ConstantFolding.cpp revision 6208610fd602ebdb18bb793152899573d0b2b7ab
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/FEnv.h"
34#include <cerrno>
35#include <cmath>
36using namespace llvm;
37
38//===----------------------------------------------------------------------===//
39// Constant Folding internal helper functions
40//===----------------------------------------------------------------------===//
41
42/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
43/// TargetData.  This always returns a non-null constant, but it may be a
44/// ConstantExpr if unfoldable.
45static Constant *FoldBitCast(Constant *C, const Type *DestTy,
46                             const TargetData &TD) {
47
48  // This only handles casts to vectors currently.
49  const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
50  if (DestVTy == 0)
51    return ConstantExpr::getBitCast(C, DestTy);
52
53  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
54  // vector so the code below can handle it uniformly.
55  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
56    Constant *Ops = C; // don't take the address of C!
57    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
58  }
59
60  // If this is a bitcast from constant vector -> vector, fold it.
61  ConstantVector *CV = dyn_cast<ConstantVector>(C);
62  if (CV == 0)
63    return ConstantExpr::getBitCast(C, DestTy);
64
65  // If the element types match, VMCore can fold it.
66  unsigned NumDstElt = DestVTy->getNumElements();
67  unsigned NumSrcElt = CV->getNumOperands();
68  if (NumDstElt == NumSrcElt)
69    return ConstantExpr::getBitCast(C, DestTy);
70
71  const Type *SrcEltTy = CV->getType()->getElementType();
72  const Type *DstEltTy = DestVTy->getElementType();
73
74  // Otherwise, we're changing the number of elements in a vector, which
75  // requires endianness information to do the right thing.  For example,
76  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
77  // folds to (little endian):
78  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
79  // and to (big endian):
80  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
81
82  // First thing is first.  We only want to think about integer here, so if
83  // we have something in FP form, recast it as integer.
84  if (DstEltTy->isFloatingPointTy()) {
85    // Fold to an vector of integers with same size as our FP type.
86    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
87    const Type *DestIVTy =
88      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
89    // Recursively handle this integer conversion, if possible.
90    C = FoldBitCast(C, DestIVTy, TD);
91    if (!C) return ConstantExpr::getBitCast(C, DestTy);
92
93    // Finally, VMCore can handle this now that #elts line up.
94    return ConstantExpr::getBitCast(C, DestTy);
95  }
96
97  // Okay, we know the destination is integer, if the input is FP, convert
98  // it to integer first.
99  if (SrcEltTy->isFloatingPointTy()) {
100    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
101    const Type *SrcIVTy =
102      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
103    // Ask VMCore to do the conversion now that #elts line up.
104    C = ConstantExpr::getBitCast(C, SrcIVTy);
105    CV = dyn_cast<ConstantVector>(C);
106    if (!CV)  // If VMCore wasn't able to fold it, bail out.
107      return C;
108  }
109
110  // Now we know that the input and output vectors are both integer vectors
111  // of the same size, and that their #elements is not the same.  Do the
112  // conversion here, which depends on whether the input or output has
113  // more elements.
114  bool isLittleEndian = TD.isLittleEndian();
115
116  SmallVector<Constant*, 32> Result;
117  if (NumDstElt < NumSrcElt) {
118    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
119    Constant *Zero = Constant::getNullValue(DstEltTy);
120    unsigned Ratio = NumSrcElt/NumDstElt;
121    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
122    unsigned SrcElt = 0;
123    for (unsigned i = 0; i != NumDstElt; ++i) {
124      // Build each element of the result.
125      Constant *Elt = Zero;
126      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
127      for (unsigned j = 0; j != Ratio; ++j) {
128        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
129        if (!Src)  // Reject constantexpr elements.
130          return ConstantExpr::getBitCast(C, DestTy);
131
132        // Zero extend the element to the right size.
133        Src = ConstantExpr::getZExt(Src, Elt->getType());
134
135        // Shift it to the right place, depending on endianness.
136        Src = ConstantExpr::getShl(Src,
137                                   ConstantInt::get(Src->getType(), ShiftAmt));
138        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
139
140        // Mix it in.
141        Elt = ConstantExpr::getOr(Elt, Src);
142      }
143      Result.push_back(Elt);
144    }
145  } else {
146    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
147    unsigned Ratio = NumDstElt/NumSrcElt;
148    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
149
150    // Loop over each source value, expanding into multiple results.
151    for (unsigned i = 0; i != NumSrcElt; ++i) {
152      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
153      if (!Src)  // Reject constantexpr elements.
154        return ConstantExpr::getBitCast(C, DestTy);
155
156      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
157      for (unsigned j = 0; j != Ratio; ++j) {
158        // Shift the piece of the value into the right place, depending on
159        // endianness.
160        Constant *Elt = ConstantExpr::getLShr(Src,
161                                    ConstantInt::get(Src->getType(), ShiftAmt));
162        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
163
164        // Truncate and remember this piece.
165        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
166      }
167    }
168  }
169
170  return ConstantVector::get(Result);
171}
172
173
174/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
175/// from a global, return the global and the constant.  Because of
176/// constantexprs, this function is recursive.
177static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
178                                       int64_t &Offset, const TargetData &TD) {
179  // Trivial case, constant is the global.
180  if ((GV = dyn_cast<GlobalValue>(C))) {
181    Offset = 0;
182    return true;
183  }
184
185  // Otherwise, if this isn't a constant expr, bail out.
186  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
187  if (!CE) return false;
188
189  // Look through ptr->int and ptr->ptr casts.
190  if (CE->getOpcode() == Instruction::PtrToInt ||
191      CE->getOpcode() == Instruction::BitCast)
192    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
193
194  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
195  if (CE->getOpcode() == Instruction::GetElementPtr) {
196    // Cannot compute this if the element type of the pointer is missing size
197    // info.
198    if (!cast<PointerType>(CE->getOperand(0)->getType())
199                 ->getElementType()->isSized())
200      return false;
201
202    // If the base isn't a global+constant, we aren't either.
203    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
204      return false;
205
206    // Otherwise, add any offset that our operands provide.
207    gep_type_iterator GTI = gep_type_begin(CE);
208    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
209         i != e; ++i, ++GTI) {
210      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
211      if (!CI) return false;  // Index isn't a simple constant?
212      if (CI->isZero()) continue;  // Not adding anything.
213
214      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
215        // N = N + Offset
216        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
217      } else {
218        const SequentialType *SQT = cast<SequentialType>(*GTI);
219        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
220      }
221    }
222    return true;
223  }
224
225  return false;
226}
227
228/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
229/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
230/// pointer to copy results into and BytesLeft is the number of bytes left in
231/// the CurPtr buffer.  TD is the target data.
232static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
233                               unsigned char *CurPtr, unsigned BytesLeft,
234                               const TargetData &TD) {
235  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
236         "Out of range access");
237
238  // If this element is zero or undefined, we can just return since *CurPtr is
239  // zero initialized.
240  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
241    return true;
242
243  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
244    if (CI->getBitWidth() > 64 ||
245        (CI->getBitWidth() & 7) != 0)
246      return false;
247
248    uint64_t Val = CI->getZExtValue();
249    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
250
251    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
252      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
253      ++ByteOffset;
254    }
255    return true;
256  }
257
258  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
259    if (CFP->getType()->isDoubleTy()) {
260      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
261      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
262    }
263    if (CFP->getType()->isFloatTy()){
264      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
265      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
266    }
267    return false;
268  }
269
270  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
271    const StructLayout *SL = TD.getStructLayout(CS->getType());
272    unsigned Index = SL->getElementContainingOffset(ByteOffset);
273    uint64_t CurEltOffset = SL->getElementOffset(Index);
274    ByteOffset -= CurEltOffset;
275
276    while (1) {
277      // If the element access is to the element itself and not to tail padding,
278      // read the bytes from the element.
279      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
280
281      if (ByteOffset < EltSize &&
282          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
283                              BytesLeft, TD))
284        return false;
285
286      ++Index;
287
288      // Check to see if we read from the last struct element, if so we're done.
289      if (Index == CS->getType()->getNumElements())
290        return true;
291
292      // If we read all of the bytes we needed from this element we're done.
293      uint64_t NextEltOffset = SL->getElementOffset(Index);
294
295      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
296        return true;
297
298      // Move to the next element of the struct.
299      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
300      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
301      ByteOffset = 0;
302      CurEltOffset = NextEltOffset;
303    }
304    // not reached.
305  }
306
307  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
308    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
309    uint64_t Index = ByteOffset / EltSize;
310    uint64_t Offset = ByteOffset - Index * EltSize;
311    for (; Index != CA->getType()->getNumElements(); ++Index) {
312      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
313                              BytesLeft, TD))
314        return false;
315      if (EltSize >= BytesLeft)
316        return true;
317
318      Offset = 0;
319      BytesLeft -= EltSize;
320      CurPtr += EltSize;
321    }
322    return true;
323  }
324
325  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
326    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
327    uint64_t Index = ByteOffset / EltSize;
328    uint64_t Offset = ByteOffset - Index * EltSize;
329    for (; Index != CV->getType()->getNumElements(); ++Index) {
330      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
331                              BytesLeft, TD))
332        return false;
333      if (EltSize >= BytesLeft)
334        return true;
335
336      Offset = 0;
337      BytesLeft -= EltSize;
338      CurPtr += EltSize;
339    }
340    return true;
341  }
342
343  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
344    if (CE->getOpcode() == Instruction::IntToPtr &&
345        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
346        return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
347                                  BytesLeft, TD);
348  }
349
350  // Otherwise, unknown initializer type.
351  return false;
352}
353
354static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
355                                                 const TargetData &TD) {
356  const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
357  const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
358
359  // If this isn't an integer load we can't fold it directly.
360  if (!IntType) {
361    // If this is a float/double load, we can try folding it as an int32/64 load
362    // and then bitcast the result.  This can be useful for union cases.  Note
363    // that address spaces don't matter here since we're not going to result in
364    // an actual new load.
365    const Type *MapTy;
366    if (LoadTy->isFloatTy())
367      MapTy = Type::getInt32PtrTy(C->getContext());
368    else if (LoadTy->isDoubleTy())
369      MapTy = Type::getInt64PtrTy(C->getContext());
370    else if (LoadTy->isVectorTy()) {
371      MapTy = IntegerType::get(C->getContext(),
372                               TD.getTypeAllocSizeInBits(LoadTy));
373      MapTy = PointerType::getUnqual(MapTy);
374    } else
375      return 0;
376
377    C = FoldBitCast(C, MapTy, TD);
378    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
379      return FoldBitCast(Res, LoadTy, TD);
380    return 0;
381  }
382
383  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
384  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
385
386  GlobalValue *GVal;
387  int64_t Offset;
388  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
389    return 0;
390
391  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
392  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
393      !GV->getInitializer()->getType()->isSized())
394    return 0;
395
396  // If we're loading off the beginning of the global, some bytes may be valid,
397  // but we don't try to handle this.
398  if (Offset < 0) return 0;
399
400  // If we're not accessing anything in this constant, the result is undefined.
401  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
402    return UndefValue::get(IntType);
403
404  unsigned char RawBytes[32] = {0};
405  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
406                          BytesLoaded, TD))
407    return 0;
408
409  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
410  for (unsigned i = 1; i != BytesLoaded; ++i) {
411    ResultVal <<= 8;
412    ResultVal |= RawBytes[BytesLoaded-1-i];
413  }
414
415  return ConstantInt::get(IntType->getContext(), ResultVal);
416}
417
418/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
419/// produce if it is constant and determinable.  If this is not determinable,
420/// return null.
421Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
422                                             const TargetData *TD) {
423  // First, try the easy cases:
424  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
425    if (GV->isConstant() && GV->hasDefinitiveInitializer())
426      return GV->getInitializer();
427
428  // If the loaded value isn't a constant expr, we can't handle it.
429  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
430  if (!CE) return 0;
431
432  if (CE->getOpcode() == Instruction::GetElementPtr) {
433    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
434      if (GV->isConstant() && GV->hasDefinitiveInitializer())
435        if (Constant *V =
436             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
437          return V;
438  }
439
440  // Instead of loading constant c string, use corresponding integer value
441  // directly if string length is small enough.
442  std::string Str;
443  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
444    unsigned StrLen = Str.length();
445    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
446    unsigned NumBits = Ty->getPrimitiveSizeInBits();
447    // Replace load with immediate integer if the result is an integer or fp
448    // value.
449    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
450        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
451      APInt StrVal(NumBits, 0);
452      APInt SingleChar(NumBits, 0);
453      if (TD->isLittleEndian()) {
454        for (signed i = StrLen-1; i >= 0; i--) {
455          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
456          StrVal = (StrVal << 8) | SingleChar;
457        }
458      } else {
459        for (unsigned i = 0; i < StrLen; i++) {
460          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
461          StrVal = (StrVal << 8) | SingleChar;
462        }
463        // Append NULL at the end.
464        SingleChar = 0;
465        StrVal = (StrVal << 8) | SingleChar;
466      }
467
468      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
469      if (Ty->isFloatingPointTy())
470        Res = ConstantExpr::getBitCast(Res, Ty);
471      return Res;
472    }
473  }
474
475  // If this load comes from anywhere in a constant global, and if the global
476  // is all undef or zero, we know what it loads.
477  if (GlobalVariable *GV =
478        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
479    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
480      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
481      if (GV->getInitializer()->isNullValue())
482        return Constant::getNullValue(ResTy);
483      if (isa<UndefValue>(GV->getInitializer()))
484        return UndefValue::get(ResTy);
485    }
486  }
487
488  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
489  // currently don't do any of this for big endian systems.  It can be
490  // generalized in the future if someone is interested.
491  if (TD && TD->isLittleEndian())
492    return FoldReinterpretLoadFromConstPtr(CE, *TD);
493  return 0;
494}
495
496static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
497  if (LI->isVolatile()) return 0;
498
499  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
500    return ConstantFoldLoadFromConstPtr(C, TD);
501
502  return 0;
503}
504
505/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
506/// Attempt to symbolically evaluate the result of a binary operator merging
507/// these together.  If target data info is available, it is provided as TD,
508/// otherwise TD is null.
509static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
510                                           Constant *Op1, const TargetData *TD){
511  // SROA
512
513  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
514  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
515  // bits.
516
517
518  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
519  // constant.  This happens frequently when iterating over a global array.
520  if (Opc == Instruction::Sub && TD) {
521    GlobalValue *GV1, *GV2;
522    int64_t Offs1, Offs2;
523
524    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
525      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
526          GV1 == GV2) {
527        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
528        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
529      }
530  }
531
532  return 0;
533}
534
535/// CastGEPIndices - If array indices are not pointer-sized integers,
536/// explicitly cast them so that they aren't implicitly casted by the
537/// getelementptr.
538static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
539                                const Type *ResultTy,
540                                const TargetData *TD) {
541  if (!TD) return 0;
542  const Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
543
544  bool Any = false;
545  SmallVector<Constant*, 32> NewIdxs;
546  for (unsigned i = 1; i != NumOps; ++i) {
547    if ((i == 1 ||
548         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
549                                        reinterpret_cast<Value *const *>(Ops+1),
550                                                            i-1))) &&
551        Ops[i]->getType() != IntPtrTy) {
552      Any = true;
553      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
554                                                                      true,
555                                                                      IntPtrTy,
556                                                                      true),
557                                              Ops[i], IntPtrTy));
558    } else
559      NewIdxs.push_back(Ops[i]);
560  }
561  if (!Any) return 0;
562
563  Constant *C =
564    ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
565  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
566    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
567      C = Folded;
568  return C;
569}
570
571/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
572/// constant expression, do so.
573static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
574                                         const Type *ResultTy,
575                                         const TargetData *TD) {
576  Constant *Ptr = Ops[0];
577  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
578    return 0;
579
580  const Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
581
582  // If this is a constant expr gep that is effectively computing an
583  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
584  for (unsigned i = 1; i != NumOps; ++i)
585    if (!isa<ConstantInt>(Ops[i])) {
586
587      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
588      // "inttoptr (sub (ptrtoint Ptr), V)"
589      if (NumOps == 2 &&
590          cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
591        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
592        assert((CE == 0 || CE->getType() == IntPtrTy) &&
593               "CastGEPIndices didn't canonicalize index types!");
594        if (CE && CE->getOpcode() == Instruction::Sub &&
595            CE->getOperand(0)->isNullValue()) {
596          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
597          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
598          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
599          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
600            Res = ConstantFoldConstantExpression(ResCE, TD);
601          return Res;
602        }
603      }
604      return 0;
605    }
606
607  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
608  APInt Offset = APInt(BitWidth,
609                       TD->getIndexedOffset(Ptr->getType(),
610                                            (Value**)Ops+1, NumOps-1));
611  Ptr = cast<Constant>(Ptr->stripPointerCasts());
612
613  // If this is a GEP of a GEP, fold it all into a single GEP.
614  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
615    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
616
617    // Do not try the incorporate the sub-GEP if some index is not a number.
618    bool AllConstantInt = true;
619    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
620      if (!isa<ConstantInt>(NestedOps[i])) {
621        AllConstantInt = false;
622        break;
623      }
624    if (!AllConstantInt)
625      break;
626
627    Ptr = cast<Constant>(GEP->getOperand(0));
628    Offset += APInt(BitWidth,
629                    TD->getIndexedOffset(Ptr->getType(),
630                                         (Value**)NestedOps.data(),
631                                         NestedOps.size()));
632    Ptr = cast<Constant>(Ptr->stripPointerCasts());
633  }
634
635  // If the base value for this address is a literal integer value, fold the
636  // getelementptr to the resulting integer value casted to the pointer type.
637  APInt BasePtr(BitWidth, 0);
638  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
639    if (CE->getOpcode() == Instruction::IntToPtr)
640      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
641        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
642  if (Ptr->isNullValue() || BasePtr != 0) {
643    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
644    return ConstantExpr::getIntToPtr(C, ResultTy);
645  }
646
647  // Otherwise form a regular getelementptr. Recompute the indices so that
648  // we eliminate over-indexing of the notional static type array bounds.
649  // This makes it easy to determine if the getelementptr is "inbounds".
650  // Also, this helps GlobalOpt do SROA on GlobalVariables.
651  const Type *Ty = Ptr->getType();
652  SmallVector<Constant*, 32> NewIdxs;
653  do {
654    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
655      if (ATy->isPointerTy()) {
656        // The only pointer indexing we'll do is on the first index of the GEP.
657        if (!NewIdxs.empty())
658          break;
659
660        // Only handle pointers to sized types, not pointers to functions.
661        if (!ATy->getElementType()->isSized())
662          return 0;
663      }
664
665      // Determine which element of the array the offset points into.
666      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
667      const IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
668      if (ElemSize == 0)
669        // The element size is 0. This may be [0 x Ty]*, so just use a zero
670        // index for this level and proceed to the next level to see if it can
671        // accommodate the offset.
672        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
673      else {
674        // The element size is non-zero divide the offset by the element
675        // size (rounding down), to compute the index at this level.
676        APInt NewIdx = Offset.udiv(ElemSize);
677        Offset -= NewIdx * ElemSize;
678        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
679      }
680      Ty = ATy->getElementType();
681    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
682      // Determine which field of the struct the offset points into. The
683      // getZExtValue is at least as safe as the StructLayout API because we
684      // know the offset is within the struct at this point.
685      const StructLayout &SL = *TD->getStructLayout(STy);
686      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
687      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
688                                         ElIdx));
689      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
690      Ty = STy->getTypeAtIndex(ElIdx);
691    } else {
692      // We've reached some non-indexable type.
693      break;
694    }
695  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
696
697  // If we haven't used up the entire offset by descending the static
698  // type, then the offset is pointing into the middle of an indivisible
699  // member, so we can't simplify it.
700  if (Offset != 0)
701    return 0;
702
703  // Create a GEP.
704  Constant *C =
705    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
706  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
707         "Computed GetElementPtr has unexpected type!");
708
709  // If we ended up indexing a member with a type that doesn't match
710  // the type of what the original indices indexed, add a cast.
711  if (Ty != cast<PointerType>(ResultTy)->getElementType())
712    C = FoldBitCast(C, ResultTy, *TD);
713
714  return C;
715}
716
717
718
719//===----------------------------------------------------------------------===//
720// Constant Folding public APIs
721//===----------------------------------------------------------------------===//
722
723/// ConstantFoldInstruction - Try to constant fold the specified instruction.
724/// If successful, the constant result is returned, if not, null is returned.
725/// Note that this fails if not all of the operands are constant.  Otherwise,
726/// this function can only fail when attempting to fold instructions like loads
727/// and stores, which have no constant expression form.
728Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
729  // Handle PHI nodes quickly here...
730  if (PHINode *PN = dyn_cast<PHINode>(I)) {
731    Constant *CommonValue = 0;
732
733    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
734      Value *Incoming = PN->getIncomingValue(i);
735      // If the incoming value is undef then skip it.  Note that while we could
736      // skip the value if it is equal to the phi node itself we choose not to
737      // because that would break the rule that constant folding only applies if
738      // all operands are constants.
739      if (isa<UndefValue>(Incoming))
740        continue;
741      // If the incoming value is not a constant, or is a different constant to
742      // the one we saw previously, then give up.
743      Constant *C = dyn_cast<Constant>(Incoming);
744      if (!C || (CommonValue && C != CommonValue))
745        return 0;
746      CommonValue = C;
747    }
748
749    // If we reach here, all incoming values are the same constant or undef.
750    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
751  }
752
753  // Scan the operand list, checking to see if they are all constants, if so,
754  // hand off to ConstantFoldInstOperands.
755  SmallVector<Constant*, 8> Ops;
756  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
757    if (Constant *Op = dyn_cast<Constant>(*i))
758      Ops.push_back(Op);
759    else
760      return 0;  // All operands not constant!
761
762  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
763    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
764                                           TD);
765
766  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
767    return ConstantFoldLoadInst(LI, TD);
768
769  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
770    return ConstantExpr::getInsertValue(
771                                cast<Constant>(IVI->getAggregateOperand()),
772                                cast<Constant>(IVI->getInsertedValueOperand()),
773                                IVI->idx_begin(), IVI->getNumIndices());
774
775  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
776    return ConstantExpr::getExtractValue(
777                                    cast<Constant>(EVI->getAggregateOperand()),
778                                    EVI->idx_begin(), EVI->getNumIndices());
779
780  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
781                                  Ops.data(), Ops.size(), TD);
782}
783
784/// ConstantFoldConstantExpression - Attempt to fold the constant expression
785/// using the specified TargetData.  If successful, the constant result is
786/// result is returned, if not, null is returned.
787Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
788                                               const TargetData *TD) {
789  SmallVector<Constant*, 8> Ops;
790  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
791       i != e; ++i) {
792    Constant *NewC = cast<Constant>(*i);
793    // Recursively fold the ConstantExpr's operands.
794    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
795      NewC = ConstantFoldConstantExpression(NewCE, TD);
796    Ops.push_back(NewC);
797  }
798
799  if (CE->isCompare())
800    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
801                                           TD);
802  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
803                                  Ops.data(), Ops.size(), TD);
804}
805
806/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
807/// specified opcode and operands.  If successful, the constant result is
808/// returned, if not, null is returned.  Note that this function can fail when
809/// attempting to fold instructions like loads and stores, which have no
810/// constant expression form.
811///
812/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
813/// information, due to only being passed an opcode and operands. Constant
814/// folding using this function strips this information.
815///
816Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
817                                         Constant* const* Ops, unsigned NumOps,
818                                         const TargetData *TD) {
819  // Handle easy binops first.
820  if (Instruction::isBinaryOp(Opcode)) {
821    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
822      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
823        return C;
824
825    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
826  }
827
828  switch (Opcode) {
829  default: return 0;
830  case Instruction::ICmp:
831  case Instruction::FCmp: assert(0 && "Invalid for compares");
832  case Instruction::Call:
833    if (Function *F = dyn_cast<Function>(Ops[NumOps - 1]))
834      if (canConstantFoldCallTo(F))
835        return ConstantFoldCall(F, Ops, NumOps - 1);
836    return 0;
837  case Instruction::PtrToInt:
838    // If the input is a inttoptr, eliminate the pair.  This requires knowing
839    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
840    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
841      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
842        Constant *Input = CE->getOperand(0);
843        unsigned InWidth = Input->getType()->getScalarSizeInBits();
844        if (TD->getPointerSizeInBits() < InWidth) {
845          Constant *Mask =
846            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
847                                                  TD->getPointerSizeInBits()));
848          Input = ConstantExpr::getAnd(Input, Mask);
849        }
850        // Do a zext or trunc to get to the dest size.
851        return ConstantExpr::getIntegerCast(Input, DestTy, false);
852      }
853    }
854    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
855  case Instruction::IntToPtr:
856    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
857    // the int size is >= the ptr size.  This requires knowing the width of a
858    // pointer, so it can't be done in ConstantExpr::getCast.
859    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
860      if (TD &&
861          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
862          CE->getOpcode() == Instruction::PtrToInt)
863        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
864
865    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
866  case Instruction::Trunc:
867  case Instruction::ZExt:
868  case Instruction::SExt:
869  case Instruction::FPTrunc:
870  case Instruction::FPExt:
871  case Instruction::UIToFP:
872  case Instruction::SIToFP:
873  case Instruction::FPToUI:
874  case Instruction::FPToSI:
875      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
876  case Instruction::BitCast:
877    if (TD)
878      return FoldBitCast(Ops[0], DestTy, *TD);
879    return ConstantExpr::getBitCast(Ops[0], DestTy);
880  case Instruction::Select:
881    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
882  case Instruction::ExtractElement:
883    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
884  case Instruction::InsertElement:
885    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
886  case Instruction::ShuffleVector:
887    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
888  case Instruction::GetElementPtr:
889    if (Constant *C = CastGEPIndices(Ops, NumOps, DestTy, TD))
890      return C;
891    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
892      return C;
893
894    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
895  }
896}
897
898/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
899/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
900/// returns a constant expression of the specified operands.
901///
902Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
903                                                Constant *Ops0, Constant *Ops1,
904                                                const TargetData *TD) {
905  // fold: icmp (inttoptr x), null         -> icmp x, 0
906  // fold: icmp (ptrtoint x), 0            -> icmp x, null
907  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
908  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
909  //
910  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
911  // around to know if bit truncation is happening.
912  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
913    if (TD && Ops1->isNullValue()) {
914      const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
915      if (CE0->getOpcode() == Instruction::IntToPtr) {
916        // Convert the integer value to the right size to ensure we get the
917        // proper extension or truncation.
918        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
919                                                   IntPtrTy, false);
920        Constant *Null = Constant::getNullValue(C->getType());
921        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
922      }
923
924      // Only do this transformation if the int is intptrty in size, otherwise
925      // there is a truncation or extension that we aren't modeling.
926      if (CE0->getOpcode() == Instruction::PtrToInt &&
927          CE0->getType() == IntPtrTy) {
928        Constant *C = CE0->getOperand(0);
929        Constant *Null = Constant::getNullValue(C->getType());
930        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
931      }
932    }
933
934    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
935      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
936        const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
937
938        if (CE0->getOpcode() == Instruction::IntToPtr) {
939          // Convert the integer value to the right size to ensure we get the
940          // proper extension or truncation.
941          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
942                                                      IntPtrTy, false);
943          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
944                                                      IntPtrTy, false);
945          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
946        }
947
948        // Only do this transformation if the int is intptrty in size, otherwise
949        // there is a truncation or extension that we aren't modeling.
950        if ((CE0->getOpcode() == Instruction::PtrToInt &&
951             CE0->getType() == IntPtrTy &&
952             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
953          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
954                                                 CE1->getOperand(0), TD);
955      }
956    }
957
958    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
959    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
960    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
961        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
962      Constant *LHS =
963        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
964      Constant *RHS =
965        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
966      unsigned OpC =
967        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
968      Constant *Ops[] = { LHS, RHS };
969      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
970    }
971  }
972
973  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
974}
975
976
977/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
978/// getelementptr constantexpr, return the constant value being addressed by the
979/// constant expression, or null if something is funny and we can't decide.
980Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
981                                                       ConstantExpr *CE) {
982  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
983    return 0;  // Do not allow stepping over the value!
984
985  // Loop over all of the operands, tracking down which value we are
986  // addressing...
987  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
988  for (++I; I != E; ++I)
989    if (const StructType *STy = dyn_cast<StructType>(*I)) {
990      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
991      assert(CU->getZExtValue() < STy->getNumElements() &&
992             "Struct index out of range!");
993      unsigned El = (unsigned)CU->getZExtValue();
994      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
995        C = CS->getOperand(El);
996      } else if (isa<ConstantAggregateZero>(C)) {
997        C = Constant::getNullValue(STy->getElementType(El));
998      } else if (isa<UndefValue>(C)) {
999        C = UndefValue::get(STy->getElementType(El));
1000      } else {
1001        return 0;
1002      }
1003    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
1004      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
1005        if (CI->getZExtValue() >= ATy->getNumElements())
1006         return 0;
1007        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
1008          C = CA->getOperand(CI->getZExtValue());
1009        else if (isa<ConstantAggregateZero>(C))
1010          C = Constant::getNullValue(ATy->getElementType());
1011        else if (isa<UndefValue>(C))
1012          C = UndefValue::get(ATy->getElementType());
1013        else
1014          return 0;
1015      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
1016        if (CI->getZExtValue() >= VTy->getNumElements())
1017          return 0;
1018        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
1019          C = CP->getOperand(CI->getZExtValue());
1020        else if (isa<ConstantAggregateZero>(C))
1021          C = Constant::getNullValue(VTy->getElementType());
1022        else if (isa<UndefValue>(C))
1023          C = UndefValue::get(VTy->getElementType());
1024        else
1025          return 0;
1026      } else {
1027        return 0;
1028      }
1029    } else {
1030      return 0;
1031    }
1032  return C;
1033}
1034
1035
1036//===----------------------------------------------------------------------===//
1037//  Constant Folding for Calls
1038//
1039
1040/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1041/// the specified function.
1042bool
1043llvm::canConstantFoldCallTo(const Function *F) {
1044  switch (F->getIntrinsicID()) {
1045  case Intrinsic::sqrt:
1046  case Intrinsic::powi:
1047  case Intrinsic::bswap:
1048  case Intrinsic::ctpop:
1049  case Intrinsic::ctlz:
1050  case Intrinsic::cttz:
1051  case Intrinsic::sadd_with_overflow:
1052  case Intrinsic::uadd_with_overflow:
1053  case Intrinsic::ssub_with_overflow:
1054  case Intrinsic::usub_with_overflow:
1055  case Intrinsic::smul_with_overflow:
1056  case Intrinsic::umul_with_overflow:
1057  case Intrinsic::convert_from_fp16:
1058  case Intrinsic::convert_to_fp16:
1059  case Intrinsic::x86_sse_cvtss2si:
1060  case Intrinsic::x86_sse_cvtss2si64:
1061  case Intrinsic::x86_sse_cvttss2si:
1062  case Intrinsic::x86_sse_cvttss2si64:
1063  case Intrinsic::x86_sse2_cvtsd2si:
1064  case Intrinsic::x86_sse2_cvtsd2si64:
1065  case Intrinsic::x86_sse2_cvttsd2si:
1066  case Intrinsic::x86_sse2_cvttsd2si64:
1067    return true;
1068  default:
1069    return false;
1070  case 0: break;
1071  }
1072
1073  if (!F->hasName()) return false;
1074  StringRef Name = F->getName();
1075
1076  // In these cases, the check of the length is required.  We don't want to
1077  // return true for a name like "cos\0blah" which strcmp would return equal to
1078  // "cos", but has length 8.
1079  switch (Name[0]) {
1080  default: return false;
1081  case 'a':
1082    return Name == "acos" || Name == "asin" ||
1083      Name == "atan" || Name == "atan2";
1084  case 'c':
1085    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1086  case 'e':
1087    return Name == "exp";
1088  case 'f':
1089    return Name == "fabs" || Name == "fmod" || Name == "floor";
1090  case 'l':
1091    return Name == "log" || Name == "log10";
1092  case 'p':
1093    return Name == "pow";
1094  case 's':
1095    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1096      Name == "sinf" || Name == "sqrtf";
1097  case 't':
1098    return Name == "tan" || Name == "tanh";
1099  }
1100}
1101
1102static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1103                                const Type *Ty) {
1104  sys::llvm_fenv_clearexcept();
1105  V = NativeFP(V);
1106  if (sys::llvm_fenv_testexcept()) {
1107    sys::llvm_fenv_clearexcept();
1108    return 0;
1109  }
1110
1111  if (Ty->isFloatTy())
1112    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1113  if (Ty->isDoubleTy())
1114    return ConstantFP::get(Ty->getContext(), APFloat(V));
1115  llvm_unreachable("Can only constant fold float/double");
1116  return 0; // dummy return to suppress warning
1117}
1118
1119static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1120                                      double V, double W, const Type *Ty) {
1121  sys::llvm_fenv_clearexcept();
1122  V = NativeFP(V, W);
1123  if (sys::llvm_fenv_testexcept()) {
1124    sys::llvm_fenv_clearexcept();
1125    return 0;
1126  }
1127
1128  if (Ty->isFloatTy())
1129    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1130  if (Ty->isDoubleTy())
1131    return ConstantFP::get(Ty->getContext(), APFloat(V));
1132  llvm_unreachable("Can only constant fold float/double");
1133  return 0; // dummy return to suppress warning
1134}
1135
1136/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1137/// conversion of a constant floating point. If roundTowardZero is false, the
1138/// default IEEE rounding is used (toward nearest, ties to even). This matches
1139/// the behavior of the non-truncating SSE instructions in the default rounding
1140/// mode. The desired integer type Ty is used to select how many bits are
1141/// available for the result. Returns null if the conversion cannot be
1142/// performed, otherwise returns the Constant value resulting from the
1143/// conversion.
1144static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
1145                                          const Type *Ty) {
1146  assert(Op && "Called with NULL operand");
1147  APFloat Val(Op->getValueAPF());
1148
1149  // All of these conversion intrinsics form an integer of at most 64bits.
1150  unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1151  assert(ResultWidth <= 64 &&
1152         "Can only constant fold conversions to 64 and 32 bit ints");
1153
1154  uint64_t UIntVal;
1155  bool isExact = false;
1156  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1157                                              : APFloat::rmNearestTiesToEven;
1158  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1159                                                  /*isSigned=*/true, mode,
1160                                                  &isExact);
1161  if (status != APFloat::opOK && status != APFloat::opInexact)
1162    return 0;
1163  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1164}
1165
1166/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1167/// with the specified arguments, returning null if unsuccessful.
1168Constant *
1169llvm::ConstantFoldCall(Function *F,
1170                       Constant *const *Operands, unsigned NumOperands) {
1171  if (!F->hasName()) return 0;
1172  StringRef Name = F->getName();
1173
1174  const Type *Ty = F->getReturnType();
1175  if (NumOperands == 1) {
1176    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1177      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1178        APFloat Val(Op->getValueAPF());
1179
1180        bool lost = false;
1181        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1182
1183        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1184      }
1185
1186      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1187        return 0;
1188
1189      /// We only fold functions with finite arguments. Folding NaN and inf is
1190      /// likely to be aborted with an exception anyway, and some host libms
1191      /// have known errors raising exceptions.
1192      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1193        return 0;
1194
1195      /// Currently APFloat versions of these functions do not exist, so we use
1196      /// the host native double versions.  Float versions are not called
1197      /// directly but for all these it is true (float)(f((double)arg)) ==
1198      /// f(arg).  Long double not supported yet.
1199      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1200                                     Op->getValueAPF().convertToDouble();
1201      switch (Name[0]) {
1202      case 'a':
1203        if (Name == "acos")
1204          return ConstantFoldFP(acos, V, Ty);
1205        else if (Name == "asin")
1206          return ConstantFoldFP(asin, V, Ty);
1207        else if (Name == "atan")
1208          return ConstantFoldFP(atan, V, Ty);
1209        break;
1210      case 'c':
1211        if (Name == "ceil")
1212          return ConstantFoldFP(ceil, V, Ty);
1213        else if (Name == "cos")
1214          return ConstantFoldFP(cos, V, Ty);
1215        else if (Name == "cosh")
1216          return ConstantFoldFP(cosh, V, Ty);
1217        else if (Name == "cosf")
1218          return ConstantFoldFP(cos, V, Ty);
1219        break;
1220      case 'e':
1221        if (Name == "exp")
1222          return ConstantFoldFP(exp, V, Ty);
1223        break;
1224      case 'f':
1225        if (Name == "fabs")
1226          return ConstantFoldFP(fabs, V, Ty);
1227        else if (Name == "floor")
1228          return ConstantFoldFP(floor, V, Ty);
1229        break;
1230      case 'l':
1231        if (Name == "log" && V > 0)
1232          return ConstantFoldFP(log, V, Ty);
1233        else if (Name == "log10" && V > 0)
1234          return ConstantFoldFP(log10, V, Ty);
1235        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1236                 (Ty->isFloatTy() || Ty->isDoubleTy())) {
1237          if (V >= -0.0)
1238            return ConstantFoldFP(sqrt, V, Ty);
1239          else // Undefined
1240            return Constant::getNullValue(Ty);
1241        }
1242        break;
1243      case 's':
1244        if (Name == "sin")
1245          return ConstantFoldFP(sin, V, Ty);
1246        else if (Name == "sinh")
1247          return ConstantFoldFP(sinh, V, Ty);
1248        else if (Name == "sqrt" && V >= 0)
1249          return ConstantFoldFP(sqrt, V, Ty);
1250        else if (Name == "sqrtf" && V >= 0)
1251          return ConstantFoldFP(sqrt, V, Ty);
1252        else if (Name == "sinf")
1253          return ConstantFoldFP(sin, V, Ty);
1254        break;
1255      case 't':
1256        if (Name == "tan")
1257          return ConstantFoldFP(tan, V, Ty);
1258        else if (Name == "tanh")
1259          return ConstantFoldFP(tanh, V, Ty);
1260        break;
1261      default:
1262        break;
1263      }
1264      return 0;
1265    }
1266
1267    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1268      switch (F->getIntrinsicID()) {
1269      case Intrinsic::bswap:
1270        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1271      case Intrinsic::ctpop:
1272        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1273      case Intrinsic::cttz:
1274        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1275      case Intrinsic::ctlz:
1276        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1277      case Intrinsic::convert_from_fp16: {
1278        APFloat Val(Op->getValue());
1279
1280        bool lost = false;
1281        APFloat::opStatus status =
1282          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1283
1284        // Conversion is always precise.
1285        (void)status;
1286        assert(status == APFloat::opOK && !lost &&
1287               "Precision lost during fp16 constfolding");
1288
1289        return ConstantFP::get(F->getContext(), Val);
1290      }
1291      default:
1292        return 0;
1293      }
1294    }
1295
1296    if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
1297      switch (F->getIntrinsicID()) {
1298      default: break;
1299      case Intrinsic::x86_sse_cvtss2si:
1300      case Intrinsic::x86_sse_cvtss2si64:
1301      case Intrinsic::x86_sse2_cvtsd2si:
1302      case Intrinsic::x86_sse2_cvtsd2si64:
1303        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1304          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
1305      case Intrinsic::x86_sse_cvttss2si:
1306      case Intrinsic::x86_sse_cvttss2si64:
1307      case Intrinsic::x86_sse2_cvttsd2si:
1308      case Intrinsic::x86_sse2_cvttsd2si64:
1309        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1310          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
1311      }
1312    }
1313
1314    if (isa<UndefValue>(Operands[0])) {
1315      if (F->getIntrinsicID() == Intrinsic::bswap)
1316        return Operands[0];
1317      return 0;
1318    }
1319
1320    return 0;
1321  }
1322
1323  if (NumOperands == 2) {
1324    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1325      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1326        return 0;
1327      double Op1V = Ty->isFloatTy() ?
1328                      (double)Op1->getValueAPF().convertToFloat() :
1329                      Op1->getValueAPF().convertToDouble();
1330      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1331        if (Op2->getType() != Op1->getType())
1332          return 0;
1333
1334        double Op2V = Ty->isFloatTy() ?
1335                      (double)Op2->getValueAPF().convertToFloat():
1336                      Op2->getValueAPF().convertToDouble();
1337
1338        if (Name == "pow")
1339          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1340        if (Name == "fmod")
1341          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1342        if (Name == "atan2")
1343          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1344      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1345        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1346          return ConstantFP::get(F->getContext(),
1347                                 APFloat((float)std::pow((float)Op1V,
1348                                                 (int)Op2C->getZExtValue())));
1349        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1350          return ConstantFP::get(F->getContext(),
1351                                 APFloat((double)std::pow((double)Op1V,
1352                                                   (int)Op2C->getZExtValue())));
1353      }
1354      return 0;
1355    }
1356
1357
1358    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1359      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1360        switch (F->getIntrinsicID()) {
1361        default: break;
1362        case Intrinsic::sadd_with_overflow:
1363        case Intrinsic::uadd_with_overflow:
1364        case Intrinsic::ssub_with_overflow:
1365        case Intrinsic::usub_with_overflow:
1366        case Intrinsic::smul_with_overflow:
1367        case Intrinsic::umul_with_overflow: {
1368          APInt Res;
1369          bool Overflow;
1370          switch (F->getIntrinsicID()) {
1371          default: assert(0 && "Invalid case");
1372          case Intrinsic::sadd_with_overflow:
1373            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1374            break;
1375          case Intrinsic::uadd_with_overflow:
1376            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1377            break;
1378          case Intrinsic::ssub_with_overflow:
1379            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1380            break;
1381          case Intrinsic::usub_with_overflow:
1382            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1383            break;
1384          case Intrinsic::smul_with_overflow:
1385            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1386            break;
1387          case Intrinsic::umul_with_overflow:
1388            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1389            break;
1390          }
1391          Constant *Ops[] = {
1392            ConstantInt::get(F->getContext(), Res),
1393            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1394          };
1395          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1396        }
1397        }
1398      }
1399
1400      return 0;
1401    }
1402    return 0;
1403  }
1404  return 0;
1405}
1406