ConstantFolding.cpp revision c25e7581b9b8088910da31702d4ca21c4734c6d7
1//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions determines the possibility of performing constant
11// folding.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
20#include "llvm/Instructions.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringMap.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/MathExtras.h"
29#include <cerrno>
30#include <cmath>
31using namespace llvm;
32
33//===----------------------------------------------------------------------===//
34// Constant Folding internal helper functions
35//===----------------------------------------------------------------------===//
36
37/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
38/// from a global, return the global and the constant.  Because of
39/// constantexprs, this function is recursive.
40static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
41                                       int64_t &Offset, const TargetData &TD) {
42  // Trivial case, constant is the global.
43  if ((GV = dyn_cast<GlobalValue>(C))) {
44    Offset = 0;
45    return true;
46  }
47
48  // Otherwise, if this isn't a constant expr, bail out.
49  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
50  if (!CE) return false;
51
52  // Look through ptr->int and ptr->ptr casts.
53  if (CE->getOpcode() == Instruction::PtrToInt ||
54      CE->getOpcode() == Instruction::BitCast)
55    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
56
57  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
58  if (CE->getOpcode() == Instruction::GetElementPtr) {
59    // Cannot compute this if the element type of the pointer is missing size
60    // info.
61    if (!cast<PointerType>(CE->getOperand(0)->getType())
62                 ->getElementType()->isSized())
63      return false;
64
65    // If the base isn't a global+constant, we aren't either.
66    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
67      return false;
68
69    // Otherwise, add any offset that our operands provide.
70    gep_type_iterator GTI = gep_type_begin(CE);
71    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
72         i != e; ++i, ++GTI) {
73      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
74      if (!CI) return false;  // Index isn't a simple constant?
75      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
76
77      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
78        // N = N + Offset
79        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
80      } else {
81        const SequentialType *SQT = cast<SequentialType>(*GTI);
82        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
83      }
84    }
85    return true;
86  }
87
88  return false;
89}
90
91
92/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
93/// Attempt to symbolically evaluate the result of a binary operator merging
94/// these together.  If target data info is available, it is provided as TD,
95/// otherwise TD is null.
96static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
97                                           Constant *Op1, const TargetData *TD,
98                                           LLVMContext *Context){
99  // SROA
100
101  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
102  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
103  // bits.
104
105
106  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
107  // constant.  This happens frequently when iterating over a global array.
108  if (Opc == Instruction::Sub && TD) {
109    GlobalValue *GV1, *GV2;
110    int64_t Offs1, Offs2;
111
112    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
113      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
114          GV1 == GV2) {
115        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
116        return Context->getConstantInt(Op0->getType(), Offs1-Offs2);
117      }
118  }
119
120  return 0;
121}
122
123/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
124/// constant expression, do so.
125static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
126                                         const Type *ResultTy,
127                                         LLVMContext *Context,
128                                         const TargetData *TD) {
129  Constant *Ptr = Ops[0];
130  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
131    return 0;
132
133  uint64_t BasePtr = 0;
134  if (!Ptr->isNullValue()) {
135    // If this is a inttoptr from a constant int, we can fold this as the base,
136    // otherwise we can't.
137    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
138      if (CE->getOpcode() == Instruction::IntToPtr)
139        if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
140          BasePtr = Base->getZExtValue();
141
142    if (BasePtr == 0)
143      return 0;
144  }
145
146  // If this is a constant expr gep that is effectively computing an
147  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
148  for (unsigned i = 1; i != NumOps; ++i)
149    if (!isa<ConstantInt>(Ops[i]))
150      return false;
151
152  uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
153                                         (Value**)Ops+1, NumOps-1);
154  Constant *C = Context->getConstantInt(TD->getIntPtrType(), Offset+BasePtr);
155  return Context->getConstantExprIntToPtr(C, ResultTy);
156}
157
158/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
159/// targetdata.  Return 0 if unfoldable.
160static Constant *FoldBitCast(Constant *C, const Type *DestTy,
161                             const TargetData &TD, LLVMContext *Context) {
162  // If this is a bitcast from constant vector -> vector, fold it.
163  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
164    if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
165      // If the element types match, VMCore can fold it.
166      unsigned NumDstElt = DestVTy->getNumElements();
167      unsigned NumSrcElt = CV->getNumOperands();
168      if (NumDstElt == NumSrcElt)
169        return 0;
170
171      const Type *SrcEltTy = CV->getType()->getElementType();
172      const Type *DstEltTy = DestVTy->getElementType();
173
174      // Otherwise, we're changing the number of elements in a vector, which
175      // requires endianness information to do the right thing.  For example,
176      //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
177      // folds to (little endian):
178      //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
179      // and to (big endian):
180      //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
181
182      // First thing is first.  We only want to think about integer here, so if
183      // we have something in FP form, recast it as integer.
184      if (DstEltTy->isFloatingPoint()) {
185        // Fold to an vector of integers with same size as our FP type.
186        unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
187        const Type *DestIVTy = Context->getVectorType(
188                                   Context->getIntegerType(FPWidth), NumDstElt);
189        // Recursively handle this integer conversion, if possible.
190        C = FoldBitCast(C, DestIVTy, TD, Context);
191        if (!C) return 0;
192
193        // Finally, VMCore can handle this now that #elts line up.
194        return Context->getConstantExprBitCast(C, DestTy);
195      }
196
197      // Okay, we know the destination is integer, if the input is FP, convert
198      // it to integer first.
199      if (SrcEltTy->isFloatingPoint()) {
200        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
201        const Type *SrcIVTy = Context->getVectorType(
202                                   Context->getIntegerType(FPWidth), NumSrcElt);
203        // Ask VMCore to do the conversion now that #elts line up.
204        C = Context->getConstantExprBitCast(C, SrcIVTy);
205        CV = dyn_cast<ConstantVector>(C);
206        if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out.
207      }
208
209      // Now we know that the input and output vectors are both integer vectors
210      // of the same size, and that their #elements is not the same.  Do the
211      // conversion here, which depends on whether the input or output has
212      // more elements.
213      bool isLittleEndian = TD.isLittleEndian();
214
215      SmallVector<Constant*, 32> Result;
216      if (NumDstElt < NumSrcElt) {
217        // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
218        Constant *Zero = Context->getNullValue(DstEltTy);
219        unsigned Ratio = NumSrcElt/NumDstElt;
220        unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
221        unsigned SrcElt = 0;
222        for (unsigned i = 0; i != NumDstElt; ++i) {
223          // Build each element of the result.
224          Constant *Elt = Zero;
225          unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
226          for (unsigned j = 0; j != Ratio; ++j) {
227            Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
228            if (!Src) return 0;  // Reject constantexpr elements.
229
230            // Zero extend the element to the right size.
231            Src = Context->getConstantExprZExt(Src, Elt->getType());
232
233            // Shift it to the right place, depending on endianness.
234            Src = Context->getConstantExprShl(Src,
235                             Context->getConstantInt(Src->getType(), ShiftAmt));
236            ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
237
238            // Mix it in.
239            Elt = Context->getConstantExprOr(Elt, Src);
240          }
241          Result.push_back(Elt);
242        }
243      } else {
244        // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
245        unsigned Ratio = NumDstElt/NumSrcElt;
246        unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
247
248        // Loop over each source value, expanding into multiple results.
249        for (unsigned i = 0; i != NumSrcElt; ++i) {
250          Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
251          if (!Src) return 0;  // Reject constantexpr elements.
252
253          unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
254          for (unsigned j = 0; j != Ratio; ++j) {
255            // Shift the piece of the value into the right place, depending on
256            // endianness.
257            Constant *Elt = Context->getConstantExprLShr(Src,
258                            Context->getConstantInt(Src->getType(), ShiftAmt));
259            ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
260
261            // Truncate and remember this piece.
262            Result.push_back(Context->getConstantExprTrunc(Elt, DstEltTy));
263          }
264        }
265      }
266
267      return Context->getConstantVector(Result.data(), Result.size());
268    }
269  }
270
271  return 0;
272}
273
274
275//===----------------------------------------------------------------------===//
276// Constant Folding public APIs
277//===----------------------------------------------------------------------===//
278
279
280/// ConstantFoldInstruction - Attempt to constant fold the specified
281/// instruction.  If successful, the constant result is returned, if not, null
282/// is returned.  Note that this function can only fail when attempting to fold
283/// instructions like loads and stores, which have no constant expression form.
284///
285Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext *Context,
286                                        const TargetData *TD) {
287  if (PHINode *PN = dyn_cast<PHINode>(I)) {
288    if (PN->getNumIncomingValues() == 0)
289      return Context->getUndef(PN->getType());
290
291    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
292    if (Result == 0) return 0;
293
294    // Handle PHI nodes specially here...
295    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
296      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
297        return 0;   // Not all the same incoming constants...
298
299    // If we reach here, all incoming values are the same constant.
300    return Result;
301  }
302
303  // Scan the operand list, checking to see if they are all constants, if so,
304  // hand off to ConstantFoldInstOperands.
305  SmallVector<Constant*, 8> Ops;
306  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
307    if (Constant *Op = dyn_cast<Constant>(*i))
308      Ops.push_back(Op);
309    else
310      return 0;  // All operands not constant!
311
312  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
313    return ConstantFoldCompareInstOperands(CI->getPredicate(),
314                                           Ops.data(), Ops.size(),
315                                           Context, TD);
316  else
317    return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
318                                    Ops.data(), Ops.size(), Context, TD);
319}
320
321/// ConstantFoldConstantExpression - Attempt to fold the constant expression
322/// using the specified TargetData.  If successful, the constant result is
323/// result is returned, if not, null is returned.
324Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
325                                               LLVMContext *Context,
326                                               const TargetData *TD) {
327  SmallVector<Constant*, 8> Ops;
328  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
329    Ops.push_back(cast<Constant>(*i));
330
331  if (CE->isCompare())
332    return ConstantFoldCompareInstOperands(CE->getPredicate(),
333                                           Ops.data(), Ops.size(),
334                                           Context, TD);
335  else
336    return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
337                                    Ops.data(), Ops.size(), Context, TD);
338}
339
340/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
341/// specified opcode and operands.  If successful, the constant result is
342/// returned, if not, null is returned.  Note that this function can fail when
343/// attempting to fold instructions like loads and stores, which have no
344/// constant expression form.
345///
346Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
347                                         Constant* const* Ops, unsigned NumOps,
348                                         LLVMContext *Context,
349                                         const TargetData *TD) {
350  // Handle easy binops first.
351  if (Instruction::isBinaryOp(Opcode)) {
352    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
353      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
354                                                  Context))
355        return C;
356
357    return Context->getConstantExpr(Opcode, Ops[0], Ops[1]);
358  }
359
360  switch (Opcode) {
361  default: return 0;
362  case Instruction::Call:
363    if (Function *F = dyn_cast<Function>(Ops[0]))
364      if (canConstantFoldCallTo(F))
365        return ConstantFoldCall(F, Ops+1, NumOps-1);
366    return 0;
367  case Instruction::ICmp:
368  case Instruction::FCmp:
369    LLVM_UNREACHABLE("This function is invalid for compares: no predicate specified");
370  case Instruction::PtrToInt:
371    // If the input is a inttoptr, eliminate the pair.  This requires knowing
372    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
373    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
374      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
375        Constant *Input = CE->getOperand(0);
376        unsigned InWidth = Input->getType()->getScalarSizeInBits();
377        if (TD->getPointerSizeInBits() < InWidth) {
378          Constant *Mask =
379            Context->getConstantInt(APInt::getLowBitsSet(InWidth,
380                                                  TD->getPointerSizeInBits()));
381          Input = Context->getConstantExprAnd(Input, Mask);
382        }
383        // Do a zext or trunc to get to the dest size.
384        return Context->getConstantExprIntegerCast(Input, DestTy, false);
385      }
386    }
387    return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
388  case Instruction::IntToPtr:
389    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
390    // the int size is >= the ptr size.  This requires knowing the width of a
391    // pointer, so it can't be done in ConstantExpr::getCast.
392    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
393      if (TD &&
394          TD->getPointerSizeInBits() <=
395          CE->getType()->getScalarSizeInBits()) {
396        if (CE->getOpcode() == Instruction::PtrToInt) {
397          Constant *Input = CE->getOperand(0);
398          Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
399          return C ? C : Context->getConstantExprBitCast(Input, DestTy);
400        }
401        // If there's a constant offset added to the integer value before
402        // it is casted back to a pointer, see if the expression can be
403        // converted into a GEP.
404        if (CE->getOpcode() == Instruction::Add)
405          if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
406            if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
407              if (R->getOpcode() == Instruction::PtrToInt)
408                if (GlobalVariable *GV =
409                      dyn_cast<GlobalVariable>(R->getOperand(0))) {
410                  const PointerType *GVTy = cast<PointerType>(GV->getType());
411                  if (const ArrayType *AT =
412                        dyn_cast<ArrayType>(GVTy->getElementType())) {
413                    const Type *ElTy = AT->getElementType();
414                    uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
415                    APInt PSA(L->getValue().getBitWidth(), AllocSize);
416                    if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
417                        L->getValue().urem(PSA) == 0) {
418                      APInt ElemIdx = L->getValue().udiv(PSA);
419                      if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
420                                            AT->getNumElements()))) {
421                        Constant *Index[] = {
422                          Context->getNullValue(CE->getType()),
423                          Context->getConstantInt(ElemIdx)
424                        };
425                        return
426                        Context->getConstantExprGetElementPtr(GV, &Index[0], 2);
427                      }
428                    }
429                  }
430                }
431      }
432    }
433    return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
434  case Instruction::Trunc:
435  case Instruction::ZExt:
436  case Instruction::SExt:
437  case Instruction::FPTrunc:
438  case Instruction::FPExt:
439  case Instruction::UIToFP:
440  case Instruction::SIToFP:
441  case Instruction::FPToUI:
442  case Instruction::FPToSI:
443      return Context->getConstantExprCast(Opcode, Ops[0], DestTy);
444  case Instruction::BitCast:
445    if (TD)
446      if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
447        return C;
448    return Context->getConstantExprBitCast(Ops[0], DestTy);
449  case Instruction::Select:
450    return Context->getConstantExprSelect(Ops[0], Ops[1], Ops[2]);
451  case Instruction::ExtractElement:
452    return Context->getConstantExprExtractElement(Ops[0], Ops[1]);
453  case Instruction::InsertElement:
454    return Context->getConstantExprInsertElement(Ops[0], Ops[1], Ops[2]);
455  case Instruction::ShuffleVector:
456    return Context->getConstantExprShuffleVector(Ops[0], Ops[1], Ops[2]);
457  case Instruction::GetElementPtr:
458    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
459      return C;
460
461    return Context->getConstantExprGetElementPtr(Ops[0], Ops+1, NumOps-1);
462  }
463}
464
465/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
466/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
467/// returns a constant expression of the specified operands.
468///
469Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
470                                                Constant*const * Ops,
471                                                unsigned NumOps,
472                                                LLVMContext *Context,
473                                                const TargetData *TD) {
474  // fold: icmp (inttoptr x), null         -> icmp x, 0
475  // fold: icmp (ptrtoint x), 0            -> icmp x, null
476  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
477  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
478  //
479  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
480  // around to know if bit truncation is happening.
481  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
482    if (TD && Ops[1]->isNullValue()) {
483      const Type *IntPtrTy = TD->getIntPtrType();
484      if (CE0->getOpcode() == Instruction::IntToPtr) {
485        // Convert the integer value to the right size to ensure we get the
486        // proper extension or truncation.
487        Constant *C = Context->getConstantExprIntegerCast(CE0->getOperand(0),
488                                                   IntPtrTy, false);
489        Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
490        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
491                                               Context, TD);
492      }
493
494      // Only do this transformation if the int is intptrty in size, otherwise
495      // there is a truncation or extension that we aren't modeling.
496      if (CE0->getOpcode() == Instruction::PtrToInt &&
497          CE0->getType() == IntPtrTy) {
498        Constant *C = CE0->getOperand(0);
499        Constant *NewOps[] = { C, Context->getNullValue(C->getType()) };
500        // FIXME!
501        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
502                                               Context, TD);
503      }
504    }
505
506    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
507      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
508        const Type *IntPtrTy = TD->getIntPtrType();
509
510        if (CE0->getOpcode() == Instruction::IntToPtr) {
511          // Convert the integer value to the right size to ensure we get the
512          // proper extension or truncation.
513          Constant *C0 = Context->getConstantExprIntegerCast(CE0->getOperand(0),
514                                                      IntPtrTy, false);
515          Constant *C1 = Context->getConstantExprIntegerCast(CE1->getOperand(0),
516                                                      IntPtrTy, false);
517          Constant *NewOps[] = { C0, C1 };
518          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
519                                                 Context, TD);
520        }
521
522        // Only do this transformation if the int is intptrty in size, otherwise
523        // there is a truncation or extension that we aren't modeling.
524        if ((CE0->getOpcode() == Instruction::PtrToInt &&
525             CE0->getType() == IntPtrTy &&
526             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
527          Constant *NewOps[] = {
528            CE0->getOperand(0), CE1->getOperand(0)
529          };
530          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
531                                                 Context, TD);
532        }
533      }
534    }
535  }
536  return Context->getConstantExprCompare(Predicate, Ops[0], Ops[1]);
537}
538
539
540/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
541/// getelementptr constantexpr, return the constant value being addressed by the
542/// constant expression, or null if something is funny and we can't decide.
543Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
544                                                       ConstantExpr *CE,
545                                                       LLVMContext *Context) {
546  if (CE->getOperand(1) != Context->getNullValue(CE->getOperand(1)->getType()))
547    return 0;  // Do not allow stepping over the value!
548
549  // Loop over all of the operands, tracking down which value we are
550  // addressing...
551  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
552  for (++I; I != E; ++I)
553    if (const StructType *STy = dyn_cast<StructType>(*I)) {
554      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
555      assert(CU->getZExtValue() < STy->getNumElements() &&
556             "Struct index out of range!");
557      unsigned El = (unsigned)CU->getZExtValue();
558      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
559        C = CS->getOperand(El);
560      } else if (isa<ConstantAggregateZero>(C)) {
561        C = Context->getNullValue(STy->getElementType(El));
562      } else if (isa<UndefValue>(C)) {
563        C = Context->getUndef(STy->getElementType(El));
564      } else {
565        return 0;
566      }
567    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
568      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
569        if (CI->getZExtValue() >= ATy->getNumElements())
570         return 0;
571        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
572          C = CA->getOperand(CI->getZExtValue());
573        else if (isa<ConstantAggregateZero>(C))
574          C = Context->getNullValue(ATy->getElementType());
575        else if (isa<UndefValue>(C))
576          C = Context->getUndef(ATy->getElementType());
577        else
578          return 0;
579      } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
580        if (CI->getZExtValue() >= PTy->getNumElements())
581          return 0;
582        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
583          C = CP->getOperand(CI->getZExtValue());
584        else if (isa<ConstantAggregateZero>(C))
585          C = Context->getNullValue(PTy->getElementType());
586        else if (isa<UndefValue>(C))
587          C = Context->getUndef(PTy->getElementType());
588        else
589          return 0;
590      } else {
591        return 0;
592      }
593    } else {
594      return 0;
595    }
596  return C;
597}
598
599
600//===----------------------------------------------------------------------===//
601//  Constant Folding for Calls
602//
603
604/// canConstantFoldCallTo - Return true if its even possible to fold a call to
605/// the specified function.
606bool
607llvm::canConstantFoldCallTo(const Function *F) {
608  switch (F->getIntrinsicID()) {
609  case Intrinsic::sqrt:
610  case Intrinsic::powi:
611  case Intrinsic::bswap:
612  case Intrinsic::ctpop:
613  case Intrinsic::ctlz:
614  case Intrinsic::cttz:
615    return true;
616  default: break;
617  }
618
619  if (!F->hasName()) return false;
620  const char *Str = F->getNameStart();
621  unsigned Len = F->getNameLen();
622
623  // In these cases, the check of the length is required.  We don't want to
624  // return true for a name like "cos\0blah" which strcmp would return equal to
625  // "cos", but has length 8.
626  switch (Str[0]) {
627  default: return false;
628  case 'a':
629    if (Len == 4)
630      return !strcmp(Str, "acos") || !strcmp(Str, "asin") ||
631             !strcmp(Str, "atan");
632    else if (Len == 5)
633      return !strcmp(Str, "atan2");
634    return false;
635  case 'c':
636    if (Len == 3)
637      return !strcmp(Str, "cos");
638    else if (Len == 4)
639      return !strcmp(Str, "ceil") || !strcmp(Str, "cosf") ||
640             !strcmp(Str, "cosh");
641    return false;
642  case 'e':
643    if (Len == 3)
644      return !strcmp(Str, "exp");
645    return false;
646  case 'f':
647    if (Len == 4)
648      return !strcmp(Str, "fabs") || !strcmp(Str, "fmod");
649    else if (Len == 5)
650      return !strcmp(Str, "floor");
651    return false;
652    break;
653  case 'l':
654    if (Len == 3 && !strcmp(Str, "log"))
655      return true;
656    if (Len == 5 && !strcmp(Str, "log10"))
657      return true;
658    return false;
659  case 'p':
660    if (Len == 3 && !strcmp(Str, "pow"))
661      return true;
662    return false;
663  case 's':
664    if (Len == 3)
665      return !strcmp(Str, "sin");
666    if (Len == 4)
667      return !strcmp(Str, "sinh") || !strcmp(Str, "sqrt") ||
668             !strcmp(Str, "sinf");
669    if (Len == 5)
670      return !strcmp(Str, "sqrtf");
671    return false;
672  case 't':
673    if (Len == 3 && !strcmp(Str, "tan"))
674      return true;
675    else if (Len == 4 && !strcmp(Str, "tanh"))
676      return true;
677    return false;
678  }
679}
680
681static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
682                                const Type *Ty, LLVMContext *Context) {
683  errno = 0;
684  V = NativeFP(V);
685  if (errno != 0) {
686    errno = 0;
687    return 0;
688  }
689
690  if (Ty == Type::FloatTy)
691    return Context->getConstantFP(APFloat((float)V));
692  if (Ty == Type::DoubleTy)
693    return Context->getConstantFP(APFloat(V));
694  LLVM_UNREACHABLE("Can only constant fold float/double");
695  return 0; // dummy return to suppress warning
696}
697
698static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
699                                      double V, double W,
700                                      const Type *Ty,
701                                      LLVMContext *Context) {
702  errno = 0;
703  V = NativeFP(V, W);
704  if (errno != 0) {
705    errno = 0;
706    return 0;
707  }
708
709  if (Ty == Type::FloatTy)
710    return Context->getConstantFP(APFloat((float)V));
711  if (Ty == Type::DoubleTy)
712    return Context->getConstantFP(APFloat(V));
713  LLVM_UNREACHABLE("Can only constant fold float/double");
714  return 0; // dummy return to suppress warning
715}
716
717/// ConstantFoldCall - Attempt to constant fold a call to the specified function
718/// with the specified arguments, returning null if unsuccessful.
719
720Constant *
721llvm::ConstantFoldCall(Function *F,
722                       Constant* const* Operands, unsigned NumOperands) {
723  if (!F->hasName()) return 0;
724  LLVMContext *Context = F->getContext();
725  const char *Str = F->getNameStart();
726  unsigned Len = F->getNameLen();
727
728  const Type *Ty = F->getReturnType();
729  if (NumOperands == 1) {
730    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
731      if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
732        return 0;
733      /// Currently APFloat versions of these functions do not exist, so we use
734      /// the host native double versions.  Float versions are not called
735      /// directly but for all these it is true (float)(f((double)arg)) ==
736      /// f(arg).  Long double not supported yet.
737      double V = Ty==Type::FloatTy ? (double)Op->getValueAPF().convertToFloat():
738                                     Op->getValueAPF().convertToDouble();
739      switch (Str[0]) {
740      case 'a':
741        if (Len == 4 && !strcmp(Str, "acos"))
742          return ConstantFoldFP(acos, V, Ty, Context);
743        else if (Len == 4 && !strcmp(Str, "asin"))
744          return ConstantFoldFP(asin, V, Ty, Context);
745        else if (Len == 4 && !strcmp(Str, "atan"))
746          return ConstantFoldFP(atan, V, Ty, Context);
747        break;
748      case 'c':
749        if (Len == 4 && !strcmp(Str, "ceil"))
750          return ConstantFoldFP(ceil, V, Ty, Context);
751        else if (Len == 3 && !strcmp(Str, "cos"))
752          return ConstantFoldFP(cos, V, Ty, Context);
753        else if (Len == 4 && !strcmp(Str, "cosh"))
754          return ConstantFoldFP(cosh, V, Ty, Context);
755        else if (Len == 4 && !strcmp(Str, "cosf"))
756          return ConstantFoldFP(cos, V, Ty, Context);
757        break;
758      case 'e':
759        if (Len == 3 && !strcmp(Str, "exp"))
760          return ConstantFoldFP(exp, V, Ty, Context);
761        break;
762      case 'f':
763        if (Len == 4 && !strcmp(Str, "fabs"))
764          return ConstantFoldFP(fabs, V, Ty, Context);
765        else if (Len == 5 && !strcmp(Str, "floor"))
766          return ConstantFoldFP(floor, V, Ty, Context);
767        break;
768      case 'l':
769        if (Len == 3 && !strcmp(Str, "log") && V > 0)
770          return ConstantFoldFP(log, V, Ty, Context);
771        else if (Len == 5 && !strcmp(Str, "log10") && V > 0)
772          return ConstantFoldFP(log10, V, Ty, Context);
773        else if (!strcmp(Str, "llvm.sqrt.f32") ||
774                 !strcmp(Str, "llvm.sqrt.f64")) {
775          if (V >= -0.0)
776            return ConstantFoldFP(sqrt, V, Ty, Context);
777          else // Undefined
778            return Context->getNullValue(Ty);
779        }
780        break;
781      case 's':
782        if (Len == 3 && !strcmp(Str, "sin"))
783          return ConstantFoldFP(sin, V, Ty, Context);
784        else if (Len == 4 && !strcmp(Str, "sinh"))
785          return ConstantFoldFP(sinh, V, Ty, Context);
786        else if (Len == 4 && !strcmp(Str, "sqrt") && V >= 0)
787          return ConstantFoldFP(sqrt, V, Ty, Context);
788        else if (Len == 5 && !strcmp(Str, "sqrtf") && V >= 0)
789          return ConstantFoldFP(sqrt, V, Ty, Context);
790        else if (Len == 4 && !strcmp(Str, "sinf"))
791          return ConstantFoldFP(sin, V, Ty, Context);
792        break;
793      case 't':
794        if (Len == 3 && !strcmp(Str, "tan"))
795          return ConstantFoldFP(tan, V, Ty, Context);
796        else if (Len == 4 && !strcmp(Str, "tanh"))
797          return ConstantFoldFP(tanh, V, Ty, Context);
798        break;
799      default:
800        break;
801      }
802    } else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
803      if (Len > 11 && !memcmp(Str, "llvm.bswap", 10))
804        return Context->getConstantInt(Op->getValue().byteSwap());
805      else if (Len > 11 && !memcmp(Str, "llvm.ctpop", 10))
806        return Context->getConstantInt(Ty, Op->getValue().countPopulation());
807      else if (Len > 10 && !memcmp(Str, "llvm.cttz", 9))
808        return Context->getConstantInt(Ty, Op->getValue().countTrailingZeros());
809      else if (Len > 10 && !memcmp(Str, "llvm.ctlz", 9))
810        return Context->getConstantInt(Ty, Op->getValue().countLeadingZeros());
811    }
812  } else if (NumOperands == 2) {
813    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
814      if (Ty!=Type::FloatTy && Ty!=Type::DoubleTy)
815        return 0;
816      double Op1V = Ty==Type::FloatTy ?
817                      (double)Op1->getValueAPF().convertToFloat():
818                      Op1->getValueAPF().convertToDouble();
819      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
820        double Op2V = Ty==Type::FloatTy ?
821                      (double)Op2->getValueAPF().convertToFloat():
822                      Op2->getValueAPF().convertToDouble();
823
824        if (Len == 3 && !strcmp(Str, "pow")) {
825          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
826        } else if (Len == 4 && !strcmp(Str, "fmod")) {
827          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
828        } else if (Len == 5 && !strcmp(Str, "atan2")) {
829          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
830        }
831      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
832        if (!strcmp(Str, "llvm.powi.f32")) {
833          return Context->getConstantFP(APFloat((float)std::pow((float)Op1V,
834                                                 (int)Op2C->getZExtValue())));
835        } else if (!strcmp(Str, "llvm.powi.f64")) {
836          return Context->getConstantFP(APFloat((double)std::pow((double)Op1V,
837                                                 (int)Op2C->getZExtValue())));
838        }
839      }
840    }
841  }
842  return 0;
843}
844
845