1/* LibTomCrypt, modular cryptographic library -- Tom St Denis
2 *
3 * LibTomCrypt is a library that provides various cryptographic
4 * algorithms in a highly modular and flexible manner.
5 *
6 * The library is free for all purposes without any express
7 * guarantee it works.
8 *
9 * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
10 */
11
12/**
13  @file skipjack.c
14  Skipjack Implementation by Tom St Denis
15*/
16#include "tomcrypt.h"
17
18#ifdef SKIPJACK
19
20const struct ltc_cipher_descriptor skipjack_desc =
21{
22    "skipjack",
23    17,
24    10, 10, 8, 32,
25    &skipjack_setup,
26    &skipjack_ecb_encrypt,
27    &skipjack_ecb_decrypt,
28    &skipjack_test,
29    &skipjack_done,
30    &skipjack_keysize,
31    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
32};
33
34static const unsigned char sbox[256] = {
35   0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9,
36   0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28,
37   0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53,
38   0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2,
39   0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8,
40   0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90,
41   0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76,
42   0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d,
43   0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18,
44   0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4,
45   0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40,
46   0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5,
47   0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2,
48   0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8,
49   0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac,
50   0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46
51};
52
53/* simple x + 1 (mod 10) in one step. */
54static const int keystep[] =  { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
55
56/* simple x - 1 (mod 10) in one step */
57static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 };
58
59 /**
60    Initialize the Skipjack block cipher
61    @param key The symmetric key you wish to pass
62    @param keylen The key length in bytes
63    @param num_rounds The number of rounds desired (0 for default)
64    @param skey The key in as scheduled by this function.
65    @return CRYPT_OK if successful
66 */
67int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
68{
69   int x;
70
71   LTC_ARGCHK(key  != NULL);
72   LTC_ARGCHK(skey != NULL);
73
74   if (keylen != 10) {
75      return CRYPT_INVALID_KEYSIZE;
76   }
77
78   if (num_rounds != 32 && num_rounds != 0) {
79      return CRYPT_INVALID_ROUNDS;
80   }
81
82   /* make sure the key is in range for platforms where CHAR_BIT != 8 */
83   for (x = 0; x < 10; x++) {
84       skey->skipjack.key[x] = key[x] & 255;
85   }
86
87   return CRYPT_OK;
88}
89
90#define RULE_A \
91   tmp = g_func(w1, &kp, skey->skipjack.key);      \
92   w1  = tmp ^ w4 ^ x;                            \
93   w4  = w3; w3 = w2;                             \
94   w2  = tmp;
95
96#define RULE_B \
97   tmp  = g_func(w1, &kp, skey->skipjack.key);     \
98   tmp1 = w4; w4  = w3;                           \
99   w3   = w1 ^ w2 ^ x;                            \
100   w1   = tmp1; w2 = tmp;
101
102#define RULE_A1 \
103   tmp = w1 ^ w2 ^ x;                             \
104   w1  = ig_func(w2, &kp, skey->skipjack.key);     \
105   w2  = w3; w3 = w4; w4 = tmp;
106
107#define RULE_B1 \
108   tmp = ig_func(w2, &kp, skey->skipjack.key);     \
109   w2  = tmp ^ w3 ^ x;                            \
110   w3  = w4; w4 = w1; w1 = tmp;
111
112static unsigned g_func(unsigned w, int *kp, unsigned char *key)
113{
114   unsigned char g1,g2;
115
116   g1 = (w >> 8) & 255; g2 = w & 255;
117   g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
118   g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
119   g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp];
120   g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp];
121   return ((unsigned)g1<<8)|(unsigned)g2;
122}
123
124static unsigned ig_func(unsigned w, int *kp, unsigned char *key)
125{
126   unsigned char g1,g2;
127
128   g1 = (w >> 8) & 255; g2 = w & 255;
129   *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
130   *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
131   *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]];
132   *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]];
133   return ((unsigned)g1<<8)|(unsigned)g2;
134}
135
136/**
137  Encrypts a block of text with Skipjack
138  @param pt The input plaintext (8 bytes)
139  @param ct The output ciphertext (8 bytes)
140  @param skey The key as scheduled
141  @return CRYPT_OK if successful
142*/
143#ifdef LTC_CLEAN_STACK
144static int _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
145#else
146int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
147#endif
148{
149   unsigned w1,w2,w3,w4,tmp,tmp1;
150   int x, kp;
151
152   LTC_ARGCHK(pt   != NULL);
153   LTC_ARGCHK(ct   != NULL);
154   LTC_ARGCHK(skey != NULL);
155
156   /* load block */
157   w1 = ((unsigned)pt[0]<<8)|pt[1];
158   w2 = ((unsigned)pt[2]<<8)|pt[3];
159   w3 = ((unsigned)pt[4]<<8)|pt[5];
160   w4 = ((unsigned)pt[6]<<8)|pt[7];
161
162   /* 8 rounds of RULE A */
163   for (x = 1, kp = 0; x < 9; x++) {
164       RULE_A;
165   }
166
167   /* 8 rounds of RULE B */
168   for (; x < 17; x++) {
169       RULE_B;
170   }
171
172   /* 8 rounds of RULE A */
173   for (; x < 25; x++) {
174       RULE_A;
175   }
176
177   /* 8 rounds of RULE B */
178   for (; x < 33; x++) {
179       RULE_B;
180   }
181
182   /* store block */
183   ct[0] = (w1>>8)&255; ct[1] = w1&255;
184   ct[2] = (w2>>8)&255; ct[3] = w2&255;
185   ct[4] = (w3>>8)&255; ct[5] = w3&255;
186   ct[6] = (w4>>8)&255; ct[7] = w4&255;
187
188   return CRYPT_OK;
189}
190
191#ifdef LTC_CLEAN_STACK
192int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
193{
194   int err = _skipjack_ecb_encrypt(pt, ct, skey);
195   burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2);
196   return err;
197}
198#endif
199
200/**
201  Decrypts a block of text with Skipjack
202  @param ct The input ciphertext (8 bytes)
203  @param pt The output plaintext (8 bytes)
204  @param skey The key as scheduled
205  @return CRYPT_OK if successful
206*/
207#ifdef LTC_CLEAN_STACK
208static int _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
209#else
210int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
211#endif
212{
213   unsigned w1,w2,w3,w4,tmp;
214   int x, kp;
215
216   LTC_ARGCHK(pt   != NULL);
217   LTC_ARGCHK(ct   != NULL);
218   LTC_ARGCHK(skey != NULL);
219
220   /* load block */
221   w1 = ((unsigned)ct[0]<<8)|ct[1];
222   w2 = ((unsigned)ct[2]<<8)|ct[3];
223   w3 = ((unsigned)ct[4]<<8)|ct[5];
224   w4 = ((unsigned)ct[6]<<8)|ct[7];
225
226   /* 8 rounds of RULE B^-1
227
228      Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8
229    */
230   for (x = 32, kp = 8; x > 24; x--) {
231       RULE_B1;
232   }
233
234   /* 8 rounds of RULE A^-1 */
235   for (; x > 16; x--) {
236       RULE_A1;
237   }
238
239
240   /* 8 rounds of RULE B^-1 */
241   for (; x > 8; x--) {
242       RULE_B1;
243   }
244
245   /* 8 rounds of RULE A^-1 */
246   for (; x > 0; x--) {
247       RULE_A1;
248   }
249
250   /* store block */
251   pt[0] = (w1>>8)&255; pt[1] = w1&255;
252   pt[2] = (w2>>8)&255; pt[3] = w2&255;
253   pt[4] = (w3>>8)&255; pt[5] = w3&255;
254   pt[6] = (w4>>8)&255; pt[7] = w4&255;
255
256   return CRYPT_OK;
257}
258
259#ifdef LTC_CLEAN_STACK
260int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
261{
262   int err = _skipjack_ecb_decrypt(ct, pt, skey);
263   burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2);
264   return err;
265}
266#endif
267
268/**
269  Performs a self-test of the Skipjack block cipher
270  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
271*/
272int skipjack_test(void)
273{
274 #ifndef LTC_TEST
275    return CRYPT_NOP;
276 #else
277   static const struct {
278       unsigned char key[10], pt[8], ct[8];
279   } tests[] = {
280   {
281       { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 },
282       { 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa },
283       { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 }
284   }
285   };
286   unsigned char buf[2][8];
287   int x, y, err;
288   symmetric_key key;
289
290   for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
291      /* setup key */
292      if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) {
293         return err;
294      }
295
296      /* encrypt and decrypt */
297      skipjack_ecb_encrypt(tests[x].pt, buf[0], &key);
298      skipjack_ecb_decrypt(buf[0], buf[1], &key);
299
300      /* compare */
301      if (XMEMCMP(buf[0], tests[x].ct, 8) != 0 || XMEMCMP(buf[1], tests[x].pt, 8) != 0) {
302         return CRYPT_FAIL_TESTVECTOR;
303      }
304
305      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
306      for (y = 0; y < 8; y++) buf[0][y] = 0;
307      for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key);
308      for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key);
309      for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
310   }
311
312   return CRYPT_OK;
313  #endif
314}
315
316/** Terminate the context
317   @param skey    The scheduled key
318*/
319void skipjack_done(symmetric_key *skey)
320{
321}
322
323/**
324  Gets suitable key size
325  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
326  @return CRYPT_OK if the input key size is acceptable.
327*/
328int skipjack_keysize(int *keysize)
329{
330   LTC_ARGCHK(keysize != NULL);
331   if (*keysize < 10) {
332      return CRYPT_INVALID_KEYSIZE;
333   } else if (*keysize > 10) {
334      *keysize = 10;
335   }
336   return CRYPT_OK;
337}
338
339#endif
340
341/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/skipjack.c,v $ */
342/* $Revision: 1.12 $ */
343/* $Date: 2006/11/08 23:01:06 $ */
344