284 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9285 // FIXME: Leaking incoming expressions! 9286 return ExprError(); 9287 9288 case OR_Ambiguous: 9289 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) 9290 << DeclName << MemExprE->getSourceRange(); 9291 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9292 // FIXME: Leaking incoming expressions! 9293 return ExprError(); 9294 9295 case OR_Deleted: 9296 Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) 9297 << Best->Function->isDeleted() 9298 << DeclName 9299 << getDeletedOrUnavailableSuffix(Best->Function) 9300 << MemExprE->getSourceRange(); 9301 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9302 // FIXME: Leaking incoming expressions! 9303 return ExprError(); 9304 } 9305 9306 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 9307 9308 // If overload resolution picked a static member, build a 9309 // non-member call based on that function. 9310 if (Method->isStatic()) { 9311 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, 9312 Args, NumArgs, RParenLoc); 9313 } 9314 9315 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 9316 } 9317 9318 QualType ResultType = Method->getResultType(); 9319 ExprValueKind VK = Expr::getValueKindForType(ResultType); 9320 ResultType = ResultType.getNonLValueExprType(Context); 9321 9322 assert(Method && "Member call to something that isn't a method?"); 9323 CXXMemberCallExpr *TheCall = 9324 new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, 9325 ResultType, VK, RParenLoc); 9326 9327 // Check for a valid return type. 9328 if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), 9329 TheCall, Method)) 9330 return ExprError(); 9331 9332 // Convert the object argument (for a non-static member function call). 9333 // We only need to do this if there was actually an overload; otherwise 9334 // it was done at lookup. 9335 if (!Method->isStatic()) { 9336 ExprResult ObjectArg = 9337 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 9338 FoundDecl, Method); 9339 if (ObjectArg.isInvalid()) 9340 return ExprError(); 9341 MemExpr->setBase(ObjectArg.take()); 9342 } 9343 9344 // Convert the rest of the arguments 9345 const FunctionProtoType *Proto = 9346 Method->getType()->getAs<FunctionProtoType>(); 9347 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, 9348 RParenLoc)) 9349 return ExprError(); 9350 9351 if (CheckFunctionCall(Method, TheCall)) 9352 return ExprError(); 9353 9354 if ((isa<CXXConstructorDecl>(CurContext) || 9355 isa<CXXDestructorDecl>(CurContext)) && 9356 TheCall->getMethodDecl()->isPure()) { 9357 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 9358 9359 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) { 9360 Diag(MemExpr->getLocStart(), 9361 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 9362 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 9363 << MD->getParent()->getDeclName(); 9364 9365 Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName(); 9366 } 9367 } 9368 return MaybeBindToTemporary(TheCall); 9369} 9370 9371/// BuildCallToObjectOfClassType - Build a call to an object of class 9372/// type (C++ [over.call.object]), which can end up invoking an 9373/// overloaded function call operator (@c operator()) or performing a 9374/// user-defined conversion on the object argument. 9375ExprResult 9376Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 9377 SourceLocation LParenLoc, 9378 Expr **Args, unsigned NumArgs, 9379 SourceLocation RParenLoc) { 9380 ExprResult Object = Owned(Obj); 9381 if (Object.get()->getObjectKind() == OK_ObjCProperty) { 9382 Object = ConvertPropertyForRValue(Object.take()); 9383 if (Object.isInvalid()) 9384 return ExprError(); 9385 } 9386 9387 assert(Object.get()->getType()->isRecordType() && "Requires object type argument"); 9388 const RecordType *Record = Object.get()->getType()->getAs<RecordType>(); 9389 9390 // C++ [over.call.object]p1: 9391 // If the primary-expression E in the function call syntax 9392 // evaluates to a class object of type "cv T", then the set of 9393 // candidate functions includes at least the function call 9394 // operators of T. The function call operators of T are obtained by 9395 // ordinary lookup of the name operator() in the context of 9396 // (E).operator(). 9397 OverloadCandidateSet CandidateSet(LParenLoc); 9398 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 9399 9400 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 9401 PDiag(diag::err_incomplete_object_call) 9402 << Object.get()->getSourceRange())) 9403 return true; 9404 9405 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 9406 LookupQualifiedName(R, Record->getDecl()); 9407 R.suppressDiagnostics(); 9408 9409 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 9410 Oper != OperEnd; ++Oper) { 9411 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 9412 Object.get()->Classify(Context), Args, NumArgs, CandidateSet, 9413 /*SuppressUserConversions=*/ false); 9414 } 9415 9416 // C++ [over.call.object]p2: 9417 // In addition, for each (non-explicit in C++0x) conversion function 9418 // declared in T of the form 9419 // 9420 // operator conversion-type-id () cv-qualifier; 9421 // 9422 // where cv-qualifier is the same cv-qualification as, or a 9423 // greater cv-qualification than, cv, and where conversion-type-id 9424 // denotes the type "pointer to function of (P1,...,Pn) returning 9425 // R", or the type "reference to pointer to function of 9426 // (P1,...,Pn) returning R", or the type "reference to function 9427 // of (P1,...,Pn) returning R", a surrogate call function [...] 9428 // is also considered as a candidate function. Similarly, 9429 // surrogate call functions are added to the set of candidate 9430 // functions for each conversion function declared in an 9431 // accessible base class provided the function is not hidden 9432 // within T by another intervening declaration. 9433 const UnresolvedSetImpl *Conversions 9434 = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 9435 for (UnresolvedSetImpl::iterator I = Conversions->begin(), 9436 E = Conversions->end(); I != E; ++I) { 9437 NamedDecl *D = *I; 9438 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 9439 if (isa<UsingShadowDecl>(D)) 9440 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 9441 9442 // Skip over templated conversion functions; they aren't 9443 // surrogates. 9444 if (isa<FunctionTemplateDecl>(D)) 9445 continue; 9446 9447 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 9448 if (!Conv->isExplicit()) { 9449 // Strip the reference type (if any) and then the pointer type (if 9450 // any) to get down to what might be a function type. 9451 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 9452 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 9453 ConvType = ConvPtrType->getPointeeType(); 9454 9455 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 9456 { 9457 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 9458 Object.get(), Args, NumArgs, CandidateSet); 9459 } 9460 } 9461 } 9462 9463 // Perform overload resolution. 9464 OverloadCandidateSet::iterator Best; 9465 switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(), 9466 Best)) { 9467 case OR_Success: 9468 // Overload resolution succeeded; we'll build the appropriate call 9469 // below. 9470 break; 9471 9472 case OR_No_Viable_Function: 9473 if (CandidateSet.empty()) 9474 Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper) 9475 << Object.get()->getType() << /*call*/ 1 9476 << Object.get()->getSourceRange(); 9477 else 9478 Diag(Object.get()->getSourceRange().getBegin(), 9479 diag::err_ovl_no_viable_object_call) 9480 << Object.get()->getType() << Object.get()->getSourceRange(); 9481 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9482 break; 9483 9484 case OR_Ambiguous: 9485 Diag(Object.get()->getSourceRange().getBegin(), 9486 diag::err_ovl_ambiguous_object_call) 9487 << Object.get()->getType() << Object.get()->getSourceRange(); 9488 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); 9489 break; 9490 9491 case OR_Deleted: 9492 Diag(Object.get()->getSourceRange().getBegin(), 9493 diag::err_ovl_deleted_object_call) 9494 << Best->Function->isDeleted() 9495 << Object.get()->getType() 9496 << getDeletedOrUnavailableSuffix(Best->Function) 9497 << Object.get()->getSourceRange(); 9498 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); 9499 break; 9500 } 9501 9502 if (Best == CandidateSet.end()) 9503 return true; 9504 9505 if (Best->Function == 0) { 9506 // Since there is no function declaration, this is one of the 9507 // surrogate candidates. Dig out the conversion function. 9508 CXXConversionDecl *Conv 9509 = cast<CXXConversionDecl>( 9510 Best->Conversions[0].UserDefined.ConversionFunction); 9511 9512 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 9513 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 9514 9515 // We selected one of the surrogate functions that converts the 9516 // object parameter to a function pointer. Perform the conversion 9517 // on the object argument, then let ActOnCallExpr finish the job. 9518 9519 // Create an implicit member expr to refer to the conversion operator. 9520 // and then call it. 9521 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, Conv); 9522 if (Call.isInvalid()) 9523 return ExprError(); 9524 9525 return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), 9526 RParenLoc); 9527 } 9528 9529 MarkDeclarationReferenced(LParenLoc, Best->Function); 9530 CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); 9531 DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); 9532 9533 // We found an overloaded operator(). Build a CXXOperatorCallExpr 9534 // that calls this method, using Object for the implicit object 9535 // parameter and passing along the remaining arguments. 9536 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 9537 const FunctionProtoType *Proto = 9538 Method->getType()->getAs<FunctionProtoType>(); 9539 9540 unsigned NumArgsInProto = Proto->getNumArgs(); 9541 unsigned NumArgsToCheck = NumArgs; 9542 9543 // Build the full argument list for the method call (the 9544 // implicit object parameter is placed at the beginning of the 9545 // list). 9546 Expr **MethodArgs; 9547 if (NumArgs < NumArgsInProto) { 9548 NumArgsToCheck = NumArgsInProto; 9549 MethodArgs = new Expr*[NumArgsInProto + 1]; 9550 } else { 9551 MethodArgs = new Expr*[NumArgs + 1]; 9552 } 9553 MethodArgs[0] = Object.get(); 9554 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) 9555 MethodArgs[ArgIdx + 1] = Args[ArgIdx]; 9556 9557 ExprResult NewFn = CreateFunctionRefExpr(*this, Method); 9558 if (NewFn.isInvalid()) 9559 return true; 9560 9561 // Once we've built TheCall, all of the expressions are properly 9562 // owned. 9563 QualType ResultTy = Method->getResultType(); 9564 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9565 ResultTy = ResultTy.getNonLValueExprType(Context); 9566 9567 CXXOperatorCallExpr *TheCall = 9568 new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(), 9569 MethodArgs, NumArgs + 1, 9570 ResultTy, VK, RParenLoc); 9571 delete [] MethodArgs; 9572 9573 if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, 9574 Method)) 9575 return true; 9576 9577 // We may have default arguments. If so, we need to allocate more 9578 // slots in the call for them. 9579 if (NumArgs < NumArgsInProto) 9580 TheCall->setNumArgs(Context, NumArgsInProto + 1); 9581 else if (NumArgs > NumArgsInProto) 9582 NumArgsToCheck = NumArgsInProto; 9583 9584 bool IsError = false; 9585 9586 // Initialize the implicit object parameter. 9587 ExprResult ObjRes = 9588 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0, 9589 Best->FoundDecl, Method); 9590 if (ObjRes.isInvalid()) 9591 IsError = true; 9592 else 9593 Object = move(ObjRes); 9594 TheCall->setArg(0, Object.take()); 9595 9596 // Check the argument types. 9597 for (unsigned i = 0; i != NumArgsToCheck; i++) { 9598 Expr *Arg; 9599 if (i < NumArgs) { 9600 Arg = Args[i]; 9601 9602 // Pass the argument. 9603 9604 ExprResult InputInit 9605 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 9606 Context, 9607 Method->getParamDecl(i)), 9608 SourceLocation(), Arg); 9609 9610 IsError |= InputInit.isInvalid(); 9611 Arg = InputInit.takeAs<Expr>(); 9612 } else { 9613 ExprResult DefArg 9614 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 9615 if (DefArg.isInvalid()) { 9616 IsError = true; 9617 break; 9618 } 9619 9620 Arg = DefArg.takeAs<Expr>(); 9621 } 9622 9623 TheCall->setArg(i + 1, Arg); 9624 } 9625 9626 // If this is a variadic call, handle args passed through "...". 9627 if (Proto->isVariadic()) { 9628 // Promote the arguments (C99 6.5.2.2p7). 9629 for (unsigned i = NumArgsInProto; i != NumArgs; i++) { 9630 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); 9631 IsError |= Arg.isInvalid(); 9632 TheCall->setArg(i + 1, Arg.take()); 9633 } 9634 } 9635 9636 if (IsError) return true; 9637 9638 if (CheckFunctionCall(Method, TheCall)) 9639 return true; 9640 9641 return MaybeBindToTemporary(TheCall); 9642} 9643 9644/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 9645/// (if one exists), where @c Base is an expression of class type and 9646/// @c Member is the name of the member we're trying to find. 9647ExprResult 9648Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { 9649 assert(Base->getType()->isRecordType() && 9650 "left-hand side must have class type"); 9651 9652 if (Base->getObjectKind() == OK_ObjCProperty) { 9653 ExprResult Result = ConvertPropertyForRValue(Base); 9654 if (Result.isInvalid()) 9655 return ExprError(); 9656 Base = Result.take(); 9657 } 9658 9659 SourceLocation Loc = Base->getExprLoc(); 9660 9661 // C++ [over.ref]p1: 9662 // 9663 // [...] An expression x->m is interpreted as (x.operator->())->m 9664 // for a class object x of type T if T::operator->() exists and if 9665 // the operator is selected as the best match function by the 9666 // overload resolution mechanism (13.3). 9667 DeclarationName OpName = 9668 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 9669 OverloadCandidateSet CandidateSet(Loc); 9670 const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); 9671 9672 if (RequireCompleteType(Loc, Base->getType(), 9673 PDiag(diag::err_typecheck_incomplete_tag) 9674 << Base->getSourceRange())) 9675 return ExprError(); 9676 9677 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 9678 LookupQualifiedName(R, BaseRecord->getDecl()); 9679 R.suppressDiagnostics(); 9680 9681 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 9682 Oper != OperEnd; ++Oper) { 9683 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 9684 0, 0, CandidateSet, /*SuppressUserConversions=*/false); 9685 } 9686 9687 // Perform overload resolution. 9688 OverloadCandidateSet::iterator Best; 9689 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 9690 case OR_Success: 9691 // Overload resolution succeeded; we'll build the call below. 9692 break; 9693 9694 case OR_No_Viable_Function: 9695 if (CandidateSet.empty()) 9696 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 9697 << Base->getType() << Base->getSourceRange(); 9698 else 9699 Diag(OpLoc, diag::err_ovl_no_viable_oper) 9700 << "operator->" << Base->getSourceRange(); 9701 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 9702 return ExprError(); 9703 9704 case OR_Ambiguous: 9705 Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) 9706 << "->" << Base->getType() << Base->getSourceRange(); 9707 CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); 9708 return ExprError(); 9709 9710 case OR_Deleted: 9711 Diag(OpLoc, diag::err_ovl_deleted_oper) 9712 << Best->Function->isDeleted() 9713 << "->" 9714 << getDeletedOrUnavailableSuffix(Best->Function) 9715 << Base->getSourceRange(); 9716 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); 9717 return ExprError(); 9718 } 9719 9720 MarkDeclarationReferenced(OpLoc, Best->Function); 9721 CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); 9722 DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); 9723 9724 // Convert the object parameter. 9725 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 9726 ExprResult BaseResult = 9727 PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, 9728 Best->FoundDecl, Method); 9729 if (BaseResult.isInvalid()) 9730 return ExprError(); 9731 Base = BaseResult.take(); 9732 9733 // Build the operator call. 9734 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method); 9735 if (FnExpr.isInvalid()) 9736 return ExprError(); 9737 9738 QualType ResultTy = Method->getResultType(); 9739 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 9740 ResultTy = ResultTy.getNonLValueExprType(Context); 9741 CXXOperatorCallExpr *TheCall = 9742 new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(), 9743 &Base, 1, ResultTy, VK, OpLoc); 9744 9745 if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, 9746 Method)) 9747 return ExprError(); 9748 9749 return MaybeBindToTemporary(TheCall); 9750} 9751 9752/// FixOverloadedFunctionReference - E is an expression that refers to 9753/// a C++ overloaded function (possibly with some parentheses and 9754/// perhaps a '&' around it). We have resolved the overloaded function 9755/// to the function declaration Fn, so patch up the expression E to 9756/// refer (possibly indirectly) to Fn. Returns the new expr. 9757Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 9758 FunctionDecl *Fn) { 9759 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 9760 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 9761 Found, Fn); 9762 if (SubExpr == PE->getSubExpr()) 9763 return PE; 9764 9765 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 9766 } 9767 9768 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 9769 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 9770 Found, Fn); 9771 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 9772 SubExpr->getType()) && 9773 "Implicit cast type cannot be determined from overload"); 9774 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 9775 if (SubExpr == ICE->getSubExpr()) 9776 return ICE; 9777 9778 return ImplicitCastExpr::Create(Context, ICE->getType(), 9779 ICE->getCastKind(), 9780 SubExpr, 0, 9781 ICE->getValueKind()); 9782 } 9783 9784 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 9785 assert(UnOp->getOpcode() == UO_AddrOf && 9786 "Can only take the address of an overloaded function"); 9787 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 9788 if (Method->isStatic()) { 9789 // Do nothing: static member functions aren't any different 9790 // from non-member functions. 9791 } else { 9792 // Fix the sub expression, which really has to be an 9793 // UnresolvedLookupExpr holding an overloaded member function 9794 // or template. 9795 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 9796 Found, Fn); 9797 if (SubExpr == UnOp->getSubExpr()) 9798 return UnOp; 9799 9800 assert(isa<DeclRefExpr>(SubExpr) 9801 && "fixed to something other than a decl ref"); 9802 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 9803 && "fixed to a member ref with no nested name qualifier"); 9804 9805 // We have taken the address of a pointer to member 9806 // function. Perform the computation here so that we get the 9807 // appropriate pointer to member type. 9808 QualType ClassType 9809 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 9810 QualType MemPtrType 9811 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 9812 9813 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, 9814 VK_RValue, OK_Ordinary, 9815 UnOp->getOperatorLoc()); 9816 } 9817 } 9818 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 9819 Found, Fn); 9820 if (SubExpr == UnOp->getSubExpr()) 9821 return UnOp; 9822 9823 return new (Context) UnaryOperator(SubExpr, UO_AddrOf, 9824 Context.getPointerType(SubExpr->getType()), 9825 VK_RValue, OK_Ordinary, 9826 UnOp->getOperatorLoc()); 9827 } 9828 9829 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 9830 // FIXME: avoid copy. 9831 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 9832 if (ULE->hasExplicitTemplateArgs()) { 9833 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 9834 TemplateArgs = &TemplateArgsBuffer; 9835 } 9836 9837 return DeclRefExpr::Create(Context, 9838 ULE->getQualifierLoc(), 9839 Fn, 9840 ULE->getNameLoc(), 9841 Fn->getType(), 9842 VK_LValue, 9843 Found.getDecl(), 9844 TemplateArgs); 9845 } 9846 9847 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 9848 // FIXME: avoid copy. 9849 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; 9850 if (MemExpr->hasExplicitTemplateArgs()) { 9851 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 9852 TemplateArgs = &TemplateArgsBuffer; 9853 } 9854 9855 Expr *Base; 9856 9857 // If we're filling in a static method where we used to have an 9858 // implicit member access, rewrite to a simple decl ref. 9859 if (MemExpr->isImplicitAccess()) { 9860 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 9861 return DeclRefExpr::Create(Context, 9862 MemExpr->getQualifierLoc(), 9863 Fn, 9864 MemExpr->getMemberLoc(), 9865 Fn->getType(), 9866 VK_LValue, 9867 Found.getDecl(), 9868 TemplateArgs); 9869 } else { 9870 SourceLocation Loc = MemExpr->getMemberLoc(); 9871 if (MemExpr->getQualifier()) 9872 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 9873 Base = new (Context) CXXThisExpr(Loc, 9874 MemExpr->getBaseType(), 9875 /*isImplicit=*/true); 9876 } 9877 } else 9878 Base = MemExpr->getBase(); 9879 9880 ExprValueKind valueKind; 9881 QualType type; 9882 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 9883 valueKind = VK_LValue; 9884 type = Fn->getType(); 9885 } else { 9886 valueKind = VK_RValue; 9887 type = Context.BoundMemberTy; 9888 } 9889 9890 return MemberExpr::Create(Context, Base, 9891 MemExpr->isArrow(), 9892 MemExpr->getQualifierLoc(), 9893 Fn, 9894 Found, 9895 MemExpr->getMemberNameInfo(), 9896 TemplateArgs, 9897 type, valueKind, OK_Ordinary); 9898 } 9899 9900 llvm_unreachable("Invalid reference to overloaded function"); 9901 return E; 9902} 9903 9904ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 9905 DeclAccessPair Found, 9906 FunctionDecl *Fn) { 9907 return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); 9908} 9909 9910} // end namespace clang 9911