ConstantFolding.cpp revision 6f532a988e5c02fcb271fb65e9e7b83f0147d3f2
1//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions determines the possibility of performing constant
11// folding.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Support/GetElementPtrTypeIterator.h"
25#include "llvm/Support/MathExtras.h"
26#include <cerrno>
27#include <cmath>
28using namespace llvm;
29
30//===----------------------------------------------------------------------===//
31// Constant Folding internal helper functions
32//===----------------------------------------------------------------------===//
33
34/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
35/// from a global, return the global and the constant.  Because of
36/// constantexprs, this function is recursive.
37static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
38                                       int64_t &Offset, const TargetData &TD) {
39  // Trivial case, constant is the global.
40  if ((GV = dyn_cast<GlobalValue>(C))) {
41    Offset = 0;
42    return true;
43  }
44
45  // Otherwise, if this isn't a constant expr, bail out.
46  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
47  if (!CE) return false;
48
49  // Look through ptr->int and ptr->ptr casts.
50  if (CE->getOpcode() == Instruction::PtrToInt ||
51      CE->getOpcode() == Instruction::BitCast)
52    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
53
54  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
55  if (CE->getOpcode() == Instruction::GetElementPtr) {
56    // Cannot compute this if the element type of the pointer is missing size
57    // info.
58    if (!cast<PointerType>(CE->getOperand(0)->getType())
59                 ->getElementType()->isSized())
60      return false;
61
62    // If the base isn't a global+constant, we aren't either.
63    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
64      return false;
65
66    // Otherwise, add any offset that our operands provide.
67    gep_type_iterator GTI = gep_type_begin(CE);
68    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
69         i != e; ++i, ++GTI) {
70      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
71      if (!CI) return false;  // Index isn't a simple constant?
72      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
73
74      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
75        // N = N + Offset
76        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
77      } else {
78        const SequentialType *SQT = cast<SequentialType>(*GTI);
79        Offset += TD.getTypePaddedSize(SQT->getElementType())*CI->getSExtValue();
80      }
81    }
82    return true;
83  }
84
85  return false;
86}
87
88
89/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
90/// Attempt to symbolically evaluate the result of a binary operator merging
91/// these together.  If target data info is available, it is provided as TD,
92/// otherwise TD is null.
93static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
94                                           Constant *Op1, const TargetData *TD){
95  // SROA
96
97  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
98  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
99  // bits.
100
101
102  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
103  // constant.  This happens frequently when iterating over a global array.
104  if (Opc == Instruction::Sub && TD) {
105    GlobalValue *GV1, *GV2;
106    int64_t Offs1, Offs2;
107
108    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
109      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
110          GV1 == GV2) {
111        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
112        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
113      }
114  }
115
116  return 0;
117}
118
119/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
120/// constant expression, do so.
121static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
122                                         const Type *ResultTy,
123                                         const TargetData *TD) {
124  Constant *Ptr = Ops[0];
125  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
126    return 0;
127
128  uint64_t BasePtr = 0;
129  if (!Ptr->isNullValue()) {
130    // If this is a inttoptr from a constant int, we can fold this as the base,
131    // otherwise we can't.
132    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
133      if (CE->getOpcode() == Instruction::IntToPtr)
134        if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
135          BasePtr = Base->getZExtValue();
136
137    if (BasePtr == 0)
138      return 0;
139  }
140
141  // If this is a constant expr gep that is effectively computing an
142  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
143  for (unsigned i = 1; i != NumOps; ++i)
144    if (!isa<ConstantInt>(Ops[i]))
145      return false;
146
147  uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
148                                         (Value**)Ops+1, NumOps-1);
149  Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset+BasePtr);
150  return ConstantExpr::getIntToPtr(C, ResultTy);
151}
152
153/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
154/// targetdata.  Return 0 if unfoldable.
155static Constant *FoldBitCast(Constant *C, const Type *DestTy,
156                             const TargetData &TD) {
157  // If this is a bitcast from constant vector -> vector, fold it.
158  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
159    if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
160      // If the element types match, VMCore can fold it.
161      unsigned NumDstElt = DestVTy->getNumElements();
162      unsigned NumSrcElt = CV->getNumOperands();
163      if (NumDstElt == NumSrcElt)
164        return 0;
165
166      const Type *SrcEltTy = CV->getType()->getElementType();
167      const Type *DstEltTy = DestVTy->getElementType();
168
169      // Otherwise, we're changing the number of elements in a vector, which
170      // requires endianness information to do the right thing.  For example,
171      //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
172      // folds to (little endian):
173      //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
174      // and to (big endian):
175      //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
176
177      // First thing is first.  We only want to think about integer here, so if
178      // we have something in FP form, recast it as integer.
179      if (DstEltTy->isFloatingPoint()) {
180        // Fold to an vector of integers with same size as our FP type.
181        unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
182        const Type *DestIVTy = VectorType::get(IntegerType::get(FPWidth),
183                                               NumDstElt);
184        // Recursively handle this integer conversion, if possible.
185        C = FoldBitCast(C, DestIVTy, TD);
186        if (!C) return 0;
187
188        // Finally, VMCore can handle this now that #elts line up.
189        return ConstantExpr::getBitCast(C, DestTy);
190      }
191
192      // Okay, we know the destination is integer, if the input is FP, convert
193      // it to integer first.
194      if (SrcEltTy->isFloatingPoint()) {
195        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
196        const Type *SrcIVTy = VectorType::get(IntegerType::get(FPWidth),
197                                              NumSrcElt);
198        // Ask VMCore to do the conversion now that #elts line up.
199        C = ConstantExpr::getBitCast(C, SrcIVTy);
200        CV = dyn_cast<ConstantVector>(C);
201        if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out.
202      }
203
204      // Now we know that the input and output vectors are both integer vectors
205      // of the same size, and that their #elements is not the same.  Do the
206      // conversion here, which depends on whether the input or output has
207      // more elements.
208      bool isLittleEndian = TD.isLittleEndian();
209
210      SmallVector<Constant*, 32> Result;
211      if (NumDstElt < NumSrcElt) {
212        // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
213        Constant *Zero = Constant::getNullValue(DstEltTy);
214        unsigned Ratio = NumSrcElt/NumDstElt;
215        unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
216        unsigned SrcElt = 0;
217        for (unsigned i = 0; i != NumDstElt; ++i) {
218          // Build each element of the result.
219          Constant *Elt = Zero;
220          unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
221          for (unsigned j = 0; j != Ratio; ++j) {
222            Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
223            if (!Src) return 0;  // Reject constantexpr elements.
224
225            // Zero extend the element to the right size.
226            Src = ConstantExpr::getZExt(Src, Elt->getType());
227
228            // Shift it to the right place, depending on endianness.
229            Src = ConstantExpr::getShl(Src,
230                                    ConstantInt::get(Src->getType(), ShiftAmt));
231            ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
232
233            // Mix it in.
234            Elt = ConstantExpr::getOr(Elt, Src);
235          }
236          Result.push_back(Elt);
237        }
238      } else {
239        // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
240        unsigned Ratio = NumDstElt/NumSrcElt;
241        unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
242
243        // Loop over each source value, expanding into multiple results.
244        for (unsigned i = 0; i != NumSrcElt; ++i) {
245          Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
246          if (!Src) return 0;  // Reject constantexpr elements.
247
248          unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
249          for (unsigned j = 0; j != Ratio; ++j) {
250            // Shift the piece of the value into the right place, depending on
251            // endianness.
252            Constant *Elt = ConstantExpr::getLShr(Src,
253                                ConstantInt::get(Src->getType(), ShiftAmt));
254            ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
255
256            // Truncate and remember this piece.
257            Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
258          }
259        }
260      }
261
262      return ConstantVector::get(&Result[0], Result.size());
263    }
264  }
265
266  return 0;
267}
268
269
270//===----------------------------------------------------------------------===//
271// Constant Folding public APIs
272//===----------------------------------------------------------------------===//
273
274
275/// ConstantFoldInstruction - Attempt to constant fold the specified
276/// instruction.  If successful, the constant result is returned, if not, null
277/// is returned.  Note that this function can only fail when attempting to fold
278/// instructions like loads and stores, which have no constant expression form.
279///
280Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
281  if (PHINode *PN = dyn_cast<PHINode>(I)) {
282    if (PN->getNumIncomingValues() == 0)
283      return UndefValue::get(PN->getType());
284
285    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
286    if (Result == 0) return 0;
287
288    // Handle PHI nodes specially here...
289    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
290      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
291        return 0;   // Not all the same incoming constants...
292
293    // If we reach here, all incoming values are the same constant.
294    return Result;
295  }
296
297  // Scan the operand list, checking to see if they are all constants, if so,
298  // hand off to ConstantFoldInstOperands.
299  SmallVector<Constant*, 8> Ops;
300  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
301    if (Constant *Op = dyn_cast<Constant>(*i))
302      Ops.push_back(Op);
303    else
304      return 0;  // All operands not constant!
305
306  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
307    return ConstantFoldCompareInstOperands(CI->getPredicate(),
308                                           &Ops[0], Ops.size(), TD);
309  else
310    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
311                                    &Ops[0], Ops.size(), TD);
312}
313
314/// ConstantFoldConstantExpression - Attempt to fold the constant expression
315/// using the specified TargetData.  If successful, the constant result is
316/// result is returned, if not, null is returned.
317Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
318                                               const TargetData *TD) {
319  assert(TD && "ConstantFoldConstantExpression requires a valid TargetData.");
320
321  SmallVector<Constant*, 8> Ops;
322  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
323    Ops.push_back(cast<Constant>(*i));
324
325  if (CE->isCompare())
326    return ConstantFoldCompareInstOperands(CE->getPredicate(),
327                                           &Ops[0], Ops.size(), TD);
328  else
329    return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
330                                    &Ops[0], Ops.size(), TD);
331}
332
333/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
334/// specified opcode and operands.  If successful, the constant result is
335/// returned, if not, null is returned.  Note that this function can fail when
336/// attempting to fold instructions like loads and stores, which have no
337/// constant expression form.
338///
339Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
340                                         Constant* const* Ops, unsigned NumOps,
341                                         const TargetData *TD) {
342  // Handle easy binops first.
343  if (Instruction::isBinaryOp(Opcode)) {
344    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
345      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
346        return C;
347
348    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
349  }
350
351  switch (Opcode) {
352  default: return 0;
353  case Instruction::Call:
354    if (Function *F = dyn_cast<Function>(Ops[0]))
355      if (canConstantFoldCallTo(F))
356        return ConstantFoldCall(F, Ops+1, NumOps-1);
357    return 0;
358  case Instruction::ICmp:
359  case Instruction::FCmp:
360  case Instruction::VICmp:
361  case Instruction::VFCmp:
362    assert(0 &&"This function is invalid for compares: no predicate specified");
363  case Instruction::PtrToInt:
364    // If the input is a inttoptr, eliminate the pair.  This requires knowing
365    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
366    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
367      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
368        Constant *Input = CE->getOperand(0);
369        unsigned InWidth = Input->getType()->getPrimitiveSizeInBits();
370        if (TD->getPointerSizeInBits() < InWidth) {
371          Constant *Mask =
372            ConstantInt::get(APInt::getLowBitsSet(InWidth,
373                                                  TD->getPointerSizeInBits()));
374          Input = ConstantExpr::getAnd(Input, Mask);
375        }
376        // Do a zext or trunc to get to the dest size.
377        return ConstantExpr::getIntegerCast(Input, DestTy, false);
378      }
379    }
380    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
381  case Instruction::IntToPtr:
382    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
383    // the int size is >= the ptr size.  This requires knowing the width of a
384    // pointer, so it can't be done in ConstantExpr::getCast.
385    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
386      if (TD && CE->getOpcode() == Instruction::PtrToInt &&
387          TD->getPointerSizeInBits() <=
388          CE->getType()->getPrimitiveSizeInBits()) {
389        Constant *Input = CE->getOperand(0);
390        Constant *C = FoldBitCast(Input, DestTy, *TD);
391        return C ? C : ConstantExpr::getBitCast(Input, DestTy);
392      }
393    }
394    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
395  case Instruction::Trunc:
396  case Instruction::ZExt:
397  case Instruction::SExt:
398  case Instruction::FPTrunc:
399  case Instruction::FPExt:
400  case Instruction::UIToFP:
401  case Instruction::SIToFP:
402  case Instruction::FPToUI:
403  case Instruction::FPToSI:
404      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
405  case Instruction::BitCast:
406    if (TD)
407      if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD))
408        return C;
409    return ConstantExpr::getBitCast(Ops[0], DestTy);
410  case Instruction::Select:
411    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
412  case Instruction::ExtractElement:
413    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
414  case Instruction::InsertElement:
415    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
416  case Instruction::ShuffleVector:
417    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
418  case Instruction::GetElementPtr:
419    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
420      return C;
421
422    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
423  }
424}
425
426/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
427/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
428/// returns a constant expression of the specified operands.
429///
430Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
431                                                Constant*const * Ops,
432                                                unsigned NumOps,
433                                                const TargetData *TD) {
434  // fold: icmp (inttoptr x), null         -> icmp x, 0
435  // fold: icmp (ptrtoint x), 0            -> icmp x, null
436  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
437  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
438  //
439  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
440  // around to know if bit truncation is happening.
441  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
442    if (TD && Ops[1]->isNullValue()) {
443      const Type *IntPtrTy = TD->getIntPtrType();
444      if (CE0->getOpcode() == Instruction::IntToPtr) {
445        // Convert the integer value to the right size to ensure we get the
446        // proper extension or truncation.
447        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
448                                                   IntPtrTy, false);
449        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
450        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
451      }
452
453      // Only do this transformation if the int is intptrty in size, otherwise
454      // there is a truncation or extension that we aren't modeling.
455      if (CE0->getOpcode() == Instruction::PtrToInt &&
456          CE0->getType() == IntPtrTy) {
457        Constant *C = CE0->getOperand(0);
458        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
459        // FIXME!
460        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
461      }
462    }
463
464    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
465      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
466        const Type *IntPtrTy = TD->getIntPtrType();
467
468        if (CE0->getOpcode() == Instruction::IntToPtr) {
469          // Convert the integer value to the right size to ensure we get the
470          // proper extension or truncation.
471          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
472                                                      IntPtrTy, false);
473          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
474                                                      IntPtrTy, false);
475          Constant *NewOps[] = { C0, C1 };
476          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
477        }
478
479        // Only do this transformation if the int is intptrty in size, otherwise
480        // there is a truncation or extension that we aren't modeling.
481        if ((CE0->getOpcode() == Instruction::PtrToInt &&
482             CE0->getType() == IntPtrTy &&
483             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
484          Constant *NewOps[] = {
485            CE0->getOperand(0), CE1->getOperand(0)
486          };
487          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, TD);
488        }
489      }
490    }
491  }
492  return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
493}
494
495
496/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
497/// getelementptr constantexpr, return the constant value being addressed by the
498/// constant expression, or null if something is funny and we can't decide.
499Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
500                                                       ConstantExpr *CE) {
501  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
502    return 0;  // Do not allow stepping over the value!
503
504  // Loop over all of the operands, tracking down which value we are
505  // addressing...
506  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
507  for (++I; I != E; ++I)
508    if (const StructType *STy = dyn_cast<StructType>(*I)) {
509      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
510      assert(CU->getZExtValue() < STy->getNumElements() &&
511             "Struct index out of range!");
512      unsigned El = (unsigned)CU->getZExtValue();
513      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
514        C = CS->getOperand(El);
515      } else if (isa<ConstantAggregateZero>(C)) {
516        C = Constant::getNullValue(STy->getElementType(El));
517      } else if (isa<UndefValue>(C)) {
518        C = UndefValue::get(STy->getElementType(El));
519      } else {
520        return 0;
521      }
522    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
523      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
524        if (CI->getZExtValue() >= ATy->getNumElements())
525         return 0;
526        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
527          C = CA->getOperand(CI->getZExtValue());
528        else if (isa<ConstantAggregateZero>(C))
529          C = Constant::getNullValue(ATy->getElementType());
530        else if (isa<UndefValue>(C))
531          C = UndefValue::get(ATy->getElementType());
532        else
533          return 0;
534      } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
535        if (CI->getZExtValue() >= PTy->getNumElements())
536          return 0;
537        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
538          C = CP->getOperand(CI->getZExtValue());
539        else if (isa<ConstantAggregateZero>(C))
540          C = Constant::getNullValue(PTy->getElementType());
541        else if (isa<UndefValue>(C))
542          C = UndefValue::get(PTy->getElementType());
543        else
544          return 0;
545      } else {
546        return 0;
547      }
548    } else {
549      return 0;
550    }
551  return C;
552}
553
554
555//===----------------------------------------------------------------------===//
556//  Constant Folding for Calls
557//
558
559/// canConstantFoldCallTo - Return true if its even possible to fold a call to
560/// the specified function.
561bool
562llvm::canConstantFoldCallTo(const Function *F) {
563  switch (F->getIntrinsicID()) {
564  case Intrinsic::sqrt:
565  case Intrinsic::powi:
566  case Intrinsic::bswap:
567  case Intrinsic::ctpop:
568  case Intrinsic::ctlz:
569  case Intrinsic::cttz:
570    return true;
571  default: break;
572  }
573
574  if (!F->hasName()) return false;
575  const char *Str = F->getNameStart();
576  unsigned Len = F->getNameLen();
577
578  // In these cases, the check of the length is required.  We don't want to
579  // return true for a name like "cos\0blah" which strcmp would return equal to
580  // "cos", but has length 8.
581  switch (Str[0]) {
582  default: return false;
583  case 'a':
584    if (Len == 4)
585      return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
586             !strcmp(Str, "atan");
587    else if (Len == 5)
588      return !strcmp(Str, "atan2");
589    return false;
590  case 'c':
591    if (Len == 3)
592      return !strcmp(Str, "cos");
593    else if (Len == 4)
594      return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
595             !strcmp(Str, "cosh");
596    return false;
597  case 'e':
598    if (Len == 3)
599      return !strcmp(Str, "exp");
600    return false;
601  case 'f':
602    if (Len == 4)
603      return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
604    else if (Len == 5)
605      return !strcmp(Str, "floor");
606    return false;
607    break;
608  case 'l':
609    if (Len == 3 && !strcmp(Str, "log"))
610      return true;
611    if (Len == 5 && !strcmp(Str, "log10"))
612      return true;
613    return false;
614  case 'p':
615    if (Len == 3 && !strcmp(Str, "pow"))
616      return true;
617    return false;
618  case 's':
619    if (Len == 3)
620      return !strcmp(Str, "sin");
621    if (Len == 4)
622      return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt") ||
623             !strcmp(Str, "sinf");
624    if (Len == 5)
625      return !strcmp(Str, "sqrtf");
626    return false;
627  case 't':
628    if (Len == 3 && !strcmp(Str, "tan"))
629      return true;
630    else if (Len == 4 && !strcmp(Str, "tanh"))
631      return true;
632    return false;
633  }
634}
635
636static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
637                                const Type *Ty) {
638  errno = 0;
639  V = NativeFP(V);
640  if (errno != 0) {
641    errno = 0;
642    return 0;
643  }
644
645  if (Ty == Type::FloatTy)
646    return ConstantFP::get(APFloat((float)V));
647  if (Ty == Type::DoubleTy)
648    return ConstantFP::get(APFloat(V));
649  assert(0 && "Can only constant fold float/double");
650  return 0; // dummy return to suppress warning
651}
652
653static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
654                                      double V, double W,
655                                      const Type *Ty) {
656  errno = 0;
657  V = NativeFP(V, W);
658  if (errno != 0) {
659    errno = 0;
660    return 0;
661  }
662
663  if (Ty == Type::FloatTy)
664    return ConstantFP::get(APFloat((float)V));
665  if (Ty == Type::DoubleTy)
666    return ConstantFP::get(APFloat(V));
667  assert(0 && "Can only constant fold float/double");
668  return 0; // dummy return to suppress warning
669}
670
671/// ConstantFoldCall - Attempt to constant fold a call to the specified function
672/// with the specified arguments, returning null if unsuccessful.
673
674Constant *
675llvm::ConstantFoldCall(Function *F,
676                       Constant* const* Operands, unsigned NumOperands) {
677  if (!F->hasName()) return 0;
678  const char *Str = F->getNameStart();
679  unsigned Len = F->getNameLen();
680
681  const Type *Ty = F->getReturnType();
682  if (NumOperands == 1) {
683    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
684      if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
685        return 0;
686      /// Currently APFloat versions of these functions do not exist, so we use
687      /// the host native double versions.  Float versions are not called
688      /// directly but for all these it is true (float)(f((double)arg)) ==
689      /// f(arg).  Long double not supported yet.
690      double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
691                                     Op->getValueAPF().convertToDouble();
692      switch (Str[0]) {
693      case 'a':
694        if (Len == 4 && !strcmp(Str, "acos"))
695          return ConstantFoldFP(acos, V, Ty);
696        else if (Len == 4 && !strcmp(Str, "asin"))
697          return ConstantFoldFP(asin, V, Ty);
698        else if (Len == 4 && !strcmp(Str, "atan"))
699          return ConstantFoldFP(atan, V, Ty);
700        break;
701      case 'c':
702        if (Len == 4 && !strcmp(Str, "ceil"))
703          return ConstantFoldFP(ceil, V, Ty);
704        else if (Len == 3 && !strcmp(Str, "cos"))
705          return ConstantFoldFP(cos, V, Ty);
706        else if (Len == 4 && !strcmp(Str, "cosh"))
707          return ConstantFoldFP(cosh, V, Ty);
708        else if (Len == 4 && !strcmp(Str, "cosf"))
709          return ConstantFoldFP(cos, V, Ty);
710        break;
711      case 'e':
712        if (Len == 3 && !strcmp(Str, "exp"))
713          return ConstantFoldFP(exp, V, Ty);
714        break;
715      case 'f':
716        if (Len == 4 && !strcmp(Str, "fabs"))
717          return ConstantFoldFP(fabs, V, Ty);
718        else if (Len == 5 && !strcmp(Str, "floor"))
719          return ConstantFoldFP(floor, V, Ty);
720        break;
721      case 'l':
722        if (Len == 3 && !strcmp(Str, "log") && V > 0)
723          return ConstantFoldFP(log, V, Ty);
724        else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
725          return ConstantFoldFP(log10, V, Ty);
726        else if (!strcmp(Str, "llvm.sqrt.f32") ||
727                 !strcmp(Str, "llvm.sqrt.f64")) {
728          if (V >= -0.0)
729            return ConstantFoldFP(sqrt, V, Ty);
730          else // Undefined
731            return Constant::getNullValue(Ty);
732        }
733        break;
734      case 's':
735        if (Len == 3 && !strcmp(Str, "sin"))
736          return ConstantFoldFP(sin, V, Ty);
737        else if (Len == 4 && !strcmp(Str, "sinh"))
738          return ConstantFoldFP(sinh, V, Ty);
739        else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
740          return ConstantFoldFP(sqrt, V, Ty);
741        else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
742          return ConstantFoldFP(sqrt, V, Ty);
743        else if (Len == 4 && !strcmp(Str, "sinf"))
744          return ConstantFoldFP(sin, V, Ty);
745        break;
746      case 't':
747        if (Len == 3 && !strcmp(Str, "tan"))
748          return ConstantFoldFP(tan, V, Ty);
749        else if (Len == 4 && !strcmp(Str, "tanh"))
750          return ConstantFoldFP(tanh, V, Ty);
751        break;
752      default:
753        break;
754      }
755    } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
756      if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
757        return ConstantInt::get(Op->getValue().byteSwap());
758      else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
759        return ConstantInt::get(Ty, Op->getValue().countPopulation());
760      else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
761        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
762      else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
763        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
764    }
765  } else if (NumOperands == 2) {
766    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
767      if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
768        return 0;
769      double Op1V = Ty==Type::FloatTy ?
770                      (double)Op1->getValueAPF().convertToFloat():
771                      Op1->getValueAPF().convertToDouble();
772      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
773        double Op2V = Ty==Type::FloatTy ?
774                      (double)Op2->getValueAPF().convertToFloat():
775                      Op2->getValueAPF().convertToDouble();
776
777        if (Len == 3 && !strcmp(Str, "pow")) {
778          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
779        } else if (Len == 4 && !strcmp(Str, "fmod")) {
780          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
781        } else if (Len == 5 && !strcmp(Str, "atan2")) {
782          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
783        }
784      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
785        if (!strcmp(Str, "llvm.powi.f32")) {
786          return ConstantFP::get(APFloat((float)std::pow((float)Op1V,
787                                                 (int)Op2C->getZExtValue())));
788        } else if (!strcmp(Str, "llvm.powi.f64")) {
789          return ConstantFP::get(APFloat((double)std::pow((double)Op1V,
790                                                 (int)Op2C->getZExtValue())));
791        }
792      }
793    }
794  }
795  return 0;
796}
797
798