ConstantFolding.cpp revision 562b84b3aea359d1f918184e355da82bf05eb290
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Operator.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringMap.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/FEnv.h"
35#include <cerrno>
36#include <cmath>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40// Constant Folding internal helper functions
41//===----------------------------------------------------------------------===//
42
43/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
44/// TargetData.  This always returns a non-null constant, but it may be a
45/// ConstantExpr if unfoldable.
46static Constant *FoldBitCast(Constant *C, const Type *DestTy,
47                             const TargetData &TD) {
48
49  // This only handles casts to vectors currently.
50  const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
51  if (DestVTy == 0)
52    return ConstantExpr::getBitCast(C, DestTy);
53
54  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
55  // vector so the code below can handle it uniformly.
56  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
57    Constant *Ops = C; // don't take the address of C!
58    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
59  }
60
61  // If this is a bitcast from constant vector -> vector, fold it.
62  ConstantVector *CV = dyn_cast<ConstantVector>(C);
63  if (CV == 0)
64    return ConstantExpr::getBitCast(C, DestTy);
65
66  // If the element types match, VMCore can fold it.
67  unsigned NumDstElt = DestVTy->getNumElements();
68  unsigned NumSrcElt = CV->getNumOperands();
69  if (NumDstElt == NumSrcElt)
70    return ConstantExpr::getBitCast(C, DestTy);
71
72  const Type *SrcEltTy = CV->getType()->getElementType();
73  const Type *DstEltTy = DestVTy->getElementType();
74
75  // Otherwise, we're changing the number of elements in a vector, which
76  // requires endianness information to do the right thing.  For example,
77  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
78  // folds to (little endian):
79  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
80  // and to (big endian):
81  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
82
83  // First thing is first.  We only want to think about integer here, so if
84  // we have something in FP form, recast it as integer.
85  if (DstEltTy->isFloatingPointTy()) {
86    // Fold to an vector of integers with same size as our FP type.
87    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
88    const Type *DestIVTy =
89      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
90    // Recursively handle this integer conversion, if possible.
91    C = FoldBitCast(C, DestIVTy, TD);
92    if (!C) return ConstantExpr::getBitCast(C, DestTy);
93
94    // Finally, VMCore can handle this now that #elts line up.
95    return ConstantExpr::getBitCast(C, DestTy);
96  }
97
98  // Okay, we know the destination is integer, if the input is FP, convert
99  // it to integer first.
100  if (SrcEltTy->isFloatingPointTy()) {
101    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
102    const Type *SrcIVTy =
103      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
104    // Ask VMCore to do the conversion now that #elts line up.
105    C = ConstantExpr::getBitCast(C, SrcIVTy);
106    CV = dyn_cast<ConstantVector>(C);
107    if (!CV)  // If VMCore wasn't able to fold it, bail out.
108      return C;
109  }
110
111  // Now we know that the input and output vectors are both integer vectors
112  // of the same size, and that their #elements is not the same.  Do the
113  // conversion here, which depends on whether the input or output has
114  // more elements.
115  bool isLittleEndian = TD.isLittleEndian();
116
117  SmallVector<Constant*, 32> Result;
118  if (NumDstElt < NumSrcElt) {
119    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
120    Constant *Zero = Constant::getNullValue(DstEltTy);
121    unsigned Ratio = NumSrcElt/NumDstElt;
122    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
123    unsigned SrcElt = 0;
124    for (unsigned i = 0; i != NumDstElt; ++i) {
125      // Build each element of the result.
126      Constant *Elt = Zero;
127      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
128      for (unsigned j = 0; j != Ratio; ++j) {
129        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
130        if (!Src)  // Reject constantexpr elements.
131          return ConstantExpr::getBitCast(C, DestTy);
132
133        // Zero extend the element to the right size.
134        Src = ConstantExpr::getZExt(Src, Elt->getType());
135
136        // Shift it to the right place, depending on endianness.
137        Src = ConstantExpr::getShl(Src,
138                                   ConstantInt::get(Src->getType(), ShiftAmt));
139        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
140
141        // Mix it in.
142        Elt = ConstantExpr::getOr(Elt, Src);
143      }
144      Result.push_back(Elt);
145    }
146  } else {
147    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
148    unsigned Ratio = NumDstElt/NumSrcElt;
149    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
150
151    // Loop over each source value, expanding into multiple results.
152    for (unsigned i = 0; i != NumSrcElt; ++i) {
153      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
154      if (!Src)  // Reject constantexpr elements.
155        return ConstantExpr::getBitCast(C, DestTy);
156
157      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
158      for (unsigned j = 0; j != Ratio; ++j) {
159        // Shift the piece of the value into the right place, depending on
160        // endianness.
161        Constant *Elt = ConstantExpr::getLShr(Src,
162                                    ConstantInt::get(Src->getType(), ShiftAmt));
163        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
164
165        // Truncate and remember this piece.
166        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
167      }
168    }
169  }
170
171  return ConstantVector::get(Result);
172}
173
174
175/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
176/// from a global, return the global and the constant.  Because of
177/// constantexprs, this function is recursive.
178static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
179                                       int64_t &Offset, const TargetData &TD) {
180  // Trivial case, constant is the global.
181  if ((GV = dyn_cast<GlobalValue>(C))) {
182    Offset = 0;
183    return true;
184  }
185
186  // Otherwise, if this isn't a constant expr, bail out.
187  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
188  if (!CE) return false;
189
190  // Look through ptr->int and ptr->ptr casts.
191  if (CE->getOpcode() == Instruction::PtrToInt ||
192      CE->getOpcode() == Instruction::BitCast)
193    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
194
195  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
196  if (CE->getOpcode() == Instruction::GetElementPtr) {
197    // Cannot compute this if the element type of the pointer is missing size
198    // info.
199    if (!cast<PointerType>(CE->getOperand(0)->getType())
200                 ->getElementType()->isSized())
201      return false;
202
203    // If the base isn't a global+constant, we aren't either.
204    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
205      return false;
206
207    // Otherwise, add any offset that our operands provide.
208    gep_type_iterator GTI = gep_type_begin(CE);
209    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
210         i != e; ++i, ++GTI) {
211      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
212      if (!CI) return false;  // Index isn't a simple constant?
213      if (CI->isZero()) continue;  // Not adding anything.
214
215      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
216        // N = N + Offset
217        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
218      } else {
219        const SequentialType *SQT = cast<SequentialType>(*GTI);
220        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
221      }
222    }
223    return true;
224  }
225
226  return false;
227}
228
229/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
230/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
231/// pointer to copy results into and BytesLeft is the number of bytes left in
232/// the CurPtr buffer.  TD is the target data.
233static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
234                               unsigned char *CurPtr, unsigned BytesLeft,
235                               const TargetData &TD) {
236  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
237         "Out of range access");
238
239  // If this element is zero or undefined, we can just return since *CurPtr is
240  // zero initialized.
241  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
242    return true;
243
244  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
245    if (CI->getBitWidth() > 64 ||
246        (CI->getBitWidth() & 7) != 0)
247      return false;
248
249    uint64_t Val = CI->getZExtValue();
250    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
251
252    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
253      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
254      ++ByteOffset;
255    }
256    return true;
257  }
258
259  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
260    if (CFP->getType()->isDoubleTy()) {
261      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
262      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
263    }
264    if (CFP->getType()->isFloatTy()){
265      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
266      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
267    }
268    return false;
269  }
270
271  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
272    const StructLayout *SL = TD.getStructLayout(CS->getType());
273    unsigned Index = SL->getElementContainingOffset(ByteOffset);
274    uint64_t CurEltOffset = SL->getElementOffset(Index);
275    ByteOffset -= CurEltOffset;
276
277    while (1) {
278      // If the element access is to the element itself and not to tail padding,
279      // read the bytes from the element.
280      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
281
282      if (ByteOffset < EltSize &&
283          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
284                              BytesLeft, TD))
285        return false;
286
287      ++Index;
288
289      // Check to see if we read from the last struct element, if so we're done.
290      if (Index == CS->getType()->getNumElements())
291        return true;
292
293      // If we read all of the bytes we needed from this element we're done.
294      uint64_t NextEltOffset = SL->getElementOffset(Index);
295
296      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
297        return true;
298
299      // Move to the next element of the struct.
300      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
301      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
302      ByteOffset = 0;
303      CurEltOffset = NextEltOffset;
304    }
305    // not reached.
306  }
307
308  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
309    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
310    uint64_t Index = ByteOffset / EltSize;
311    uint64_t Offset = ByteOffset - Index * EltSize;
312    for (; Index != CA->getType()->getNumElements(); ++Index) {
313      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
314                              BytesLeft, TD))
315        return false;
316      if (EltSize >= BytesLeft)
317        return true;
318
319      Offset = 0;
320      BytesLeft -= EltSize;
321      CurPtr += EltSize;
322    }
323    return true;
324  }
325
326  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
327    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
328    uint64_t Index = ByteOffset / EltSize;
329    uint64_t Offset = ByteOffset - Index * EltSize;
330    for (; Index != CV->getType()->getNumElements(); ++Index) {
331      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
332                              BytesLeft, TD))
333        return false;
334      if (EltSize >= BytesLeft)
335        return true;
336
337      Offset = 0;
338      BytesLeft -= EltSize;
339      CurPtr += EltSize;
340    }
341    return true;
342  }
343
344  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
345    if (CE->getOpcode() == Instruction::IntToPtr &&
346        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
347        return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
348                                  BytesLeft, TD);
349  }
350
351  // Otherwise, unknown initializer type.
352  return false;
353}
354
355static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
356                                                 const TargetData &TD) {
357  const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
358  const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
359
360  // If this isn't an integer load we can't fold it directly.
361  if (!IntType) {
362    // If this is a float/double load, we can try folding it as an int32/64 load
363    // and then bitcast the result.  This can be useful for union cases.  Note
364    // that address spaces don't matter here since we're not going to result in
365    // an actual new load.
366    const Type *MapTy;
367    if (LoadTy->isFloatTy())
368      MapTy = Type::getInt32PtrTy(C->getContext());
369    else if (LoadTy->isDoubleTy())
370      MapTy = Type::getInt64PtrTy(C->getContext());
371    else if (LoadTy->isVectorTy()) {
372      MapTy = IntegerType::get(C->getContext(),
373                               TD.getTypeAllocSizeInBits(LoadTy));
374      MapTy = PointerType::getUnqual(MapTy);
375    } else
376      return 0;
377
378    C = FoldBitCast(C, MapTy, TD);
379    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
380      return FoldBitCast(Res, LoadTy, TD);
381    return 0;
382  }
383
384  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
385  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
386
387  GlobalValue *GVal;
388  int64_t Offset;
389  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
390    return 0;
391
392  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
393  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
394      !GV->getInitializer()->getType()->isSized())
395    return 0;
396
397  // If we're loading off the beginning of the global, some bytes may be valid,
398  // but we don't try to handle this.
399  if (Offset < 0) return 0;
400
401  // If we're not accessing anything in this constant, the result is undefined.
402  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
403    return UndefValue::get(IntType);
404
405  unsigned char RawBytes[32] = {0};
406  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
407                          BytesLoaded, TD))
408    return 0;
409
410  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
411  for (unsigned i = 1; i != BytesLoaded; ++i) {
412    ResultVal <<= 8;
413    ResultVal |= RawBytes[BytesLoaded-1-i];
414  }
415
416  return ConstantInt::get(IntType->getContext(), ResultVal);
417}
418
419/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
420/// produce if it is constant and determinable.  If this is not determinable,
421/// return null.
422Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
423                                             const TargetData *TD) {
424  // First, try the easy cases:
425  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
426    if (GV->isConstant() && GV->hasDefinitiveInitializer())
427      return GV->getInitializer();
428
429  // If the loaded value isn't a constant expr, we can't handle it.
430  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
431  if (!CE) return 0;
432
433  if (CE->getOpcode() == Instruction::GetElementPtr) {
434    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
435      if (GV->isConstant() && GV->hasDefinitiveInitializer())
436        if (Constant *V =
437             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
438          return V;
439  }
440
441  // Instead of loading constant c string, use corresponding integer value
442  // directly if string length is small enough.
443  std::string Str;
444  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
445    unsigned StrLen = Str.length();
446    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
447    unsigned NumBits = Ty->getPrimitiveSizeInBits();
448    // Replace load with immediate integer if the result is an integer or fp
449    // value.
450    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
451        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
452      APInt StrVal(NumBits, 0);
453      APInt SingleChar(NumBits, 0);
454      if (TD->isLittleEndian()) {
455        for (signed i = StrLen-1; i >= 0; i--) {
456          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
457          StrVal = (StrVal << 8) | SingleChar;
458        }
459      } else {
460        for (unsigned i = 0; i < StrLen; i++) {
461          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
462          StrVal = (StrVal << 8) | SingleChar;
463        }
464        // Append NULL at the end.
465        SingleChar = 0;
466        StrVal = (StrVal << 8) | SingleChar;
467      }
468
469      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
470      if (Ty->isFloatingPointTy())
471        Res = ConstantExpr::getBitCast(Res, Ty);
472      return Res;
473    }
474  }
475
476  // If this load comes from anywhere in a constant global, and if the global
477  // is all undef or zero, we know what it loads.
478  if (GlobalVariable *GV =
479        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
480    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
481      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
482      if (GV->getInitializer()->isNullValue())
483        return Constant::getNullValue(ResTy);
484      if (isa<UndefValue>(GV->getInitializer()))
485        return UndefValue::get(ResTy);
486    }
487  }
488
489  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
490  // currently don't do any of this for big endian systems.  It can be
491  // generalized in the future if someone is interested.
492  if (TD && TD->isLittleEndian())
493    return FoldReinterpretLoadFromConstPtr(CE, *TD);
494  return 0;
495}
496
497static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
498  if (LI->isVolatile()) return 0;
499
500  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
501    return ConstantFoldLoadFromConstPtr(C, TD);
502
503  return 0;
504}
505
506/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
507/// Attempt to symbolically evaluate the result of a binary operator merging
508/// these together.  If target data info is available, it is provided as TD,
509/// otherwise TD is null.
510static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
511                                           Constant *Op1, const TargetData *TD){
512  // SROA
513
514  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
515  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
516  // bits.
517
518
519  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
520  // constant.  This happens frequently when iterating over a global array.
521  if (Opc == Instruction::Sub && TD) {
522    GlobalValue *GV1, *GV2;
523    int64_t Offs1, Offs2;
524
525    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
526      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
527          GV1 == GV2) {
528        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
529        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
530      }
531  }
532
533  return 0;
534}
535
536/// CastGEPIndices - If array indices are not pointer-sized integers,
537/// explicitly cast them so that they aren't implicitly casted by the
538/// getelementptr.
539static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
540                                const Type *ResultTy,
541                                const TargetData *TD) {
542  if (!TD) return 0;
543  const Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
544
545  bool Any = false;
546  SmallVector<Constant*, 32> NewIdxs;
547  for (unsigned i = 1; i != NumOps; ++i) {
548    if ((i == 1 ||
549         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
550                                        reinterpret_cast<Value *const *>(Ops+1),
551                                                            i-1))) &&
552        Ops[i]->getType() != IntPtrTy) {
553      Any = true;
554      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
555                                                                      true,
556                                                                      IntPtrTy,
557                                                                      true),
558                                              Ops[i], IntPtrTy));
559    } else
560      NewIdxs.push_back(Ops[i]);
561  }
562  if (!Any) return 0;
563
564  Constant *C =
565    ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
566  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
567    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
568      C = Folded;
569  return C;
570}
571
572/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
573/// constant expression, do so.
574static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
575                                         const Type *ResultTy,
576                                         const TargetData *TD) {
577  Constant *Ptr = Ops[0];
578  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
579    return 0;
580
581  const Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
582
583  // If this is a constant expr gep that is effectively computing an
584  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
585  for (unsigned i = 1; i != NumOps; ++i)
586    if (!isa<ConstantInt>(Ops[i])) {
587
588      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
589      // "inttoptr (sub (ptrtoint Ptr), V)"
590      if (NumOps == 2 &&
591          cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
592        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
593        assert((CE == 0 || CE->getType() == IntPtrTy) &&
594               "CastGEPIndices didn't canonicalize index types!");
595        if (CE && CE->getOpcode() == Instruction::Sub &&
596            CE->getOperand(0)->isNullValue()) {
597          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
598          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
599          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
600          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
601            Res = ConstantFoldConstantExpression(ResCE, TD);
602          return Res;
603        }
604      }
605      return 0;
606    }
607
608  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
609  APInt Offset = APInt(BitWidth,
610                       TD->getIndexedOffset(Ptr->getType(),
611                                            (Value**)Ops+1, NumOps-1));
612  Ptr = cast<Constant>(Ptr->stripPointerCasts());
613
614  // If this is a GEP of a GEP, fold it all into a single GEP.
615  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
616    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
617
618    // Do not try the incorporate the sub-GEP if some index is not a number.
619    bool AllConstantInt = true;
620    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
621      if (!isa<ConstantInt>(NestedOps[i])) {
622        AllConstantInt = false;
623        break;
624      }
625    if (!AllConstantInt)
626      break;
627
628    Ptr = cast<Constant>(GEP->getOperand(0));
629    Offset += APInt(BitWidth,
630                    TD->getIndexedOffset(Ptr->getType(),
631                                         (Value**)NestedOps.data(),
632                                         NestedOps.size()));
633    Ptr = cast<Constant>(Ptr->stripPointerCasts());
634  }
635
636  // If the base value for this address is a literal integer value, fold the
637  // getelementptr to the resulting integer value casted to the pointer type.
638  APInt BasePtr(BitWidth, 0);
639  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
640    if (CE->getOpcode() == Instruction::IntToPtr)
641      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
642        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
643  if (Ptr->isNullValue() || BasePtr != 0) {
644    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
645    return ConstantExpr::getIntToPtr(C, ResultTy);
646  }
647
648  // Otherwise form a regular getelementptr. Recompute the indices so that
649  // we eliminate over-indexing of the notional static type array bounds.
650  // This makes it easy to determine if the getelementptr is "inbounds".
651  // Also, this helps GlobalOpt do SROA on GlobalVariables.
652  const Type *Ty = Ptr->getType();
653  SmallVector<Constant*, 32> NewIdxs;
654  do {
655    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
656      if (ATy->isPointerTy()) {
657        // The only pointer indexing we'll do is on the first index of the GEP.
658        if (!NewIdxs.empty())
659          break;
660
661        // Only handle pointers to sized types, not pointers to functions.
662        if (!ATy->getElementType()->isSized())
663          return 0;
664      }
665
666      // Determine which element of the array the offset points into.
667      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
668      const IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
669      if (ElemSize == 0)
670        // The element size is 0. This may be [0 x Ty]*, so just use a zero
671        // index for this level and proceed to the next level to see if it can
672        // accommodate the offset.
673        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
674      else {
675        // The element size is non-zero divide the offset by the element
676        // size (rounding down), to compute the index at this level.
677        APInt NewIdx = Offset.udiv(ElemSize);
678        Offset -= NewIdx * ElemSize;
679        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
680      }
681      Ty = ATy->getElementType();
682    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
683      // Determine which field of the struct the offset points into. The
684      // getZExtValue is at least as safe as the StructLayout API because we
685      // know the offset is within the struct at this point.
686      const StructLayout &SL = *TD->getStructLayout(STy);
687      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
688      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
689                                         ElIdx));
690      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
691      Ty = STy->getTypeAtIndex(ElIdx);
692    } else {
693      // We've reached some non-indexable type.
694      break;
695    }
696  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
697
698  // If we haven't used up the entire offset by descending the static
699  // type, then the offset is pointing into the middle of an indivisible
700  // member, so we can't simplify it.
701  if (Offset != 0)
702    return 0;
703
704  // Create a GEP.
705  Constant *C =
706    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
707  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
708         "Computed GetElementPtr has unexpected type!");
709
710  // If we ended up indexing a member with a type that doesn't match
711  // the type of what the original indices indexed, add a cast.
712  if (Ty != cast<PointerType>(ResultTy)->getElementType())
713    C = FoldBitCast(C, ResultTy, *TD);
714
715  return C;
716}
717
718
719
720//===----------------------------------------------------------------------===//
721// Constant Folding public APIs
722//===----------------------------------------------------------------------===//
723
724/// ConstantFoldInstruction - Try to constant fold the specified instruction.
725/// If successful, the constant result is returned, if not, null is returned.
726/// Note that this fails if not all of the operands are constant.  Otherwise,
727/// this function can only fail when attempting to fold instructions like loads
728/// and stores, which have no constant expression form.
729Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
730  // Handle PHI nodes quickly here...
731  if (PHINode *PN = dyn_cast<PHINode>(I)) {
732    Constant *CommonValue = 0;
733
734    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
735      Value *Incoming = PN->getIncomingValue(i);
736      // If the incoming value is undef then skip it.  Note that while we could
737      // skip the value if it is equal to the phi node itself we choose not to
738      // because that would break the rule that constant folding only applies if
739      // all operands are constants.
740      if (isa<UndefValue>(Incoming))
741        continue;
742      // If the incoming value is not a constant, or is a different constant to
743      // the one we saw previously, then give up.
744      Constant *C = dyn_cast<Constant>(Incoming);
745      if (!C || (CommonValue && C != CommonValue))
746        return 0;
747      CommonValue = C;
748    }
749
750    // If we reach here, all incoming values are the same constant or undef.
751    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
752  }
753
754  // Scan the operand list, checking to see if they are all constants, if so,
755  // hand off to ConstantFoldInstOperands.
756  SmallVector<Constant*, 8> Ops;
757  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
758    if (Constant *Op = dyn_cast<Constant>(*i))
759      Ops.push_back(Op);
760    else
761      return 0;  // All operands not constant!
762
763  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
764    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
765                                           TD);
766
767  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
768    return ConstantFoldLoadInst(LI, TD);
769
770  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
771    return ConstantExpr::getInsertValue(
772                                cast<Constant>(IVI->getAggregateOperand()),
773                                cast<Constant>(IVI->getInsertedValueOperand()),
774                                IVI->idx_begin(), IVI->getNumIndices());
775
776  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
777    return ConstantExpr::getExtractValue(
778                                    cast<Constant>(EVI->getAggregateOperand()),
779                                    EVI->idx_begin(), EVI->getNumIndices());
780
781  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
782                                  Ops.data(), Ops.size(), TD);
783}
784
785/// ConstantFoldConstantExpression - Attempt to fold the constant expression
786/// using the specified TargetData.  If successful, the constant result is
787/// result is returned, if not, null is returned.
788Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
789                                               const TargetData *TD) {
790  SmallVector<Constant*, 8> Ops;
791  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
792       i != e; ++i) {
793    Constant *NewC = cast<Constant>(*i);
794    // Recursively fold the ConstantExpr's operands.
795    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
796      NewC = ConstantFoldConstantExpression(NewCE, TD);
797    Ops.push_back(NewC);
798  }
799
800  if (CE->isCompare())
801    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
802                                           TD);
803  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
804                                  Ops.data(), Ops.size(), TD);
805}
806
807/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
808/// specified opcode and operands.  If successful, the constant result is
809/// returned, if not, null is returned.  Note that this function can fail when
810/// attempting to fold instructions like loads and stores, which have no
811/// constant expression form.
812///
813/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
814/// information, due to only being passed an opcode and operands. Constant
815/// folding using this function strips this information.
816///
817Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
818                                         Constant* const* Ops, unsigned NumOps,
819                                         const TargetData *TD) {
820  // Handle easy binops first.
821  if (Instruction::isBinaryOp(Opcode)) {
822    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
823      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
824        return C;
825
826    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
827  }
828
829  switch (Opcode) {
830  default: return 0;
831  case Instruction::ICmp:
832  case Instruction::FCmp: assert(0 && "Invalid for compares");
833  case Instruction::Call:
834    if (Function *F = dyn_cast<Function>(Ops[NumOps - 1]))
835      if (canConstantFoldCallTo(F))
836        return ConstantFoldCall(F, Ops, NumOps - 1);
837    return 0;
838  case Instruction::PtrToInt:
839    // If the input is a inttoptr, eliminate the pair.  This requires knowing
840    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
841    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
842      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
843        Constant *Input = CE->getOperand(0);
844        unsigned InWidth = Input->getType()->getScalarSizeInBits();
845        if (TD->getPointerSizeInBits() < InWidth) {
846          Constant *Mask =
847            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
848                                                  TD->getPointerSizeInBits()));
849          Input = ConstantExpr::getAnd(Input, Mask);
850        }
851        // Do a zext or trunc to get to the dest size.
852        return ConstantExpr::getIntegerCast(Input, DestTy, false);
853      }
854    }
855    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
856  case Instruction::IntToPtr:
857    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
858    // the int size is >= the ptr size.  This requires knowing the width of a
859    // pointer, so it can't be done in ConstantExpr::getCast.
860    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
861      if (TD &&
862          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
863          CE->getOpcode() == Instruction::PtrToInt)
864        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
865
866    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
867  case Instruction::Trunc:
868  case Instruction::ZExt:
869  case Instruction::SExt:
870  case Instruction::FPTrunc:
871  case Instruction::FPExt:
872  case Instruction::UIToFP:
873  case Instruction::SIToFP:
874  case Instruction::FPToUI:
875  case Instruction::FPToSI:
876      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
877  case Instruction::BitCast:
878    if (TD)
879      return FoldBitCast(Ops[0], DestTy, *TD);
880    return ConstantExpr::getBitCast(Ops[0], DestTy);
881  case Instruction::Select:
882    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
883  case Instruction::ExtractElement:
884    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
885  case Instruction::InsertElement:
886    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
887  case Instruction::ShuffleVector:
888    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
889  case Instruction::GetElementPtr:
890    if (Constant *C = CastGEPIndices(Ops, NumOps, DestTy, TD))
891      return C;
892    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
893      return C;
894
895    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
896  }
897}
898
899/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
900/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
901/// returns a constant expression of the specified operands.
902///
903Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
904                                                Constant *Ops0, Constant *Ops1,
905                                                const TargetData *TD) {
906  // fold: icmp (inttoptr x), null         -> icmp x, 0
907  // fold: icmp (ptrtoint x), 0            -> icmp x, null
908  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
909  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
910  //
911  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
912  // around to know if bit truncation is happening.
913  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
914    if (TD && Ops1->isNullValue()) {
915      const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
916      if (CE0->getOpcode() == Instruction::IntToPtr) {
917        // Convert the integer value to the right size to ensure we get the
918        // proper extension or truncation.
919        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
920                                                   IntPtrTy, false);
921        Constant *Null = Constant::getNullValue(C->getType());
922        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
923      }
924
925      // Only do this transformation if the int is intptrty in size, otherwise
926      // there is a truncation or extension that we aren't modeling.
927      if (CE0->getOpcode() == Instruction::PtrToInt &&
928          CE0->getType() == IntPtrTy) {
929        Constant *C = CE0->getOperand(0);
930        Constant *Null = Constant::getNullValue(C->getType());
931        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
932      }
933    }
934
935    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
936      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
937        const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
938
939        if (CE0->getOpcode() == Instruction::IntToPtr) {
940          // Convert the integer value to the right size to ensure we get the
941          // proper extension or truncation.
942          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
943                                                      IntPtrTy, false);
944          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
945                                                      IntPtrTy, false);
946          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
947        }
948
949        // Only do this transformation if the int is intptrty in size, otherwise
950        // there is a truncation or extension that we aren't modeling.
951        if ((CE0->getOpcode() == Instruction::PtrToInt &&
952             CE0->getType() == IntPtrTy &&
953             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
954          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
955                                                 CE1->getOperand(0), TD);
956      }
957    }
958
959    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
960    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
961    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
962        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
963      Constant *LHS =
964        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
965      Constant *RHS =
966        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
967      unsigned OpC =
968        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
969      Constant *Ops[] = { LHS, RHS };
970      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
971    }
972  }
973
974  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
975}
976
977
978/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
979/// getelementptr constantexpr, return the constant value being addressed by the
980/// constant expression, or null if something is funny and we can't decide.
981Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
982                                                       ConstantExpr *CE) {
983  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
984    return 0;  // Do not allow stepping over the value!
985
986  // Loop over all of the operands, tracking down which value we are
987  // addressing...
988  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
989  for (++I; I != E; ++I)
990    if (const StructType *STy = dyn_cast<StructType>(*I)) {
991      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
992      assert(CU->getZExtValue() < STy->getNumElements() &&
993             "Struct index out of range!");
994      unsigned El = (unsigned)CU->getZExtValue();
995      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
996        C = CS->getOperand(El);
997      } else if (isa<ConstantAggregateZero>(C)) {
998        C = Constant::getNullValue(STy->getElementType(El));
999      } else if (isa<UndefValue>(C)) {
1000        C = UndefValue::get(STy->getElementType(El));
1001      } else {
1002        return 0;
1003      }
1004    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
1005      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
1006        if (CI->getZExtValue() >= ATy->getNumElements())
1007         return 0;
1008        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
1009          C = CA->getOperand(CI->getZExtValue());
1010        else if (isa<ConstantAggregateZero>(C))
1011          C = Constant::getNullValue(ATy->getElementType());
1012        else if (isa<UndefValue>(C))
1013          C = UndefValue::get(ATy->getElementType());
1014        else
1015          return 0;
1016      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
1017        if (CI->getZExtValue() >= VTy->getNumElements())
1018          return 0;
1019        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
1020          C = CP->getOperand(CI->getZExtValue());
1021        else if (isa<ConstantAggregateZero>(C))
1022          C = Constant::getNullValue(VTy->getElementType());
1023        else if (isa<UndefValue>(C))
1024          C = UndefValue::get(VTy->getElementType());
1025        else
1026          return 0;
1027      } else {
1028        return 0;
1029      }
1030    } else {
1031      return 0;
1032    }
1033  return C;
1034}
1035
1036
1037//===----------------------------------------------------------------------===//
1038//  Constant Folding for Calls
1039//
1040
1041/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1042/// the specified function.
1043bool
1044llvm::canConstantFoldCallTo(const Function *F) {
1045  switch (F->getIntrinsicID()) {
1046  case Intrinsic::sqrt:
1047  case Intrinsic::powi:
1048  case Intrinsic::bswap:
1049  case Intrinsic::ctpop:
1050  case Intrinsic::ctlz:
1051  case Intrinsic::cttz:
1052  case Intrinsic::sadd_with_overflow:
1053  case Intrinsic::uadd_with_overflow:
1054  case Intrinsic::ssub_with_overflow:
1055  case Intrinsic::usub_with_overflow:
1056  case Intrinsic::smul_with_overflow:
1057  case Intrinsic::umul_with_overflow:
1058  case Intrinsic::convert_from_fp16:
1059  case Intrinsic::convert_to_fp16:
1060  case Intrinsic::x86_sse_cvtss2si:
1061  case Intrinsic::x86_sse_cvtss2si64:
1062  case Intrinsic::x86_sse_cvttss2si:
1063  case Intrinsic::x86_sse_cvttss2si64:
1064  case Intrinsic::x86_sse2_cvtsd2si:
1065  case Intrinsic::x86_sse2_cvtsd2si64:
1066  case Intrinsic::x86_sse2_cvttsd2si:
1067  case Intrinsic::x86_sse2_cvttsd2si64:
1068    return true;
1069  default:
1070    return false;
1071  case 0: break;
1072  }
1073
1074  if (!F->hasName()) return false;
1075  StringRef Name = F->getName();
1076
1077  // In these cases, the check of the length is required.  We don't want to
1078  // return true for a name like "cos\0blah" which strcmp would return equal to
1079  // "cos", but has length 8.
1080  switch (Name[0]) {
1081  default: return false;
1082  case 'a':
1083    return Name == "acos" || Name == "asin" ||
1084      Name == "atan" || Name == "atan2";
1085  case 'c':
1086    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1087  case 'e':
1088    return Name == "exp";
1089  case 'f':
1090    return Name == "fabs" || Name == "fmod" || Name == "floor";
1091  case 'l':
1092    return Name == "log" || Name == "log10";
1093  case 'p':
1094    return Name == "pow";
1095  case 's':
1096    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1097      Name == "sinf" || Name == "sqrtf";
1098  case 't':
1099    return Name == "tan" || Name == "tanh";
1100  }
1101}
1102
1103static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1104                                const Type *Ty) {
1105  sys::llvm_fenv_clearexcept();
1106  V = NativeFP(V);
1107  if (sys::llvm_fenv_testexcept()) {
1108    sys::llvm_fenv_clearexcept();
1109    return 0;
1110  }
1111
1112  if (Ty->isFloatTy())
1113    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1114  if (Ty->isDoubleTy())
1115    return ConstantFP::get(Ty->getContext(), APFloat(V));
1116  llvm_unreachable("Can only constant fold float/double");
1117  return 0; // dummy return to suppress warning
1118}
1119
1120static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1121                                      double V, double W, const Type *Ty) {
1122  sys::llvm_fenv_clearexcept();
1123  V = NativeFP(V, W);
1124  if (sys::llvm_fenv_testexcept()) {
1125    sys::llvm_fenv_clearexcept();
1126    return 0;
1127  }
1128
1129  if (Ty->isFloatTy())
1130    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1131  if (Ty->isDoubleTy())
1132    return ConstantFP::get(Ty->getContext(), APFloat(V));
1133  llvm_unreachable("Can only constant fold float/double");
1134  return 0; // dummy return to suppress warning
1135}
1136
1137/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1138/// conversion of a constant floating point. If roundTowardZero is false, the
1139/// default IEEE rounding is used (toward nearest, ties to even). This matches
1140/// the behavior of the non-truncating SSE instructions in the default rounding
1141/// mode. The desired integer type Ty is used to select how many bits are
1142/// available for the result. Returns null if the conversion cannot be
1143/// performed, otherwise returns the Constant value resulting from the
1144/// conversion.
1145static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
1146                                          const Type *Ty) {
1147  assert(Op && "Called with NULL operand");
1148  APFloat Val(Op->getValueAPF());
1149
1150  // All of these conversion intrinsics form an integer of at most 64bits.
1151  unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1152  assert(ResultWidth <= 64 &&
1153         "Can only constant fold conversions to 64 and 32 bit ints");
1154
1155  uint64_t UIntVal;
1156  bool isExact = false;
1157  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1158                                              : APFloat::rmNearestTiesToEven;
1159  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1160                                                  /*isSigned=*/true, mode,
1161                                                  &isExact);
1162  if (status != APFloat::opOK && status != APFloat::opInexact)
1163    return 0;
1164  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1165}
1166
1167/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1168/// with the specified arguments, returning null if unsuccessful.
1169Constant *
1170llvm::ConstantFoldCall(Function *F,
1171                       Constant *const *Operands, unsigned NumOperands) {
1172  if (!F->hasName()) return 0;
1173  StringRef Name = F->getName();
1174
1175  const Type *Ty = F->getReturnType();
1176  if (NumOperands == 1) {
1177    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1178      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1179        APFloat Val(Op->getValueAPF());
1180
1181        bool lost = false;
1182        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1183
1184        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1185      }
1186
1187      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1188        return 0;
1189
1190      /// We only fold functions with finite arguments. Folding NaN and inf is
1191      /// likely to be aborted with an exception anyway, and some host libms
1192      /// have known errors raising exceptions.
1193      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1194        return 0;
1195
1196      /// Currently APFloat versions of these functions do not exist, so we use
1197      /// the host native double versions.  Float versions are not called
1198      /// directly but for all these it is true (float)(f((double)arg)) ==
1199      /// f(arg).  Long double not supported yet.
1200      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1201                                     Op->getValueAPF().convertToDouble();
1202      switch (Name[0]) {
1203      case 'a':
1204        if (Name == "acos")
1205          return ConstantFoldFP(acos, V, Ty);
1206        else if (Name == "asin")
1207          return ConstantFoldFP(asin, V, Ty);
1208        else if (Name == "atan")
1209          return ConstantFoldFP(atan, V, Ty);
1210        break;
1211      case 'c':
1212        if (Name == "ceil")
1213          return ConstantFoldFP(ceil, V, Ty);
1214        else if (Name == "cos")
1215          return ConstantFoldFP(cos, V, Ty);
1216        else if (Name == "cosh")
1217          return ConstantFoldFP(cosh, V, Ty);
1218        else if (Name == "cosf")
1219          return ConstantFoldFP(cos, V, Ty);
1220        break;
1221      case 'e':
1222        if (Name == "exp")
1223          return ConstantFoldFP(exp, V, Ty);
1224        break;
1225      case 'f':
1226        if (Name == "fabs")
1227          return ConstantFoldFP(fabs, V, Ty);
1228        else if (Name == "floor")
1229          return ConstantFoldFP(floor, V, Ty);
1230        break;
1231      case 'l':
1232        if (Name == "log" && V > 0)
1233          return ConstantFoldFP(log, V, Ty);
1234        else if (Name == "log10" && V > 0)
1235          return ConstantFoldFP(log10, V, Ty);
1236        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1237                 (Ty->isFloatTy() || Ty->isDoubleTy())) {
1238          if (V >= -0.0)
1239            return ConstantFoldFP(sqrt, V, Ty);
1240          else // Undefined
1241            return Constant::getNullValue(Ty);
1242        }
1243        break;
1244      case 's':
1245        if (Name == "sin")
1246          return ConstantFoldFP(sin, V, Ty);
1247        else if (Name == "sinh")
1248          return ConstantFoldFP(sinh, V, Ty);
1249        else if (Name == "sqrt" && V >= 0)
1250          return ConstantFoldFP(sqrt, V, Ty);
1251        else if (Name == "sqrtf" && V >= 0)
1252          return ConstantFoldFP(sqrt, V, Ty);
1253        else if (Name == "sinf")
1254          return ConstantFoldFP(sin, V, Ty);
1255        break;
1256      case 't':
1257        if (Name == "tan")
1258          return ConstantFoldFP(tan, V, Ty);
1259        else if (Name == "tanh")
1260          return ConstantFoldFP(tanh, V, Ty);
1261        break;
1262      default:
1263        break;
1264      }
1265      return 0;
1266    }
1267
1268    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1269      switch (F->getIntrinsicID()) {
1270      case Intrinsic::bswap:
1271        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1272      case Intrinsic::ctpop:
1273        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1274      case Intrinsic::cttz:
1275        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1276      case Intrinsic::ctlz:
1277        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1278      case Intrinsic::convert_from_fp16: {
1279        APFloat Val(Op->getValue());
1280
1281        bool lost = false;
1282        APFloat::opStatus status =
1283          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1284
1285        // Conversion is always precise.
1286        (void)status;
1287        assert(status == APFloat::opOK && !lost &&
1288               "Precision lost during fp16 constfolding");
1289
1290        return ConstantFP::get(F->getContext(), Val);
1291      }
1292      default:
1293        return 0;
1294      }
1295    }
1296
1297    if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
1298      switch (F->getIntrinsicID()) {
1299      default: break;
1300      case Intrinsic::x86_sse_cvtss2si:
1301      case Intrinsic::x86_sse_cvtss2si64:
1302      case Intrinsic::x86_sse2_cvtsd2si:
1303      case Intrinsic::x86_sse2_cvtsd2si64:
1304        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1305          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
1306      case Intrinsic::x86_sse_cvttss2si:
1307      case Intrinsic::x86_sse_cvttss2si64:
1308      case Intrinsic::x86_sse2_cvttsd2si:
1309      case Intrinsic::x86_sse2_cvttsd2si64:
1310        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1311          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
1312      }
1313    }
1314
1315    if (isa<UndefValue>(Operands[0])) {
1316      if (F->getIntrinsicID() == Intrinsic::bswap)
1317        return Operands[0];
1318      return 0;
1319    }
1320
1321    return 0;
1322  }
1323
1324  if (NumOperands == 2) {
1325    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1326      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1327        return 0;
1328      double Op1V = Ty->isFloatTy() ?
1329                      (double)Op1->getValueAPF().convertToFloat() :
1330                      Op1->getValueAPF().convertToDouble();
1331      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1332        if (Op2->getType() != Op1->getType())
1333          return 0;
1334
1335        double Op2V = Ty->isFloatTy() ?
1336                      (double)Op2->getValueAPF().convertToFloat():
1337                      Op2->getValueAPF().convertToDouble();
1338
1339        if (Name == "pow")
1340          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1341        if (Name == "fmod")
1342          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1343        if (Name == "atan2")
1344          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1345      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1346        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1347          return ConstantFP::get(F->getContext(),
1348                                 APFloat((float)std::pow((float)Op1V,
1349                                                 (int)Op2C->getZExtValue())));
1350        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1351          return ConstantFP::get(F->getContext(),
1352                                 APFloat((double)std::pow((double)Op1V,
1353                                                   (int)Op2C->getZExtValue())));
1354      }
1355      return 0;
1356    }
1357
1358
1359    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1360      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1361        switch (F->getIntrinsicID()) {
1362        default: break;
1363        case Intrinsic::sadd_with_overflow:
1364        case Intrinsic::uadd_with_overflow:
1365        case Intrinsic::ssub_with_overflow:
1366        case Intrinsic::usub_with_overflow:
1367        case Intrinsic::smul_with_overflow:
1368        case Intrinsic::umul_with_overflow: {
1369          APInt Res;
1370          bool Overflow;
1371          switch (F->getIntrinsicID()) {
1372          default: assert(0 && "Invalid case");
1373          case Intrinsic::sadd_with_overflow:
1374            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1375            break;
1376          case Intrinsic::uadd_with_overflow:
1377            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1378            break;
1379          case Intrinsic::ssub_with_overflow:
1380            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1381            break;
1382          case Intrinsic::usub_with_overflow:
1383            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1384            break;
1385          case Intrinsic::smul_with_overflow:
1386            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1387            break;
1388          case Intrinsic::umul_with_overflow:
1389            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1390            break;
1391          }
1392          Constant *Ops[] = {
1393            ConstantInt::get(F->getContext(), Res),
1394            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1395          };
1396          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1397        }
1398        }
1399      }
1400
1401      return 0;
1402    }
1403    return 0;
1404  }
1405  return 0;
1406}
1407