ConstantFolding.cpp revision c1da204c433459713cbf4c62f0addf458e6b4b9f
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/System/FEnv.h"
34#include <cerrno>
35#include <cmath>
36using namespace llvm;
37
38//===----------------------------------------------------------------------===//
39// Constant Folding internal helper functions
40//===----------------------------------------------------------------------===//
41
42/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
43/// TargetData.  This always returns a non-null constant, but it may be a
44/// ConstantExpr if unfoldable.
45static Constant *FoldBitCast(Constant *C, const Type *DestTy,
46                             const TargetData &TD) {
47
48  // This only handles casts to vectors currently.
49  const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
50  if (DestVTy == 0)
51    return ConstantExpr::getBitCast(C, DestTy);
52
53  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
54  // vector so the code below can handle it uniformly.
55  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
56    Constant *Ops = C; // don't take the address of C!
57    return FoldBitCast(ConstantVector::get(&Ops, 1), DestTy, TD);
58  }
59
60  // If this is a bitcast from constant vector -> vector, fold it.
61  ConstantVector *CV = dyn_cast<ConstantVector>(C);
62  if (CV == 0)
63    return ConstantExpr::getBitCast(C, DestTy);
64
65  // If the element types match, VMCore can fold it.
66  unsigned NumDstElt = DestVTy->getNumElements();
67  unsigned NumSrcElt = CV->getNumOperands();
68  if (NumDstElt == NumSrcElt)
69    return ConstantExpr::getBitCast(C, DestTy);
70
71  const Type *SrcEltTy = CV->getType()->getElementType();
72  const Type *DstEltTy = DestVTy->getElementType();
73
74  // Otherwise, we're changing the number of elements in a vector, which
75  // requires endianness information to do the right thing.  For example,
76  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
77  // folds to (little endian):
78  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
79  // and to (big endian):
80  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
81
82  // First thing is first.  We only want to think about integer here, so if
83  // we have something in FP form, recast it as integer.
84  if (DstEltTy->isFloatingPointTy()) {
85    // Fold to an vector of integers with same size as our FP type.
86    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
87    const Type *DestIVTy =
88      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
89    // Recursively handle this integer conversion, if possible.
90    C = FoldBitCast(C, DestIVTy, TD);
91    if (!C) return ConstantExpr::getBitCast(C, DestTy);
92
93    // Finally, VMCore can handle this now that #elts line up.
94    return ConstantExpr::getBitCast(C, DestTy);
95  }
96
97  // Okay, we know the destination is integer, if the input is FP, convert
98  // it to integer first.
99  if (SrcEltTy->isFloatingPointTy()) {
100    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
101    const Type *SrcIVTy =
102      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
103    // Ask VMCore to do the conversion now that #elts line up.
104    C = ConstantExpr::getBitCast(C, SrcIVTy);
105    CV = dyn_cast<ConstantVector>(C);
106    if (!CV)  // If VMCore wasn't able to fold it, bail out.
107      return C;
108  }
109
110  // Now we know that the input and output vectors are both integer vectors
111  // of the same size, and that their #elements is not the same.  Do the
112  // conversion here, which depends on whether the input or output has
113  // more elements.
114  bool isLittleEndian = TD.isLittleEndian();
115
116  SmallVector<Constant*, 32> Result;
117  if (NumDstElt < NumSrcElt) {
118    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
119    Constant *Zero = Constant::getNullValue(DstEltTy);
120    unsigned Ratio = NumSrcElt/NumDstElt;
121    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
122    unsigned SrcElt = 0;
123    for (unsigned i = 0; i != NumDstElt; ++i) {
124      // Build each element of the result.
125      Constant *Elt = Zero;
126      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
127      for (unsigned j = 0; j != Ratio; ++j) {
128        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
129        if (!Src)  // Reject constantexpr elements.
130          return ConstantExpr::getBitCast(C, DestTy);
131
132        // Zero extend the element to the right size.
133        Src = ConstantExpr::getZExt(Src, Elt->getType());
134
135        // Shift it to the right place, depending on endianness.
136        Src = ConstantExpr::getShl(Src,
137                                   ConstantInt::get(Src->getType(), ShiftAmt));
138        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
139
140        // Mix it in.
141        Elt = ConstantExpr::getOr(Elt, Src);
142      }
143      Result.push_back(Elt);
144    }
145  } else {
146    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
147    unsigned Ratio = NumDstElt/NumSrcElt;
148    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
149
150    // Loop over each source value, expanding into multiple results.
151    for (unsigned i = 0; i != NumSrcElt; ++i) {
152      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
153      if (!Src)  // Reject constantexpr elements.
154        return ConstantExpr::getBitCast(C, DestTy);
155
156      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
157      for (unsigned j = 0; j != Ratio; ++j) {
158        // Shift the piece of the value into the right place, depending on
159        // endianness.
160        Constant *Elt = ConstantExpr::getLShr(Src,
161                                    ConstantInt::get(Src->getType(), ShiftAmt));
162        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
163
164        // Truncate and remember this piece.
165        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
166      }
167    }
168  }
169
170  return ConstantVector::get(Result.data(), Result.size());
171}
172
173
174/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
175/// from a global, return the global and the constant.  Because of
176/// constantexprs, this function is recursive.
177static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
178                                       int64_t &Offset, const TargetData &TD) {
179  // Trivial case, constant is the global.
180  if ((GV = dyn_cast<GlobalValue>(C))) {
181    Offset = 0;
182    return true;
183  }
184
185  // Otherwise, if this isn't a constant expr, bail out.
186  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
187  if (!CE) return false;
188
189  // Look through ptr->int and ptr->ptr casts.
190  if (CE->getOpcode() == Instruction::PtrToInt ||
191      CE->getOpcode() == Instruction::BitCast)
192    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
193
194  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
195  if (CE->getOpcode() == Instruction::GetElementPtr) {
196    // Cannot compute this if the element type of the pointer is missing size
197    // info.
198    if (!cast<PointerType>(CE->getOperand(0)->getType())
199                 ->getElementType()->isSized())
200      return false;
201
202    // If the base isn't a global+constant, we aren't either.
203    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
204      return false;
205
206    // Otherwise, add any offset that our operands provide.
207    gep_type_iterator GTI = gep_type_begin(CE);
208    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
209         i != e; ++i, ++GTI) {
210      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
211      if (!CI) return false;  // Index isn't a simple constant?
212      if (CI->isZero()) continue;  // Not adding anything.
213
214      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
215        // N = N + Offset
216        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
217      } else {
218        const SequentialType *SQT = cast<SequentialType>(*GTI);
219        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
220      }
221    }
222    return true;
223  }
224
225  return false;
226}
227
228/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
229/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
230/// pointer to copy results into and BytesLeft is the number of bytes left in
231/// the CurPtr buffer.  TD is the target data.
232static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
233                               unsigned char *CurPtr, unsigned BytesLeft,
234                               const TargetData &TD) {
235  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
236         "Out of range access");
237
238  // If this element is zero or undefined, we can just return since *CurPtr is
239  // zero initialized.
240  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
241    return true;
242
243  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
244    if (CI->getBitWidth() > 64 ||
245        (CI->getBitWidth() & 7) != 0)
246      return false;
247
248    uint64_t Val = CI->getZExtValue();
249    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
250
251    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
252      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
253      ++ByteOffset;
254    }
255    return true;
256  }
257
258  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
259    if (CFP->getType()->isDoubleTy()) {
260      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
261      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
262    }
263    if (CFP->getType()->isFloatTy()){
264      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
265      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
266    }
267    return false;
268  }
269
270  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
271    const StructLayout *SL = TD.getStructLayout(CS->getType());
272    unsigned Index = SL->getElementContainingOffset(ByteOffset);
273    uint64_t CurEltOffset = SL->getElementOffset(Index);
274    ByteOffset -= CurEltOffset;
275
276    while (1) {
277      // If the element access is to the element itself and not to tail padding,
278      // read the bytes from the element.
279      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
280
281      if (ByteOffset < EltSize &&
282          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
283                              BytesLeft, TD))
284        return false;
285
286      ++Index;
287
288      // Check to see if we read from the last struct element, if so we're done.
289      if (Index == CS->getType()->getNumElements())
290        return true;
291
292      // If we read all of the bytes we needed from this element we're done.
293      uint64_t NextEltOffset = SL->getElementOffset(Index);
294
295      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
296        return true;
297
298      // Move to the next element of the struct.
299      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
300      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
301      ByteOffset = 0;
302      CurEltOffset = NextEltOffset;
303    }
304    // not reached.
305  }
306
307  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
308    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
309    uint64_t Index = ByteOffset / EltSize;
310    uint64_t Offset = ByteOffset - Index * EltSize;
311    for (; Index != CA->getType()->getNumElements(); ++Index) {
312      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
313                              BytesLeft, TD))
314        return false;
315      if (EltSize >= BytesLeft)
316        return true;
317
318      Offset = 0;
319      BytesLeft -= EltSize;
320      CurPtr += EltSize;
321    }
322    return true;
323  }
324
325  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
326    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
327    uint64_t Index = ByteOffset / EltSize;
328    uint64_t Offset = ByteOffset - Index * EltSize;
329    for (; Index != CV->getType()->getNumElements(); ++Index) {
330      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
331                              BytesLeft, TD))
332        return false;
333      if (EltSize >= BytesLeft)
334        return true;
335
336      Offset = 0;
337      BytesLeft -= EltSize;
338      CurPtr += EltSize;
339    }
340    return true;
341  }
342
343  // Otherwise, unknown initializer type.
344  return false;
345}
346
347static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
348                                                 const TargetData &TD) {
349  const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
350  const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
351
352  // If this isn't an integer load we can't fold it directly.
353  if (!IntType) {
354    // If this is a float/double load, we can try folding it as an int32/64 load
355    // and then bitcast the result.  This can be useful for union cases.  Note
356    // that address spaces don't matter here since we're not going to result in
357    // an actual new load.
358    const Type *MapTy;
359    if (LoadTy->isFloatTy())
360      MapTy = Type::getInt32PtrTy(C->getContext());
361    else if (LoadTy->isDoubleTy())
362      MapTy = Type::getInt64PtrTy(C->getContext());
363    else if (LoadTy->isVectorTy()) {
364      MapTy = IntegerType::get(C->getContext(),
365                               TD.getTypeAllocSizeInBits(LoadTy));
366      MapTy = PointerType::getUnqual(MapTy);
367    } else
368      return 0;
369
370    C = FoldBitCast(C, MapTy, TD);
371    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
372      return FoldBitCast(Res, LoadTy, TD);
373    return 0;
374  }
375
376  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
377  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
378
379  GlobalValue *GVal;
380  int64_t Offset;
381  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
382    return 0;
383
384  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
385  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
386      !GV->getInitializer()->getType()->isSized())
387    return 0;
388
389  // If we're loading off the beginning of the global, some bytes may be valid,
390  // but we don't try to handle this.
391  if (Offset < 0) return 0;
392
393  // If we're not accessing anything in this constant, the result is undefined.
394  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
395    return UndefValue::get(IntType);
396
397  unsigned char RawBytes[32] = {0};
398  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
399                          BytesLoaded, TD))
400    return 0;
401
402  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
403  for (unsigned i = 1; i != BytesLoaded; ++i) {
404    ResultVal <<= 8;
405    ResultVal |= RawBytes[BytesLoaded-1-i];
406  }
407
408  return ConstantInt::get(IntType->getContext(), ResultVal);
409}
410
411/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
412/// produce if it is constant and determinable.  If this is not determinable,
413/// return null.
414Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
415                                             const TargetData *TD) {
416  // First, try the easy cases:
417  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
418    if (GV->isConstant() && GV->hasDefinitiveInitializer())
419      return GV->getInitializer();
420
421  // If the loaded value isn't a constant expr, we can't handle it.
422  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
423  if (!CE) return 0;
424
425  if (CE->getOpcode() == Instruction::GetElementPtr) {
426    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
427      if (GV->isConstant() && GV->hasDefinitiveInitializer())
428        if (Constant *V =
429             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
430          return V;
431  }
432
433  // Instead of loading constant c string, use corresponding integer value
434  // directly if string length is small enough.
435  std::string Str;
436  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
437    unsigned StrLen = Str.length();
438    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
439    unsigned NumBits = Ty->getPrimitiveSizeInBits();
440    // Replace load with immediate integer if the result is an integer or fp
441    // value.
442    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
443        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
444      APInt StrVal(NumBits, 0);
445      APInt SingleChar(NumBits, 0);
446      if (TD->isLittleEndian()) {
447        for (signed i = StrLen-1; i >= 0; i--) {
448          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
449          StrVal = (StrVal << 8) | SingleChar;
450        }
451      } else {
452        for (unsigned i = 0; i < StrLen; i++) {
453          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
454          StrVal = (StrVal << 8) | SingleChar;
455        }
456        // Append NULL at the end.
457        SingleChar = 0;
458        StrVal = (StrVal << 8) | SingleChar;
459      }
460
461      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
462      if (Ty->isFloatingPointTy())
463        Res = ConstantExpr::getBitCast(Res, Ty);
464      return Res;
465    }
466  }
467
468  // If this load comes from anywhere in a constant global, and if the global
469  // is all undef or zero, we know what it loads.
470  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getUnderlyingObject())){
471    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
472      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
473      if (GV->getInitializer()->isNullValue())
474        return Constant::getNullValue(ResTy);
475      if (isa<UndefValue>(GV->getInitializer()))
476        return UndefValue::get(ResTy);
477    }
478  }
479
480  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
481  // currently don't do any of this for big endian systems.  It can be
482  // generalized in the future if someone is interested.
483  if (TD && TD->isLittleEndian())
484    return FoldReinterpretLoadFromConstPtr(CE, *TD);
485  return 0;
486}
487
488static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
489  if (LI->isVolatile()) return 0;
490
491  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
492    return ConstantFoldLoadFromConstPtr(C, TD);
493
494  return 0;
495}
496
497/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
498/// Attempt to symbolically evaluate the result of a binary operator merging
499/// these together.  If target data info is available, it is provided as TD,
500/// otherwise TD is null.
501static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
502                                           Constant *Op1, const TargetData *TD){
503  // SROA
504
505  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
506  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
507  // bits.
508
509
510  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
511  // constant.  This happens frequently when iterating over a global array.
512  if (Opc == Instruction::Sub && TD) {
513    GlobalValue *GV1, *GV2;
514    int64_t Offs1, Offs2;
515
516    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
517      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
518          GV1 == GV2) {
519        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
520        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
521      }
522  }
523
524  return 0;
525}
526
527/// CastGEPIndices - If array indices are not pointer-sized integers,
528/// explicitly cast them so that they aren't implicitly casted by the
529/// getelementptr.
530static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
531                                const Type *ResultTy,
532                                const TargetData *TD) {
533  if (!TD) return 0;
534  const Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
535
536  bool Any = false;
537  SmallVector<Constant*, 32> NewIdxs;
538  for (unsigned i = 1; i != NumOps; ++i) {
539    if ((i == 1 ||
540         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
541                                        reinterpret_cast<Value *const *>(Ops+1),
542                                                            i-1))) &&
543        Ops[i]->getType() != IntPtrTy) {
544      Any = true;
545      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
546                                                                      true,
547                                                                      IntPtrTy,
548                                                                      true),
549                                              Ops[i], IntPtrTy));
550    } else
551      NewIdxs.push_back(Ops[i]);
552  }
553  if (!Any) return 0;
554
555  Constant *C =
556    ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
557  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
558    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
559      C = Folded;
560  return C;
561}
562
563/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
564/// constant expression, do so.
565static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
566                                         const Type *ResultTy,
567                                         const TargetData *TD) {
568  Constant *Ptr = Ops[0];
569  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
570    return 0;
571
572  unsigned BitWidth =
573    TD->getTypeSizeInBits(TD->getIntPtrType(Ptr->getContext()));
574
575  // If this is a constant expr gep that is effectively computing an
576  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
577  for (unsigned i = 1; i != NumOps; ++i)
578    if (!isa<ConstantInt>(Ops[i]))
579      return 0;
580
581  APInt Offset = APInt(BitWidth,
582                       TD->getIndexedOffset(Ptr->getType(),
583                                            (Value**)Ops+1, NumOps-1));
584  Ptr = cast<Constant>(Ptr->stripPointerCasts());
585
586  // If this is a GEP of a GEP, fold it all into a single GEP.
587  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
588    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
589
590    // Do not try the incorporate the sub-GEP if some index is not a number.
591    bool AllConstantInt = true;
592    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
593      if (!isa<ConstantInt>(NestedOps[i])) {
594        AllConstantInt = false;
595        break;
596      }
597    if (!AllConstantInt)
598      break;
599
600    Ptr = cast<Constant>(GEP->getOperand(0));
601    Offset += APInt(BitWidth,
602                    TD->getIndexedOffset(Ptr->getType(),
603                                         (Value**)NestedOps.data(),
604                                         NestedOps.size()));
605    Ptr = cast<Constant>(Ptr->stripPointerCasts());
606  }
607
608  // If the base value for this address is a literal integer value, fold the
609  // getelementptr to the resulting integer value casted to the pointer type.
610  APInt BasePtr(BitWidth, 0);
611  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
612    if (CE->getOpcode() == Instruction::IntToPtr)
613      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
614        BasePtr = Base->getValue();
615        BasePtr.zextOrTrunc(BitWidth);
616      }
617  if (Ptr->isNullValue() || BasePtr != 0) {
618    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
619    return ConstantExpr::getIntToPtr(C, ResultTy);
620  }
621
622  // Otherwise form a regular getelementptr. Recompute the indices so that
623  // we eliminate over-indexing of the notional static type array bounds.
624  // This makes it easy to determine if the getelementptr is "inbounds".
625  // Also, this helps GlobalOpt do SROA on GlobalVariables.
626  const Type *Ty = Ptr->getType();
627  SmallVector<Constant*, 32> NewIdxs;
628  do {
629    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
630      if (ATy->isPointerTy()) {
631        // The only pointer indexing we'll do is on the first index of the GEP.
632        if (!NewIdxs.empty())
633          break;
634
635        // Only handle pointers to sized types, not pointers to functions.
636        if (!ATy->getElementType()->isSized())
637          return 0;
638      }
639
640      // Determine which element of the array the offset points into.
641      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
642      const IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
643      if (ElemSize == 0)
644        // The element size is 0. This may be [0 x Ty]*, so just use a zero
645        // index for this level and procede to the next level to see if it can
646        // accomodate the offset.
647        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
648      else {
649        // The element size is non-zero divide the offset by the element
650        // size (rounding down), to compute the index at this level.
651        APInt NewIdx = Offset.udiv(ElemSize);
652        Offset -= NewIdx * ElemSize;
653        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
654      }
655      Ty = ATy->getElementType();
656    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
657      // Determine which field of the struct the offset points into. The
658      // getZExtValue is at least as safe as the StructLayout API because we
659      // know the offset is within the struct at this point.
660      const StructLayout &SL = *TD->getStructLayout(STy);
661      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
662      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
663                                         ElIdx));
664      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
665      Ty = STy->getTypeAtIndex(ElIdx);
666    } else {
667      // We've reached some non-indexable type.
668      break;
669    }
670  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
671
672  // If we haven't used up the entire offset by descending the static
673  // type, then the offset is pointing into the middle of an indivisible
674  // member, so we can't simplify it.
675  if (Offset != 0)
676    return 0;
677
678  // Create a GEP.
679  Constant *C =
680    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
681  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
682         "Computed GetElementPtr has unexpected type!");
683
684  // If we ended up indexing a member with a type that doesn't match
685  // the type of what the original indices indexed, add a cast.
686  if (Ty != cast<PointerType>(ResultTy)->getElementType())
687    C = FoldBitCast(C, ResultTy, *TD);
688
689  return C;
690}
691
692
693
694//===----------------------------------------------------------------------===//
695// Constant Folding public APIs
696//===----------------------------------------------------------------------===//
697
698
699/// ConstantFoldInstruction - Attempt to constant fold the specified
700/// instruction.  If successful, the constant result is returned, if not, null
701/// is returned.  Note that this function can only fail when attempting to fold
702/// instructions like loads and stores, which have no constant expression form.
703///
704Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
705  // Handle PHI nodes specially here...
706  if (PHINode *PN = dyn_cast<PHINode>(I)) {
707    Constant *CommonValue = 0;
708
709    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
710      Value *Incoming = PN->getIncomingValue(i);
711      // If the incoming value is equal to the phi node itself or is undef then
712      // skip it.
713      if (Incoming == PN || isa<UndefValue>(Incoming))
714        continue;
715      // If the incoming value is not a constant, or is a different constant to
716      // the one we saw previously, then give up.
717      Constant *C = dyn_cast<Constant>(Incoming);
718      if (!C || (CommonValue && C != CommonValue))
719        return 0;
720      CommonValue = C;
721    }
722
723    // If we reach here, all incoming values are the same constant or undef.
724    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
725  }
726
727  // Scan the operand list, checking to see if they are all constants, if so,
728  // hand off to ConstantFoldInstOperands.
729  SmallVector<Constant*, 8> Ops;
730  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
731    if (Constant *Op = dyn_cast<Constant>(*i))
732      Ops.push_back(Op);
733    else
734      return 0;  // All operands not constant!
735
736  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
737    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
738                                           TD);
739
740  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
741    return ConstantFoldLoadInst(LI, TD);
742
743  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
744                                  Ops.data(), Ops.size(), TD);
745}
746
747/// ConstantFoldConstantExpression - Attempt to fold the constant expression
748/// using the specified TargetData.  If successful, the constant result is
749/// result is returned, if not, null is returned.
750Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
751                                               const TargetData *TD) {
752  SmallVector<Constant*, 8> Ops;
753  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
754       i != e; ++i) {
755    Constant *NewC = cast<Constant>(*i);
756    // Recursively fold the ConstantExpr's operands.
757    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
758      NewC = ConstantFoldConstantExpression(NewCE, TD);
759    Ops.push_back(NewC);
760  }
761
762  if (CE->isCompare())
763    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
764                                           TD);
765  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
766                                  Ops.data(), Ops.size(), TD);
767}
768
769/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
770/// specified opcode and operands.  If successful, the constant result is
771/// returned, if not, null is returned.  Note that this function can fail when
772/// attempting to fold instructions like loads and stores, which have no
773/// constant expression form.
774///
775/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
776/// information, due to only being passed an opcode and operands. Constant
777/// folding using this function strips this information.
778///
779Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
780                                         Constant* const* Ops, unsigned NumOps,
781                                         const TargetData *TD) {
782  // Handle easy binops first.
783  if (Instruction::isBinaryOp(Opcode)) {
784    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
785      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
786        return C;
787
788    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
789  }
790
791  switch (Opcode) {
792  default: return 0;
793  case Instruction::ICmp:
794  case Instruction::FCmp: assert(0 && "Invalid for compares");
795  case Instruction::Call:
796    if (Function *F = dyn_cast<Function>(Ops[NumOps - 1]))
797      if (canConstantFoldCallTo(F))
798        return ConstantFoldCall(F, Ops, NumOps - 1);
799    return 0;
800  case Instruction::PtrToInt:
801    // If the input is a inttoptr, eliminate the pair.  This requires knowing
802    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
803    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
804      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
805        Constant *Input = CE->getOperand(0);
806        unsigned InWidth = Input->getType()->getScalarSizeInBits();
807        if (TD->getPointerSizeInBits() < InWidth) {
808          Constant *Mask =
809            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
810                                                  TD->getPointerSizeInBits()));
811          Input = ConstantExpr::getAnd(Input, Mask);
812        }
813        // Do a zext or trunc to get to the dest size.
814        return ConstantExpr::getIntegerCast(Input, DestTy, false);
815      }
816    }
817    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
818  case Instruction::IntToPtr:
819    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
820    // the int size is >= the ptr size.  This requires knowing the width of a
821    // pointer, so it can't be done in ConstantExpr::getCast.
822    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
823      if (TD &&
824          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
825          CE->getOpcode() == Instruction::PtrToInt)
826        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
827
828    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
829  case Instruction::Trunc:
830  case Instruction::ZExt:
831  case Instruction::SExt:
832  case Instruction::FPTrunc:
833  case Instruction::FPExt:
834  case Instruction::UIToFP:
835  case Instruction::SIToFP:
836  case Instruction::FPToUI:
837  case Instruction::FPToSI:
838      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
839  case Instruction::BitCast:
840    if (TD)
841      return FoldBitCast(Ops[0], DestTy, *TD);
842    return ConstantExpr::getBitCast(Ops[0], DestTy);
843  case Instruction::Select:
844    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
845  case Instruction::ExtractElement:
846    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
847  case Instruction::InsertElement:
848    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
849  case Instruction::ShuffleVector:
850    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
851  case Instruction::GetElementPtr:
852    if (Constant *C = CastGEPIndices(Ops, NumOps, DestTy, TD))
853      return C;
854    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
855      return C;
856
857    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
858  }
859}
860
861/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
862/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
863/// returns a constant expression of the specified operands.
864///
865Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
866                                                Constant *Ops0, Constant *Ops1,
867                                                const TargetData *TD) {
868  // fold: icmp (inttoptr x), null         -> icmp x, 0
869  // fold: icmp (ptrtoint x), 0            -> icmp x, null
870  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
871  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
872  //
873  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
874  // around to know if bit truncation is happening.
875  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
876    if (TD && Ops1->isNullValue()) {
877      const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
878      if (CE0->getOpcode() == Instruction::IntToPtr) {
879        // Convert the integer value to the right size to ensure we get the
880        // proper extension or truncation.
881        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
882                                                   IntPtrTy, false);
883        Constant *Null = Constant::getNullValue(C->getType());
884        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
885      }
886
887      // Only do this transformation if the int is intptrty in size, otherwise
888      // there is a truncation or extension that we aren't modeling.
889      if (CE0->getOpcode() == Instruction::PtrToInt &&
890          CE0->getType() == IntPtrTy) {
891        Constant *C = CE0->getOperand(0);
892        Constant *Null = Constant::getNullValue(C->getType());
893        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
894      }
895    }
896
897    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
898      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
899        const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
900
901        if (CE0->getOpcode() == Instruction::IntToPtr) {
902          // Convert the integer value to the right size to ensure we get the
903          // proper extension or truncation.
904          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
905                                                      IntPtrTy, false);
906          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
907                                                      IntPtrTy, false);
908          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
909        }
910
911        // Only do this transformation if the int is intptrty in size, otherwise
912        // there is a truncation or extension that we aren't modeling.
913        if ((CE0->getOpcode() == Instruction::PtrToInt &&
914             CE0->getType() == IntPtrTy &&
915             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
916          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
917                                                 CE1->getOperand(0), TD);
918      }
919    }
920
921    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
922    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
923    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
924        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
925      Constant *LHS =
926        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
927      Constant *RHS =
928        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
929      unsigned OpC =
930        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
931      Constant *Ops[] = { LHS, RHS };
932      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
933    }
934  }
935
936  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
937}
938
939
940/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
941/// getelementptr constantexpr, return the constant value being addressed by the
942/// constant expression, or null if something is funny and we can't decide.
943Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
944                                                       ConstantExpr *CE) {
945  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
946    return 0;  // Do not allow stepping over the value!
947
948  // Loop over all of the operands, tracking down which value we are
949  // addressing...
950  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
951  for (++I; I != E; ++I)
952    if (const StructType *STy = dyn_cast<StructType>(*I)) {
953      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
954      assert(CU->getZExtValue() < STy->getNumElements() &&
955             "Struct index out of range!");
956      unsigned El = (unsigned)CU->getZExtValue();
957      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
958        C = CS->getOperand(El);
959      } else if (isa<ConstantAggregateZero>(C)) {
960        C = Constant::getNullValue(STy->getElementType(El));
961      } else if (isa<UndefValue>(C)) {
962        C = UndefValue::get(STy->getElementType(El));
963      } else {
964        return 0;
965      }
966    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
967      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
968        if (CI->getZExtValue() >= ATy->getNumElements())
969         return 0;
970        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
971          C = CA->getOperand(CI->getZExtValue());
972        else if (isa<ConstantAggregateZero>(C))
973          C = Constant::getNullValue(ATy->getElementType());
974        else if (isa<UndefValue>(C))
975          C = UndefValue::get(ATy->getElementType());
976        else
977          return 0;
978      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
979        if (CI->getZExtValue() >= VTy->getNumElements())
980          return 0;
981        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
982          C = CP->getOperand(CI->getZExtValue());
983        else if (isa<ConstantAggregateZero>(C))
984          C = Constant::getNullValue(VTy->getElementType());
985        else if (isa<UndefValue>(C))
986          C = UndefValue::get(VTy->getElementType());
987        else
988          return 0;
989      } else {
990        return 0;
991      }
992    } else {
993      return 0;
994    }
995  return C;
996}
997
998
999//===----------------------------------------------------------------------===//
1000//  Constant Folding for Calls
1001//
1002
1003/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1004/// the specified function.
1005bool
1006llvm::canConstantFoldCallTo(const Function *F) {
1007  switch (F->getIntrinsicID()) {
1008  case Intrinsic::sqrt:
1009  case Intrinsic::powi:
1010  case Intrinsic::bswap:
1011  case Intrinsic::ctpop:
1012  case Intrinsic::ctlz:
1013  case Intrinsic::cttz:
1014  case Intrinsic::uadd_with_overflow:
1015  case Intrinsic::usub_with_overflow:
1016  case Intrinsic::sadd_with_overflow:
1017  case Intrinsic::ssub_with_overflow:
1018  case Intrinsic::smul_with_overflow:
1019  case Intrinsic::convert_from_fp16:
1020  case Intrinsic::convert_to_fp16:
1021    return true;
1022  default:
1023    return false;
1024  case 0: break;
1025  }
1026
1027  if (!F->hasName()) return false;
1028  StringRef Name = F->getName();
1029
1030  // In these cases, the check of the length is required.  We don't want to
1031  // return true for a name like "cos\0blah" which strcmp would return equal to
1032  // "cos", but has length 8.
1033  switch (Name[0]) {
1034  default: return false;
1035  case 'a':
1036    return Name == "acos" || Name == "asin" ||
1037      Name == "atan" || Name == "atan2";
1038  case 'c':
1039    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1040  case 'e':
1041    return Name == "exp";
1042  case 'f':
1043    return Name == "fabs" || Name == "fmod" || Name == "floor";
1044  case 'l':
1045    return Name == "log" || Name == "log10";
1046  case 'p':
1047    return Name == "pow";
1048  case 's':
1049    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1050      Name == "sinf" || Name == "sqrtf";
1051  case 't':
1052    return Name == "tan" || Name == "tanh";
1053  }
1054}
1055
1056static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1057                                const Type *Ty) {
1058  sys::llvm_fenv_clearexcept();
1059  V = NativeFP(V);
1060  if (sys::llvm_fenv_testexcept()) {
1061    sys::llvm_fenv_clearexcept();
1062    return 0;
1063  }
1064
1065  if (Ty->isFloatTy())
1066    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1067  if (Ty->isDoubleTy())
1068    return ConstantFP::get(Ty->getContext(), APFloat(V));
1069  llvm_unreachable("Can only constant fold float/double");
1070  return 0; // dummy return to suppress warning
1071}
1072
1073static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1074                                      double V, double W, const Type *Ty) {
1075  sys::llvm_fenv_clearexcept();
1076  V = NativeFP(V, W);
1077  if (sys::llvm_fenv_testexcept()) {
1078    sys::llvm_fenv_clearexcept();
1079    return 0;
1080  }
1081
1082  if (Ty->isFloatTy())
1083    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1084  if (Ty->isDoubleTy())
1085    return ConstantFP::get(Ty->getContext(), APFloat(V));
1086  llvm_unreachable("Can only constant fold float/double");
1087  return 0; // dummy return to suppress warning
1088}
1089
1090/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1091/// with the specified arguments, returning null if unsuccessful.
1092Constant *
1093llvm::ConstantFoldCall(Function *F,
1094                       Constant *const *Operands, unsigned NumOperands) {
1095  if (!F->hasName()) return 0;
1096  StringRef Name = F->getName();
1097
1098  const Type *Ty = F->getReturnType();
1099  if (NumOperands == 1) {
1100    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1101      if (Name == "llvm.convert.to.fp16") {
1102        APFloat Val(Op->getValueAPF());
1103
1104        bool lost = false;
1105        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1106
1107        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1108      }
1109
1110      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1111        return 0;
1112
1113      /// We only fold functions with finite arguments. Folding NaN and inf is
1114      /// likely to be aborted with an exception anyway, and some host libms
1115      /// have known errors raising exceptions.
1116      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1117        return 0;
1118
1119      /// Currently APFloat versions of these functions do not exist, so we use
1120      /// the host native double versions.  Float versions are not called
1121      /// directly but for all these it is true (float)(f((double)arg)) ==
1122      /// f(arg).  Long double not supported yet.
1123      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1124                                     Op->getValueAPF().convertToDouble();
1125      switch (Name[0]) {
1126      case 'a':
1127        if (Name == "acos")
1128          return ConstantFoldFP(acos, V, Ty);
1129        else if (Name == "asin")
1130          return ConstantFoldFP(asin, V, Ty);
1131        else if (Name == "atan")
1132          return ConstantFoldFP(atan, V, Ty);
1133        break;
1134      case 'c':
1135        if (Name == "ceil")
1136          return ConstantFoldFP(ceil, V, Ty);
1137        else if (Name == "cos")
1138          return ConstantFoldFP(cos, V, Ty);
1139        else if (Name == "cosh")
1140          return ConstantFoldFP(cosh, V, Ty);
1141        else if (Name == "cosf")
1142          return ConstantFoldFP(cos, V, Ty);
1143        break;
1144      case 'e':
1145        if (Name == "exp")
1146          return ConstantFoldFP(exp, V, Ty);
1147        break;
1148      case 'f':
1149        if (Name == "fabs")
1150          return ConstantFoldFP(fabs, V, Ty);
1151        else if (Name == "floor")
1152          return ConstantFoldFP(floor, V, Ty);
1153        break;
1154      case 'l':
1155        if (Name == "log" && V > 0)
1156          return ConstantFoldFP(log, V, Ty);
1157        else if (Name == "log10" && V > 0)
1158          return ConstantFoldFP(log10, V, Ty);
1159        else if (Name == "llvm.sqrt.f32" ||
1160                 Name == "llvm.sqrt.f64") {
1161          if (V >= -0.0)
1162            return ConstantFoldFP(sqrt, V, Ty);
1163          else // Undefined
1164            return Constant::getNullValue(Ty);
1165        }
1166        break;
1167      case 's':
1168        if (Name == "sin")
1169          return ConstantFoldFP(sin, V, Ty);
1170        else if (Name == "sinh")
1171          return ConstantFoldFP(sinh, V, Ty);
1172        else if (Name == "sqrt" && V >= 0)
1173          return ConstantFoldFP(sqrt, V, Ty);
1174        else if (Name == "sqrtf" && V >= 0)
1175          return ConstantFoldFP(sqrt, V, Ty);
1176        else if (Name == "sinf")
1177          return ConstantFoldFP(sin, V, Ty);
1178        break;
1179      case 't':
1180        if (Name == "tan")
1181          return ConstantFoldFP(tan, V, Ty);
1182        else if (Name == "tanh")
1183          return ConstantFoldFP(tanh, V, Ty);
1184        break;
1185      default:
1186        break;
1187      }
1188      return 0;
1189    }
1190
1191
1192    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1193      if (Name.startswith("llvm.bswap"))
1194        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1195      else if (Name.startswith("llvm.ctpop"))
1196        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1197      else if (Name.startswith("llvm.cttz"))
1198        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1199      else if (Name.startswith("llvm.ctlz"))
1200        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1201      else if (Name == "llvm.convert.from.fp16") {
1202        APFloat Val(Op->getValue());
1203
1204        bool lost = false;
1205        APFloat::opStatus status =
1206          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1207
1208        // Conversion is always precise.
1209        status = status;
1210        assert(status == APFloat::opOK && !lost &&
1211               "Precision lost during fp16 constfolding");
1212
1213        return ConstantFP::get(F->getContext(), Val);
1214      }
1215      return 0;
1216    }
1217
1218    if (isa<UndefValue>(Operands[0])) {
1219      if (Name.startswith("llvm.bswap"))
1220        return Operands[0];
1221      return 0;
1222    }
1223
1224    return 0;
1225  }
1226
1227  if (NumOperands == 2) {
1228    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1229      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1230        return 0;
1231      double Op1V = Ty->isFloatTy() ?
1232                      (double)Op1->getValueAPF().convertToFloat() :
1233                      Op1->getValueAPF().convertToDouble();
1234      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1235        if (Op2->getType() != Op1->getType())
1236          return 0;
1237
1238        double Op2V = Ty->isFloatTy() ?
1239                      (double)Op2->getValueAPF().convertToFloat():
1240                      Op2->getValueAPF().convertToDouble();
1241
1242        if (Name == "pow")
1243          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1244        if (Name == "fmod")
1245          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1246        if (Name == "atan2")
1247          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1248      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1249        if (Name == "llvm.powi.f32")
1250          return ConstantFP::get(F->getContext(),
1251                                 APFloat((float)std::pow((float)Op1V,
1252                                                 (int)Op2C->getZExtValue())));
1253        if (Name == "llvm.powi.f64")
1254          return ConstantFP::get(F->getContext(),
1255                                 APFloat((double)std::pow((double)Op1V,
1256                                                   (int)Op2C->getZExtValue())));
1257      }
1258      return 0;
1259    }
1260
1261
1262    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1263      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1264        switch (F->getIntrinsicID()) {
1265        default: break;
1266        case Intrinsic::sadd_with_overflow:
1267        case Intrinsic::uadd_with_overflow:
1268        case Intrinsic::ssub_with_overflow:
1269        case Intrinsic::usub_with_overflow:
1270        case Intrinsic::smul_with_overflow: {
1271          APInt Res;
1272          bool Overflow;
1273          switch (F->getIntrinsicID()) {
1274          default: assert(0 && "Invalid case");
1275          case Intrinsic::sadd_with_overflow:
1276            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1277            break;
1278          case Intrinsic::uadd_with_overflow:
1279            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1280            break;
1281          case Intrinsic::ssub_with_overflow:
1282            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1283            break;
1284          case Intrinsic::usub_with_overflow:
1285            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1286            break;
1287          case Intrinsic::smul_with_overflow:
1288            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1289            break;
1290          }
1291          Constant *Ops[] = {
1292            ConstantInt::get(F->getContext(), Res),
1293            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1294          };
1295          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1296        }
1297        }
1298      }
1299
1300      return 0;
1301    }
1302    return 0;
1303  }
1304  return 0;
1305}
1306
1307