TargetInstrInfo.h revision e6ae14e1f413987f3de31a7cad1b20a7893f8cae
1//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the target machine instructions to the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_TARGETINSTRINFO_H
15#define LLVM_TARGET_TARGETINSTRINFO_H
16
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/Support/DataTypes.h"
19#include <vector>
20#include <cassert>
21
22namespace llvm {
23
24class MachineInstr;
25class TargetMachine;
26class Value;
27class Type;
28class Instruction;
29class Constant;
30class Function;
31class MachineCodeForInstruction;
32class TargetRegisterClass;
33
34//---------------------------------------------------------------------------
35// Data types used to define information about a single machine instruction
36//---------------------------------------------------------------------------
37
38typedef short MachineOpCode;
39typedef unsigned InstrSchedClass;
40
41//---------------------------------------------------------------------------
42// struct TargetInstrDescriptor:
43//  Predefined information about each machine instruction.
44//  Designed to initialized statically.
45//
46
47const unsigned M_BRANCH_FLAG           = 1 << 0;
48const unsigned M_CALL_FLAG             = 1 << 1;
49const unsigned M_RET_FLAG              = 1 << 2;
50const unsigned M_BARRIER_FLAG          = 1 << 3;
51const unsigned M_DELAY_SLOT_FLAG       = 1 << 4;
52const unsigned M_LOAD_FLAG             = 1 << 5;
53const unsigned M_STORE_FLAG            = 1 << 6;
54
55// M_2_ADDR_FLAG - 3-addr instructions which really work like 2-addr ones.
56const unsigned M_2_ADDR_FLAG           = 1 << 7;
57
58// M_CONVERTIBLE_TO_3_ADDR - This is a M_2_ADDR_FLAG instruction which can be
59// changed into a 3-address instruction if the first two operands cannot be
60// assigned to the same register.  The target must implement the
61// TargetInstrInfo::convertToThreeAddress method for this instruction.
62const unsigned M_CONVERTIBLE_TO_3_ADDR = 1 << 8;
63
64// This M_COMMUTABLE - is a 2- or 3-address instruction (of the form X = op Y,
65// Z), which produces the same result if Y and Z are exchanged.
66const unsigned M_COMMUTABLE            = 1 << 9;
67
68// M_TERMINATOR_FLAG - Is this instruction part of the terminator for a basic
69// block?  Typically this is things like return and branch instructions.
70// Various passes use this to insert code into the bottom of a basic block, but
71// before control flow occurs.
72const unsigned M_TERMINATOR_FLAG       = 1 << 10;
73
74// M_USES_CUSTOM_DAG_SCHED_INSERTION - Set if this instruction requires custom
75// insertion support when the DAG scheduler is inserting it into a machine basic
76// block.
77const unsigned M_USES_CUSTOM_DAG_SCHED_INSERTION = 1 << 11;
78
79// M_VARIABLE_OPS - Set if this instruction can have a variable number of extra
80// operands in addition to the minimum number operands specified.
81const unsigned M_VARIABLE_OPS = 1 << 12;
82
83// Machine operand flags
84// M_LOOK_UP_PTR_REG_CLASS - Set if this operand is a pointer value and it
85// requires a callback to look up its register class.
86const unsigned M_LOOK_UP_PTR_REG_CLASS = 1 << 0;
87
88/// TargetOperandInfo - This holds information about one operand of a machine
89/// instruction, indicating the register class for register operands, etc.
90///
91class TargetOperandInfo {
92public:
93  /// RegClass - This specifies the register class enumeration of the operand
94  /// if the operand is a register.  If not, this contains 0.
95  unsigned short RegClass;
96  unsigned short Flags;
97  /// Lower 16 bits are used to specify which constraints are set. The higher 16
98  /// bits are used to specify the value of constraints (4 bits each).
99  unsigned int Constraints;
100  /// Currently no other information.
101};
102
103
104class TargetInstrDescriptor {
105public:
106  const char *    Name;          // Assembly language mnemonic for the opcode.
107  unsigned        numOperands;   // Num of args (may be more if variable_ops).
108  InstrSchedClass schedClass;    // enum  identifying instr sched class
109  unsigned        Flags;         // flags identifying machine instr class
110  unsigned        TSFlags;       // Target Specific Flag values
111  const unsigned *ImplicitUses;  // Registers implicitly read by this instr
112  const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
113  const TargetOperandInfo *OpInfo; // 'numOperands' entries about operands.
114};
115
116
117//---------------------------------------------------------------------------
118///
119/// TargetInstrInfo - Interface to description of machine instructions
120///
121class TargetInstrInfo {
122  const TargetInstrDescriptor* desc;    // raw array to allow static init'n
123  unsigned NumOpcodes;                  // number of entries in the desc array
124  unsigned numRealOpCodes;              // number of non-dummy op codes
125
126  TargetInstrInfo(const TargetInstrInfo &);  // DO NOT IMPLEMENT
127  void operator=(const TargetInstrInfo &);   // DO NOT IMPLEMENT
128public:
129  TargetInstrInfo(const TargetInstrDescriptor *desc, unsigned NumOpcodes);
130  virtual ~TargetInstrInfo();
131
132  // Invariant opcodes: All instruction sets have these as their low opcodes.
133  enum {
134    PHI = 0,
135    INLINEASM = 1
136  };
137
138  unsigned getNumOpcodes() const { return NumOpcodes; }
139
140  /// get - Return the machine instruction descriptor that corresponds to the
141  /// specified instruction opcode.
142  ///
143  const TargetInstrDescriptor& get(MachineOpCode Opcode) const {
144    assert((unsigned)Opcode < NumOpcodes);
145    return desc[Opcode];
146  }
147
148  const char *getName(MachineOpCode Opcode) const {
149    return get(Opcode).Name;
150  }
151
152  int getNumOperands(MachineOpCode Opcode) const {
153    return get(Opcode).numOperands;
154  }
155
156  InstrSchedClass getSchedClass(MachineOpCode Opcode) const {
157    return get(Opcode).schedClass;
158  }
159
160  const unsigned *getImplicitUses(MachineOpCode Opcode) const {
161    return get(Opcode).ImplicitUses;
162  }
163
164  const unsigned *getImplicitDefs(MachineOpCode Opcode) const {
165    return get(Opcode).ImplicitDefs;
166  }
167
168
169  //
170  // Query instruction class flags according to the machine-independent
171  // flags listed above.
172  //
173  bool isReturn(MachineOpCode Opcode) const {
174    return get(Opcode).Flags & M_RET_FLAG;
175  }
176
177  bool isTwoAddrInstr(MachineOpCode Opcode) const {
178    return get(Opcode).Flags & M_2_ADDR_FLAG;
179  }
180  bool isCommutableInstr(MachineOpCode Opcode) const {
181    return get(Opcode).Flags & M_COMMUTABLE;
182  }
183  bool isTerminatorInstr(unsigned Opcode) const {
184    return get(Opcode).Flags & M_TERMINATOR_FLAG;
185  }
186
187  bool isBranch(MachineOpCode Opcode) const {
188    return get(Opcode).Flags & M_BRANCH_FLAG;
189  }
190
191  /// isBarrier - Returns true if the specified instruction stops control flow
192  /// from executing the instruction immediately following it.  Examples include
193  /// unconditional branches and return instructions.
194  bool isBarrier(MachineOpCode Opcode) const {
195    return get(Opcode).Flags & M_BARRIER_FLAG;
196  }
197
198  bool isCall(MachineOpCode Opcode) const {
199    return get(Opcode).Flags & M_CALL_FLAG;
200  }
201  bool isLoad(MachineOpCode Opcode) const {
202    return get(Opcode).Flags & M_LOAD_FLAG;
203  }
204  bool isStore(MachineOpCode Opcode) const {
205    return get(Opcode).Flags & M_STORE_FLAG;
206  }
207
208  /// hasDelaySlot - Returns true if the specified instruction has a delay slot
209  /// which must be filled by the code generator.
210  bool hasDelaySlot(unsigned Opcode) const {
211    return get(Opcode).Flags & M_DELAY_SLOT_FLAG;
212  }
213
214  /// usesCustomDAGSchedInsertionHook - Return true if this instruction requires
215  /// custom insertion support when the DAG scheduler is inserting it into a
216  /// machine basic block.
217  bool usesCustomDAGSchedInsertionHook(unsigned Opcode) const {
218    return get(Opcode).Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION;
219  }
220
221  bool hasVariableOperands(MachineOpCode Opcode) const {
222    return get(Opcode).Flags & M_VARIABLE_OPS;
223  }
224
225  // Operand constraints: only "tied_to" for now.
226  enum OperandConstraint {
227    TIED_TO = 0  // Must be allocated the same register as.
228  };
229
230  /// getOperandConstraint - Returns the value of the specific constraint if
231  /// it is set. Returns -1 if it is not set.
232  int getOperandConstraint(MachineOpCode Opcode, unsigned OpNum,
233                           OperandConstraint Constraint) const {
234    assert(OpNum < get(Opcode).numOperands &&
235           "Invalid operand # of TargetInstrInfo");
236    if (get(Opcode).OpInfo[OpNum].Constraints & (1 << Constraint)) {
237      unsigned Pos = 16 + Constraint * 4;
238      return (int)(get(Opcode).OpInfo[OpNum].Constraints >> Pos) & 0xf;
239    }
240    return -1;
241  }
242
243  /// findTiedToSrcOperand - Returns the operand that is tied to the specified
244  /// dest operand. Returns -1 if there isn't one.
245  int findTiedToSrcOperand(MachineOpCode Opcode, unsigned OpNum) const;
246
247  /// getDWARF_LABELOpcode - Return the opcode of the target's DWARF_LABEL
248  /// instruction if it has one.  This is used by codegen passes that update
249  /// DWARF line number info as they modify the code.
250  virtual unsigned getDWARF_LABELOpcode() const {
251    return 0;
252  }
253
254  /// Return true if the instruction is a register to register move
255  /// and leave the source and dest operands in the passed parameters.
256  virtual bool isMoveInstr(const MachineInstr& MI,
257                           unsigned& sourceReg,
258                           unsigned& destReg) const {
259    return false;
260  }
261
262  /// isLoadFromStackSlot - If the specified machine instruction is a direct
263  /// load from a stack slot, return the virtual or physical register number of
264  /// the destination along with the FrameIndex of the loaded stack slot.  If
265  /// not, return 0.  This predicate must return 0 if the instruction has
266  /// any side effects other than loading from the stack slot.
267  virtual unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const{
268    return 0;
269  }
270
271  /// isStoreToStackSlot - If the specified machine instruction is a direct
272  /// store to a stack slot, return the virtual or physical register number of
273  /// the source reg along with the FrameIndex of the loaded stack slot.  If
274  /// not, return 0.  This predicate must return 0 if the instruction has
275  /// any side effects other than storing to the stack slot.
276  virtual unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const {
277    return 0;
278  }
279
280  /// convertToThreeAddress - This method must be implemented by targets that
281  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
282  /// may be able to convert a two-address instruction into a true
283  /// three-address instruction on demand.  This allows the X86 target (for
284  /// example) to convert ADD and SHL instructions into LEA instructions if they
285  /// would require register copies due to two-addressness.
286  ///
287  /// This method returns a null pointer if the transformation cannot be
288  /// performed, otherwise it returns the new instruction.
289  ///
290  virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const {
291    return 0;
292  }
293
294  /// commuteInstruction - If a target has any instructions that are commutable,
295  /// but require converting to a different instruction or making non-trivial
296  /// changes to commute them, this method can overloaded to do this.  The
297  /// default implementation of this method simply swaps the first two operands
298  /// of MI and returns it.
299  ///
300  /// If a target wants to make more aggressive changes, they can construct and
301  /// return a new machine instruction.  If an instruction cannot commute, it
302  /// can also return null.
303  ///
304  virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
305
306  /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
307  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
308  /// implemented for a target).  Upon success, this returns false and returns
309  /// with the following information in various cases:
310  ///
311  /// 1. If this block ends with no branches (it just falls through to its succ)
312  ///    just return false, leaving TBB/FBB null.
313  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
314  ///    the destination block.
315  /// 3. If this block ends with an conditional branch, it returns the 'true'
316  ///    destination in TBB, the 'false' destination in FBB, and a list of
317  ///    operands that evaluate the condition.  These operands can be passed to
318  ///    other TargetInstrInfo methods to create new branches.
319  ///
320  /// Note that RemoveBranch and InsertBranch must be implemented to support
321  /// cases where this method returns success.
322  ///
323  virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
324                             MachineBasicBlock *&FBB,
325                             std::vector<MachineOperand> &Cond) const {
326    return true;
327  }
328
329  /// RemoveBranch - Remove the branching code at the end of the specific MBB.
330  /// this is only invoked in cases where AnalyzeBranch returns success.
331  virtual void RemoveBranch(MachineBasicBlock &MBB) const {
332    assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!");
333  }
334
335  /// InsertBranch - Insert a branch into the end of the specified
336  /// MachineBasicBlock.  This operands to this method are the same as those
337  /// returned by AnalyzeBranch.  This is invoked in cases where AnalyzeBranch
338  /// returns success and when an unconditional branch (TBB is non-null, FBB is
339  /// null, Cond is empty) needs to be inserted.
340  virtual void InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
341                            MachineBasicBlock *FBB,
342                            const std::vector<MachineOperand> &Cond) const {
343    assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!");
344  }
345
346  /// BlockHasNoFallThrough - Return true if the specified block does not
347  /// fall-through into its successor block.  This is primarily used when a
348  /// branch is unanalyzable.  It is useful for things like unconditional
349  /// indirect branches (jump tables).
350  virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
351    return false;
352  }
353
354  /// ReverseBranchCondition - Reverses the branch condition of the specified
355  /// condition list, returning false on success and true if it cannot be
356  /// reversed.
357  virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
358    return true;
359  }
360
361  /// insertNoop - Insert a noop into the instruction stream at the specified
362  /// point.
363  virtual void insertNoop(MachineBasicBlock &MBB,
364                          MachineBasicBlock::iterator MI) const {
365    assert(0 && "Target didn't implement insertNoop!");
366    abort();
367  }
368
369  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
370  /// values.
371  virtual const TargetRegisterClass *getPointerRegClass() const {
372    assert(0 && "Target didn't implement getPointerRegClass!");
373    abort();
374  }
375};
376
377} // End llvm namespace
378
379#endif
380