SemaOverload.cpp revision c3384cba391f9140a46db0caa061649b633f65bc
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26#include <cstdio>
27
28namespace clang {
29
30/// GetConversionCategory - Retrieve the implicit conversion
31/// category corresponding to the given implicit conversion kind.
32ImplicitConversionCategory
33GetConversionCategory(ImplicitConversionKind Kind) {
34  static const ImplicitConversionCategory
35    Category[(int)ICK_Num_Conversion_Kinds] = {
36    ICC_Identity,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Qualification_Adjustment,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion
54  };
55  return Category[(int)Kind];
56}
57
58/// GetConversionRank - Retrieve the implicit conversion rank
59/// corresponding to the given implicit conversion kind.
60ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
61  static const ImplicitConversionRank
62    Rank[(int)ICK_Num_Conversion_Kinds] = {
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion
81  };
82  return Rank[(int)Kind];
83}
84
85/// GetImplicitConversionName - Return the name of this kind of
86/// implicit conversion.
87const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
88  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
89    "No conversion",
90    "Lvalue-to-rvalue",
91    "Array-to-pointer",
92    "Function-to-pointer",
93    "Qualification",
94    "Integral promotion",
95    "Floating point promotion",
96    "Complex promotion",
97    "Integral conversion",
98    "Floating conversion",
99    "Complex conversion",
100    "Floating-integral conversion",
101    "Complex-real conversion",
102    "Pointer conversion",
103    "Pointer-to-member conversion",
104    "Boolean conversion",
105    "Compatible-types conversion",
106    "Derived-to-base conversion"
107  };
108  return Name[Kind];
109}
110
111/// StandardConversionSequence - Set the standard conversion
112/// sequence to the identity conversion.
113void StandardConversionSequence::setAsIdentityConversion() {
114  First = ICK_Identity;
115  Second = ICK_Identity;
116  Third = ICK_Identity;
117  Deprecated = false;
118  ReferenceBinding = false;
119  DirectBinding = false;
120  RRefBinding = false;
121  CopyConstructor = 0;
122}
123
124/// getRank - Retrieve the rank of this standard conversion sequence
125/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
126/// implicit conversions.
127ImplicitConversionRank StandardConversionSequence::getRank() const {
128  ImplicitConversionRank Rank = ICR_Exact_Match;
129  if  (GetConversionRank(First) > Rank)
130    Rank = GetConversionRank(First);
131  if  (GetConversionRank(Second) > Rank)
132    Rank = GetConversionRank(Second);
133  if  (GetConversionRank(Third) > Rank)
134    Rank = GetConversionRank(Third);
135  return Rank;
136}
137
138/// isPointerConversionToBool - Determines whether this conversion is
139/// a conversion of a pointer or pointer-to-member to bool. This is
140/// used as part of the ranking of standard conversion sequences
141/// (C++ 13.3.3.2p4).
142bool StandardConversionSequence::isPointerConversionToBool() const
143{
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const
166{
167  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
168  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
169
170  // Note that FromType has not necessarily been transformed by the
171  // array-to-pointer implicit conversion, so check for its presence
172  // and redo the conversion to get a pointer.
173  if (First == ICK_Array_To_Pointer)
174    FromType = Context.getArrayDecayedType(FromType);
175
176  if (Second == ICK_Pointer_Conversion)
177    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
178      return ToPtrType->getPointeeType()->isVoidType();
179
180  return false;
181}
182
183/// DebugPrint - Print this standard conversion sequence to standard
184/// error. Useful for debugging overloading issues.
185void StandardConversionSequence::DebugPrint() const {
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    fprintf(stderr, "%s", GetImplicitConversionName(First));
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      fprintf(stderr, " -> ");
195    }
196    fprintf(stderr, "%s", GetImplicitConversionName(Second));
197
198    if (CopyConstructor) {
199      fprintf(stderr, " (by copy constructor)");
200    } else if (DirectBinding) {
201      fprintf(stderr, " (direct reference binding)");
202    } else if (ReferenceBinding) {
203      fprintf(stderr, " (reference binding)");
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      fprintf(stderr, " -> ");
211    }
212    fprintf(stderr, "%s", GetImplicitConversionName(Third));
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    fprintf(stderr, "No conversions required");
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  if (Before.First || Before.Second || Before.Third) {
225    Before.DebugPrint();
226    fprintf(stderr, " -> ");
227  }
228  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
229  if (After.First || After.Second || After.Third) {
230    fprintf(stderr, " -> ");
231    After.DebugPrint();
232  }
233}
234
235/// DebugPrint - Print this implicit conversion sequence to standard
236/// error. Useful for debugging overloading issues.
237void ImplicitConversionSequence::DebugPrint() const {
238  switch (ConversionKind) {
239  case StandardConversion:
240    fprintf(stderr, "Standard conversion: ");
241    Standard.DebugPrint();
242    break;
243  case UserDefinedConversion:
244    fprintf(stderr, "User-defined conversion: ");
245    UserDefined.DebugPrint();
246    break;
247  case EllipsisConversion:
248    fprintf(stderr, "Ellipsis conversion");
249    break;
250  case BadConversion:
251    fprintf(stderr, "Bad conversion");
252    break;
253  }
254
255  fprintf(stderr, "\n");
256}
257
258// IsOverload - Determine whether the given New declaration is an
259// overload of the Old declaration. This routine returns false if New
260// and Old cannot be overloaded, e.g., if they are functions with the
261// same signature (C++ 1.3.10) or if the Old declaration isn't a
262// function (or overload set). When it does return false and Old is an
263// OverloadedFunctionDecl, MatchedDecl will be set to point to the
264// FunctionDecl that New cannot be overloaded with.
265//
266// Example: Given the following input:
267//
268//   void f(int, float); // #1
269//   void f(int, int); // #2
270//   int f(int, int); // #3
271//
272// When we process #1, there is no previous declaration of "f",
273// so IsOverload will not be used.
274//
275// When we process #2, Old is a FunctionDecl for #1.  By comparing the
276// parameter types, we see that #1 and #2 are overloaded (since they
277// have different signatures), so this routine returns false;
278// MatchedDecl is unchanged.
279//
280// When we process #3, Old is an OverloadedFunctionDecl containing #1
281// and #2. We compare the signatures of #3 to #1 (they're overloaded,
282// so we do nothing) and then #3 to #2. Since the signatures of #3 and
283// #2 are identical (return types of functions are not part of the
284// signature), IsOverload returns false and MatchedDecl will be set to
285// point to the FunctionDecl for #2.
286bool
287Sema::IsOverload(FunctionDecl *New, Decl* OldD,
288                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
289{
290  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
291    // Is this new function an overload of every function in the
292    // overload set?
293    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
294                                           FuncEnd = Ovl->function_end();
295    for (; Func != FuncEnd; ++Func) {
296      if (!IsOverload(New, *Func, MatchedDecl)) {
297        MatchedDecl = Func;
298        return false;
299      }
300    }
301
302    // This function overloads every function in the overload set.
303    return true;
304  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
305    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
306  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
307    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
308    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
309
310    // C++ [temp.fct]p2:
311    //   A function template can be overloaded with other function templates
312    //   and with normal (non-template) functions.
313    if ((OldTemplate == 0) != (NewTemplate == 0))
314      return true;
315
316    // Is the function New an overload of the function Old?
317    QualType OldQType = Context.getCanonicalType(Old->getType());
318    QualType NewQType = Context.getCanonicalType(New->getType());
319
320    // Compare the signatures (C++ 1.3.10) of the two functions to
321    // determine whether they are overloads. If we find any mismatch
322    // in the signature, they are overloads.
323
324    // If either of these functions is a K&R-style function (no
325    // prototype), then we consider them to have matching signatures.
326    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
327        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
328      return false;
329
330    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
331    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
332
333    // The signature of a function includes the types of its
334    // parameters (C++ 1.3.10), which includes the presence or absence
335    // of the ellipsis; see C++ DR 357).
336    if (OldQType != NewQType &&
337        (OldType->getNumArgs() != NewType->getNumArgs() ||
338         OldType->isVariadic() != NewType->isVariadic() ||
339         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
340                     NewType->arg_type_begin())))
341      return true;
342
343    // C++ [temp.over.link]p4:
344    //   The signature of a function template consists of its function
345    //   signature, its return type and its template parameter list. The names
346    //   of the template parameters are significant only for establishing the
347    //   relationship between the template parameters and the rest of the
348    //   signature.
349    //
350    // We check the return type and template parameter lists for function
351    // templates first; the remaining checks follow.
352    if (NewTemplate &&
353        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
354                                         OldTemplate->getTemplateParameters(),
355                                         false, false, SourceLocation()) ||
356         OldType->getResultType() != NewType->getResultType()))
357      return true;
358
359    // If the function is a class member, its signature includes the
360    // cv-qualifiers (if any) on the function itself.
361    //
362    // As part of this, also check whether one of the member functions
363    // is static, in which case they are not overloads (C++
364    // 13.1p2). While not part of the definition of the signature,
365    // this check is important to determine whether these functions
366    // can be overloaded.
367    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
368    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
369    if (OldMethod && NewMethod &&
370        !OldMethod->isStatic() && !NewMethod->isStatic() &&
371        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
372      return true;
373
374    // The signatures match; this is not an overload.
375    return false;
376  } else {
377    // (C++ 13p1):
378    //   Only function declarations can be overloaded; object and type
379    //   declarations cannot be overloaded.
380    return false;
381  }
382}
383
384/// TryImplicitConversion - Attempt to perform an implicit conversion
385/// from the given expression (Expr) to the given type (ToType). This
386/// function returns an implicit conversion sequence that can be used
387/// to perform the initialization. Given
388///
389///   void f(float f);
390///   void g(int i) { f(i); }
391///
392/// this routine would produce an implicit conversion sequence to
393/// describe the initialization of f from i, which will be a standard
394/// conversion sequence containing an lvalue-to-rvalue conversion (C++
395/// 4.1) followed by a floating-integral conversion (C++ 4.9).
396//
397/// Note that this routine only determines how the conversion can be
398/// performed; it does not actually perform the conversion. As such,
399/// it will not produce any diagnostics if no conversion is available,
400/// but will instead return an implicit conversion sequence of kind
401/// "BadConversion".
402///
403/// If @p SuppressUserConversions, then user-defined conversions are
404/// not permitted.
405/// If @p AllowExplicit, then explicit user-defined conversions are
406/// permitted.
407/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
408/// no matter its actual lvalueness.
409ImplicitConversionSequence
410Sema::TryImplicitConversion(Expr* From, QualType ToType,
411                            bool SuppressUserConversions,
412                            bool AllowExplicit, bool ForceRValue)
413{
414  ImplicitConversionSequence ICS;
415  if (IsStandardConversion(From, ToType, ICS.Standard))
416    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
417  else if (getLangOptions().CPlusPlus &&
418           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
419                                   !SuppressUserConversions, AllowExplicit,
420                                   ForceRValue)) {
421    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
422    // C++ [over.ics.user]p4:
423    //   A conversion of an expression of class type to the same class
424    //   type is given Exact Match rank, and a conversion of an
425    //   expression of class type to a base class of that type is
426    //   given Conversion rank, in spite of the fact that a copy
427    //   constructor (i.e., a user-defined conversion function) is
428    //   called for those cases.
429    if (CXXConstructorDecl *Constructor
430          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
431      QualType FromCanon
432        = Context.getCanonicalType(From->getType().getUnqualifiedType());
433      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
434      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
435        // Turn this into a "standard" conversion sequence, so that it
436        // gets ranked with standard conversion sequences.
437        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
438        ICS.Standard.setAsIdentityConversion();
439        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
440        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
441        ICS.Standard.CopyConstructor = Constructor;
442        if (ToCanon != FromCanon)
443          ICS.Standard.Second = ICK_Derived_To_Base;
444      }
445    }
446
447    // C++ [over.best.ics]p4:
448    //   However, when considering the argument of a user-defined
449    //   conversion function that is a candidate by 13.3.1.3 when
450    //   invoked for the copying of the temporary in the second step
451    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
452    //   13.3.1.6 in all cases, only standard conversion sequences and
453    //   ellipsis conversion sequences are allowed.
454    if (SuppressUserConversions &&
455        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
456      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
457  } else
458    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
459
460  return ICS;
461}
462
463/// IsStandardConversion - Determines whether there is a standard
464/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
465/// expression From to the type ToType. Standard conversion sequences
466/// only consider non-class types; for conversions that involve class
467/// types, use TryImplicitConversion. If a conversion exists, SCS will
468/// contain the standard conversion sequence required to perform this
469/// conversion and this routine will return true. Otherwise, this
470/// routine will return false and the value of SCS is unspecified.
471bool
472Sema::IsStandardConversion(Expr* From, QualType ToType,
473                           StandardConversionSequence &SCS)
474{
475  QualType FromType = From->getType();
476
477  // Standard conversions (C++ [conv])
478  SCS.setAsIdentityConversion();
479  SCS.Deprecated = false;
480  SCS.IncompatibleObjC = false;
481  SCS.FromTypePtr = FromType.getAsOpaquePtr();
482  SCS.CopyConstructor = 0;
483
484  // There are no standard conversions for class types in C++, so
485  // abort early. When overloading in C, however, we do permit
486  if (FromType->isRecordType() || ToType->isRecordType()) {
487    if (getLangOptions().CPlusPlus)
488      return false;
489
490    // When we're overloading in C, we allow, as standard conversions,
491  }
492
493  // The first conversion can be an lvalue-to-rvalue conversion,
494  // array-to-pointer conversion, or function-to-pointer conversion
495  // (C++ 4p1).
496
497  // Lvalue-to-rvalue conversion (C++ 4.1):
498  //   An lvalue (3.10) of a non-function, non-array type T can be
499  //   converted to an rvalue.
500  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
501  if (argIsLvalue == Expr::LV_Valid &&
502      !FromType->isFunctionType() && !FromType->isArrayType() &&
503      Context.getCanonicalType(FromType) != Context.OverloadTy) {
504    SCS.First = ICK_Lvalue_To_Rvalue;
505
506    // If T is a non-class type, the type of the rvalue is the
507    // cv-unqualified version of T. Otherwise, the type of the rvalue
508    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
509    // just strip the qualifiers because they don't matter.
510
511    // FIXME: Doesn't see through to qualifiers behind a typedef!
512    FromType = FromType.getUnqualifiedType();
513  } else if (FromType->isArrayType()) {
514    // Array-to-pointer conversion (C++ 4.2)
515    SCS.First = ICK_Array_To_Pointer;
516
517    // An lvalue or rvalue of type "array of N T" or "array of unknown
518    // bound of T" can be converted to an rvalue of type "pointer to
519    // T" (C++ 4.2p1).
520    FromType = Context.getArrayDecayedType(FromType);
521
522    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
523      // This conversion is deprecated. (C++ D.4).
524      SCS.Deprecated = true;
525
526      // For the purpose of ranking in overload resolution
527      // (13.3.3.1.1), this conversion is considered an
528      // array-to-pointer conversion followed by a qualification
529      // conversion (4.4). (C++ 4.2p2)
530      SCS.Second = ICK_Identity;
531      SCS.Third = ICK_Qualification;
532      SCS.ToTypePtr = ToType.getAsOpaquePtr();
533      return true;
534    }
535  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
536    // Function-to-pointer conversion (C++ 4.3).
537    SCS.First = ICK_Function_To_Pointer;
538
539    // An lvalue of function type T can be converted to an rvalue of
540    // type "pointer to T." The result is a pointer to the
541    // function. (C++ 4.3p1).
542    FromType = Context.getPointerType(FromType);
543  } else if (FunctionDecl *Fn
544             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
545    // Address of overloaded function (C++ [over.over]).
546    SCS.First = ICK_Function_To_Pointer;
547
548    // We were able to resolve the address of the overloaded function,
549    // so we can convert to the type of that function.
550    FromType = Fn->getType();
551    if (ToType->isLValueReferenceType())
552      FromType = Context.getLValueReferenceType(FromType);
553    else if (ToType->isRValueReferenceType())
554      FromType = Context.getRValueReferenceType(FromType);
555    else if (ToType->isMemberPointerType()) {
556      // Resolve address only succeeds if both sides are member pointers,
557      // but it doesn't have to be the same class. See DR 247.
558      // Note that this means that the type of &Derived::fn can be
559      // Ret (Base::*)(Args) if the fn overload actually found is from the
560      // base class, even if it was brought into the derived class via a
561      // using declaration. The standard isn't clear on this issue at all.
562      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
563      FromType = Context.getMemberPointerType(FromType,
564                    Context.getTypeDeclType(M->getParent()).getTypePtr());
565    } else
566      FromType = Context.getPointerType(FromType);
567  } else {
568    // We don't require any conversions for the first step.
569    SCS.First = ICK_Identity;
570  }
571
572  // The second conversion can be an integral promotion, floating
573  // point promotion, integral conversion, floating point conversion,
574  // floating-integral conversion, pointer conversion,
575  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
576  // For overloading in C, this can also be a "compatible-type"
577  // conversion.
578  bool IncompatibleObjC = false;
579  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
580    // The unqualified versions of the types are the same: there's no
581    // conversion to do.
582    SCS.Second = ICK_Identity;
583  } else if (IsIntegralPromotion(From, FromType, ToType)) {
584    // Integral promotion (C++ 4.5).
585    SCS.Second = ICK_Integral_Promotion;
586    FromType = ToType.getUnqualifiedType();
587  } else if (IsFloatingPointPromotion(FromType, ToType)) {
588    // Floating point promotion (C++ 4.6).
589    SCS.Second = ICK_Floating_Promotion;
590    FromType = ToType.getUnqualifiedType();
591  } else if (IsComplexPromotion(FromType, ToType)) {
592    // Complex promotion (Clang extension)
593    SCS.Second = ICK_Complex_Promotion;
594    FromType = ToType.getUnqualifiedType();
595  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
596           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
597    // Integral conversions (C++ 4.7).
598    // FIXME: isIntegralType shouldn't be true for enums in C++.
599    SCS.Second = ICK_Integral_Conversion;
600    FromType = ToType.getUnqualifiedType();
601  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
602    // Floating point conversions (C++ 4.8).
603    SCS.Second = ICK_Floating_Conversion;
604    FromType = ToType.getUnqualifiedType();
605  } else if (FromType->isComplexType() && ToType->isComplexType()) {
606    // Complex conversions (C99 6.3.1.6)
607    SCS.Second = ICK_Complex_Conversion;
608    FromType = ToType.getUnqualifiedType();
609  } else if ((FromType->isFloatingType() &&
610              ToType->isIntegralType() && (!ToType->isBooleanType() &&
611                                           !ToType->isEnumeralType())) ||
612             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
613              ToType->isFloatingType())) {
614    // Floating-integral conversions (C++ 4.9).
615    // FIXME: isIntegralType shouldn't be true for enums in C++.
616    SCS.Second = ICK_Floating_Integral;
617    FromType = ToType.getUnqualifiedType();
618  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
619             (ToType->isComplexType() && FromType->isArithmeticType())) {
620    // Complex-real conversions (C99 6.3.1.7)
621    SCS.Second = ICK_Complex_Real;
622    FromType = ToType.getUnqualifiedType();
623  } else if (IsPointerConversion(From, FromType, ToType, FromType,
624                                 IncompatibleObjC)) {
625    // Pointer conversions (C++ 4.10).
626    SCS.Second = ICK_Pointer_Conversion;
627    SCS.IncompatibleObjC = IncompatibleObjC;
628  } else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
629    // Pointer to member conversions (4.11).
630    SCS.Second = ICK_Pointer_Member;
631  } else if (ToType->isBooleanType() &&
632             (FromType->isArithmeticType() ||
633              FromType->isEnumeralType() ||
634              FromType->isPointerType() ||
635              FromType->isBlockPointerType() ||
636              FromType->isMemberPointerType() ||
637              FromType->isNullPtrType())) {
638    // Boolean conversions (C++ 4.12).
639    SCS.Second = ICK_Boolean_Conversion;
640    FromType = Context.BoolTy;
641  } else if (!getLangOptions().CPlusPlus &&
642             Context.typesAreCompatible(ToType, FromType)) {
643    // Compatible conversions (Clang extension for C function overloading)
644    SCS.Second = ICK_Compatible_Conversion;
645  } else {
646    // No second conversion required.
647    SCS.Second = ICK_Identity;
648  }
649
650  QualType CanonFrom;
651  QualType CanonTo;
652  // The third conversion can be a qualification conversion (C++ 4p1).
653  if (IsQualificationConversion(FromType, ToType)) {
654    SCS.Third = ICK_Qualification;
655    FromType = ToType;
656    CanonFrom = Context.getCanonicalType(FromType);
657    CanonTo = Context.getCanonicalType(ToType);
658  } else {
659    // No conversion required
660    SCS.Third = ICK_Identity;
661
662    // C++ [over.best.ics]p6:
663    //   [...] Any difference in top-level cv-qualification is
664    //   subsumed by the initialization itself and does not constitute
665    //   a conversion. [...]
666    CanonFrom = Context.getCanonicalType(FromType);
667    CanonTo = Context.getCanonicalType(ToType);
668    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
669        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
670      FromType = ToType;
671      CanonFrom = CanonTo;
672    }
673  }
674
675  // If we have not converted the argument type to the parameter type,
676  // this is a bad conversion sequence.
677  if (CanonFrom != CanonTo)
678    return false;
679
680  SCS.ToTypePtr = FromType.getAsOpaquePtr();
681  return true;
682}
683
684/// IsIntegralPromotion - Determines whether the conversion from the
685/// expression From (whose potentially-adjusted type is FromType) to
686/// ToType is an integral promotion (C++ 4.5). If so, returns true and
687/// sets PromotedType to the promoted type.
688bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
689{
690  const BuiltinType *To = ToType->getAsBuiltinType();
691  // All integers are built-in.
692  if (!To) {
693    return false;
694  }
695
696  // An rvalue of type char, signed char, unsigned char, short int, or
697  // unsigned short int can be converted to an rvalue of type int if
698  // int can represent all the values of the source type; otherwise,
699  // the source rvalue can be converted to an rvalue of type unsigned
700  // int (C++ 4.5p1).
701  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
702    if (// We can promote any signed, promotable integer type to an int
703        (FromType->isSignedIntegerType() ||
704         // We can promote any unsigned integer type whose size is
705         // less than int to an int.
706         (!FromType->isSignedIntegerType() &&
707          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
708      return To->getKind() == BuiltinType::Int;
709    }
710
711    return To->getKind() == BuiltinType::UInt;
712  }
713
714  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
715  // can be converted to an rvalue of the first of the following types
716  // that can represent all the values of its underlying type: int,
717  // unsigned int, long, or unsigned long (C++ 4.5p2).
718  if ((FromType->isEnumeralType() || FromType->isWideCharType())
719      && ToType->isIntegerType()) {
720    // Determine whether the type we're converting from is signed or
721    // unsigned.
722    bool FromIsSigned;
723    uint64_t FromSize = Context.getTypeSize(FromType);
724    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
725      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
726      FromIsSigned = UnderlyingType->isSignedIntegerType();
727    } else {
728      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
729      FromIsSigned = true;
730    }
731
732    // The types we'll try to promote to, in the appropriate
733    // order. Try each of these types.
734    QualType PromoteTypes[6] = {
735      Context.IntTy, Context.UnsignedIntTy,
736      Context.LongTy, Context.UnsignedLongTy ,
737      Context.LongLongTy, Context.UnsignedLongLongTy
738    };
739    for (int Idx = 0; Idx < 6; ++Idx) {
740      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
741      if (FromSize < ToSize ||
742          (FromSize == ToSize &&
743           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
744        // We found the type that we can promote to. If this is the
745        // type we wanted, we have a promotion. Otherwise, no
746        // promotion.
747        return Context.getCanonicalType(ToType).getUnqualifiedType()
748          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
749      }
750    }
751  }
752
753  // An rvalue for an integral bit-field (9.6) can be converted to an
754  // rvalue of type int if int can represent all the values of the
755  // bit-field; otherwise, it can be converted to unsigned int if
756  // unsigned int can represent all the values of the bit-field. If
757  // the bit-field is larger yet, no integral promotion applies to
758  // it. If the bit-field has an enumerated type, it is treated as any
759  // other value of that type for promotion purposes (C++ 4.5p3).
760  // FIXME: We should delay checking of bit-fields until we actually perform the
761  // conversion.
762  using llvm::APSInt;
763  if (From)
764    if (FieldDecl *MemberDecl = From->getBitField()) {
765      APSInt BitWidth;
766      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
767          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
768        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
769        ToSize = Context.getTypeSize(ToType);
770
771        // Are we promoting to an int from a bitfield that fits in an int?
772        if (BitWidth < ToSize ||
773            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
774          return To->getKind() == BuiltinType::Int;
775        }
776
777        // Are we promoting to an unsigned int from an unsigned bitfield
778        // that fits into an unsigned int?
779        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
780          return To->getKind() == BuiltinType::UInt;
781        }
782
783        return false;
784      }
785    }
786
787  // An rvalue of type bool can be converted to an rvalue of type int,
788  // with false becoming zero and true becoming one (C++ 4.5p4).
789  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
790    return true;
791  }
792
793  return false;
794}
795
796/// IsFloatingPointPromotion - Determines whether the conversion from
797/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
798/// returns true and sets PromotedType to the promoted type.
799bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
800{
801  /// An rvalue of type float can be converted to an rvalue of type
802  /// double. (C++ 4.6p1).
803  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
804    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
805      if (FromBuiltin->getKind() == BuiltinType::Float &&
806          ToBuiltin->getKind() == BuiltinType::Double)
807        return true;
808
809      // C99 6.3.1.5p1:
810      //   When a float is promoted to double or long double, or a
811      //   double is promoted to long double [...].
812      if (!getLangOptions().CPlusPlus &&
813          (FromBuiltin->getKind() == BuiltinType::Float ||
814           FromBuiltin->getKind() == BuiltinType::Double) &&
815          (ToBuiltin->getKind() == BuiltinType::LongDouble))
816        return true;
817    }
818
819  return false;
820}
821
822/// \brief Determine if a conversion is a complex promotion.
823///
824/// A complex promotion is defined as a complex -> complex conversion
825/// where the conversion between the underlying real types is a
826/// floating-point or integral promotion.
827bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
828  const ComplexType *FromComplex = FromType->getAsComplexType();
829  if (!FromComplex)
830    return false;
831
832  const ComplexType *ToComplex = ToType->getAsComplexType();
833  if (!ToComplex)
834    return false;
835
836  return IsFloatingPointPromotion(FromComplex->getElementType(),
837                                  ToComplex->getElementType()) ||
838    IsIntegralPromotion(0, FromComplex->getElementType(),
839                        ToComplex->getElementType());
840}
841
842/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
843/// the pointer type FromPtr to a pointer to type ToPointee, with the
844/// same type qualifiers as FromPtr has on its pointee type. ToType,
845/// if non-empty, will be a pointer to ToType that may or may not have
846/// the right set of qualifiers on its pointee.
847static QualType
848BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
849                                   QualType ToPointee, QualType ToType,
850                                   ASTContext &Context) {
851  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
852  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
853  unsigned Quals = CanonFromPointee.getCVRQualifiers();
854
855  // Exact qualifier match -> return the pointer type we're converting to.
856  if (CanonToPointee.getCVRQualifiers() == Quals) {
857    // ToType is exactly what we need. Return it.
858    if (ToType.getTypePtr())
859      return ToType;
860
861    // Build a pointer to ToPointee. It has the right qualifiers
862    // already.
863    return Context.getPointerType(ToPointee);
864  }
865
866  // Just build a canonical type that has the right qualifiers.
867  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
868}
869
870/// IsPointerConversion - Determines whether the conversion of the
871/// expression From, which has the (possibly adjusted) type FromType,
872/// can be converted to the type ToType via a pointer conversion (C++
873/// 4.10). If so, returns true and places the converted type (that
874/// might differ from ToType in its cv-qualifiers at some level) into
875/// ConvertedType.
876///
877/// This routine also supports conversions to and from block pointers
878/// and conversions with Objective-C's 'id', 'id<protocols...>', and
879/// pointers to interfaces. FIXME: Once we've determined the
880/// appropriate overloading rules for Objective-C, we may want to
881/// split the Objective-C checks into a different routine; however,
882/// GCC seems to consider all of these conversions to be pointer
883/// conversions, so for now they live here. IncompatibleObjC will be
884/// set if the conversion is an allowed Objective-C conversion that
885/// should result in a warning.
886bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
887                               QualType& ConvertedType,
888                               bool &IncompatibleObjC)
889{
890  IncompatibleObjC = false;
891  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
892    return true;
893
894  // Conversion from a null pointer constant to any Objective-C pointer type.
895  if (ToType->isObjCObjectPointerType() &&
896      From->isNullPointerConstant(Context)) {
897    ConvertedType = ToType;
898    return true;
899  }
900
901  // Blocks: Block pointers can be converted to void*.
902  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
903      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
904    ConvertedType = ToType;
905    return true;
906  }
907  // Blocks: A null pointer constant can be converted to a block
908  // pointer type.
909  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
910    ConvertedType = ToType;
911    return true;
912  }
913
914  // If the left-hand-side is nullptr_t, the right side can be a null
915  // pointer constant.
916  if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
917    ConvertedType = ToType;
918    return true;
919  }
920
921  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
922  if (!ToTypePtr)
923    return false;
924
925  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
926  if (From->isNullPointerConstant(Context)) {
927    ConvertedType = ToType;
928    return true;
929  }
930
931  // Beyond this point, both types need to be pointers.
932  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
933  if (!FromTypePtr)
934    return false;
935
936  QualType FromPointeeType = FromTypePtr->getPointeeType();
937  QualType ToPointeeType = ToTypePtr->getPointeeType();
938
939  // An rvalue of type "pointer to cv T," where T is an object type,
940  // can be converted to an rvalue of type "pointer to cv void" (C++
941  // 4.10p2).
942  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
943    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
944                                                       ToPointeeType,
945                                                       ToType, Context);
946    return true;
947  }
948
949  // When we're overloading in C, we allow a special kind of pointer
950  // conversion for compatible-but-not-identical pointee types.
951  if (!getLangOptions().CPlusPlus &&
952      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
953    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
954                                                       ToPointeeType,
955                                                       ToType, Context);
956    return true;
957  }
958
959  // C++ [conv.ptr]p3:
960  //
961  //   An rvalue of type "pointer to cv D," where D is a class type,
962  //   can be converted to an rvalue of type "pointer to cv B," where
963  //   B is a base class (clause 10) of D. If B is an inaccessible
964  //   (clause 11) or ambiguous (10.2) base class of D, a program that
965  //   necessitates this conversion is ill-formed. The result of the
966  //   conversion is a pointer to the base class sub-object of the
967  //   derived class object. The null pointer value is converted to
968  //   the null pointer value of the destination type.
969  //
970  // Note that we do not check for ambiguity or inaccessibility
971  // here. That is handled by CheckPointerConversion.
972  if (getLangOptions().CPlusPlus &&
973      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
974      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
975    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
976                                                       ToPointeeType,
977                                                       ToType, Context);
978    return true;
979  }
980
981  return false;
982}
983
984/// isObjCPointerConversion - Determines whether this is an
985/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
986/// with the same arguments and return values.
987bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
988                                   QualType& ConvertedType,
989                                   bool &IncompatibleObjC) {
990  if (!getLangOptions().ObjC1)
991    return false;
992
993  // First, we handle all conversions on ObjC object pointer types.
994  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
995  const ObjCObjectPointerType *FromObjCPtr =
996    FromType->getAsObjCObjectPointerType();
997
998  if (ToObjCPtr && FromObjCPtr) {
999    // Objective C++: We're able to convert between "id" or "Class" and a
1000    // pointer to any interface (in both directions).
1001    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1002      ConvertedType = ToType;
1003      return true;
1004    }
1005    // Conversions with Objective-C's id<...>.
1006    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1007         ToObjCPtr->isObjCQualifiedIdType()) &&
1008        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1009                                                  /*compare=*/false)) {
1010      ConvertedType = ToType;
1011      return true;
1012    }
1013    // Objective C++: We're able to convert from a pointer to an
1014    // interface to a pointer to a different interface.
1015    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1016      ConvertedType = ToType;
1017      return true;
1018    }
1019
1020    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1021      // Okay: this is some kind of implicit downcast of Objective-C
1022      // interfaces, which is permitted. However, we're going to
1023      // complain about it.
1024      IncompatibleObjC = true;
1025      ConvertedType = FromType;
1026      return true;
1027    }
1028  }
1029  // Beyond this point, both types need to be C pointers or block pointers.
1030  QualType ToPointeeType;
1031  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1032    ToPointeeType = ToCPtr->getPointeeType();
1033  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1034    ToPointeeType = ToBlockPtr->getPointeeType();
1035  else
1036    return false;
1037
1038  QualType FromPointeeType;
1039  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1040    FromPointeeType = FromCPtr->getPointeeType();
1041  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1042    FromPointeeType = FromBlockPtr->getPointeeType();
1043  else
1044    return false;
1045
1046  // If we have pointers to pointers, recursively check whether this
1047  // is an Objective-C conversion.
1048  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1049      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1050                              IncompatibleObjC)) {
1051    // We always complain about this conversion.
1052    IncompatibleObjC = true;
1053    ConvertedType = ToType;
1054    return true;
1055  }
1056  // If we have pointers to functions or blocks, check whether the only
1057  // differences in the argument and result types are in Objective-C
1058  // pointer conversions. If so, we permit the conversion (but
1059  // complain about it).
1060  const FunctionProtoType *FromFunctionType
1061    = FromPointeeType->getAsFunctionProtoType();
1062  const FunctionProtoType *ToFunctionType
1063    = ToPointeeType->getAsFunctionProtoType();
1064  if (FromFunctionType && ToFunctionType) {
1065    // If the function types are exactly the same, this isn't an
1066    // Objective-C pointer conversion.
1067    if (Context.getCanonicalType(FromPointeeType)
1068          == Context.getCanonicalType(ToPointeeType))
1069      return false;
1070
1071    // Perform the quick checks that will tell us whether these
1072    // function types are obviously different.
1073    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1074        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1075        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1076      return false;
1077
1078    bool HasObjCConversion = false;
1079    if (Context.getCanonicalType(FromFunctionType->getResultType())
1080          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1081      // Okay, the types match exactly. Nothing to do.
1082    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1083                                       ToFunctionType->getResultType(),
1084                                       ConvertedType, IncompatibleObjC)) {
1085      // Okay, we have an Objective-C pointer conversion.
1086      HasObjCConversion = true;
1087    } else {
1088      // Function types are too different. Abort.
1089      return false;
1090    }
1091
1092    // Check argument types.
1093    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1094         ArgIdx != NumArgs; ++ArgIdx) {
1095      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1096      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1097      if (Context.getCanonicalType(FromArgType)
1098            == Context.getCanonicalType(ToArgType)) {
1099        // Okay, the types match exactly. Nothing to do.
1100      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1101                                         ConvertedType, IncompatibleObjC)) {
1102        // Okay, we have an Objective-C pointer conversion.
1103        HasObjCConversion = true;
1104      } else {
1105        // Argument types are too different. Abort.
1106        return false;
1107      }
1108    }
1109
1110    if (HasObjCConversion) {
1111      // We had an Objective-C conversion. Allow this pointer
1112      // conversion, but complain about it.
1113      ConvertedType = ToType;
1114      IncompatibleObjC = true;
1115      return true;
1116    }
1117  }
1118
1119  return false;
1120}
1121
1122/// CheckPointerConversion - Check the pointer conversion from the
1123/// expression From to the type ToType. This routine checks for
1124/// ambiguous or inaccessible derived-to-base pointer
1125/// conversions for which IsPointerConversion has already returned
1126/// true. It returns true and produces a diagnostic if there was an
1127/// error, or returns false otherwise.
1128bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1129  QualType FromType = From->getType();
1130
1131  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1132    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1133      QualType FromPointeeType = FromPtrType->getPointeeType(),
1134               ToPointeeType   = ToPtrType->getPointeeType();
1135
1136      if (FromPointeeType->isRecordType() &&
1137          ToPointeeType->isRecordType()) {
1138        // We must have a derived-to-base conversion. Check an
1139        // ambiguous or inaccessible conversion.
1140        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1141                                            From->getExprLoc(),
1142                                            From->getSourceRange());
1143      }
1144    }
1145  if (const ObjCObjectPointerType *FromPtrType =
1146        FromType->getAsObjCObjectPointerType())
1147    if (const ObjCObjectPointerType *ToPtrType =
1148          ToType->getAsObjCObjectPointerType()) {
1149      // Objective-C++ conversions are always okay.
1150      // FIXME: We should have a different class of conversions for the
1151      // Objective-C++ implicit conversions.
1152      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1153        return false;
1154
1155  }
1156  return false;
1157}
1158
1159/// IsMemberPointerConversion - Determines whether the conversion of the
1160/// expression From, which has the (possibly adjusted) type FromType, can be
1161/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1162/// If so, returns true and places the converted type (that might differ from
1163/// ToType in its cv-qualifiers at some level) into ConvertedType.
1164bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1165                                     QualType ToType, QualType &ConvertedType)
1166{
1167  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1168  if (!ToTypePtr)
1169    return false;
1170
1171  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1172  if (From->isNullPointerConstant(Context)) {
1173    ConvertedType = ToType;
1174    return true;
1175  }
1176
1177  // Otherwise, both types have to be member pointers.
1178  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1179  if (!FromTypePtr)
1180    return false;
1181
1182  // A pointer to member of B can be converted to a pointer to member of D,
1183  // where D is derived from B (C++ 4.11p2).
1184  QualType FromClass(FromTypePtr->getClass(), 0);
1185  QualType ToClass(ToTypePtr->getClass(), 0);
1186  // FIXME: What happens when these are dependent? Is this function even called?
1187
1188  if (IsDerivedFrom(ToClass, FromClass)) {
1189    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1190                                                 ToClass.getTypePtr());
1191    return true;
1192  }
1193
1194  return false;
1195}
1196
1197/// CheckMemberPointerConversion - Check the member pointer conversion from the
1198/// expression From to the type ToType. This routine checks for ambiguous or
1199/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1200/// for which IsMemberPointerConversion has already returned true. It returns
1201/// true and produces a diagnostic if there was an error, or returns false
1202/// otherwise.
1203bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1204                                        CastExpr::CastKind &Kind) {
1205  QualType FromType = From->getType();
1206  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1207  if (!FromPtrType) {
1208    // This must be a null pointer to member pointer conversion
1209    assert(From->isNullPointerConstant(Context) &&
1210           "Expr must be null pointer constant!");
1211    Kind = CastExpr::CK_NullToMemberPointer;
1212    return false;
1213  }
1214
1215  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1216  assert(ToPtrType && "No member pointer cast has a target type "
1217                      "that is not a member pointer.");
1218
1219  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1220  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1221
1222  // FIXME: What about dependent types?
1223  assert(FromClass->isRecordType() && "Pointer into non-class.");
1224  assert(ToClass->isRecordType() && "Pointer into non-class.");
1225
1226  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1227                  /*DetectVirtual=*/true);
1228  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1229  assert(DerivationOkay &&
1230         "Should not have been called if derivation isn't OK.");
1231  (void)DerivationOkay;
1232
1233  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1234                                  getUnqualifiedType())) {
1235    // Derivation is ambiguous. Redo the check to find the exact paths.
1236    Paths.clear();
1237    Paths.setRecordingPaths(true);
1238    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1239    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1240    (void)StillOkay;
1241
1242    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1243    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1244      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1245    return true;
1246  }
1247
1248  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1249    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1250      << FromClass << ToClass << QualType(VBase, 0)
1251      << From->getSourceRange();
1252    return true;
1253  }
1254
1255  // Must be a base to derived member conversion.
1256  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1257  return false;
1258}
1259
1260/// IsQualificationConversion - Determines whether the conversion from
1261/// an rvalue of type FromType to ToType is a qualification conversion
1262/// (C++ 4.4).
1263bool
1264Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1265{
1266  FromType = Context.getCanonicalType(FromType);
1267  ToType = Context.getCanonicalType(ToType);
1268
1269  // If FromType and ToType are the same type, this is not a
1270  // qualification conversion.
1271  if (FromType == ToType)
1272    return false;
1273
1274  // (C++ 4.4p4):
1275  //   A conversion can add cv-qualifiers at levels other than the first
1276  //   in multi-level pointers, subject to the following rules: [...]
1277  bool PreviousToQualsIncludeConst = true;
1278  bool UnwrappedAnyPointer = false;
1279  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1280    // Within each iteration of the loop, we check the qualifiers to
1281    // determine if this still looks like a qualification
1282    // conversion. Then, if all is well, we unwrap one more level of
1283    // pointers or pointers-to-members and do it all again
1284    // until there are no more pointers or pointers-to-members left to
1285    // unwrap.
1286    UnwrappedAnyPointer = true;
1287
1288    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1289    //      2,j, and similarly for volatile.
1290    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1291      return false;
1292
1293    //   -- if the cv 1,j and cv 2,j are different, then const is in
1294    //      every cv for 0 < k < j.
1295    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1296        && !PreviousToQualsIncludeConst)
1297      return false;
1298
1299    // Keep track of whether all prior cv-qualifiers in the "to" type
1300    // include const.
1301    PreviousToQualsIncludeConst
1302      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1303  }
1304
1305  // We are left with FromType and ToType being the pointee types
1306  // after unwrapping the original FromType and ToType the same number
1307  // of types. If we unwrapped any pointers, and if FromType and
1308  // ToType have the same unqualified type (since we checked
1309  // qualifiers above), then this is a qualification conversion.
1310  return UnwrappedAnyPointer &&
1311    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1312}
1313
1314/// \brief Given a function template or function, extract the function template
1315/// declaration (if any) and the underlying function declaration.
1316template<typename T>
1317static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1318                                   FunctionTemplateDecl *&FunctionTemplate) {
1319  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1320  if (FunctionTemplate)
1321    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1322  else
1323    Function = cast<T>(Orig);
1324}
1325
1326
1327/// Determines whether there is a user-defined conversion sequence
1328/// (C++ [over.ics.user]) that converts expression From to the type
1329/// ToType. If such a conversion exists, User will contain the
1330/// user-defined conversion sequence that performs such a conversion
1331/// and this routine will return true. Otherwise, this routine returns
1332/// false and User is unspecified.
1333///
1334/// \param AllowConversionFunctions true if the conversion should
1335/// consider conversion functions at all. If false, only constructors
1336/// will be considered.
1337///
1338/// \param AllowExplicit  true if the conversion should consider C++0x
1339/// "explicit" conversion functions as well as non-explicit conversion
1340/// functions (C++0x [class.conv.fct]p2).
1341///
1342/// \param ForceRValue  true if the expression should be treated as an rvalue
1343/// for overload resolution.
1344bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1345                                   UserDefinedConversionSequence& User,
1346                                   bool AllowConversionFunctions,
1347                                   bool AllowExplicit, bool ForceRValue)
1348{
1349  OverloadCandidateSet CandidateSet;
1350  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1351    if (CXXRecordDecl *ToRecordDecl
1352          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1353      // C++ [over.match.ctor]p1:
1354      //   When objects of class type are direct-initialized (8.5), or
1355      //   copy-initialized from an expression of the same or a
1356      //   derived class type (8.5), overload resolution selects the
1357      //   constructor. [...] For copy-initialization, the candidate
1358      //   functions are all the converting constructors (12.3.1) of
1359      //   that class. The argument list is the expression-list within
1360      //   the parentheses of the initializer.
1361      DeclarationName ConstructorName
1362        = Context.DeclarationNames.getCXXConstructorName(
1363                          Context.getCanonicalType(ToType).getUnqualifiedType());
1364      DeclContext::lookup_iterator Con, ConEnd;
1365      for (llvm::tie(Con, ConEnd)
1366             = ToRecordDecl->lookup(ConstructorName);
1367           Con != ConEnd; ++Con) {
1368        // Find the constructor (which may be a template).
1369        CXXConstructorDecl *Constructor = 0;
1370        FunctionTemplateDecl *ConstructorTmpl
1371          = dyn_cast<FunctionTemplateDecl>(*Con);
1372        if (ConstructorTmpl)
1373          Constructor
1374            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1375        else
1376          Constructor = cast<CXXConstructorDecl>(*Con);
1377
1378        if (!Constructor->isInvalidDecl() &&
1379            Constructor->isConvertingConstructor()) {
1380          if (ConstructorTmpl)
1381            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1382                                         1, CandidateSet,
1383                                         /*SuppressUserConversions=*/true,
1384                                         ForceRValue);
1385          else
1386            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1387                                 /*SuppressUserConversions=*/true, ForceRValue);
1388        }
1389      }
1390    }
1391  }
1392
1393  if (!AllowConversionFunctions) {
1394    // Don't allow any conversion functions to enter the overload set.
1395  } else if (RequireCompleteType(From->getLocStart(), From->getType(), 0,
1396                                 From->getSourceRange())) {
1397    // No conversion functions from incomplete types.
1398  } else if (const RecordType *FromRecordType
1399               = From->getType()->getAs<RecordType>()) {
1400    if (CXXRecordDecl *FromRecordDecl
1401          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1402      // Add all of the conversion functions as candidates.
1403      // FIXME: Look for conversions in base classes!
1404      OverloadedFunctionDecl *Conversions
1405        = FromRecordDecl->getConversionFunctions();
1406      for (OverloadedFunctionDecl::function_iterator Func
1407             = Conversions->function_begin();
1408           Func != Conversions->function_end(); ++Func) {
1409        CXXConversionDecl *Conv;
1410        FunctionTemplateDecl *ConvTemplate;
1411        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1412        if (ConvTemplate)
1413          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1414        else
1415          Conv = dyn_cast<CXXConversionDecl>(*Func);
1416
1417        if (AllowExplicit || !Conv->isExplicit()) {
1418          if (ConvTemplate)
1419            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1420                                           CandidateSet);
1421          else
1422            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1423        }
1424      }
1425    }
1426  }
1427
1428  OverloadCandidateSet::iterator Best;
1429  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1430    case OR_Success:
1431      // Record the standard conversion we used and the conversion function.
1432      if (CXXConstructorDecl *Constructor
1433            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1434        // C++ [over.ics.user]p1:
1435        //   If the user-defined conversion is specified by a
1436        //   constructor (12.3.1), the initial standard conversion
1437        //   sequence converts the source type to the type required by
1438        //   the argument of the constructor.
1439        //
1440        // FIXME: What about ellipsis conversions?
1441        QualType ThisType = Constructor->getThisType(Context);
1442        User.Before = Best->Conversions[0].Standard;
1443        User.ConversionFunction = Constructor;
1444        User.After.setAsIdentityConversion();
1445        User.After.FromTypePtr
1446          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1447        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1448        return true;
1449      } else if (CXXConversionDecl *Conversion
1450                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1451        // C++ [over.ics.user]p1:
1452        //
1453        //   [...] If the user-defined conversion is specified by a
1454        //   conversion function (12.3.2), the initial standard
1455        //   conversion sequence converts the source type to the
1456        //   implicit object parameter of the conversion function.
1457        User.Before = Best->Conversions[0].Standard;
1458        User.ConversionFunction = Conversion;
1459
1460        // C++ [over.ics.user]p2:
1461        //   The second standard conversion sequence converts the
1462        //   result of the user-defined conversion to the target type
1463        //   for the sequence. Since an implicit conversion sequence
1464        //   is an initialization, the special rules for
1465        //   initialization by user-defined conversion apply when
1466        //   selecting the best user-defined conversion for a
1467        //   user-defined conversion sequence (see 13.3.3 and
1468        //   13.3.3.1).
1469        User.After = Best->FinalConversion;
1470        return true;
1471      } else {
1472        assert(false && "Not a constructor or conversion function?");
1473        return false;
1474      }
1475
1476    case OR_No_Viable_Function:
1477    case OR_Deleted:
1478      // No conversion here! We're done.
1479      return false;
1480
1481    case OR_Ambiguous:
1482      // FIXME: See C++ [over.best.ics]p10 for the handling of
1483      // ambiguous conversion sequences.
1484      return false;
1485    }
1486
1487  return false;
1488}
1489
1490/// CompareImplicitConversionSequences - Compare two implicit
1491/// conversion sequences to determine whether one is better than the
1492/// other or if they are indistinguishable (C++ 13.3.3.2).
1493ImplicitConversionSequence::CompareKind
1494Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1495                                         const ImplicitConversionSequence& ICS2)
1496{
1497  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1498  // conversion sequences (as defined in 13.3.3.1)
1499  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1500  //      conversion sequence than a user-defined conversion sequence or
1501  //      an ellipsis conversion sequence, and
1502  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1503  //      conversion sequence than an ellipsis conversion sequence
1504  //      (13.3.3.1.3).
1505  //
1506  if (ICS1.ConversionKind < ICS2.ConversionKind)
1507    return ImplicitConversionSequence::Better;
1508  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1509    return ImplicitConversionSequence::Worse;
1510
1511  // Two implicit conversion sequences of the same form are
1512  // indistinguishable conversion sequences unless one of the
1513  // following rules apply: (C++ 13.3.3.2p3):
1514  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1515    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1516  else if (ICS1.ConversionKind ==
1517             ImplicitConversionSequence::UserDefinedConversion) {
1518    // User-defined conversion sequence U1 is a better conversion
1519    // sequence than another user-defined conversion sequence U2 if
1520    // they contain the same user-defined conversion function or
1521    // constructor and if the second standard conversion sequence of
1522    // U1 is better than the second standard conversion sequence of
1523    // U2 (C++ 13.3.3.2p3).
1524    if (ICS1.UserDefined.ConversionFunction ==
1525          ICS2.UserDefined.ConversionFunction)
1526      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1527                                                ICS2.UserDefined.After);
1528  }
1529
1530  return ImplicitConversionSequence::Indistinguishable;
1531}
1532
1533/// CompareStandardConversionSequences - Compare two standard
1534/// conversion sequences to determine whether one is better than the
1535/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1536ImplicitConversionSequence::CompareKind
1537Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1538                                         const StandardConversionSequence& SCS2)
1539{
1540  // Standard conversion sequence S1 is a better conversion sequence
1541  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1542
1543  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1544  //     sequences in the canonical form defined by 13.3.3.1.1,
1545  //     excluding any Lvalue Transformation; the identity conversion
1546  //     sequence is considered to be a subsequence of any
1547  //     non-identity conversion sequence) or, if not that,
1548  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1549    // Neither is a proper subsequence of the other. Do nothing.
1550    ;
1551  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1552           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1553           (SCS1.Second == ICK_Identity &&
1554            SCS1.Third == ICK_Identity))
1555    // SCS1 is a proper subsequence of SCS2.
1556    return ImplicitConversionSequence::Better;
1557  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1558           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1559           (SCS2.Second == ICK_Identity &&
1560            SCS2.Third == ICK_Identity))
1561    // SCS2 is a proper subsequence of SCS1.
1562    return ImplicitConversionSequence::Worse;
1563
1564  //  -- the rank of S1 is better than the rank of S2 (by the rules
1565  //     defined below), or, if not that,
1566  ImplicitConversionRank Rank1 = SCS1.getRank();
1567  ImplicitConversionRank Rank2 = SCS2.getRank();
1568  if (Rank1 < Rank2)
1569    return ImplicitConversionSequence::Better;
1570  else if (Rank2 < Rank1)
1571    return ImplicitConversionSequence::Worse;
1572
1573  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1574  // are indistinguishable unless one of the following rules
1575  // applies:
1576
1577  //   A conversion that is not a conversion of a pointer, or
1578  //   pointer to member, to bool is better than another conversion
1579  //   that is such a conversion.
1580  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1581    return SCS2.isPointerConversionToBool()
1582             ? ImplicitConversionSequence::Better
1583             : ImplicitConversionSequence::Worse;
1584
1585  // C++ [over.ics.rank]p4b2:
1586  //
1587  //   If class B is derived directly or indirectly from class A,
1588  //   conversion of B* to A* is better than conversion of B* to
1589  //   void*, and conversion of A* to void* is better than conversion
1590  //   of B* to void*.
1591  bool SCS1ConvertsToVoid
1592    = SCS1.isPointerConversionToVoidPointer(Context);
1593  bool SCS2ConvertsToVoid
1594    = SCS2.isPointerConversionToVoidPointer(Context);
1595  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1596    // Exactly one of the conversion sequences is a conversion to
1597    // a void pointer; it's the worse conversion.
1598    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1599                              : ImplicitConversionSequence::Worse;
1600  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1601    // Neither conversion sequence converts to a void pointer; compare
1602    // their derived-to-base conversions.
1603    if (ImplicitConversionSequence::CompareKind DerivedCK
1604          = CompareDerivedToBaseConversions(SCS1, SCS2))
1605      return DerivedCK;
1606  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1607    // Both conversion sequences are conversions to void
1608    // pointers. Compare the source types to determine if there's an
1609    // inheritance relationship in their sources.
1610    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1611    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1612
1613    // Adjust the types we're converting from via the array-to-pointer
1614    // conversion, if we need to.
1615    if (SCS1.First == ICK_Array_To_Pointer)
1616      FromType1 = Context.getArrayDecayedType(FromType1);
1617    if (SCS2.First == ICK_Array_To_Pointer)
1618      FromType2 = Context.getArrayDecayedType(FromType2);
1619
1620    QualType FromPointee1
1621      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1622    QualType FromPointee2
1623      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1624
1625    if (IsDerivedFrom(FromPointee2, FromPointee1))
1626      return ImplicitConversionSequence::Better;
1627    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1628      return ImplicitConversionSequence::Worse;
1629
1630    // Objective-C++: If one interface is more specific than the
1631    // other, it is the better one.
1632    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1633    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1634    if (FromIface1 && FromIface1) {
1635      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1636        return ImplicitConversionSequence::Better;
1637      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1638        return ImplicitConversionSequence::Worse;
1639    }
1640  }
1641
1642  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1643  // bullet 3).
1644  if (ImplicitConversionSequence::CompareKind QualCK
1645        = CompareQualificationConversions(SCS1, SCS2))
1646    return QualCK;
1647
1648  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1649    // C++0x [over.ics.rank]p3b4:
1650    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1651    //      implicit object parameter of a non-static member function declared
1652    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1653    //      rvalue and S2 binds an lvalue reference.
1654    // FIXME: We don't know if we're dealing with the implicit object parameter,
1655    // or if the member function in this case has a ref qualifier.
1656    // (Of course, we don't have ref qualifiers yet.)
1657    if (SCS1.RRefBinding != SCS2.RRefBinding)
1658      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1659                              : ImplicitConversionSequence::Worse;
1660
1661    // C++ [over.ics.rank]p3b4:
1662    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1663    //      which the references refer are the same type except for
1664    //      top-level cv-qualifiers, and the type to which the reference
1665    //      initialized by S2 refers is more cv-qualified than the type
1666    //      to which the reference initialized by S1 refers.
1667    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1668    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1669    T1 = Context.getCanonicalType(T1);
1670    T2 = Context.getCanonicalType(T2);
1671    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1672      if (T2.isMoreQualifiedThan(T1))
1673        return ImplicitConversionSequence::Better;
1674      else if (T1.isMoreQualifiedThan(T2))
1675        return ImplicitConversionSequence::Worse;
1676    }
1677  }
1678
1679  return ImplicitConversionSequence::Indistinguishable;
1680}
1681
1682/// CompareQualificationConversions - Compares two standard conversion
1683/// sequences to determine whether they can be ranked based on their
1684/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1685ImplicitConversionSequence::CompareKind
1686Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1687                                      const StandardConversionSequence& SCS2)
1688{
1689  // C++ 13.3.3.2p3:
1690  //  -- S1 and S2 differ only in their qualification conversion and
1691  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1692  //     cv-qualification signature of type T1 is a proper subset of
1693  //     the cv-qualification signature of type T2, and S1 is not the
1694  //     deprecated string literal array-to-pointer conversion (4.2).
1695  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1696      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1697    return ImplicitConversionSequence::Indistinguishable;
1698
1699  // FIXME: the example in the standard doesn't use a qualification
1700  // conversion (!)
1701  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1702  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1703  T1 = Context.getCanonicalType(T1);
1704  T2 = Context.getCanonicalType(T2);
1705
1706  // If the types are the same, we won't learn anything by unwrapped
1707  // them.
1708  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1709    return ImplicitConversionSequence::Indistinguishable;
1710
1711  ImplicitConversionSequence::CompareKind Result
1712    = ImplicitConversionSequence::Indistinguishable;
1713  while (UnwrapSimilarPointerTypes(T1, T2)) {
1714    // Within each iteration of the loop, we check the qualifiers to
1715    // determine if this still looks like a qualification
1716    // conversion. Then, if all is well, we unwrap one more level of
1717    // pointers or pointers-to-members and do it all again
1718    // until there are no more pointers or pointers-to-members left
1719    // to unwrap. This essentially mimics what
1720    // IsQualificationConversion does, but here we're checking for a
1721    // strict subset of qualifiers.
1722    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1723      // The qualifiers are the same, so this doesn't tell us anything
1724      // about how the sequences rank.
1725      ;
1726    else if (T2.isMoreQualifiedThan(T1)) {
1727      // T1 has fewer qualifiers, so it could be the better sequence.
1728      if (Result == ImplicitConversionSequence::Worse)
1729        // Neither has qualifiers that are a subset of the other's
1730        // qualifiers.
1731        return ImplicitConversionSequence::Indistinguishable;
1732
1733      Result = ImplicitConversionSequence::Better;
1734    } else if (T1.isMoreQualifiedThan(T2)) {
1735      // T2 has fewer qualifiers, so it could be the better sequence.
1736      if (Result == ImplicitConversionSequence::Better)
1737        // Neither has qualifiers that are a subset of the other's
1738        // qualifiers.
1739        return ImplicitConversionSequence::Indistinguishable;
1740
1741      Result = ImplicitConversionSequence::Worse;
1742    } else {
1743      // Qualifiers are disjoint.
1744      return ImplicitConversionSequence::Indistinguishable;
1745    }
1746
1747    // If the types after this point are equivalent, we're done.
1748    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1749      break;
1750  }
1751
1752  // Check that the winning standard conversion sequence isn't using
1753  // the deprecated string literal array to pointer conversion.
1754  switch (Result) {
1755  case ImplicitConversionSequence::Better:
1756    if (SCS1.Deprecated)
1757      Result = ImplicitConversionSequence::Indistinguishable;
1758    break;
1759
1760  case ImplicitConversionSequence::Indistinguishable:
1761    break;
1762
1763  case ImplicitConversionSequence::Worse:
1764    if (SCS2.Deprecated)
1765      Result = ImplicitConversionSequence::Indistinguishable;
1766    break;
1767  }
1768
1769  return Result;
1770}
1771
1772/// CompareDerivedToBaseConversions - Compares two standard conversion
1773/// sequences to determine whether they can be ranked based on their
1774/// various kinds of derived-to-base conversions (C++
1775/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1776/// conversions between Objective-C interface types.
1777ImplicitConversionSequence::CompareKind
1778Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1779                                      const StandardConversionSequence& SCS2) {
1780  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1781  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1782  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1783  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1784
1785  // Adjust the types we're converting from via the array-to-pointer
1786  // conversion, if we need to.
1787  if (SCS1.First == ICK_Array_To_Pointer)
1788    FromType1 = Context.getArrayDecayedType(FromType1);
1789  if (SCS2.First == ICK_Array_To_Pointer)
1790    FromType2 = Context.getArrayDecayedType(FromType2);
1791
1792  // Canonicalize all of the types.
1793  FromType1 = Context.getCanonicalType(FromType1);
1794  ToType1 = Context.getCanonicalType(ToType1);
1795  FromType2 = Context.getCanonicalType(FromType2);
1796  ToType2 = Context.getCanonicalType(ToType2);
1797
1798  // C++ [over.ics.rank]p4b3:
1799  //
1800  //   If class B is derived directly or indirectly from class A and
1801  //   class C is derived directly or indirectly from B,
1802  //
1803  // For Objective-C, we let A, B, and C also be Objective-C
1804  // interfaces.
1805
1806  // Compare based on pointer conversions.
1807  if (SCS1.Second == ICK_Pointer_Conversion &&
1808      SCS2.Second == ICK_Pointer_Conversion &&
1809      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1810      FromType1->isPointerType() && FromType2->isPointerType() &&
1811      ToType1->isPointerType() && ToType2->isPointerType()) {
1812    QualType FromPointee1
1813      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1814    QualType ToPointee1
1815      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1816    QualType FromPointee2
1817      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1818    QualType ToPointee2
1819      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1820
1821    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1822    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1823    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1824    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1825
1826    //   -- conversion of C* to B* is better than conversion of C* to A*,
1827    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1828      if (IsDerivedFrom(ToPointee1, ToPointee2))
1829        return ImplicitConversionSequence::Better;
1830      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1831        return ImplicitConversionSequence::Worse;
1832
1833      if (ToIface1 && ToIface2) {
1834        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1835          return ImplicitConversionSequence::Better;
1836        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1837          return ImplicitConversionSequence::Worse;
1838      }
1839    }
1840
1841    //   -- conversion of B* to A* is better than conversion of C* to A*,
1842    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1843      if (IsDerivedFrom(FromPointee2, FromPointee1))
1844        return ImplicitConversionSequence::Better;
1845      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1846        return ImplicitConversionSequence::Worse;
1847
1848      if (FromIface1 && FromIface2) {
1849        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1850          return ImplicitConversionSequence::Better;
1851        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1852          return ImplicitConversionSequence::Worse;
1853      }
1854    }
1855  }
1856
1857  // Compare based on reference bindings.
1858  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1859      SCS1.Second == ICK_Derived_To_Base) {
1860    //   -- binding of an expression of type C to a reference of type
1861    //      B& is better than binding an expression of type C to a
1862    //      reference of type A&,
1863    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1864        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1865      if (IsDerivedFrom(ToType1, ToType2))
1866        return ImplicitConversionSequence::Better;
1867      else if (IsDerivedFrom(ToType2, ToType1))
1868        return ImplicitConversionSequence::Worse;
1869    }
1870
1871    //   -- binding of an expression of type B to a reference of type
1872    //      A& is better than binding an expression of type C to a
1873    //      reference of type A&,
1874    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1875        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1876      if (IsDerivedFrom(FromType2, FromType1))
1877        return ImplicitConversionSequence::Better;
1878      else if (IsDerivedFrom(FromType1, FromType2))
1879        return ImplicitConversionSequence::Worse;
1880    }
1881  }
1882
1883
1884  // FIXME: conversion of A::* to B::* is better than conversion of
1885  // A::* to C::*,
1886
1887  // FIXME: conversion of B::* to C::* is better than conversion of
1888  // A::* to C::*, and
1889
1890  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1891      SCS1.Second == ICK_Derived_To_Base) {
1892    //   -- conversion of C to B is better than conversion of C to A,
1893    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1894        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1895      if (IsDerivedFrom(ToType1, ToType2))
1896        return ImplicitConversionSequence::Better;
1897      else if (IsDerivedFrom(ToType2, ToType1))
1898        return ImplicitConversionSequence::Worse;
1899    }
1900
1901    //   -- conversion of B to A is better than conversion of C to A.
1902    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1903        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1904      if (IsDerivedFrom(FromType2, FromType1))
1905        return ImplicitConversionSequence::Better;
1906      else if (IsDerivedFrom(FromType1, FromType2))
1907        return ImplicitConversionSequence::Worse;
1908    }
1909  }
1910
1911  return ImplicitConversionSequence::Indistinguishable;
1912}
1913
1914/// TryCopyInitialization - Try to copy-initialize a value of type
1915/// ToType from the expression From. Return the implicit conversion
1916/// sequence required to pass this argument, which may be a bad
1917/// conversion sequence (meaning that the argument cannot be passed to
1918/// a parameter of this type). If @p SuppressUserConversions, then we
1919/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1920/// then we treat @p From as an rvalue, even if it is an lvalue.
1921ImplicitConversionSequence
1922Sema::TryCopyInitialization(Expr *From, QualType ToType,
1923                            bool SuppressUserConversions, bool ForceRValue) {
1924  if (ToType->isReferenceType()) {
1925    ImplicitConversionSequence ICS;
1926    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1927                       /*AllowExplicit=*/false, ForceRValue);
1928    return ICS;
1929  } else {
1930    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1931                                 ForceRValue);
1932  }
1933}
1934
1935/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1936/// the expression @p From. Returns true (and emits a diagnostic) if there was
1937/// an error, returns false if the initialization succeeded. Elidable should
1938/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1939/// differently in C++0x for this case.
1940bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1941                                     const char* Flavor, bool Elidable) {
1942  if (!getLangOptions().CPlusPlus) {
1943    // In C, argument passing is the same as performing an assignment.
1944    QualType FromType = From->getType();
1945
1946    AssignConvertType ConvTy =
1947      CheckSingleAssignmentConstraints(ToType, From);
1948    if (ConvTy != Compatible &&
1949        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1950      ConvTy = Compatible;
1951
1952    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1953                                    FromType, From, Flavor);
1954  }
1955
1956  if (ToType->isReferenceType())
1957    return CheckReferenceInit(From, ToType);
1958
1959  if (!PerformImplicitConversion(From, ToType, Flavor,
1960                                 /*AllowExplicit=*/false, Elidable))
1961    return false;
1962
1963  return Diag(From->getSourceRange().getBegin(),
1964              diag::err_typecheck_convert_incompatible)
1965    << ToType << From->getType() << Flavor << From->getSourceRange();
1966}
1967
1968/// TryObjectArgumentInitialization - Try to initialize the object
1969/// parameter of the given member function (@c Method) from the
1970/// expression @p From.
1971ImplicitConversionSequence
1972Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1973  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1974  unsigned MethodQuals = Method->getTypeQualifiers();
1975  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1976
1977  // Set up the conversion sequence as a "bad" conversion, to allow us
1978  // to exit early.
1979  ImplicitConversionSequence ICS;
1980  ICS.Standard.setAsIdentityConversion();
1981  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1982
1983  // We need to have an object of class type.
1984  QualType FromType = From->getType();
1985  if (const PointerType *PT = FromType->getAs<PointerType>())
1986    FromType = PT->getPointeeType();
1987
1988  assert(FromType->isRecordType());
1989
1990  // The implicit object parmeter is has the type "reference to cv X",
1991  // where X is the class of which the function is a member
1992  // (C++ [over.match.funcs]p4). However, when finding an implicit
1993  // conversion sequence for the argument, we are not allowed to
1994  // create temporaries or perform user-defined conversions
1995  // (C++ [over.match.funcs]p5). We perform a simplified version of
1996  // reference binding here, that allows class rvalues to bind to
1997  // non-constant references.
1998
1999  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2000  // with the implicit object parameter (C++ [over.match.funcs]p5).
2001  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2002  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
2003      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
2004    return ICS;
2005
2006  // Check that we have either the same type or a derived type. It
2007  // affects the conversion rank.
2008  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2009  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2010    ICS.Standard.Second = ICK_Identity;
2011  else if (IsDerivedFrom(FromType, ClassType))
2012    ICS.Standard.Second = ICK_Derived_To_Base;
2013  else
2014    return ICS;
2015
2016  // Success. Mark this as a reference binding.
2017  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2018  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2019  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2020  ICS.Standard.ReferenceBinding = true;
2021  ICS.Standard.DirectBinding = true;
2022  ICS.Standard.RRefBinding = false;
2023  return ICS;
2024}
2025
2026/// PerformObjectArgumentInitialization - Perform initialization of
2027/// the implicit object parameter for the given Method with the given
2028/// expression.
2029bool
2030Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2031  QualType FromRecordType, DestType;
2032  QualType ImplicitParamRecordType  =
2033    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2034
2035  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2036    FromRecordType = PT->getPointeeType();
2037    DestType = Method->getThisType(Context);
2038  } else {
2039    FromRecordType = From->getType();
2040    DestType = ImplicitParamRecordType;
2041  }
2042
2043  ImplicitConversionSequence ICS
2044    = TryObjectArgumentInitialization(From, Method);
2045  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2046    return Diag(From->getSourceRange().getBegin(),
2047                diag::err_implicit_object_parameter_init)
2048       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2049
2050  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2051      CheckDerivedToBaseConversion(FromRecordType,
2052                                   ImplicitParamRecordType,
2053                                   From->getSourceRange().getBegin(),
2054                                   From->getSourceRange()))
2055    return true;
2056
2057  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2058                    /*isLvalue=*/true);
2059  return false;
2060}
2061
2062/// TryContextuallyConvertToBool - Attempt to contextually convert the
2063/// expression From to bool (C++0x [conv]p3).
2064ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2065  return TryImplicitConversion(From, Context.BoolTy, false, true);
2066}
2067
2068/// PerformContextuallyConvertToBool - Perform a contextual conversion
2069/// of the expression From to bool (C++0x [conv]p3).
2070bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2071  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2072  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2073    return false;
2074
2075  return Diag(From->getSourceRange().getBegin(),
2076              diag::err_typecheck_bool_condition)
2077    << From->getType() << From->getSourceRange();
2078}
2079
2080/// AddOverloadCandidate - Adds the given function to the set of
2081/// candidate functions, using the given function call arguments.  If
2082/// @p SuppressUserConversions, then don't allow user-defined
2083/// conversions via constructors or conversion operators.
2084/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2085/// hacky way to implement the overloading rules for elidable copy
2086/// initialization in C++0x (C++0x 12.8p15).
2087void
2088Sema::AddOverloadCandidate(FunctionDecl *Function,
2089                           Expr **Args, unsigned NumArgs,
2090                           OverloadCandidateSet& CandidateSet,
2091                           bool SuppressUserConversions,
2092                           bool ForceRValue)
2093{
2094  const FunctionProtoType* Proto
2095    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2096  assert(Proto && "Functions without a prototype cannot be overloaded");
2097  assert(!isa<CXXConversionDecl>(Function) &&
2098         "Use AddConversionCandidate for conversion functions");
2099  assert(!Function->getDescribedFunctionTemplate() &&
2100         "Use AddTemplateOverloadCandidate for function templates");
2101
2102  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2103    if (!isa<CXXConstructorDecl>(Method)) {
2104      // If we get here, it's because we're calling a member function
2105      // that is named without a member access expression (e.g.,
2106      // "this->f") that was either written explicitly or created
2107      // implicitly. This can happen with a qualified call to a member
2108      // function, e.g., X::f(). We use a NULL object as the implied
2109      // object argument (C++ [over.call.func]p3).
2110      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2111                         SuppressUserConversions, ForceRValue);
2112      return;
2113    }
2114    // We treat a constructor like a non-member function, since its object
2115    // argument doesn't participate in overload resolution.
2116  }
2117
2118
2119  // Add this candidate
2120  CandidateSet.push_back(OverloadCandidate());
2121  OverloadCandidate& Candidate = CandidateSet.back();
2122  Candidate.Function = Function;
2123  Candidate.Viable = true;
2124  Candidate.IsSurrogate = false;
2125  Candidate.IgnoreObjectArgument = false;
2126
2127  unsigned NumArgsInProto = Proto->getNumArgs();
2128
2129  // (C++ 13.3.2p2): A candidate function having fewer than m
2130  // parameters is viable only if it has an ellipsis in its parameter
2131  // list (8.3.5).
2132  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2133    Candidate.Viable = false;
2134    return;
2135  }
2136
2137  // (C++ 13.3.2p2): A candidate function having more than m parameters
2138  // is viable only if the (m+1)st parameter has a default argument
2139  // (8.3.6). For the purposes of overload resolution, the
2140  // parameter list is truncated on the right, so that there are
2141  // exactly m parameters.
2142  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2143  if (NumArgs < MinRequiredArgs) {
2144    // Not enough arguments.
2145    Candidate.Viable = false;
2146    return;
2147  }
2148
2149  // Determine the implicit conversion sequences for each of the
2150  // arguments.
2151  Candidate.Conversions.resize(NumArgs);
2152  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2153    if (ArgIdx < NumArgsInProto) {
2154      // (C++ 13.3.2p3): for F to be a viable function, there shall
2155      // exist for each argument an implicit conversion sequence
2156      // (13.3.3.1) that converts that argument to the corresponding
2157      // parameter of F.
2158      QualType ParamType = Proto->getArgType(ArgIdx);
2159      Candidate.Conversions[ArgIdx]
2160        = TryCopyInitialization(Args[ArgIdx], ParamType,
2161                                SuppressUserConversions, ForceRValue);
2162      if (Candidate.Conversions[ArgIdx].ConversionKind
2163            == ImplicitConversionSequence::BadConversion) {
2164        Candidate.Viable = false;
2165        break;
2166      }
2167    } else {
2168      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2169      // argument for which there is no corresponding parameter is
2170      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2171      Candidate.Conversions[ArgIdx].ConversionKind
2172        = ImplicitConversionSequence::EllipsisConversion;
2173    }
2174  }
2175}
2176
2177/// \brief Add all of the function declarations in the given function set to
2178/// the overload canddiate set.
2179void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2180                                 Expr **Args, unsigned NumArgs,
2181                                 OverloadCandidateSet& CandidateSet,
2182                                 bool SuppressUserConversions) {
2183  for (FunctionSet::const_iterator F = Functions.begin(),
2184                                FEnd = Functions.end();
2185       F != FEnd; ++F) {
2186    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2187      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2188                           SuppressUserConversions);
2189    else
2190      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2191                                   /*FIXME: explicit args */false, 0, 0,
2192                                   Args, NumArgs, CandidateSet,
2193                                   SuppressUserConversions);
2194  }
2195}
2196
2197/// AddMethodCandidate - Adds the given C++ member function to the set
2198/// of candidate functions, using the given function call arguments
2199/// and the object argument (@c Object). For example, in a call
2200/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2201/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2202/// allow user-defined conversions via constructors or conversion
2203/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2204/// a slightly hacky way to implement the overloading rules for elidable copy
2205/// initialization in C++0x (C++0x 12.8p15).
2206void
2207Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2208                         Expr **Args, unsigned NumArgs,
2209                         OverloadCandidateSet& CandidateSet,
2210                         bool SuppressUserConversions, bool ForceRValue)
2211{
2212  const FunctionProtoType* Proto
2213    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2214  assert(Proto && "Methods without a prototype cannot be overloaded");
2215  assert(!isa<CXXConversionDecl>(Method) &&
2216         "Use AddConversionCandidate for conversion functions");
2217  assert(!isa<CXXConstructorDecl>(Method) &&
2218         "Use AddOverloadCandidate for constructors");
2219
2220  // Add this candidate
2221  CandidateSet.push_back(OverloadCandidate());
2222  OverloadCandidate& Candidate = CandidateSet.back();
2223  Candidate.Function = Method;
2224  Candidate.IsSurrogate = false;
2225  Candidate.IgnoreObjectArgument = false;
2226
2227  unsigned NumArgsInProto = Proto->getNumArgs();
2228
2229  // (C++ 13.3.2p2): A candidate function having fewer than m
2230  // parameters is viable only if it has an ellipsis in its parameter
2231  // list (8.3.5).
2232  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2233    Candidate.Viable = false;
2234    return;
2235  }
2236
2237  // (C++ 13.3.2p2): A candidate function having more than m parameters
2238  // is viable only if the (m+1)st parameter has a default argument
2239  // (8.3.6). For the purposes of overload resolution, the
2240  // parameter list is truncated on the right, so that there are
2241  // exactly m parameters.
2242  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2243  if (NumArgs < MinRequiredArgs) {
2244    // Not enough arguments.
2245    Candidate.Viable = false;
2246    return;
2247  }
2248
2249  Candidate.Viable = true;
2250  Candidate.Conversions.resize(NumArgs + 1);
2251
2252  if (Method->isStatic() || !Object)
2253    // The implicit object argument is ignored.
2254    Candidate.IgnoreObjectArgument = true;
2255  else {
2256    // Determine the implicit conversion sequence for the object
2257    // parameter.
2258    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2259    if (Candidate.Conversions[0].ConversionKind
2260          == ImplicitConversionSequence::BadConversion) {
2261      Candidate.Viable = false;
2262      return;
2263    }
2264  }
2265
2266  // Determine the implicit conversion sequences for each of the
2267  // arguments.
2268  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2269    if (ArgIdx < NumArgsInProto) {
2270      // (C++ 13.3.2p3): for F to be a viable function, there shall
2271      // exist for each argument an implicit conversion sequence
2272      // (13.3.3.1) that converts that argument to the corresponding
2273      // parameter of F.
2274      QualType ParamType = Proto->getArgType(ArgIdx);
2275      Candidate.Conversions[ArgIdx + 1]
2276        = TryCopyInitialization(Args[ArgIdx], ParamType,
2277                                SuppressUserConversions, ForceRValue);
2278      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2279            == ImplicitConversionSequence::BadConversion) {
2280        Candidate.Viable = false;
2281        break;
2282      }
2283    } else {
2284      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2285      // argument for which there is no corresponding parameter is
2286      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2287      Candidate.Conversions[ArgIdx + 1].ConversionKind
2288        = ImplicitConversionSequence::EllipsisConversion;
2289    }
2290  }
2291}
2292
2293/// \brief Add a C++ member function template as a candidate to the candidate
2294/// set, using template argument deduction to produce an appropriate member
2295/// function template specialization.
2296void
2297Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2298                                 bool HasExplicitTemplateArgs,
2299                                 const TemplateArgument *ExplicitTemplateArgs,
2300                                 unsigned NumExplicitTemplateArgs,
2301                                 Expr *Object, Expr **Args, unsigned NumArgs,
2302                                 OverloadCandidateSet& CandidateSet,
2303                                 bool SuppressUserConversions,
2304                                 bool ForceRValue) {
2305  // C++ [over.match.funcs]p7:
2306  //   In each case where a candidate is a function template, candidate
2307  //   function template specializations are generated using template argument
2308  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2309  //   candidate functions in the usual way.113) A given name can refer to one
2310  //   or more function templates and also to a set of overloaded non-template
2311  //   functions. In such a case, the candidate functions generated from each
2312  //   function template are combined with the set of non-template candidate
2313  //   functions.
2314  TemplateDeductionInfo Info(Context);
2315  FunctionDecl *Specialization = 0;
2316  if (TemplateDeductionResult Result
2317      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2318                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2319                                Args, NumArgs, Specialization, Info)) {
2320        // FIXME: Record what happened with template argument deduction, so
2321        // that we can give the user a beautiful diagnostic.
2322        (void)Result;
2323        return;
2324      }
2325
2326  // Add the function template specialization produced by template argument
2327  // deduction as a candidate.
2328  assert(Specialization && "Missing member function template specialization?");
2329  assert(isa<CXXMethodDecl>(Specialization) &&
2330         "Specialization is not a member function?");
2331  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2332                     CandidateSet, SuppressUserConversions, ForceRValue);
2333}
2334
2335/// \brief Add a C++ function template specialization as a candidate
2336/// in the candidate set, using template argument deduction to produce
2337/// an appropriate function template specialization.
2338void
2339Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2340                                   bool HasExplicitTemplateArgs,
2341                                 const TemplateArgument *ExplicitTemplateArgs,
2342                                   unsigned NumExplicitTemplateArgs,
2343                                   Expr **Args, unsigned NumArgs,
2344                                   OverloadCandidateSet& CandidateSet,
2345                                   bool SuppressUserConversions,
2346                                   bool ForceRValue) {
2347  // C++ [over.match.funcs]p7:
2348  //   In each case where a candidate is a function template, candidate
2349  //   function template specializations are generated using template argument
2350  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2351  //   candidate functions in the usual way.113) A given name can refer to one
2352  //   or more function templates and also to a set of overloaded non-template
2353  //   functions. In such a case, the candidate functions generated from each
2354  //   function template are combined with the set of non-template candidate
2355  //   functions.
2356  TemplateDeductionInfo Info(Context);
2357  FunctionDecl *Specialization = 0;
2358  if (TemplateDeductionResult Result
2359        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2360                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2361                                  Args, NumArgs, Specialization, Info)) {
2362    // FIXME: Record what happened with template argument deduction, so
2363    // that we can give the user a beautiful diagnostic.
2364    (void)Result;
2365    return;
2366  }
2367
2368  // Add the function template specialization produced by template argument
2369  // deduction as a candidate.
2370  assert(Specialization && "Missing function template specialization?");
2371  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2372                       SuppressUserConversions, ForceRValue);
2373}
2374
2375/// AddConversionCandidate - Add a C++ conversion function as a
2376/// candidate in the candidate set (C++ [over.match.conv],
2377/// C++ [over.match.copy]). From is the expression we're converting from,
2378/// and ToType is the type that we're eventually trying to convert to
2379/// (which may or may not be the same type as the type that the
2380/// conversion function produces).
2381void
2382Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2383                             Expr *From, QualType ToType,
2384                             OverloadCandidateSet& CandidateSet) {
2385  assert(!Conversion->getDescribedFunctionTemplate() &&
2386         "Conversion function templates use AddTemplateConversionCandidate");
2387
2388  // Add this candidate
2389  CandidateSet.push_back(OverloadCandidate());
2390  OverloadCandidate& Candidate = CandidateSet.back();
2391  Candidate.Function = Conversion;
2392  Candidate.IsSurrogate = false;
2393  Candidate.IgnoreObjectArgument = false;
2394  Candidate.FinalConversion.setAsIdentityConversion();
2395  Candidate.FinalConversion.FromTypePtr
2396    = Conversion->getConversionType().getAsOpaquePtr();
2397  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2398
2399  // Determine the implicit conversion sequence for the implicit
2400  // object parameter.
2401  Candidate.Viable = true;
2402  Candidate.Conversions.resize(1);
2403  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2404
2405  if (Candidate.Conversions[0].ConversionKind
2406      == ImplicitConversionSequence::BadConversion) {
2407    Candidate.Viable = false;
2408    return;
2409  }
2410
2411  // To determine what the conversion from the result of calling the
2412  // conversion function to the type we're eventually trying to
2413  // convert to (ToType), we need to synthesize a call to the
2414  // conversion function and attempt copy initialization from it. This
2415  // makes sure that we get the right semantics with respect to
2416  // lvalues/rvalues and the type. Fortunately, we can allocate this
2417  // call on the stack and we don't need its arguments to be
2418  // well-formed.
2419  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2420                            SourceLocation());
2421  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2422                                CastExpr::CK_Unknown,
2423                                &ConversionRef, false);
2424
2425  // Note that it is safe to allocate CallExpr on the stack here because
2426  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2427  // allocator).
2428  CallExpr Call(Context, &ConversionFn, 0, 0,
2429                Conversion->getConversionType().getNonReferenceType(),
2430                SourceLocation());
2431  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2432  switch (ICS.ConversionKind) {
2433  case ImplicitConversionSequence::StandardConversion:
2434    Candidate.FinalConversion = ICS.Standard;
2435    break;
2436
2437  case ImplicitConversionSequence::BadConversion:
2438    Candidate.Viable = false;
2439    break;
2440
2441  default:
2442    assert(false &&
2443           "Can only end up with a standard conversion sequence or failure");
2444  }
2445}
2446
2447/// \brief Adds a conversion function template specialization
2448/// candidate to the overload set, using template argument deduction
2449/// to deduce the template arguments of the conversion function
2450/// template from the type that we are converting to (C++
2451/// [temp.deduct.conv]).
2452void
2453Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2454                                     Expr *From, QualType ToType,
2455                                     OverloadCandidateSet &CandidateSet) {
2456  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2457         "Only conversion function templates permitted here");
2458
2459  TemplateDeductionInfo Info(Context);
2460  CXXConversionDecl *Specialization = 0;
2461  if (TemplateDeductionResult Result
2462        = DeduceTemplateArguments(FunctionTemplate, ToType,
2463                                  Specialization, Info)) {
2464    // FIXME: Record what happened with template argument deduction, so
2465    // that we can give the user a beautiful diagnostic.
2466    (void)Result;
2467    return;
2468  }
2469
2470  // Add the conversion function template specialization produced by
2471  // template argument deduction as a candidate.
2472  assert(Specialization && "Missing function template specialization?");
2473  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2474}
2475
2476/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2477/// converts the given @c Object to a function pointer via the
2478/// conversion function @c Conversion, and then attempts to call it
2479/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2480/// the type of function that we'll eventually be calling.
2481void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2482                                 const FunctionProtoType *Proto,
2483                                 Expr *Object, Expr **Args, unsigned NumArgs,
2484                                 OverloadCandidateSet& CandidateSet) {
2485  CandidateSet.push_back(OverloadCandidate());
2486  OverloadCandidate& Candidate = CandidateSet.back();
2487  Candidate.Function = 0;
2488  Candidate.Surrogate = Conversion;
2489  Candidate.Viable = true;
2490  Candidate.IsSurrogate = true;
2491  Candidate.IgnoreObjectArgument = false;
2492  Candidate.Conversions.resize(NumArgs + 1);
2493
2494  // Determine the implicit conversion sequence for the implicit
2495  // object parameter.
2496  ImplicitConversionSequence ObjectInit
2497    = TryObjectArgumentInitialization(Object, Conversion);
2498  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2499    Candidate.Viable = false;
2500    return;
2501  }
2502
2503  // The first conversion is actually a user-defined conversion whose
2504  // first conversion is ObjectInit's standard conversion (which is
2505  // effectively a reference binding). Record it as such.
2506  Candidate.Conversions[0].ConversionKind
2507    = ImplicitConversionSequence::UserDefinedConversion;
2508  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2509  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2510  Candidate.Conversions[0].UserDefined.After
2511    = Candidate.Conversions[0].UserDefined.Before;
2512  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2513
2514  // Find the
2515  unsigned NumArgsInProto = Proto->getNumArgs();
2516
2517  // (C++ 13.3.2p2): A candidate function having fewer than m
2518  // parameters is viable only if it has an ellipsis in its parameter
2519  // list (8.3.5).
2520  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2521    Candidate.Viable = false;
2522    return;
2523  }
2524
2525  // Function types don't have any default arguments, so just check if
2526  // we have enough arguments.
2527  if (NumArgs < NumArgsInProto) {
2528    // Not enough arguments.
2529    Candidate.Viable = false;
2530    return;
2531  }
2532
2533  // Determine the implicit conversion sequences for each of the
2534  // arguments.
2535  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2536    if (ArgIdx < NumArgsInProto) {
2537      // (C++ 13.3.2p3): for F to be a viable function, there shall
2538      // exist for each argument an implicit conversion sequence
2539      // (13.3.3.1) that converts that argument to the corresponding
2540      // parameter of F.
2541      QualType ParamType = Proto->getArgType(ArgIdx);
2542      Candidate.Conversions[ArgIdx + 1]
2543        = TryCopyInitialization(Args[ArgIdx], ParamType,
2544                                /*SuppressUserConversions=*/false);
2545      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2546            == ImplicitConversionSequence::BadConversion) {
2547        Candidate.Viable = false;
2548        break;
2549      }
2550    } else {
2551      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2552      // argument for which there is no corresponding parameter is
2553      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2554      Candidate.Conversions[ArgIdx + 1].ConversionKind
2555        = ImplicitConversionSequence::EllipsisConversion;
2556    }
2557  }
2558}
2559
2560// FIXME: This will eventually be removed, once we've migrated all of the
2561// operator overloading logic over to the scheme used by binary operators, which
2562// works for template instantiation.
2563void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2564                                 SourceLocation OpLoc,
2565                                 Expr **Args, unsigned NumArgs,
2566                                 OverloadCandidateSet& CandidateSet,
2567                                 SourceRange OpRange) {
2568
2569  FunctionSet Functions;
2570
2571  QualType T1 = Args[0]->getType();
2572  QualType T2;
2573  if (NumArgs > 1)
2574    T2 = Args[1]->getType();
2575
2576  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2577  if (S)
2578    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2579  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2580  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2581  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2582  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2583}
2584
2585/// \brief Add overload candidates for overloaded operators that are
2586/// member functions.
2587///
2588/// Add the overloaded operator candidates that are member functions
2589/// for the operator Op that was used in an operator expression such
2590/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2591/// CandidateSet will store the added overload candidates. (C++
2592/// [over.match.oper]).
2593void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2594                                       SourceLocation OpLoc,
2595                                       Expr **Args, unsigned NumArgs,
2596                                       OverloadCandidateSet& CandidateSet,
2597                                       SourceRange OpRange) {
2598  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2599
2600  // C++ [over.match.oper]p3:
2601  //   For a unary operator @ with an operand of a type whose
2602  //   cv-unqualified version is T1, and for a binary operator @ with
2603  //   a left operand of a type whose cv-unqualified version is T1 and
2604  //   a right operand of a type whose cv-unqualified version is T2,
2605  //   three sets of candidate functions, designated member
2606  //   candidates, non-member candidates and built-in candidates, are
2607  //   constructed as follows:
2608  QualType T1 = Args[0]->getType();
2609  QualType T2;
2610  if (NumArgs > 1)
2611    T2 = Args[1]->getType();
2612
2613  //     -- If T1 is a class type, the set of member candidates is the
2614  //        result of the qualified lookup of T1::operator@
2615  //        (13.3.1.1.1); otherwise, the set of member candidates is
2616  //        empty.
2617  // FIXME: Lookup in base classes, too!
2618  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2619    DeclContext::lookup_const_iterator Oper, OperEnd;
2620    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
2621         Oper != OperEnd; ++Oper)
2622      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2623                         Args+1, NumArgs - 1, CandidateSet,
2624                         /*SuppressUserConversions=*/false);
2625  }
2626}
2627
2628/// AddBuiltinCandidate - Add a candidate for a built-in
2629/// operator. ResultTy and ParamTys are the result and parameter types
2630/// of the built-in candidate, respectively. Args and NumArgs are the
2631/// arguments being passed to the candidate. IsAssignmentOperator
2632/// should be true when this built-in candidate is an assignment
2633/// operator. NumContextualBoolArguments is the number of arguments
2634/// (at the beginning of the argument list) that will be contextually
2635/// converted to bool.
2636void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2637                               Expr **Args, unsigned NumArgs,
2638                               OverloadCandidateSet& CandidateSet,
2639                               bool IsAssignmentOperator,
2640                               unsigned NumContextualBoolArguments) {
2641  // Add this candidate
2642  CandidateSet.push_back(OverloadCandidate());
2643  OverloadCandidate& Candidate = CandidateSet.back();
2644  Candidate.Function = 0;
2645  Candidate.IsSurrogate = false;
2646  Candidate.IgnoreObjectArgument = false;
2647  Candidate.BuiltinTypes.ResultTy = ResultTy;
2648  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2649    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2650
2651  // Determine the implicit conversion sequences for each of the
2652  // arguments.
2653  Candidate.Viable = true;
2654  Candidate.Conversions.resize(NumArgs);
2655  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2656    // C++ [over.match.oper]p4:
2657    //   For the built-in assignment operators, conversions of the
2658    //   left operand are restricted as follows:
2659    //     -- no temporaries are introduced to hold the left operand, and
2660    //     -- no user-defined conversions are applied to the left
2661    //        operand to achieve a type match with the left-most
2662    //        parameter of a built-in candidate.
2663    //
2664    // We block these conversions by turning off user-defined
2665    // conversions, since that is the only way that initialization of
2666    // a reference to a non-class type can occur from something that
2667    // is not of the same type.
2668    if (ArgIdx < NumContextualBoolArguments) {
2669      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2670             "Contextual conversion to bool requires bool type");
2671      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2672    } else {
2673      Candidate.Conversions[ArgIdx]
2674        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2675                                ArgIdx == 0 && IsAssignmentOperator);
2676    }
2677    if (Candidate.Conversions[ArgIdx].ConversionKind
2678        == ImplicitConversionSequence::BadConversion) {
2679      Candidate.Viable = false;
2680      break;
2681    }
2682  }
2683}
2684
2685/// BuiltinCandidateTypeSet - A set of types that will be used for the
2686/// candidate operator functions for built-in operators (C++
2687/// [over.built]). The types are separated into pointer types and
2688/// enumeration types.
2689class BuiltinCandidateTypeSet  {
2690  /// TypeSet - A set of types.
2691  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2692
2693  /// PointerTypes - The set of pointer types that will be used in the
2694  /// built-in candidates.
2695  TypeSet PointerTypes;
2696
2697  /// MemberPointerTypes - The set of member pointer types that will be
2698  /// used in the built-in candidates.
2699  TypeSet MemberPointerTypes;
2700
2701  /// EnumerationTypes - The set of enumeration types that will be
2702  /// used in the built-in candidates.
2703  TypeSet EnumerationTypes;
2704
2705  /// Sema - The semantic analysis instance where we are building the
2706  /// candidate type set.
2707  Sema &SemaRef;
2708
2709  /// Context - The AST context in which we will build the type sets.
2710  ASTContext &Context;
2711
2712  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2713  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2714
2715public:
2716  /// iterator - Iterates through the types that are part of the set.
2717  typedef TypeSet::iterator iterator;
2718
2719  BuiltinCandidateTypeSet(Sema &SemaRef)
2720    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2721
2722  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2723                             bool AllowExplicitConversions);
2724
2725  /// pointer_begin - First pointer type found;
2726  iterator pointer_begin() { return PointerTypes.begin(); }
2727
2728  /// pointer_end - Past the last pointer type found;
2729  iterator pointer_end() { return PointerTypes.end(); }
2730
2731  /// member_pointer_begin - First member pointer type found;
2732  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2733
2734  /// member_pointer_end - Past the last member pointer type found;
2735  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2736
2737  /// enumeration_begin - First enumeration type found;
2738  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2739
2740  /// enumeration_end - Past the last enumeration type found;
2741  iterator enumeration_end() { return EnumerationTypes.end(); }
2742};
2743
2744/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2745/// the set of pointer types along with any more-qualified variants of
2746/// that type. For example, if @p Ty is "int const *", this routine
2747/// will add "int const *", "int const volatile *", "int const
2748/// restrict *", and "int const volatile restrict *" to the set of
2749/// pointer types. Returns true if the add of @p Ty itself succeeded,
2750/// false otherwise.
2751bool
2752BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2753  // Insert this type.
2754  if (!PointerTypes.insert(Ty))
2755    return false;
2756
2757  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2758    QualType PointeeTy = PointerTy->getPointeeType();
2759    // FIXME: Optimize this so that we don't keep trying to add the same types.
2760
2761    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2762    // pointer conversions that don't cast away constness?
2763    if (!PointeeTy.isConstQualified())
2764      AddPointerWithMoreQualifiedTypeVariants
2765        (Context.getPointerType(PointeeTy.withConst()));
2766    if (!PointeeTy.isVolatileQualified())
2767      AddPointerWithMoreQualifiedTypeVariants
2768        (Context.getPointerType(PointeeTy.withVolatile()));
2769    if (!PointeeTy.isRestrictQualified())
2770      AddPointerWithMoreQualifiedTypeVariants
2771        (Context.getPointerType(PointeeTy.withRestrict()));
2772  }
2773
2774  return true;
2775}
2776
2777/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2778/// to the set of pointer types along with any more-qualified variants of
2779/// that type. For example, if @p Ty is "int const *", this routine
2780/// will add "int const *", "int const volatile *", "int const
2781/// restrict *", and "int const volatile restrict *" to the set of
2782/// pointer types. Returns true if the add of @p Ty itself succeeded,
2783/// false otherwise.
2784bool
2785BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2786    QualType Ty) {
2787  // Insert this type.
2788  if (!MemberPointerTypes.insert(Ty))
2789    return false;
2790
2791  if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
2792    QualType PointeeTy = PointerTy->getPointeeType();
2793    const Type *ClassTy = PointerTy->getClass();
2794    // FIXME: Optimize this so that we don't keep trying to add the same types.
2795
2796    if (!PointeeTy.isConstQualified())
2797      AddMemberPointerWithMoreQualifiedTypeVariants
2798        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2799    if (!PointeeTy.isVolatileQualified())
2800      AddMemberPointerWithMoreQualifiedTypeVariants
2801        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2802    if (!PointeeTy.isRestrictQualified())
2803      AddMemberPointerWithMoreQualifiedTypeVariants
2804        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2805  }
2806
2807  return true;
2808}
2809
2810/// AddTypesConvertedFrom - Add each of the types to which the type @p
2811/// Ty can be implicit converted to the given set of @p Types. We're
2812/// primarily interested in pointer types and enumeration types. We also
2813/// take member pointer types, for the conditional operator.
2814/// AllowUserConversions is true if we should look at the conversion
2815/// functions of a class type, and AllowExplicitConversions if we
2816/// should also include the explicit conversion functions of a class
2817/// type.
2818void
2819BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2820                                               bool AllowUserConversions,
2821                                               bool AllowExplicitConversions) {
2822  // Only deal with canonical types.
2823  Ty = Context.getCanonicalType(Ty);
2824
2825  // Look through reference types; they aren't part of the type of an
2826  // expression for the purposes of conversions.
2827  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2828    Ty = RefTy->getPointeeType();
2829
2830  // We don't care about qualifiers on the type.
2831  Ty = Ty.getUnqualifiedType();
2832
2833  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2834    QualType PointeeTy = PointerTy->getPointeeType();
2835
2836    // Insert our type, and its more-qualified variants, into the set
2837    // of types.
2838    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2839      return;
2840
2841    // Add 'cv void*' to our set of types.
2842    if (!Ty->isVoidType()) {
2843      QualType QualVoid
2844        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2845      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2846    }
2847
2848    // If this is a pointer to a class type, add pointers to its bases
2849    // (with the same level of cv-qualification as the original
2850    // derived class, of course).
2851    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
2852      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2853      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2854           Base != ClassDecl->bases_end(); ++Base) {
2855        QualType BaseTy = Context.getCanonicalType(Base->getType());
2856        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2857
2858        // Add the pointer type, recursively, so that we get all of
2859        // the indirect base classes, too.
2860        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2861      }
2862    }
2863  } else if (Ty->isMemberPointerType()) {
2864    // Member pointers are far easier, since the pointee can't be converted.
2865    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2866      return;
2867  } else if (Ty->isEnumeralType()) {
2868    EnumerationTypes.insert(Ty);
2869  } else if (AllowUserConversions) {
2870    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
2871      if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) {
2872        // No conversion functions in incomplete types.
2873        return;
2874      }
2875
2876      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2877      // FIXME: Visit conversion functions in the base classes, too.
2878      OverloadedFunctionDecl *Conversions
2879        = ClassDecl->getConversionFunctions();
2880      for (OverloadedFunctionDecl::function_iterator Func
2881             = Conversions->function_begin();
2882           Func != Conversions->function_end(); ++Func) {
2883        CXXConversionDecl *Conv;
2884        FunctionTemplateDecl *ConvTemplate;
2885        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
2886
2887        // Skip conversion function templates; they don't tell us anything
2888        // about which builtin types we can convert to.
2889        if (ConvTemplate)
2890          continue;
2891
2892        if (AllowExplicitConversions || !Conv->isExplicit())
2893          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2894      }
2895    }
2896  }
2897}
2898
2899/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
2900/// the volatile- and non-volatile-qualified assignment operators for the
2901/// given type to the candidate set.
2902static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
2903                                                   QualType T,
2904                                                   Expr **Args,
2905                                                   unsigned NumArgs,
2906                                    OverloadCandidateSet &CandidateSet) {
2907  QualType ParamTypes[2];
2908
2909  // T& operator=(T&, T)
2910  ParamTypes[0] = S.Context.getLValueReferenceType(T);
2911  ParamTypes[1] = T;
2912  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2913                        /*IsAssignmentOperator=*/true);
2914
2915  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
2916    // volatile T& operator=(volatile T&, T)
2917    ParamTypes[0] = S.Context.getLValueReferenceType(T.withVolatile());
2918    ParamTypes[1] = T;
2919    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
2920                          /*IsAssignmentOperator=*/true);
2921  }
2922}
2923
2924/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2925/// operator overloads to the candidate set (C++ [over.built]), based
2926/// on the operator @p Op and the arguments given. For example, if the
2927/// operator is a binary '+', this routine might add "int
2928/// operator+(int, int)" to cover integer addition.
2929void
2930Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2931                                   Expr **Args, unsigned NumArgs,
2932                                   OverloadCandidateSet& CandidateSet) {
2933  // The set of "promoted arithmetic types", which are the arithmetic
2934  // types are that preserved by promotion (C++ [over.built]p2). Note
2935  // that the first few of these types are the promoted integral
2936  // types; these types need to be first.
2937  // FIXME: What about complex?
2938  const unsigned FirstIntegralType = 0;
2939  const unsigned LastIntegralType = 13;
2940  const unsigned FirstPromotedIntegralType = 7,
2941                 LastPromotedIntegralType = 13;
2942  const unsigned FirstPromotedArithmeticType = 7,
2943                 LastPromotedArithmeticType = 16;
2944  const unsigned NumArithmeticTypes = 16;
2945  QualType ArithmeticTypes[NumArithmeticTypes] = {
2946    Context.BoolTy, Context.CharTy, Context.WCharTy,
2947// FIXME:   Context.Char16Ty, Context.Char32Ty,
2948    Context.SignedCharTy, Context.ShortTy,
2949    Context.UnsignedCharTy, Context.UnsignedShortTy,
2950    Context.IntTy, Context.LongTy, Context.LongLongTy,
2951    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2952    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2953  };
2954
2955  // Find all of the types that the arguments can convert to, but only
2956  // if the operator we're looking at has built-in operator candidates
2957  // that make use of these types.
2958  BuiltinCandidateTypeSet CandidateTypes(*this);
2959  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2960      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2961      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2962      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2963      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2964      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2965    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2966      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2967                                           true,
2968                                           (Op == OO_Exclaim ||
2969                                            Op == OO_AmpAmp ||
2970                                            Op == OO_PipePipe));
2971  }
2972
2973  bool isComparison = false;
2974  switch (Op) {
2975  case OO_None:
2976  case NUM_OVERLOADED_OPERATORS:
2977    assert(false && "Expected an overloaded operator");
2978    break;
2979
2980  case OO_Star: // '*' is either unary or binary
2981    if (NumArgs == 1)
2982      goto UnaryStar;
2983    else
2984      goto BinaryStar;
2985    break;
2986
2987  case OO_Plus: // '+' is either unary or binary
2988    if (NumArgs == 1)
2989      goto UnaryPlus;
2990    else
2991      goto BinaryPlus;
2992    break;
2993
2994  case OO_Minus: // '-' is either unary or binary
2995    if (NumArgs == 1)
2996      goto UnaryMinus;
2997    else
2998      goto BinaryMinus;
2999    break;
3000
3001  case OO_Amp: // '&' is either unary or binary
3002    if (NumArgs == 1)
3003      goto UnaryAmp;
3004    else
3005      goto BinaryAmp;
3006
3007  case OO_PlusPlus:
3008  case OO_MinusMinus:
3009    // C++ [over.built]p3:
3010    //
3011    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3012    //   is either volatile or empty, there exist candidate operator
3013    //   functions of the form
3014    //
3015    //       VQ T&      operator++(VQ T&);
3016    //       T          operator++(VQ T&, int);
3017    //
3018    // C++ [over.built]p4:
3019    //
3020    //   For every pair (T, VQ), where T is an arithmetic type other
3021    //   than bool, and VQ is either volatile or empty, there exist
3022    //   candidate operator functions of the form
3023    //
3024    //       VQ T&      operator--(VQ T&);
3025    //       T          operator--(VQ T&, int);
3026    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3027         Arith < NumArithmeticTypes; ++Arith) {
3028      QualType ArithTy = ArithmeticTypes[Arith];
3029      QualType ParamTypes[2]
3030        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3031
3032      // Non-volatile version.
3033      if (NumArgs == 1)
3034        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3035      else
3036        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3037
3038      // Volatile version
3039      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
3040      if (NumArgs == 1)
3041        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3042      else
3043        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3044    }
3045
3046    // C++ [over.built]p5:
3047    //
3048    //   For every pair (T, VQ), where T is a cv-qualified or
3049    //   cv-unqualified object type, and VQ is either volatile or
3050    //   empty, there exist candidate operator functions of the form
3051    //
3052    //       T*VQ&      operator++(T*VQ&);
3053    //       T*VQ&      operator--(T*VQ&);
3054    //       T*         operator++(T*VQ&, int);
3055    //       T*         operator--(T*VQ&, int);
3056    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3057         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3058      // Skip pointer types that aren't pointers to object types.
3059      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3060        continue;
3061
3062      QualType ParamTypes[2] = {
3063        Context.getLValueReferenceType(*Ptr), Context.IntTy
3064      };
3065
3066      // Without volatile
3067      if (NumArgs == 1)
3068        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3069      else
3070        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3071
3072      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3073        // With volatile
3074        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3075        if (NumArgs == 1)
3076          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3077        else
3078          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3079      }
3080    }
3081    break;
3082
3083  UnaryStar:
3084    // C++ [over.built]p6:
3085    //   For every cv-qualified or cv-unqualified object type T, there
3086    //   exist candidate operator functions of the form
3087    //
3088    //       T&         operator*(T*);
3089    //
3090    // C++ [over.built]p7:
3091    //   For every function type T, there exist candidate operator
3092    //   functions of the form
3093    //       T&         operator*(T*);
3094    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3095         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3096      QualType ParamTy = *Ptr;
3097      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3098      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3099                          &ParamTy, Args, 1, CandidateSet);
3100    }
3101    break;
3102
3103  UnaryPlus:
3104    // C++ [over.built]p8:
3105    //   For every type T, there exist candidate operator functions of
3106    //   the form
3107    //
3108    //       T*         operator+(T*);
3109    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3110         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3111      QualType ParamTy = *Ptr;
3112      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3113    }
3114
3115    // Fall through
3116
3117  UnaryMinus:
3118    // C++ [over.built]p9:
3119    //  For every promoted arithmetic type T, there exist candidate
3120    //  operator functions of the form
3121    //
3122    //       T         operator+(T);
3123    //       T         operator-(T);
3124    for (unsigned Arith = FirstPromotedArithmeticType;
3125         Arith < LastPromotedArithmeticType; ++Arith) {
3126      QualType ArithTy = ArithmeticTypes[Arith];
3127      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3128    }
3129    break;
3130
3131  case OO_Tilde:
3132    // C++ [over.built]p10:
3133    //   For every promoted integral type T, there exist candidate
3134    //   operator functions of the form
3135    //
3136    //        T         operator~(T);
3137    for (unsigned Int = FirstPromotedIntegralType;
3138         Int < LastPromotedIntegralType; ++Int) {
3139      QualType IntTy = ArithmeticTypes[Int];
3140      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3141    }
3142    break;
3143
3144  case OO_New:
3145  case OO_Delete:
3146  case OO_Array_New:
3147  case OO_Array_Delete:
3148  case OO_Call:
3149    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3150    break;
3151
3152  case OO_Comma:
3153  UnaryAmp:
3154  case OO_Arrow:
3155    // C++ [over.match.oper]p3:
3156    //   -- For the operator ',', the unary operator '&', or the
3157    //      operator '->', the built-in candidates set is empty.
3158    break;
3159
3160  case OO_EqualEqual:
3161  case OO_ExclaimEqual:
3162    // C++ [over.match.oper]p16:
3163    //   For every pointer to member type T, there exist candidate operator
3164    //   functions of the form
3165    //
3166    //        bool operator==(T,T);
3167    //        bool operator!=(T,T);
3168    for (BuiltinCandidateTypeSet::iterator
3169           MemPtr = CandidateTypes.member_pointer_begin(),
3170           MemPtrEnd = CandidateTypes.member_pointer_end();
3171         MemPtr != MemPtrEnd;
3172         ++MemPtr) {
3173      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3174      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3175    }
3176
3177    // Fall through
3178
3179  case OO_Less:
3180  case OO_Greater:
3181  case OO_LessEqual:
3182  case OO_GreaterEqual:
3183    // C++ [over.built]p15:
3184    //
3185    //   For every pointer or enumeration type T, there exist
3186    //   candidate operator functions of the form
3187    //
3188    //        bool       operator<(T, T);
3189    //        bool       operator>(T, T);
3190    //        bool       operator<=(T, T);
3191    //        bool       operator>=(T, T);
3192    //        bool       operator==(T, T);
3193    //        bool       operator!=(T, T);
3194    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3195         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3196      QualType ParamTypes[2] = { *Ptr, *Ptr };
3197      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3198    }
3199    for (BuiltinCandidateTypeSet::iterator Enum
3200           = CandidateTypes.enumeration_begin();
3201         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3202      QualType ParamTypes[2] = { *Enum, *Enum };
3203      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3204    }
3205
3206    // Fall through.
3207    isComparison = true;
3208
3209  BinaryPlus:
3210  BinaryMinus:
3211    if (!isComparison) {
3212      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3213
3214      // C++ [over.built]p13:
3215      //
3216      //   For every cv-qualified or cv-unqualified object type T
3217      //   there exist candidate operator functions of the form
3218      //
3219      //      T*         operator+(T*, ptrdiff_t);
3220      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3221      //      T*         operator-(T*, ptrdiff_t);
3222      //      T*         operator+(ptrdiff_t, T*);
3223      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3224      //
3225      // C++ [over.built]p14:
3226      //
3227      //   For every T, where T is a pointer to object type, there
3228      //   exist candidate operator functions of the form
3229      //
3230      //      ptrdiff_t  operator-(T, T);
3231      for (BuiltinCandidateTypeSet::iterator Ptr
3232             = CandidateTypes.pointer_begin();
3233           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3234        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3235
3236        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3237        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3238
3239        if (Op == OO_Plus) {
3240          // T* operator+(ptrdiff_t, T*);
3241          ParamTypes[0] = ParamTypes[1];
3242          ParamTypes[1] = *Ptr;
3243          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3244        } else {
3245          // ptrdiff_t operator-(T, T);
3246          ParamTypes[1] = *Ptr;
3247          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3248                              Args, 2, CandidateSet);
3249        }
3250      }
3251    }
3252    // Fall through
3253
3254  case OO_Slash:
3255  BinaryStar:
3256  Conditional:
3257    // C++ [over.built]p12:
3258    //
3259    //   For every pair of promoted arithmetic types L and R, there
3260    //   exist candidate operator functions of the form
3261    //
3262    //        LR         operator*(L, R);
3263    //        LR         operator/(L, R);
3264    //        LR         operator+(L, R);
3265    //        LR         operator-(L, R);
3266    //        bool       operator<(L, R);
3267    //        bool       operator>(L, R);
3268    //        bool       operator<=(L, R);
3269    //        bool       operator>=(L, R);
3270    //        bool       operator==(L, R);
3271    //        bool       operator!=(L, R);
3272    //
3273    //   where LR is the result of the usual arithmetic conversions
3274    //   between types L and R.
3275    //
3276    // C++ [over.built]p24:
3277    //
3278    //   For every pair of promoted arithmetic types L and R, there exist
3279    //   candidate operator functions of the form
3280    //
3281    //        LR       operator?(bool, L, R);
3282    //
3283    //   where LR is the result of the usual arithmetic conversions
3284    //   between types L and R.
3285    // Our candidates ignore the first parameter.
3286    for (unsigned Left = FirstPromotedArithmeticType;
3287         Left < LastPromotedArithmeticType; ++Left) {
3288      for (unsigned Right = FirstPromotedArithmeticType;
3289           Right < LastPromotedArithmeticType; ++Right) {
3290        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3291        QualType Result
3292          = isComparison
3293          ? Context.BoolTy
3294          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3295        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3296      }
3297    }
3298    break;
3299
3300  case OO_Percent:
3301  BinaryAmp:
3302  case OO_Caret:
3303  case OO_Pipe:
3304  case OO_LessLess:
3305  case OO_GreaterGreater:
3306    // C++ [over.built]p17:
3307    //
3308    //   For every pair of promoted integral types L and R, there
3309    //   exist candidate operator functions of the form
3310    //
3311    //      LR         operator%(L, R);
3312    //      LR         operator&(L, R);
3313    //      LR         operator^(L, R);
3314    //      LR         operator|(L, R);
3315    //      L          operator<<(L, R);
3316    //      L          operator>>(L, R);
3317    //
3318    //   where LR is the result of the usual arithmetic conversions
3319    //   between types L and R.
3320    for (unsigned Left = FirstPromotedIntegralType;
3321         Left < LastPromotedIntegralType; ++Left) {
3322      for (unsigned Right = FirstPromotedIntegralType;
3323           Right < LastPromotedIntegralType; ++Right) {
3324        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3325        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3326            ? LandR[0]
3327            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3328        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3329      }
3330    }
3331    break;
3332
3333  case OO_Equal:
3334    // C++ [over.built]p20:
3335    //
3336    //   For every pair (T, VQ), where T is an enumeration or
3337    //   pointer to member type and VQ is either volatile or
3338    //   empty, there exist candidate operator functions of the form
3339    //
3340    //        VQ T&      operator=(VQ T&, T);
3341    for (BuiltinCandidateTypeSet::iterator
3342           Enum = CandidateTypes.enumeration_begin(),
3343           EnumEnd = CandidateTypes.enumeration_end();
3344         Enum != EnumEnd; ++Enum)
3345      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3346                                             CandidateSet);
3347    for (BuiltinCandidateTypeSet::iterator
3348           MemPtr = CandidateTypes.member_pointer_begin(),
3349         MemPtrEnd = CandidateTypes.member_pointer_end();
3350         MemPtr != MemPtrEnd; ++MemPtr)
3351      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3352                                             CandidateSet);
3353      // Fall through.
3354
3355  case OO_PlusEqual:
3356  case OO_MinusEqual:
3357    // C++ [over.built]p19:
3358    //
3359    //   For every pair (T, VQ), where T is any type and VQ is either
3360    //   volatile or empty, there exist candidate operator functions
3361    //   of the form
3362    //
3363    //        T*VQ&      operator=(T*VQ&, T*);
3364    //
3365    // C++ [over.built]p21:
3366    //
3367    //   For every pair (T, VQ), where T is a cv-qualified or
3368    //   cv-unqualified object type and VQ is either volatile or
3369    //   empty, there exist candidate operator functions of the form
3370    //
3371    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3372    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3373    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3374         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3375      QualType ParamTypes[2];
3376      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3377
3378      // non-volatile version
3379      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3380      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3381                          /*IsAssigmentOperator=*/Op == OO_Equal);
3382
3383      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3384        // volatile version
3385        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3386        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3387                            /*IsAssigmentOperator=*/Op == OO_Equal);
3388      }
3389    }
3390    // Fall through.
3391
3392  case OO_StarEqual:
3393  case OO_SlashEqual:
3394    // C++ [over.built]p18:
3395    //
3396    //   For every triple (L, VQ, R), where L is an arithmetic type,
3397    //   VQ is either volatile or empty, and R is a promoted
3398    //   arithmetic type, there exist candidate operator functions of
3399    //   the form
3400    //
3401    //        VQ L&      operator=(VQ L&, R);
3402    //        VQ L&      operator*=(VQ L&, R);
3403    //        VQ L&      operator/=(VQ L&, R);
3404    //        VQ L&      operator+=(VQ L&, R);
3405    //        VQ L&      operator-=(VQ L&, R);
3406    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3407      for (unsigned Right = FirstPromotedArithmeticType;
3408           Right < LastPromotedArithmeticType; ++Right) {
3409        QualType ParamTypes[2];
3410        ParamTypes[1] = ArithmeticTypes[Right];
3411
3412        // Add this built-in operator as a candidate (VQ is empty).
3413        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3414        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3415                            /*IsAssigmentOperator=*/Op == OO_Equal);
3416
3417        // Add this built-in operator as a candidate (VQ is 'volatile').
3418        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3419        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3420        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3421                            /*IsAssigmentOperator=*/Op == OO_Equal);
3422      }
3423    }
3424    break;
3425
3426  case OO_PercentEqual:
3427  case OO_LessLessEqual:
3428  case OO_GreaterGreaterEqual:
3429  case OO_AmpEqual:
3430  case OO_CaretEqual:
3431  case OO_PipeEqual:
3432    // C++ [over.built]p22:
3433    //
3434    //   For every triple (L, VQ, R), where L is an integral type, VQ
3435    //   is either volatile or empty, and R is a promoted integral
3436    //   type, there exist candidate operator functions of the form
3437    //
3438    //        VQ L&       operator%=(VQ L&, R);
3439    //        VQ L&       operator<<=(VQ L&, R);
3440    //        VQ L&       operator>>=(VQ L&, R);
3441    //        VQ L&       operator&=(VQ L&, R);
3442    //        VQ L&       operator^=(VQ L&, R);
3443    //        VQ L&       operator|=(VQ L&, R);
3444    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3445      for (unsigned Right = FirstPromotedIntegralType;
3446           Right < LastPromotedIntegralType; ++Right) {
3447        QualType ParamTypes[2];
3448        ParamTypes[1] = ArithmeticTypes[Right];
3449
3450        // Add this built-in operator as a candidate (VQ is empty).
3451        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3452        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3453
3454        // Add this built-in operator as a candidate (VQ is 'volatile').
3455        ParamTypes[0] = ArithmeticTypes[Left];
3456        ParamTypes[0].addVolatile();
3457        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3458        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3459      }
3460    }
3461    break;
3462
3463  case OO_Exclaim: {
3464    // C++ [over.operator]p23:
3465    //
3466    //   There also exist candidate operator functions of the form
3467    //
3468    //        bool        operator!(bool);
3469    //        bool        operator&&(bool, bool);     [BELOW]
3470    //        bool        operator||(bool, bool);     [BELOW]
3471    QualType ParamTy = Context.BoolTy;
3472    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3473                        /*IsAssignmentOperator=*/false,
3474                        /*NumContextualBoolArguments=*/1);
3475    break;
3476  }
3477
3478  case OO_AmpAmp:
3479  case OO_PipePipe: {
3480    // C++ [over.operator]p23:
3481    //
3482    //   There also exist candidate operator functions of the form
3483    //
3484    //        bool        operator!(bool);            [ABOVE]
3485    //        bool        operator&&(bool, bool);
3486    //        bool        operator||(bool, bool);
3487    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3488    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3489                        /*IsAssignmentOperator=*/false,
3490                        /*NumContextualBoolArguments=*/2);
3491    break;
3492  }
3493
3494  case OO_Subscript:
3495    // C++ [over.built]p13:
3496    //
3497    //   For every cv-qualified or cv-unqualified object type T there
3498    //   exist candidate operator functions of the form
3499    //
3500    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3501    //        T&         operator[](T*, ptrdiff_t);
3502    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3503    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3504    //        T&         operator[](ptrdiff_t, T*);
3505    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3506         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3507      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3508      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3509      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3510
3511      // T& operator[](T*, ptrdiff_t)
3512      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3513
3514      // T& operator[](ptrdiff_t, T*);
3515      ParamTypes[0] = ParamTypes[1];
3516      ParamTypes[1] = *Ptr;
3517      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3518    }
3519    break;
3520
3521  case OO_ArrowStar:
3522    // FIXME: No support for pointer-to-members yet.
3523    break;
3524
3525  case OO_Conditional:
3526    // Note that we don't consider the first argument, since it has been
3527    // contextually converted to bool long ago. The candidates below are
3528    // therefore added as binary.
3529    //
3530    // C++ [over.built]p24:
3531    //   For every type T, where T is a pointer or pointer-to-member type,
3532    //   there exist candidate operator functions of the form
3533    //
3534    //        T        operator?(bool, T, T);
3535    //
3536    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3537         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3538      QualType ParamTypes[2] = { *Ptr, *Ptr };
3539      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3540    }
3541    for (BuiltinCandidateTypeSet::iterator Ptr =
3542           CandidateTypes.member_pointer_begin(),
3543         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3544      QualType ParamTypes[2] = { *Ptr, *Ptr };
3545      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3546    }
3547    goto Conditional;
3548  }
3549}
3550
3551/// \brief Add function candidates found via argument-dependent lookup
3552/// to the set of overloading candidates.
3553///
3554/// This routine performs argument-dependent name lookup based on the
3555/// given function name (which may also be an operator name) and adds
3556/// all of the overload candidates found by ADL to the overload
3557/// candidate set (C++ [basic.lookup.argdep]).
3558void
3559Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3560                                           Expr **Args, unsigned NumArgs,
3561                                           OverloadCandidateSet& CandidateSet) {
3562  FunctionSet Functions;
3563
3564  // Record all of the function candidates that we've already
3565  // added to the overload set, so that we don't add those same
3566  // candidates a second time.
3567  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3568                                   CandEnd = CandidateSet.end();
3569       Cand != CandEnd; ++Cand)
3570    if (Cand->Function) {
3571      Functions.insert(Cand->Function);
3572      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3573        Functions.insert(FunTmpl);
3574    }
3575
3576  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3577
3578  // Erase all of the candidates we already knew about.
3579  // FIXME: This is suboptimal. Is there a better way?
3580  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3581                                   CandEnd = CandidateSet.end();
3582       Cand != CandEnd; ++Cand)
3583    if (Cand->Function) {
3584      Functions.erase(Cand->Function);
3585      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3586        Functions.erase(FunTmpl);
3587    }
3588
3589  // For each of the ADL candidates we found, add it to the overload
3590  // set.
3591  for (FunctionSet::iterator Func = Functions.begin(),
3592                          FuncEnd = Functions.end();
3593       Func != FuncEnd; ++Func) {
3594    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3595      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3596    else
3597      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3598                                   /*FIXME: explicit args */false, 0, 0,
3599                                   Args, NumArgs, CandidateSet);
3600  }
3601}
3602
3603/// isBetterOverloadCandidate - Determines whether the first overload
3604/// candidate is a better candidate than the second (C++ 13.3.3p1).
3605bool
3606Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3607                                const OverloadCandidate& Cand2)
3608{
3609  // Define viable functions to be better candidates than non-viable
3610  // functions.
3611  if (!Cand2.Viable)
3612    return Cand1.Viable;
3613  else if (!Cand1.Viable)
3614    return false;
3615
3616  // C++ [over.match.best]p1:
3617  //
3618  //   -- if F is a static member function, ICS1(F) is defined such
3619  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3620  //      any function G, and, symmetrically, ICS1(G) is neither
3621  //      better nor worse than ICS1(F).
3622  unsigned StartArg = 0;
3623  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3624    StartArg = 1;
3625
3626  // C++ [over.match.best]p1:
3627  //   A viable function F1 is defined to be a better function than another
3628  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3629  //   conversion sequence than ICSi(F2), and then...
3630  unsigned NumArgs = Cand1.Conversions.size();
3631  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3632  bool HasBetterConversion = false;
3633  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3634    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3635                                               Cand2.Conversions[ArgIdx])) {
3636    case ImplicitConversionSequence::Better:
3637      // Cand1 has a better conversion sequence.
3638      HasBetterConversion = true;
3639      break;
3640
3641    case ImplicitConversionSequence::Worse:
3642      // Cand1 can't be better than Cand2.
3643      return false;
3644
3645    case ImplicitConversionSequence::Indistinguishable:
3646      // Do nothing.
3647      break;
3648    }
3649  }
3650
3651  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3652  //       ICSj(F2), or, if not that,
3653  if (HasBetterConversion)
3654    return true;
3655
3656  //     - F1 is a non-template function and F2 is a function template
3657  //       specialization, or, if not that,
3658  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3659      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3660    return true;
3661
3662  //   -- F1 and F2 are function template specializations, and the function
3663  //      template for F1 is more specialized than the template for F2
3664  //      according to the partial ordering rules described in 14.5.5.2, or,
3665  //      if not that,
3666  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3667      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3668    if (FunctionTemplateDecl *BetterTemplate
3669          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
3670                                       Cand2.Function->getPrimaryTemplate(),
3671                                       true))
3672      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
3673
3674  //   -- the context is an initialization by user-defined conversion
3675  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3676  //      from the return type of F1 to the destination type (i.e.,
3677  //      the type of the entity being initialized) is a better
3678  //      conversion sequence than the standard conversion sequence
3679  //      from the return type of F2 to the destination type.
3680  if (Cand1.Function && Cand2.Function &&
3681      isa<CXXConversionDecl>(Cand1.Function) &&
3682      isa<CXXConversionDecl>(Cand2.Function)) {
3683    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3684                                               Cand2.FinalConversion)) {
3685    case ImplicitConversionSequence::Better:
3686      // Cand1 has a better conversion sequence.
3687      return true;
3688
3689    case ImplicitConversionSequence::Worse:
3690      // Cand1 can't be better than Cand2.
3691      return false;
3692
3693    case ImplicitConversionSequence::Indistinguishable:
3694      // Do nothing
3695      break;
3696    }
3697  }
3698
3699  return false;
3700}
3701
3702/// \brief Computes the best viable function (C++ 13.3.3)
3703/// within an overload candidate set.
3704///
3705/// \param CandidateSet the set of candidate functions.
3706///
3707/// \param Loc the location of the function name (or operator symbol) for
3708/// which overload resolution occurs.
3709///
3710/// \param Best f overload resolution was successful or found a deleted
3711/// function, Best points to the candidate function found.
3712///
3713/// \returns The result of overload resolution.
3714Sema::OverloadingResult
3715Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3716                         SourceLocation Loc,
3717                         OverloadCandidateSet::iterator& Best)
3718{
3719  // Find the best viable function.
3720  Best = CandidateSet.end();
3721  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3722       Cand != CandidateSet.end(); ++Cand) {
3723    if (Cand->Viable) {
3724      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3725        Best = Cand;
3726    }
3727  }
3728
3729  // If we didn't find any viable functions, abort.
3730  if (Best == CandidateSet.end())
3731    return OR_No_Viable_Function;
3732
3733  // Make sure that this function is better than every other viable
3734  // function. If not, we have an ambiguity.
3735  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3736       Cand != CandidateSet.end(); ++Cand) {
3737    if (Cand->Viable &&
3738        Cand != Best &&
3739        !isBetterOverloadCandidate(*Best, *Cand)) {
3740      Best = CandidateSet.end();
3741      return OR_Ambiguous;
3742    }
3743  }
3744
3745  // Best is the best viable function.
3746  if (Best->Function &&
3747      (Best->Function->isDeleted() ||
3748       Best->Function->getAttr<UnavailableAttr>()))
3749    return OR_Deleted;
3750
3751  // C++ [basic.def.odr]p2:
3752  //   An overloaded function is used if it is selected by overload resolution
3753  //   when referred to from a potentially-evaluated expression. [Note: this
3754  //   covers calls to named functions (5.2.2), operator overloading
3755  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3756  //   placement new (5.3.4), as well as non-default initialization (8.5).
3757  if (Best->Function)
3758    MarkDeclarationReferenced(Loc, Best->Function);
3759  return OR_Success;
3760}
3761
3762/// PrintOverloadCandidates - When overload resolution fails, prints
3763/// diagnostic messages containing the candidates in the candidate
3764/// set. If OnlyViable is true, only viable candidates will be printed.
3765void
3766Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3767                              bool OnlyViable)
3768{
3769  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3770                             LastCand = CandidateSet.end();
3771  for (; Cand != LastCand; ++Cand) {
3772    if (Cand->Viable || !OnlyViable) {
3773      if (Cand->Function) {
3774        if (Cand->Function->isDeleted() ||
3775            Cand->Function->getAttr<UnavailableAttr>()) {
3776          // Deleted or "unavailable" function.
3777          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3778            << Cand->Function->isDeleted();
3779        } else {
3780          // Normal function
3781          // FIXME: Give a better reason!
3782          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3783        }
3784      } else if (Cand->IsSurrogate) {
3785        // Desugar the type of the surrogate down to a function type,
3786        // retaining as many typedefs as possible while still showing
3787        // the function type (and, therefore, its parameter types).
3788        QualType FnType = Cand->Surrogate->getConversionType();
3789        bool isLValueReference = false;
3790        bool isRValueReference = false;
3791        bool isPointer = false;
3792        if (const LValueReferenceType *FnTypeRef =
3793              FnType->getAs<LValueReferenceType>()) {
3794          FnType = FnTypeRef->getPointeeType();
3795          isLValueReference = true;
3796        } else if (const RValueReferenceType *FnTypeRef =
3797                     FnType->getAs<RValueReferenceType>()) {
3798          FnType = FnTypeRef->getPointeeType();
3799          isRValueReference = true;
3800        }
3801        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3802          FnType = FnTypePtr->getPointeeType();
3803          isPointer = true;
3804        }
3805        // Desugar down to a function type.
3806        FnType = QualType(FnType->getAsFunctionType(), 0);
3807        // Reconstruct the pointer/reference as appropriate.
3808        if (isPointer) FnType = Context.getPointerType(FnType);
3809        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3810        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3811
3812        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3813          << FnType;
3814      } else {
3815        // FIXME: We need to get the identifier in here
3816        // FIXME: Do we want the error message to point at the operator?
3817        // (built-ins won't have a location)
3818        QualType FnType
3819          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3820                                    Cand->BuiltinTypes.ParamTypes,
3821                                    Cand->Conversions.size(),
3822                                    false, 0);
3823
3824        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3825      }
3826    }
3827  }
3828}
3829
3830/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3831/// an overloaded function (C++ [over.over]), where @p From is an
3832/// expression with overloaded function type and @p ToType is the type
3833/// we're trying to resolve to. For example:
3834///
3835/// @code
3836/// int f(double);
3837/// int f(int);
3838///
3839/// int (*pfd)(double) = f; // selects f(double)
3840/// @endcode
3841///
3842/// This routine returns the resulting FunctionDecl if it could be
3843/// resolved, and NULL otherwise. When @p Complain is true, this
3844/// routine will emit diagnostics if there is an error.
3845FunctionDecl *
3846Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3847                                         bool Complain) {
3848  QualType FunctionType = ToType;
3849  bool IsMember = false;
3850  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3851    FunctionType = ToTypePtr->getPointeeType();
3852  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3853    FunctionType = ToTypeRef->getPointeeType();
3854  else if (const MemberPointerType *MemTypePtr =
3855                    ToType->getAs<MemberPointerType>()) {
3856    FunctionType = MemTypePtr->getPointeeType();
3857    IsMember = true;
3858  }
3859
3860  // We only look at pointers or references to functions.
3861  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3862  if (!FunctionType->isFunctionType())
3863    return 0;
3864
3865  // Find the actual overloaded function declaration.
3866  OverloadedFunctionDecl *Ovl = 0;
3867
3868  // C++ [over.over]p1:
3869  //   [...] [Note: any redundant set of parentheses surrounding the
3870  //   overloaded function name is ignored (5.1). ]
3871  Expr *OvlExpr = From->IgnoreParens();
3872
3873  // C++ [over.over]p1:
3874  //   [...] The overloaded function name can be preceded by the &
3875  //   operator.
3876  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3877    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3878      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3879  }
3880
3881  // Try to dig out the overloaded function.
3882  FunctionTemplateDecl *FunctionTemplate = 0;
3883  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3884    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3885    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3886  }
3887
3888  // If there's no overloaded function declaration or function template,
3889  // we're done.
3890  if (!Ovl && !FunctionTemplate)
3891    return 0;
3892
3893  OverloadIterator Fun;
3894  if (Ovl)
3895    Fun = Ovl;
3896  else
3897    Fun = FunctionTemplate;
3898
3899  // Look through all of the overloaded functions, searching for one
3900  // whose type matches exactly.
3901  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3902
3903  bool FoundNonTemplateFunction = false;
3904  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3905    // C++ [over.over]p3:
3906    //   Non-member functions and static member functions match
3907    //   targets of type "pointer-to-function" or "reference-to-function."
3908    //   Nonstatic member functions match targets of
3909    //   type "pointer-to-member-function."
3910    // Note that according to DR 247, the containing class does not matter.
3911
3912    if (FunctionTemplateDecl *FunctionTemplate
3913          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3914      if (CXXMethodDecl *Method
3915            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3916        // Skip non-static function templates when converting to pointer, and
3917        // static when converting to member pointer.
3918        if (Method->isStatic() == IsMember)
3919          continue;
3920      } else if (IsMember)
3921        continue;
3922
3923      // C++ [over.over]p2:
3924      //   If the name is a function template, template argument deduction is
3925      //   done (14.8.2.2), and if the argument deduction succeeds, the
3926      //   resulting template argument list is used to generate a single
3927      //   function template specialization, which is added to the set of
3928      //   overloaded functions considered.
3929      FunctionDecl *Specialization = 0;
3930      TemplateDeductionInfo Info(Context);
3931      if (TemplateDeductionResult Result
3932            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3933                                      /*FIXME:*/0, /*FIXME:*/0,
3934                                      FunctionType, Specialization, Info)) {
3935        // FIXME: make a note of the failed deduction for diagnostics.
3936        (void)Result;
3937      } else {
3938        assert(FunctionType
3939                 == Context.getCanonicalType(Specialization->getType()));
3940        Matches.insert(
3941                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
3942      }
3943    }
3944
3945    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3946      // Skip non-static functions when converting to pointer, and static
3947      // when converting to member pointer.
3948      if (Method->isStatic() == IsMember)
3949        continue;
3950    } else if (IsMember)
3951      continue;
3952
3953    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3954      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3955        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
3956        FoundNonTemplateFunction = true;
3957      }
3958    }
3959  }
3960
3961  // If there were 0 or 1 matches, we're done.
3962  if (Matches.empty())
3963    return 0;
3964  else if (Matches.size() == 1)
3965    return *Matches.begin();
3966
3967  // C++ [over.over]p4:
3968  //   If more than one function is selected, [...]
3969  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3970  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
3971  if (FoundNonTemplateFunction) {
3972    //   [...] any function template specializations in the set are
3973    //   eliminated if the set also contains a non-template function, [...]
3974    for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
3975      if ((*M)->getPrimaryTemplate() == 0)
3976        RemainingMatches.push_back(*M);
3977  } else {
3978    //   [...] and any given function template specialization F1 is
3979    //   eliminated if the set contains a second function template
3980    //   specialization whose function template is more specialized
3981    //   than the function template of F1 according to the partial
3982    //   ordering rules of 14.5.5.2.
3983
3984    // The algorithm specified above is quadratic. We instead use a
3985    // two-pass algorithm (similar to the one used to identify the
3986    // best viable function in an overload set) that identifies the
3987    // best function template (if it exists).
3988    MatchIter Best = Matches.begin();
3989    MatchIter M = Best, MEnd = Matches.end();
3990    // Find the most specialized function.
3991    for (++M; M != MEnd; ++M)
3992      if (getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
3993                                     (*Best)->getPrimaryTemplate(),
3994                                     false)
3995            == (*M)->getPrimaryTemplate())
3996        Best = M;
3997
3998    // Determine whether this function template is more specialized
3999    // that all of the others.
4000    bool Ambiguous = false;
4001    for (M = Matches.begin(); M != MEnd; ++M) {
4002      if (M != Best &&
4003          getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4004                                     (*Best)->getPrimaryTemplate(),
4005                                     false)
4006           != (*Best)->getPrimaryTemplate()) {
4007        Ambiguous = true;
4008        break;
4009      }
4010    }
4011
4012    // If one function template was more specialized than all of the
4013    // others, return it.
4014    if (!Ambiguous)
4015      return *Best;
4016
4017    // We could not find a most-specialized function template, which
4018    // is equivalent to having a set of function templates with more
4019    // than one such template. So, we place all of the function
4020    // templates into the set of remaining matches and produce a
4021    // diagnostic below. FIXME: we could perform the quadratic
4022    // algorithm here, pruning the result set to limit the number of
4023    // candidates output later.
4024     RemainingMatches.append(Matches.begin(), Matches.end());
4025  }
4026
4027  // [...] After such eliminations, if any, there shall remain exactly one
4028  // selected function.
4029  if (RemainingMatches.size() == 1)
4030    return RemainingMatches.front();
4031
4032  // FIXME: We should probably return the same thing that BestViableFunction
4033  // returns (even if we issue the diagnostics here).
4034  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4035    << RemainingMatches[0]->getDeclName();
4036  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4037    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4038  return 0;
4039}
4040
4041/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4042/// (which eventually refers to the declaration Func) and the call
4043/// arguments Args/NumArgs, attempt to resolve the function call down
4044/// to a specific function. If overload resolution succeeds, returns
4045/// the function declaration produced by overload
4046/// resolution. Otherwise, emits diagnostics, deletes all of the
4047/// arguments and Fn, and returns NULL.
4048FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4049                                            DeclarationName UnqualifiedName,
4050                                            bool HasExplicitTemplateArgs,
4051                                 const TemplateArgument *ExplicitTemplateArgs,
4052                                            unsigned NumExplicitTemplateArgs,
4053                                            SourceLocation LParenLoc,
4054                                            Expr **Args, unsigned NumArgs,
4055                                            SourceLocation *CommaLocs,
4056                                            SourceLocation RParenLoc,
4057                                            bool &ArgumentDependentLookup) {
4058  OverloadCandidateSet CandidateSet;
4059
4060  // Add the functions denoted by Callee to the set of candidate
4061  // functions. While we're doing so, track whether argument-dependent
4062  // lookup still applies, per:
4063  //
4064  // C++0x [basic.lookup.argdep]p3:
4065  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4066  //   and let Y be the lookup set produced by argument dependent
4067  //   lookup (defined as follows). If X contains
4068  //
4069  //     -- a declaration of a class member, or
4070  //
4071  //     -- a block-scope function declaration that is not a
4072  //        using-declaration, or
4073  //
4074  //     -- a declaration that is neither a function or a function
4075  //        template
4076  //
4077  //   then Y is empty.
4078  if (OverloadedFunctionDecl *Ovl
4079        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
4080    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4081                                                FuncEnd = Ovl->function_end();
4082         Func != FuncEnd; ++Func) {
4083      DeclContext *Ctx = 0;
4084      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
4085        if (HasExplicitTemplateArgs)
4086          continue;
4087
4088        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
4089        Ctx = FunDecl->getDeclContext();
4090      } else {
4091        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
4092        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
4093                                     ExplicitTemplateArgs,
4094                                     NumExplicitTemplateArgs,
4095                                     Args, NumArgs, CandidateSet);
4096        Ctx = FunTmpl->getDeclContext();
4097      }
4098
4099
4100      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
4101        ArgumentDependentLookup = false;
4102    }
4103  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
4104    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4105    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
4106
4107    if (Func->getDeclContext()->isRecord() ||
4108        Func->getDeclContext()->isFunctionOrMethod())
4109      ArgumentDependentLookup = false;
4110  } else if (FunctionTemplateDecl *FuncTemplate
4111               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
4112    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4113                                 ExplicitTemplateArgs,
4114                                 NumExplicitTemplateArgs,
4115                                 Args, NumArgs, CandidateSet);
4116
4117    if (FuncTemplate->getDeclContext()->isRecord())
4118      ArgumentDependentLookup = false;
4119  }
4120
4121  if (Callee)
4122    UnqualifiedName = Callee->getDeclName();
4123
4124  // FIXME: Pass explicit template arguments through for ADL
4125  if (ArgumentDependentLookup)
4126    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4127                                         CandidateSet);
4128
4129  OverloadCandidateSet::iterator Best;
4130  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4131  case OR_Success:
4132    return Best->Function;
4133
4134  case OR_No_Viable_Function:
4135    Diag(Fn->getSourceRange().getBegin(),
4136         diag::err_ovl_no_viable_function_in_call)
4137      << UnqualifiedName << Fn->getSourceRange();
4138    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4139    break;
4140
4141  case OR_Ambiguous:
4142    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4143      << UnqualifiedName << Fn->getSourceRange();
4144    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4145    break;
4146
4147  case OR_Deleted:
4148    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4149      << Best->Function->isDeleted()
4150      << UnqualifiedName
4151      << Fn->getSourceRange();
4152    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4153    break;
4154  }
4155
4156  // Overload resolution failed. Destroy all of the subexpressions and
4157  // return NULL.
4158  Fn->Destroy(Context);
4159  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4160    Args[Arg]->Destroy(Context);
4161  return 0;
4162}
4163
4164/// \brief Create a unary operation that may resolve to an overloaded
4165/// operator.
4166///
4167/// \param OpLoc The location of the operator itself (e.g., '*').
4168///
4169/// \param OpcIn The UnaryOperator::Opcode that describes this
4170/// operator.
4171///
4172/// \param Functions The set of non-member functions that will be
4173/// considered by overload resolution. The caller needs to build this
4174/// set based on the context using, e.g.,
4175/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4176/// set should not contain any member functions; those will be added
4177/// by CreateOverloadedUnaryOp().
4178///
4179/// \param input The input argument.
4180Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4181                                                     unsigned OpcIn,
4182                                                     FunctionSet &Functions,
4183                                                     ExprArg input) {
4184  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4185  Expr *Input = (Expr *)input.get();
4186
4187  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4188  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4189  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4190
4191  Expr *Args[2] = { Input, 0 };
4192  unsigned NumArgs = 1;
4193
4194  // For post-increment and post-decrement, add the implicit '0' as
4195  // the second argument, so that we know this is a post-increment or
4196  // post-decrement.
4197  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4198    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4199    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4200                                           SourceLocation());
4201    NumArgs = 2;
4202  }
4203
4204  if (Input->isTypeDependent()) {
4205    OverloadedFunctionDecl *Overloads
4206      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4207    for (FunctionSet::iterator Func = Functions.begin(),
4208                            FuncEnd = Functions.end();
4209         Func != FuncEnd; ++Func)
4210      Overloads->addOverload(*Func);
4211
4212    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4213                                                OpLoc, false, false);
4214
4215    input.release();
4216    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4217                                                   &Args[0], NumArgs,
4218                                                   Context.DependentTy,
4219                                                   OpLoc));
4220  }
4221
4222  // Build an empty overload set.
4223  OverloadCandidateSet CandidateSet;
4224
4225  // Add the candidates from the given function set.
4226  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4227
4228  // Add operator candidates that are member functions.
4229  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4230
4231  // Add builtin operator candidates.
4232  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4233
4234  // Perform overload resolution.
4235  OverloadCandidateSet::iterator Best;
4236  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4237  case OR_Success: {
4238    // We found a built-in operator or an overloaded operator.
4239    FunctionDecl *FnDecl = Best->Function;
4240
4241    if (FnDecl) {
4242      // We matched an overloaded operator. Build a call to that
4243      // operator.
4244
4245      // Convert the arguments.
4246      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4247        if (PerformObjectArgumentInitialization(Input, Method))
4248          return ExprError();
4249      } else {
4250        // Convert the arguments.
4251        if (PerformCopyInitialization(Input,
4252                                      FnDecl->getParamDecl(0)->getType(),
4253                                      "passing"))
4254          return ExprError();
4255      }
4256
4257      // Determine the result type
4258      QualType ResultTy
4259        = FnDecl->getType()->getAsFunctionType()->getResultType();
4260      ResultTy = ResultTy.getNonReferenceType();
4261
4262      // Build the actual expression node.
4263      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4264                                               SourceLocation());
4265      UsualUnaryConversions(FnExpr);
4266
4267      input.release();
4268
4269      Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4270                                                   &Input, 1, ResultTy, OpLoc);
4271      return MaybeBindToTemporary(CE);
4272    } else {
4273      // We matched a built-in operator. Convert the arguments, then
4274      // break out so that we will build the appropriate built-in
4275      // operator node.
4276        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4277                                      Best->Conversions[0], "passing"))
4278          return ExprError();
4279
4280        break;
4281      }
4282    }
4283
4284    case OR_No_Viable_Function:
4285      // No viable function; fall through to handling this as a
4286      // built-in operator, which will produce an error message for us.
4287      break;
4288
4289    case OR_Ambiguous:
4290      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4291          << UnaryOperator::getOpcodeStr(Opc)
4292          << Input->getSourceRange();
4293      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4294      return ExprError();
4295
4296    case OR_Deleted:
4297      Diag(OpLoc, diag::err_ovl_deleted_oper)
4298        << Best->Function->isDeleted()
4299        << UnaryOperator::getOpcodeStr(Opc)
4300        << Input->getSourceRange();
4301      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4302      return ExprError();
4303    }
4304
4305  // Either we found no viable overloaded operator or we matched a
4306  // built-in operator. In either case, fall through to trying to
4307  // build a built-in operation.
4308  input.release();
4309  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4310}
4311
4312/// \brief Create a binary operation that may resolve to an overloaded
4313/// operator.
4314///
4315/// \param OpLoc The location of the operator itself (e.g., '+').
4316///
4317/// \param OpcIn The BinaryOperator::Opcode that describes this
4318/// operator.
4319///
4320/// \param Functions The set of non-member functions that will be
4321/// considered by overload resolution. The caller needs to build this
4322/// set based on the context using, e.g.,
4323/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4324/// set should not contain any member functions; those will be added
4325/// by CreateOverloadedBinOp().
4326///
4327/// \param LHS Left-hand argument.
4328/// \param RHS Right-hand argument.
4329Sema::OwningExprResult
4330Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4331                            unsigned OpcIn,
4332                            FunctionSet &Functions,
4333                            Expr *LHS, Expr *RHS) {
4334  Expr *Args[2] = { LHS, RHS };
4335  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4336
4337  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4338  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4339  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4340
4341  // If either side is type-dependent, create an appropriate dependent
4342  // expression.
4343  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4344    // .* cannot be overloaded.
4345    if (Opc == BinaryOperator::PtrMemD)
4346      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4347                                                Context.DependentTy, OpLoc));
4348
4349    OverloadedFunctionDecl *Overloads
4350      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4351    for (FunctionSet::iterator Func = Functions.begin(),
4352                            FuncEnd = Functions.end();
4353         Func != FuncEnd; ++Func)
4354      Overloads->addOverload(*Func);
4355
4356    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4357                                                OpLoc, false, false);
4358
4359    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4360                                                   Args, 2,
4361                                                   Context.DependentTy,
4362                                                   OpLoc));
4363  }
4364
4365  // If this is the .* operator, which is not overloadable, just
4366  // create a built-in binary operator.
4367  if (Opc == BinaryOperator::PtrMemD)
4368    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4369
4370  // If this is one of the assignment operators, we only perform
4371  // overload resolution if the left-hand side is a class or
4372  // enumeration type (C++ [expr.ass]p3).
4373  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4374      !Args[0]->getType()->isOverloadableType())
4375    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4376
4377  // Build an empty overload set.
4378  OverloadCandidateSet CandidateSet;
4379
4380  // Add the candidates from the given function set.
4381  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4382
4383  // Add operator candidates that are member functions.
4384  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4385
4386  // Add builtin operator candidates.
4387  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4388
4389  // Perform overload resolution.
4390  OverloadCandidateSet::iterator Best;
4391  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4392    case OR_Success: {
4393      // We found a built-in operator or an overloaded operator.
4394      FunctionDecl *FnDecl = Best->Function;
4395
4396      if (FnDecl) {
4397        // We matched an overloaded operator. Build a call to that
4398        // operator.
4399
4400        // Convert the arguments.
4401        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4402          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4403              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4404                                        "passing"))
4405            return ExprError();
4406        } else {
4407          // Convert the arguments.
4408          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4409                                        "passing") ||
4410              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4411                                        "passing"))
4412            return ExprError();
4413        }
4414
4415        // Determine the result type
4416        QualType ResultTy
4417          = FnDecl->getType()->getAsFunctionType()->getResultType();
4418        ResultTy = ResultTy.getNonReferenceType();
4419
4420        // Build the actual expression node.
4421        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4422                                                 OpLoc);
4423        UsualUnaryConversions(FnExpr);
4424
4425        Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4426                                                     Args, 2, ResultTy, OpLoc);
4427        return MaybeBindToTemporary(CE);
4428      } else {
4429        // We matched a built-in operator. Convert the arguments, then
4430        // break out so that we will build the appropriate built-in
4431        // operator node.
4432        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4433                                      Best->Conversions[0], "passing") ||
4434            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4435                                      Best->Conversions[1], "passing"))
4436          return ExprError();
4437
4438        break;
4439      }
4440    }
4441
4442    case OR_No_Viable_Function:
4443      // For class as left operand for assignment or compound assigment operator
4444      // do not fall through to handling in built-in, but report that no overloaded
4445      // assignment operator found
4446      if (Args[0]->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4447        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4448             << BinaryOperator::getOpcodeStr(Opc)
4449             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4450        return ExprError();
4451      }
4452      // No viable function; fall through to handling this as a
4453      // built-in operator, which will produce an error message for us.
4454      break;
4455
4456    case OR_Ambiguous:
4457      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4458          << BinaryOperator::getOpcodeStr(Opc)
4459          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4460      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4461      return ExprError();
4462
4463    case OR_Deleted:
4464      Diag(OpLoc, diag::err_ovl_deleted_oper)
4465        << Best->Function->isDeleted()
4466        << BinaryOperator::getOpcodeStr(Opc)
4467        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4468      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4469      return ExprError();
4470    }
4471
4472  // Either we found no viable overloaded operator or we matched a
4473  // built-in operator. In either case, try to build a built-in
4474  // operation.
4475  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4476}
4477
4478/// BuildCallToMemberFunction - Build a call to a member
4479/// function. MemExpr is the expression that refers to the member
4480/// function (and includes the object parameter), Args/NumArgs are the
4481/// arguments to the function call (not including the object
4482/// parameter). The caller needs to validate that the member
4483/// expression refers to a member function or an overloaded member
4484/// function.
4485Sema::ExprResult
4486Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4487                                SourceLocation LParenLoc, Expr **Args,
4488                                unsigned NumArgs, SourceLocation *CommaLocs,
4489                                SourceLocation RParenLoc) {
4490  // Dig out the member expression. This holds both the object
4491  // argument and the member function we're referring to.
4492  MemberExpr *MemExpr = 0;
4493  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4494    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4495  else
4496    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4497  assert(MemExpr && "Building member call without member expression");
4498
4499  // Extract the object argument.
4500  Expr *ObjectArg = MemExpr->getBase();
4501
4502  CXXMethodDecl *Method = 0;
4503  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4504      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
4505    // Add overload candidates
4506    OverloadCandidateSet CandidateSet;
4507    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4508
4509    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
4510         Func != FuncEnd; ++Func) {
4511      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
4512        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4513                           /*SuppressUserConversions=*/false);
4514      else
4515        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4516                                   /*FIXME:*/false, /*FIXME:*/0,
4517                                   /*FIXME:*/0, ObjectArg, Args, NumArgs,
4518                                   CandidateSet,
4519                                   /*SuppressUsedConversions=*/false);
4520    }
4521
4522    OverloadCandidateSet::iterator Best;
4523    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4524    case OR_Success:
4525      Method = cast<CXXMethodDecl>(Best->Function);
4526      break;
4527
4528    case OR_No_Viable_Function:
4529      Diag(MemExpr->getSourceRange().getBegin(),
4530           diag::err_ovl_no_viable_member_function_in_call)
4531        << DeclName << MemExprE->getSourceRange();
4532      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4533      // FIXME: Leaking incoming expressions!
4534      return true;
4535
4536    case OR_Ambiguous:
4537      Diag(MemExpr->getSourceRange().getBegin(),
4538           diag::err_ovl_ambiguous_member_call)
4539        << DeclName << MemExprE->getSourceRange();
4540      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4541      // FIXME: Leaking incoming expressions!
4542      return true;
4543
4544    case OR_Deleted:
4545      Diag(MemExpr->getSourceRange().getBegin(),
4546           diag::err_ovl_deleted_member_call)
4547        << Best->Function->isDeleted()
4548        << DeclName << MemExprE->getSourceRange();
4549      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4550      // FIXME: Leaking incoming expressions!
4551      return true;
4552    }
4553
4554    FixOverloadedFunctionReference(MemExpr, Method);
4555  } else {
4556    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4557  }
4558
4559  assert(Method && "Member call to something that isn't a method?");
4560  ExprOwningPtr<CXXMemberCallExpr>
4561    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4562                                                  NumArgs,
4563                                  Method->getResultType().getNonReferenceType(),
4564                                  RParenLoc));
4565
4566  // Convert the object argument (for a non-static member function call).
4567  if (!Method->isStatic() &&
4568      PerformObjectArgumentInitialization(ObjectArg, Method))
4569    return true;
4570  MemExpr->setBase(ObjectArg);
4571
4572  // Convert the rest of the arguments
4573  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4574  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4575                              RParenLoc))
4576    return true;
4577
4578  if (CheckFunctionCall(Method, TheCall.get()))
4579    return true;
4580
4581  return MaybeBindToTemporary(TheCall.release()).release();
4582}
4583
4584/// BuildCallToObjectOfClassType - Build a call to an object of class
4585/// type (C++ [over.call.object]), which can end up invoking an
4586/// overloaded function call operator (@c operator()) or performing a
4587/// user-defined conversion on the object argument.
4588Sema::ExprResult
4589Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4590                                   SourceLocation LParenLoc,
4591                                   Expr **Args, unsigned NumArgs,
4592                                   SourceLocation *CommaLocs,
4593                                   SourceLocation RParenLoc) {
4594  assert(Object->getType()->isRecordType() && "Requires object type argument");
4595  const RecordType *Record = Object->getType()->getAs<RecordType>();
4596
4597  // C++ [over.call.object]p1:
4598  //  If the primary-expression E in the function call syntax
4599  //  evaluates to a class object of type "cv T", then the set of
4600  //  candidate functions includes at least the function call
4601  //  operators of T. The function call operators of T are obtained by
4602  //  ordinary lookup of the name operator() in the context of
4603  //  (E).operator().
4604  OverloadCandidateSet CandidateSet;
4605  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4606  DeclContext::lookup_const_iterator Oper, OperEnd;
4607  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4608       Oper != OperEnd; ++Oper)
4609    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4610                       CandidateSet, /*SuppressUserConversions=*/false);
4611
4612  // C++ [over.call.object]p2:
4613  //   In addition, for each conversion function declared in T of the
4614  //   form
4615  //
4616  //        operator conversion-type-id () cv-qualifier;
4617  //
4618  //   where cv-qualifier is the same cv-qualification as, or a
4619  //   greater cv-qualification than, cv, and where conversion-type-id
4620  //   denotes the type "pointer to function of (P1,...,Pn) returning
4621  //   R", or the type "reference to pointer to function of
4622  //   (P1,...,Pn) returning R", or the type "reference to function
4623  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4624  //   is also considered as a candidate function. Similarly,
4625  //   surrogate call functions are added to the set of candidate
4626  //   functions for each conversion function declared in an
4627  //   accessible base class provided the function is not hidden
4628  //   within T by another intervening declaration.
4629
4630  if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) {
4631    // FIXME: Look in base classes for more conversion operators!
4632    OverloadedFunctionDecl *Conversions
4633      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4634    for (OverloadedFunctionDecl::function_iterator
4635           Func = Conversions->function_begin(),
4636           FuncEnd = Conversions->function_end();
4637         Func != FuncEnd; ++Func) {
4638      CXXConversionDecl *Conv;
4639      FunctionTemplateDecl *ConvTemplate;
4640      GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
4641
4642      // Skip over templated conversion functions; they aren't
4643      // surrogates.
4644      if (ConvTemplate)
4645        continue;
4646
4647      // Strip the reference type (if any) and then the pointer type (if
4648      // any) to get down to what might be a function type.
4649      QualType ConvType = Conv->getConversionType().getNonReferenceType();
4650      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4651        ConvType = ConvPtrType->getPointeeType();
4652
4653      if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4654        AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4655    }
4656  }
4657
4658  // Perform overload resolution.
4659  OverloadCandidateSet::iterator Best;
4660  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4661  case OR_Success:
4662    // Overload resolution succeeded; we'll build the appropriate call
4663    // below.
4664    break;
4665
4666  case OR_No_Viable_Function:
4667    Diag(Object->getSourceRange().getBegin(),
4668         diag::err_ovl_no_viable_object_call)
4669      << Object->getType() << Object->getSourceRange();
4670    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4671    break;
4672
4673  case OR_Ambiguous:
4674    Diag(Object->getSourceRange().getBegin(),
4675         diag::err_ovl_ambiguous_object_call)
4676      << Object->getType() << Object->getSourceRange();
4677    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4678    break;
4679
4680  case OR_Deleted:
4681    Diag(Object->getSourceRange().getBegin(),
4682         diag::err_ovl_deleted_object_call)
4683      << Best->Function->isDeleted()
4684      << Object->getType() << Object->getSourceRange();
4685    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4686    break;
4687  }
4688
4689  if (Best == CandidateSet.end()) {
4690    // We had an error; delete all of the subexpressions and return
4691    // the error.
4692    Object->Destroy(Context);
4693    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4694      Args[ArgIdx]->Destroy(Context);
4695    return true;
4696  }
4697
4698  if (Best->Function == 0) {
4699    // Since there is no function declaration, this is one of the
4700    // surrogate candidates. Dig out the conversion function.
4701    CXXConversionDecl *Conv
4702      = cast<CXXConversionDecl>(
4703                         Best->Conversions[0].UserDefined.ConversionFunction);
4704
4705    // We selected one of the surrogate functions that converts the
4706    // object parameter to a function pointer. Perform the conversion
4707    // on the object argument, then let ActOnCallExpr finish the job.
4708    // FIXME: Represent the user-defined conversion in the AST!
4709    ImpCastExprToType(Object,
4710                      Conv->getConversionType().getNonReferenceType(),
4711                      CastExpr::CK_Unknown,
4712                      Conv->getConversionType()->isLValueReferenceType());
4713    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4714                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4715                         CommaLocs, RParenLoc).release();
4716  }
4717
4718  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4719  // that calls this method, using Object for the implicit object
4720  // parameter and passing along the remaining arguments.
4721  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4722  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4723
4724  unsigned NumArgsInProto = Proto->getNumArgs();
4725  unsigned NumArgsToCheck = NumArgs;
4726
4727  // Build the full argument list for the method call (the
4728  // implicit object parameter is placed at the beginning of the
4729  // list).
4730  Expr **MethodArgs;
4731  if (NumArgs < NumArgsInProto) {
4732    NumArgsToCheck = NumArgsInProto;
4733    MethodArgs = new Expr*[NumArgsInProto + 1];
4734  } else {
4735    MethodArgs = new Expr*[NumArgs + 1];
4736  }
4737  MethodArgs[0] = Object;
4738  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4739    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4740
4741  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4742                                          SourceLocation());
4743  UsualUnaryConversions(NewFn);
4744
4745  // Once we've built TheCall, all of the expressions are properly
4746  // owned.
4747  QualType ResultTy = Method->getResultType().getNonReferenceType();
4748  ExprOwningPtr<CXXOperatorCallExpr>
4749    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4750                                                    MethodArgs, NumArgs + 1,
4751                                                    ResultTy, RParenLoc));
4752  delete [] MethodArgs;
4753
4754  // We may have default arguments. If so, we need to allocate more
4755  // slots in the call for them.
4756  if (NumArgs < NumArgsInProto)
4757    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4758  else if (NumArgs > NumArgsInProto)
4759    NumArgsToCheck = NumArgsInProto;
4760
4761  bool IsError = false;
4762
4763  // Initialize the implicit object parameter.
4764  IsError |= PerformObjectArgumentInitialization(Object, Method);
4765  TheCall->setArg(0, Object);
4766
4767
4768  // Check the argument types.
4769  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4770    Expr *Arg;
4771    if (i < NumArgs) {
4772      Arg = Args[i];
4773
4774      // Pass the argument.
4775      QualType ProtoArgType = Proto->getArgType(i);
4776      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4777    } else {
4778      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
4779    }
4780
4781    TheCall->setArg(i + 1, Arg);
4782  }
4783
4784  // If this is a variadic call, handle args passed through "...".
4785  if (Proto->isVariadic()) {
4786    // Promote the arguments (C99 6.5.2.2p7).
4787    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4788      Expr *Arg = Args[i];
4789      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4790      TheCall->setArg(i + 1, Arg);
4791    }
4792  }
4793
4794  if (IsError) return true;
4795
4796  if (CheckFunctionCall(Method, TheCall.get()))
4797    return true;
4798
4799  return MaybeBindToTemporary(TheCall.release()).release();
4800}
4801
4802/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4803///  (if one exists), where @c Base is an expression of class type and
4804/// @c Member is the name of the member we're trying to find.
4805Sema::OwningExprResult
4806Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4807  Expr *Base = static_cast<Expr *>(BaseIn.get());
4808  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4809
4810  // C++ [over.ref]p1:
4811  //
4812  //   [...] An expression x->m is interpreted as (x.operator->())->m
4813  //   for a class object x of type T if T::operator->() exists and if
4814  //   the operator is selected as the best match function by the
4815  //   overload resolution mechanism (13.3).
4816  // FIXME: look in base classes.
4817  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4818  OverloadCandidateSet CandidateSet;
4819  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
4820
4821  DeclContext::lookup_const_iterator Oper, OperEnd;
4822  for (llvm::tie(Oper, OperEnd)
4823         = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4824    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4825                       /*SuppressUserConversions=*/false);
4826
4827  // Perform overload resolution.
4828  OverloadCandidateSet::iterator Best;
4829  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4830  case OR_Success:
4831    // Overload resolution succeeded; we'll build the call below.
4832    break;
4833
4834  case OR_No_Viable_Function:
4835    if (CandidateSet.empty())
4836      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4837        << Base->getType() << Base->getSourceRange();
4838    else
4839      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4840        << "operator->" << Base->getSourceRange();
4841    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4842    return ExprError();
4843
4844  case OR_Ambiguous:
4845    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4846      << "operator->" << Base->getSourceRange();
4847    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4848    return ExprError();
4849
4850  case OR_Deleted:
4851    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4852      << Best->Function->isDeleted()
4853      << "operator->" << Base->getSourceRange();
4854    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4855    return ExprError();
4856  }
4857
4858  // Convert the object parameter.
4859  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4860  if (PerformObjectArgumentInitialization(Base, Method))
4861    return ExprError();
4862
4863  // No concerns about early exits now.
4864  BaseIn.release();
4865
4866  // Build the operator call.
4867  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4868                                           SourceLocation());
4869  UsualUnaryConversions(FnExpr);
4870  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4871                                 Method->getResultType().getNonReferenceType(),
4872                                 OpLoc);
4873  return Owned(Base);
4874}
4875
4876/// FixOverloadedFunctionReference - E is an expression that refers to
4877/// a C++ overloaded function (possibly with some parentheses and
4878/// perhaps a '&' around it). We have resolved the overloaded function
4879/// to the function declaration Fn, so patch up the expression E to
4880/// refer (possibly indirectly) to Fn.
4881void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4882  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4883    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4884    E->setType(PE->getSubExpr()->getType());
4885  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4886    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4887           "Can only take the address of an overloaded function");
4888    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4889      if (Method->isStatic()) {
4890        // Do nothing: static member functions aren't any different
4891        // from non-member functions.
4892      } else if (QualifiedDeclRefExpr *DRE
4893                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4894        // We have taken the address of a pointer to member
4895        // function. Perform the computation here so that we get the
4896        // appropriate pointer to member type.
4897        DRE->setDecl(Fn);
4898        DRE->setType(Fn->getType());
4899        QualType ClassType
4900          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4901        E->setType(Context.getMemberPointerType(Fn->getType(),
4902                                                ClassType.getTypePtr()));
4903        return;
4904      }
4905    }
4906    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4907    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4908  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4909    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4910            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4911           "Expected overloaded function or function template");
4912    DR->setDecl(Fn);
4913    E->setType(Fn->getType());
4914  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4915    MemExpr->setMemberDecl(Fn);
4916    E->setType(Fn->getType());
4917  } else {
4918    assert(false && "Invalid reference to overloaded function");
4919  }
4920}
4921
4922} // end namespace clang
4923