ConstantFolding.cpp revision c7b1382e351249774be63bd73839e8a0671635e1
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringMap.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include <cerrno>
35#include <cmath>
36using namespace llvm;
37
38//===----------------------------------------------------------------------===//
39// Constant Folding internal helper functions
40//===----------------------------------------------------------------------===//
41
42/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
43/// from a global, return the global and the constant.  Because of
44/// constantexprs, this function is recursive.
45static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
46                                       int64_t &Offset, const TargetData &TD) {
47  // Trivial case, constant is the global.
48  if ((GV = dyn_cast<GlobalValue>(C))) {
49    Offset = 0;
50    return true;
51  }
52
53  // Otherwise, if this isn't a constant expr, bail out.
54  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
55  if (!CE) return false;
56
57  // Look through ptr->int and ptr->ptr casts.
58  if (CE->getOpcode() == Instruction::PtrToInt ||
59      CE->getOpcode() == Instruction::BitCast)
60    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
61
62  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
63  if (CE->getOpcode() == Instruction::GetElementPtr) {
64    // Cannot compute this if the element type of the pointer is missing size
65    // info.
66    if (!cast<PointerType>(CE->getOperand(0)->getType())
67                 ->getElementType()->isSized())
68      return false;
69
70    // If the base isn't a global+constant, we aren't either.
71    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
72      return false;
73
74    // Otherwise, add any offset that our operands provide.
75    gep_type_iterator GTI = gep_type_begin(CE);
76    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
77         i != e; ++i, ++GTI) {
78      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
79      if (!CI) return false;  // Index isn't a simple constant?
80      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
81
82      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
83        // N = N + Offset
84        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
85      } else {
86        const SequentialType *SQT = cast<SequentialType>(*GTI);
87        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
88      }
89    }
90    return true;
91  }
92
93  return false;
94}
95
96/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
97/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
98/// pointer to copy results into and BytesLeft is the number of bytes left in
99/// the CurPtr buffer.  TD is the target data.
100static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
101                               unsigned char *CurPtr, unsigned BytesLeft,
102                               const TargetData &TD) {
103  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
104         "Out of range access");
105
106  // If this element is zero or undefined, we can just return since *CurPtr is
107  // zero initialized.
108  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
109    return true;
110
111  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
112    if (CI->getBitWidth() > 64 ||
113        (CI->getBitWidth() & 7) != 0)
114      return false;
115
116    uint64_t Val = CI->getZExtValue();
117    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
118
119    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
120      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
121      ++ByteOffset;
122    }
123    return true;
124  }
125
126  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
127    if (CFP->getType()->isDoubleTy()) {
128      C = ConstantExpr::getBitCast(C, Type::getInt64Ty(C->getContext()));
129      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
130    }
131    if (CFP->getType()->isFloatTy()){
132      C = ConstantExpr::getBitCast(C, Type::getInt32Ty(C->getContext()));
133      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
134    }
135    return false;
136  }
137
138  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
139    const StructLayout *SL = TD.getStructLayout(CS->getType());
140    unsigned Index = SL->getElementContainingOffset(ByteOffset);
141    uint64_t CurEltOffset = SL->getElementOffset(Index);
142    ByteOffset -= CurEltOffset;
143
144    while (1) {
145      // If the element access is to the element itself and not to tail padding,
146      // read the bytes from the element.
147      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
148
149      if (ByteOffset < EltSize &&
150          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
151                              BytesLeft, TD))
152        return false;
153
154      ++Index;
155
156      // Check to see if we read from the last struct element, if so we're done.
157      if (Index == CS->getType()->getNumElements())
158        return true;
159
160      // If we read all of the bytes we needed from this element we're done.
161      uint64_t NextEltOffset = SL->getElementOffset(Index);
162
163      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
164        return true;
165
166      // Move to the next element of the struct.
167      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
168      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
169      ByteOffset = 0;
170      CurEltOffset = NextEltOffset;
171    }
172    // not reached.
173  }
174
175  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
176    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
177    uint64_t Index = ByteOffset / EltSize;
178    uint64_t Offset = ByteOffset - Index * EltSize;
179    for (; Index != CA->getType()->getNumElements(); ++Index) {
180      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
181                              BytesLeft, TD))
182        return false;
183      if (EltSize >= BytesLeft)
184        return true;
185
186      Offset = 0;
187      BytesLeft -= EltSize;
188      CurPtr += EltSize;
189    }
190    return true;
191  }
192
193  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
194    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
195    uint64_t Index = ByteOffset / EltSize;
196    uint64_t Offset = ByteOffset - Index * EltSize;
197    for (; Index != CV->getType()->getNumElements(); ++Index) {
198      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
199                              BytesLeft, TD))
200        return false;
201      if (EltSize >= BytesLeft)
202        return true;
203
204      Offset = 0;
205      BytesLeft -= EltSize;
206      CurPtr += EltSize;
207    }
208    return true;
209  }
210
211  // Otherwise, unknown initializer type.
212  return false;
213}
214
215static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
216                                                 const TargetData &TD) {
217  const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
218  const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
219
220  // If this isn't an integer load we can't fold it directly.
221  if (!IntType) {
222    // If this is a float/double load, we can try folding it as an int32/64 load
223    // and then bitcast the result.  This can be useful for union cases.  Note
224    // that address spaces don't matter here since we're not going to result in
225    // an actual new load.
226    const Type *MapTy;
227    if (LoadTy->isFloatTy())
228      MapTy = Type::getInt32PtrTy(C->getContext());
229    else if (LoadTy->isDoubleTy())
230      MapTy = Type::getInt64PtrTy(C->getContext());
231    else if (isa<VectorType>(LoadTy)) {
232      MapTy = IntegerType::get(C->getContext(),
233                               TD.getTypeAllocSizeInBits(LoadTy));
234      MapTy = PointerType::getUnqual(MapTy);
235    } else
236      return 0;
237
238    C = ConstantExpr::getBitCast(C, MapTy);
239    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
240      return ConstantExpr::getBitCast(Res, LoadTy);
241    return 0;
242  }
243
244  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
245  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
246
247  GlobalValue *GVal;
248  int64_t Offset;
249  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
250    return 0;
251
252  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
253  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
254      !GV->getInitializer()->getType()->isSized())
255    return 0;
256
257  // If we're loading off the beginning of the global, some bytes may be valid,
258  // but we don't try to handle this.
259  if (Offset < 0) return 0;
260
261  // If we're not accessing anything in this constant, the result is undefined.
262  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
263    return UndefValue::get(IntType);
264
265  unsigned char RawBytes[32] = {0};
266  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
267                          BytesLoaded, TD))
268    return 0;
269
270  APInt ResultVal(IntType->getBitWidth(), 0);
271  for (unsigned i = 0; i != BytesLoaded; ++i) {
272    ResultVal <<= 8;
273    ResultVal |= APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1-i]);
274  }
275
276  return ConstantInt::get(IntType->getContext(), ResultVal);
277}
278
279/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
280/// produce if it is constant and determinable.  If this is not determinable,
281/// return null.
282Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
283                                             const TargetData *TD) {
284  // First, try the easy cases:
285  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
286    if (GV->isConstant() && GV->hasDefinitiveInitializer())
287      return GV->getInitializer();
288
289  // If the loaded value isn't a constant expr, we can't handle it.
290  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
291  if (!CE) return 0;
292
293  if (CE->getOpcode() == Instruction::GetElementPtr) {
294    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
295      if (GV->isConstant() && GV->hasDefinitiveInitializer())
296        if (Constant *V =
297             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
298          return V;
299  }
300
301  // Instead of loading constant c string, use corresponding integer value
302  // directly if string length is small enough.
303  std::string Str;
304  if (TD && GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
305    unsigned StrLen = Str.length();
306    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
307    unsigned NumBits = Ty->getPrimitiveSizeInBits();
308    // Replace LI with immediate integer store.
309    if ((NumBits >> 3) == StrLen + 1) {
310      APInt StrVal(NumBits, 0);
311      APInt SingleChar(NumBits, 0);
312      if (TD->isLittleEndian()) {
313        for (signed i = StrLen-1; i >= 0; i--) {
314          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
315          StrVal = (StrVal << 8) | SingleChar;
316        }
317      } else {
318        for (unsigned i = 0; i < StrLen; i++) {
319          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
320          StrVal = (StrVal << 8) | SingleChar;
321        }
322        // Append NULL at the end.
323        SingleChar = 0;
324        StrVal = (StrVal << 8) | SingleChar;
325      }
326      return ConstantInt::get(CE->getContext(), StrVal);
327    }
328  }
329
330  // If this load comes from anywhere in a constant global, and if the global
331  // is all undef or zero, we know what it loads.
332  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getUnderlyingObject())){
333    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
334      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
335      if (GV->getInitializer()->isNullValue())
336        return Constant::getNullValue(ResTy);
337      if (isa<UndefValue>(GV->getInitializer()))
338        return UndefValue::get(ResTy);
339    }
340  }
341
342  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
343  // currently don't do any of this for big endian systems.  It can be
344  // generalized in the future if someone is interested.
345  if (TD && TD->isLittleEndian())
346    return FoldReinterpretLoadFromConstPtr(CE, *TD);
347  return 0;
348}
349
350static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
351  if (LI->isVolatile()) return 0;
352
353  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
354    return ConstantFoldLoadFromConstPtr(C, TD);
355
356  return 0;
357}
358
359/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
360/// Attempt to symbolically evaluate the result of a binary operator merging
361/// these together.  If target data info is available, it is provided as TD,
362/// otherwise TD is null.
363static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
364                                           Constant *Op1, const TargetData *TD,
365                                           LLVMContext &Context){
366  // SROA
367
368  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
369  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
370  // bits.
371
372
373  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
374  // constant.  This happens frequently when iterating over a global array.
375  if (Opc == Instruction::Sub && TD) {
376    GlobalValue *GV1, *GV2;
377    int64_t Offs1, Offs2;
378
379    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
380      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
381          GV1 == GV2) {
382        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
383        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
384      }
385  }
386
387  return 0;
388}
389
390/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
391/// constant expression, do so.
392static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
393                                         const Type *ResultTy,
394                                         LLVMContext &Context,
395                                         const TargetData *TD) {
396  Constant *Ptr = Ops[0];
397  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
398    return 0;
399
400  unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context));
401  APInt BasePtr(BitWidth, 0);
402  bool BaseIsInt = true;
403  if (!Ptr->isNullValue()) {
404    // If this is a inttoptr from a constant int, we can fold this as the base,
405    // otherwise we can't.
406    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
407      if (CE->getOpcode() == Instruction::IntToPtr)
408        if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
409          BasePtr = Base->getValue();
410          BasePtr.zextOrTrunc(BitWidth);
411        }
412
413    if (BasePtr == 0)
414      BaseIsInt = false;
415  }
416
417  // If this is a constant expr gep that is effectively computing an
418  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
419  for (unsigned i = 1; i != NumOps; ++i)
420    if (!isa<ConstantInt>(Ops[i]))
421      return 0;
422
423  APInt Offset = APInt(BitWidth,
424                       TD->getIndexedOffset(Ptr->getType(),
425                                            (Value**)Ops+1, NumOps-1));
426  // If the base value for this address is a literal integer value, fold the
427  // getelementptr to the resulting integer value casted to the pointer type.
428  if (BaseIsInt) {
429    Constant *C = ConstantInt::get(Context, Offset+BasePtr);
430    return ConstantExpr::getIntToPtr(C, ResultTy);
431  }
432
433  // Otherwise form a regular getelementptr. Recompute the indices so that
434  // we eliminate over-indexing of the notional static type array bounds.
435  // This makes it easy to determine if the getelementptr is "inbounds".
436  // Also, this helps GlobalOpt do SROA on GlobalVariables.
437  const Type *Ty = Ptr->getType();
438  SmallVector<Constant*, 32> NewIdxs;
439  do {
440    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
441      // The only pointer indexing we'll do is on the first index of the GEP.
442      if (isa<PointerType>(ATy) && !NewIdxs.empty())
443        break;
444      // Determine which element of the array the offset points into.
445      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
446      if (ElemSize == 0)
447        return 0;
448      APInt NewIdx = Offset.udiv(ElemSize);
449      Offset -= NewIdx * ElemSize;
450      NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx));
451      Ty = ATy->getElementType();
452    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
453      // Determine which field of the struct the offset points into. The
454      // getZExtValue is at least as safe as the StructLayout API because we
455      // know the offset is within the struct at this point.
456      const StructLayout &SL = *TD->getStructLayout(STy);
457      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
458      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx));
459      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
460      Ty = STy->getTypeAtIndex(ElIdx);
461    } else {
462      // We've reached some non-indexable type.
463      break;
464    }
465  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
466
467  // If we haven't used up the entire offset by descending the static
468  // type, then the offset is pointing into the middle of an indivisible
469  // member, so we can't simplify it.
470  if (Offset != 0)
471    return 0;
472
473  // Create a GEP.
474  Constant *C =
475    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
476  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
477         "Computed GetElementPtr has unexpected type!");
478
479  // If we ended up indexing a member with a type that doesn't match
480  // the type of what the original indices indexed, add a cast.
481  if (Ty != cast<PointerType>(ResultTy)->getElementType())
482    C = ConstantExpr::getBitCast(C, ResultTy);
483
484  return C;
485}
486
487/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
488/// targetdata.  Return 0 if unfoldable.
489static Constant *FoldBitCast(Constant *C, const Type *DestTy,
490                             const TargetData &TD, LLVMContext &Context) {
491  // If this is a bitcast from constant vector -> vector, fold it.
492  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
493    if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
494      // If the element types match, VMCore can fold it.
495      unsigned NumDstElt = DestVTy->getNumElements();
496      unsigned NumSrcElt = CV->getNumOperands();
497      if (NumDstElt == NumSrcElt)
498        return 0;
499
500      const Type *SrcEltTy = CV->getType()->getElementType();
501      const Type *DstEltTy = DestVTy->getElementType();
502
503      // Otherwise, we're changing the number of elements in a vector, which
504      // requires endianness information to do the right thing.  For example,
505      //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
506      // folds to (little endian):
507      //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
508      // and to (big endian):
509      //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
510
511      // First thing is first.  We only want to think about integer here, so if
512      // we have something in FP form, recast it as integer.
513      if (DstEltTy->isFloatingPoint()) {
514        // Fold to an vector of integers with same size as our FP type.
515        unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
516        const Type *DestIVTy = VectorType::get(
517                                 IntegerType::get(Context, FPWidth), NumDstElt);
518        // Recursively handle this integer conversion, if possible.
519        C = FoldBitCast(C, DestIVTy, TD, Context);
520        if (!C) return 0;
521
522        // Finally, VMCore can handle this now that #elts line up.
523        return ConstantExpr::getBitCast(C, DestTy);
524      }
525
526      // Okay, we know the destination is integer, if the input is FP, convert
527      // it to integer first.
528      if (SrcEltTy->isFloatingPoint()) {
529        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
530        const Type *SrcIVTy = VectorType::get(
531                                 IntegerType::get(Context, FPWidth), NumSrcElt);
532        // Ask VMCore to do the conversion now that #elts line up.
533        C = ConstantExpr::getBitCast(C, SrcIVTy);
534        CV = dyn_cast<ConstantVector>(C);
535        if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out.
536      }
537
538      // Now we know that the input and output vectors are both integer vectors
539      // of the same size, and that their #elements is not the same.  Do the
540      // conversion here, which depends on whether the input or output has
541      // more elements.
542      bool isLittleEndian = TD.isLittleEndian();
543
544      SmallVector<Constant*, 32> Result;
545      if (NumDstElt < NumSrcElt) {
546        // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
547        Constant *Zero = Constant::getNullValue(DstEltTy);
548        unsigned Ratio = NumSrcElt/NumDstElt;
549        unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
550        unsigned SrcElt = 0;
551        for (unsigned i = 0; i != NumDstElt; ++i) {
552          // Build each element of the result.
553          Constant *Elt = Zero;
554          unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
555          for (unsigned j = 0; j != Ratio; ++j) {
556            Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
557            if (!Src) return 0;  // Reject constantexpr elements.
558
559            // Zero extend the element to the right size.
560            Src = ConstantExpr::getZExt(Src, Elt->getType());
561
562            // Shift it to the right place, depending on endianness.
563            Src = ConstantExpr::getShl(Src,
564                             ConstantInt::get(Src->getType(), ShiftAmt));
565            ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
566
567            // Mix it in.
568            Elt = ConstantExpr::getOr(Elt, Src);
569          }
570          Result.push_back(Elt);
571        }
572      } else {
573        // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
574        unsigned Ratio = NumDstElt/NumSrcElt;
575        unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
576
577        // Loop over each source value, expanding into multiple results.
578        for (unsigned i = 0; i != NumSrcElt; ++i) {
579          Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
580          if (!Src) return 0;  // Reject constantexpr elements.
581
582          unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
583          for (unsigned j = 0; j != Ratio; ++j) {
584            // Shift the piece of the value into the right place, depending on
585            // endianness.
586            Constant *Elt = ConstantExpr::getLShr(Src,
587                            ConstantInt::get(Src->getType(), ShiftAmt));
588            ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
589
590            // Truncate and remember this piece.
591            Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
592          }
593        }
594      }
595
596      return ConstantVector::get(Result.data(), Result.size());
597    }
598  }
599
600  return 0;
601}
602
603
604//===----------------------------------------------------------------------===//
605// Constant Folding public APIs
606//===----------------------------------------------------------------------===//
607
608
609/// ConstantFoldInstruction - Attempt to constant fold the specified
610/// instruction.  If successful, the constant result is returned, if not, null
611/// is returned.  Note that this function can only fail when attempting to fold
612/// instructions like loads and stores, which have no constant expression form.
613///
614Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
615                                        const TargetData *TD) {
616  if (PHINode *PN = dyn_cast<PHINode>(I)) {
617    if (PN->getNumIncomingValues() == 0)
618      return UndefValue::get(PN->getType());
619
620    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
621    if (Result == 0) return 0;
622
623    // Handle PHI nodes specially here...
624    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
625      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
626        return 0;   // Not all the same incoming constants...
627
628    // If we reach here, all incoming values are the same constant.
629    return Result;
630  }
631
632  // Scan the operand list, checking to see if they are all constants, if so,
633  // hand off to ConstantFoldInstOperands.
634  SmallVector<Constant*, 8> Ops;
635  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
636    if (Constant *Op = dyn_cast<Constant>(*i))
637      Ops.push_back(Op);
638    else
639      return 0;  // All operands not constant!
640
641  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
642    return ConstantFoldCompareInstOperands(CI->getPredicate(),
643                                           Ops.data(), Ops.size(),
644                                           Context, TD);
645
646  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
647    return ConstantFoldLoadInst(LI, TD);
648
649  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
650                                  Ops.data(), Ops.size(), Context, TD);
651}
652
653/// ConstantFoldConstantExpression - Attempt to fold the constant expression
654/// using the specified TargetData.  If successful, the constant result is
655/// result is returned, if not, null is returned.
656Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
657                                               LLVMContext &Context,
658                                               const TargetData *TD) {
659  SmallVector<Constant*, 8> Ops;
660  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
661    Ops.push_back(cast<Constant>(*i));
662
663  if (CE->isCompare())
664    return ConstantFoldCompareInstOperands(CE->getPredicate(),
665                                           Ops.data(), Ops.size(),
666                                           Context, TD);
667  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
668                                  Ops.data(), Ops.size(), Context, TD);
669}
670
671/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
672/// specified opcode and operands.  If successful, the constant result is
673/// returned, if not, null is returned.  Note that this function can fail when
674/// attempting to fold instructions like loads and stores, which have no
675/// constant expression form.
676///
677Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
678                                         Constant* const* Ops, unsigned NumOps,
679                                         LLVMContext &Context,
680                                         const TargetData *TD) {
681  // Handle easy binops first.
682  if (Instruction::isBinaryOp(Opcode)) {
683    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
684      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
685                                                  Context))
686        return C;
687
688    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
689  }
690
691  switch (Opcode) {
692  default: return 0;
693  case Instruction::Call:
694    if (Function *F = dyn_cast<Function>(Ops[0]))
695      if (canConstantFoldCallTo(F))
696        return ConstantFoldCall(F, Ops+1, NumOps-1);
697    return 0;
698  case Instruction::ICmp:
699  case Instruction::FCmp:
700    llvm_unreachable("This function is invalid for compares: no predicate specified");
701  case Instruction::PtrToInt:
702    // If the input is a inttoptr, eliminate the pair.  This requires knowing
703    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
704    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
705      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
706        Constant *Input = CE->getOperand(0);
707        unsigned InWidth = Input->getType()->getScalarSizeInBits();
708        if (TD->getPointerSizeInBits() < InWidth) {
709          Constant *Mask =
710            ConstantInt::get(Context, APInt::getLowBitsSet(InWidth,
711                                                  TD->getPointerSizeInBits()));
712          Input = ConstantExpr::getAnd(Input, Mask);
713        }
714        // Do a zext or trunc to get to the dest size.
715        return ConstantExpr::getIntegerCast(Input, DestTy, false);
716      }
717    }
718    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
719  case Instruction::IntToPtr:
720    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
721    // the int size is >= the ptr size.  This requires knowing the width of a
722    // pointer, so it can't be done in ConstantExpr::getCast.
723    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
724      if (TD &&
725          TD->getPointerSizeInBits() <=
726          CE->getType()->getScalarSizeInBits()) {
727        if (CE->getOpcode() == Instruction::PtrToInt) {
728          Constant *Input = CE->getOperand(0);
729          Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
730          return C ? C : ConstantExpr::getBitCast(Input, DestTy);
731        }
732        // If there's a constant offset added to the integer value before
733        // it is casted back to a pointer, see if the expression can be
734        // converted into a GEP.
735        if (CE->getOpcode() == Instruction::Add)
736          if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
737            if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
738              if (R->getOpcode() == Instruction::PtrToInt)
739                if (GlobalVariable *GV =
740                      dyn_cast<GlobalVariable>(R->getOperand(0))) {
741                  const PointerType *GVTy = cast<PointerType>(GV->getType());
742                  if (const ArrayType *AT =
743                        dyn_cast<ArrayType>(GVTy->getElementType())) {
744                    const Type *ElTy = AT->getElementType();
745                    uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
746                    APInt PSA(L->getValue().getBitWidth(), AllocSize);
747                    if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
748                        L->getValue().urem(PSA) == 0) {
749                      APInt ElemIdx = L->getValue().udiv(PSA);
750                      if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
751                                            AT->getNumElements()))) {
752                        Constant *Index[] = {
753                          Constant::getNullValue(CE->getType()),
754                          ConstantInt::get(Context, ElemIdx)
755                        };
756                        return
757                        ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
758                      }
759                    }
760                  }
761                }
762      }
763    }
764    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
765  case Instruction::Trunc:
766  case Instruction::ZExt:
767  case Instruction::SExt:
768  case Instruction::FPTrunc:
769  case Instruction::FPExt:
770  case Instruction::UIToFP:
771  case Instruction::SIToFP:
772  case Instruction::FPToUI:
773  case Instruction::FPToSI:
774      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
775  case Instruction::BitCast:
776    if (TD)
777      if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
778        return C;
779    return ConstantExpr::getBitCast(Ops[0], DestTy);
780  case Instruction::Select:
781    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
782  case Instruction::ExtractElement:
783    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
784  case Instruction::InsertElement:
785    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
786  case Instruction::ShuffleVector:
787    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
788  case Instruction::GetElementPtr:
789    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
790      return C;
791
792    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
793  }
794}
795
796/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
797/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
798/// returns a constant expression of the specified operands.
799///
800Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
801                                                Constant*const * Ops,
802                                                unsigned NumOps,
803                                                LLVMContext &Context,
804                                                const TargetData *TD) {
805  // fold: icmp (inttoptr x), null         -> icmp x, 0
806  // fold: icmp (ptrtoint x), 0            -> icmp x, null
807  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
808  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
809  //
810  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
811  // around to know if bit truncation is happening.
812  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
813    if (TD && Ops[1]->isNullValue()) {
814      const Type *IntPtrTy = TD->getIntPtrType(Context);
815      if (CE0->getOpcode() == Instruction::IntToPtr) {
816        // Convert the integer value to the right size to ensure we get the
817        // proper extension or truncation.
818        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
819                                                   IntPtrTy, false);
820        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
821        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
822                                               Context, TD);
823      }
824
825      // Only do this transformation if the int is intptrty in size, otherwise
826      // there is a truncation or extension that we aren't modeling.
827      if (CE0->getOpcode() == Instruction::PtrToInt &&
828          CE0->getType() == IntPtrTy) {
829        Constant *C = CE0->getOperand(0);
830        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
831        // FIXME!
832        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
833                                               Context, TD);
834      }
835    }
836
837    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
838      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
839        const Type *IntPtrTy = TD->getIntPtrType(Context);
840
841        if (CE0->getOpcode() == Instruction::IntToPtr) {
842          // Convert the integer value to the right size to ensure we get the
843          // proper extension or truncation.
844          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
845                                                      IntPtrTy, false);
846          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
847                                                      IntPtrTy, false);
848          Constant *NewOps[] = { C0, C1 };
849          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
850                                                 Context, TD);
851        }
852
853        // Only do this transformation if the int is intptrty in size, otherwise
854        // there is a truncation or extension that we aren't modeling.
855        if ((CE0->getOpcode() == Instruction::PtrToInt &&
856             CE0->getType() == IntPtrTy &&
857             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
858          Constant *NewOps[] = {
859            CE0->getOperand(0), CE1->getOperand(0)
860          };
861          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
862                                                 Context, TD);
863        }
864      }
865    }
866  }
867  return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
868}
869
870
871/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
872/// getelementptr constantexpr, return the constant value being addressed by the
873/// constant expression, or null if something is funny and we can't decide.
874Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
875                                                       ConstantExpr *CE) {
876  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
877    return 0;  // Do not allow stepping over the value!
878
879  // Loop over all of the operands, tracking down which value we are
880  // addressing...
881  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
882  for (++I; I != E; ++I)
883    if (const StructType *STy = dyn_cast<StructType>(*I)) {
884      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
885      assert(CU->getZExtValue() < STy->getNumElements() &&
886             "Struct index out of range!");
887      unsigned El = (unsigned)CU->getZExtValue();
888      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
889        C = CS->getOperand(El);
890      } else if (isa<ConstantAggregateZero>(C)) {
891        C = Constant::getNullValue(STy->getElementType(El));
892      } else if (isa<UndefValue>(C)) {
893        C = UndefValue::get(STy->getElementType(El));
894      } else {
895        return 0;
896      }
897    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
898      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
899        if (CI->getZExtValue() >= ATy->getNumElements())
900         return 0;
901        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
902          C = CA->getOperand(CI->getZExtValue());
903        else if (isa<ConstantAggregateZero>(C))
904          C = Constant::getNullValue(ATy->getElementType());
905        else if (isa<UndefValue>(C))
906          C = UndefValue::get(ATy->getElementType());
907        else
908          return 0;
909      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
910        if (CI->getZExtValue() >= VTy->getNumElements())
911          return 0;
912        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
913          C = CP->getOperand(CI->getZExtValue());
914        else if (isa<ConstantAggregateZero>(C))
915          C = Constant::getNullValue(VTy->getElementType());
916        else if (isa<UndefValue>(C))
917          C = UndefValue::get(VTy->getElementType());
918        else
919          return 0;
920      } else {
921        return 0;
922      }
923    } else {
924      return 0;
925    }
926  return C;
927}
928
929
930//===----------------------------------------------------------------------===//
931//  Constant Folding for Calls
932//
933
934/// canConstantFoldCallTo - Return true if its even possible to fold a call to
935/// the specified function.
936bool
937llvm::canConstantFoldCallTo(const Function *F) {
938  switch (F->getIntrinsicID()) {
939  case Intrinsic::sqrt:
940  case Intrinsic::powi:
941  case Intrinsic::bswap:
942  case Intrinsic::ctpop:
943  case Intrinsic::ctlz:
944  case Intrinsic::cttz:
945  case Intrinsic::uadd_with_overflow:
946  case Intrinsic::usub_with_overflow:
947  case Intrinsic::sadd_with_overflow:
948  case Intrinsic::ssub_with_overflow:
949    return true;
950  default:
951    return false;
952  case 0: break;
953  }
954
955  if (!F->hasName()) return false;
956  StringRef Name = F->getName();
957
958  // In these cases, the check of the length is required.  We don't want to
959  // return true for a name like "cos\0blah" which strcmp would return equal to
960  // "cos", but has length 8.
961  switch (Name[0]) {
962  default: return false;
963  case 'a':
964    return Name == "acos" || Name == "asin" ||
965      Name == "atan" || Name == "atan2";
966  case 'c':
967    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
968  case 'e':
969    return Name == "exp";
970  case 'f':
971    return Name == "fabs" || Name == "fmod" || Name == "floor";
972  case 'l':
973    return Name == "log" || Name == "log10";
974  case 'p':
975    return Name == "pow";
976  case 's':
977    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
978      Name == "sinf" || Name == "sqrtf";
979  case 't':
980    return Name == "tan" || Name == "tanh";
981  }
982}
983
984static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
985                                const Type *Ty, LLVMContext &Context) {
986  errno = 0;
987  V = NativeFP(V);
988  if (errno != 0) {
989    errno = 0;
990    return 0;
991  }
992
993  if (Ty->isFloatTy())
994    return ConstantFP::get(Context, APFloat((float)V));
995  if (Ty->isDoubleTy())
996    return ConstantFP::get(Context, APFloat(V));
997  llvm_unreachable("Can only constant fold float/double");
998  return 0; // dummy return to suppress warning
999}
1000
1001static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1002                                      double V, double W,
1003                                      const Type *Ty,
1004                                      LLVMContext &Context) {
1005  errno = 0;
1006  V = NativeFP(V, W);
1007  if (errno != 0) {
1008    errno = 0;
1009    return 0;
1010  }
1011
1012  if (Ty->isFloatTy())
1013    return ConstantFP::get(Context, APFloat((float)V));
1014  if (Ty->isDoubleTy())
1015    return ConstantFP::get(Context, APFloat(V));
1016  llvm_unreachable("Can only constant fold float/double");
1017  return 0; // dummy return to suppress warning
1018}
1019
1020/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1021/// with the specified arguments, returning null if unsuccessful.
1022Constant *
1023llvm::ConstantFoldCall(Function *F,
1024                       Constant *const *Operands, unsigned NumOperands) {
1025  if (!F->hasName()) return 0;
1026  LLVMContext &Context = F->getContext();
1027  StringRef Name = F->getName();
1028
1029  const Type *Ty = F->getReturnType();
1030  if (NumOperands == 1) {
1031    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1032      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1033        return 0;
1034      /// Currently APFloat versions of these functions do not exist, so we use
1035      /// the host native double versions.  Float versions are not called
1036      /// directly but for all these it is true (float)(f((double)arg)) ==
1037      /// f(arg).  Long double not supported yet.
1038      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1039                                     Op->getValueAPF().convertToDouble();
1040      switch (Name[0]) {
1041      case 'a':
1042        if (Name == "acos")
1043          return ConstantFoldFP(acos, V, Ty, Context);
1044        else if (Name == "asin")
1045          return ConstantFoldFP(asin, V, Ty, Context);
1046        else if (Name == "atan")
1047          return ConstantFoldFP(atan, V, Ty, Context);
1048        break;
1049      case 'c':
1050        if (Name == "ceil")
1051          return ConstantFoldFP(ceil, V, Ty, Context);
1052        else if (Name == "cos")
1053          return ConstantFoldFP(cos, V, Ty, Context);
1054        else if (Name == "cosh")
1055          return ConstantFoldFP(cosh, V, Ty, Context);
1056        else if (Name == "cosf")
1057          return ConstantFoldFP(cos, V, Ty, Context);
1058        break;
1059      case 'e':
1060        if (Name == "exp")
1061          return ConstantFoldFP(exp, V, Ty, Context);
1062        break;
1063      case 'f':
1064        if (Name == "fabs")
1065          return ConstantFoldFP(fabs, V, Ty, Context);
1066        else if (Name == "floor")
1067          return ConstantFoldFP(floor, V, Ty, Context);
1068        break;
1069      case 'l':
1070        if (Name == "log" && V > 0)
1071          return ConstantFoldFP(log, V, Ty, Context);
1072        else if (Name == "log10" && V > 0)
1073          return ConstantFoldFP(log10, V, Ty, Context);
1074        else if (Name == "llvm.sqrt.f32" ||
1075                 Name == "llvm.sqrt.f64") {
1076          if (V >= -0.0)
1077            return ConstantFoldFP(sqrt, V, Ty, Context);
1078          else // Undefined
1079            return Constant::getNullValue(Ty);
1080        }
1081        break;
1082      case 's':
1083        if (Name == "sin")
1084          return ConstantFoldFP(sin, V, Ty, Context);
1085        else if (Name == "sinh")
1086          return ConstantFoldFP(sinh, V, Ty, Context);
1087        else if (Name == "sqrt" && V >= 0)
1088          return ConstantFoldFP(sqrt, V, Ty, Context);
1089        else if (Name == "sqrtf" && V >= 0)
1090          return ConstantFoldFP(sqrt, V, Ty, Context);
1091        else if (Name == "sinf")
1092          return ConstantFoldFP(sin, V, Ty, Context);
1093        break;
1094      case 't':
1095        if (Name == "tan")
1096          return ConstantFoldFP(tan, V, Ty, Context);
1097        else if (Name == "tanh")
1098          return ConstantFoldFP(tanh, V, Ty, Context);
1099        break;
1100      default:
1101        break;
1102      }
1103      return 0;
1104    }
1105
1106
1107    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1108      if (Name.startswith("llvm.bswap"))
1109        return ConstantInt::get(Context, Op->getValue().byteSwap());
1110      else if (Name.startswith("llvm.ctpop"))
1111        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1112      else if (Name.startswith("llvm.cttz"))
1113        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1114      else if (Name.startswith("llvm.ctlz"))
1115        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1116      return 0;
1117    }
1118
1119    return 0;
1120  }
1121
1122  if (NumOperands == 2) {
1123    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1124      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1125        return 0;
1126      double Op1V = Ty->isFloatTy() ?
1127                      (double)Op1->getValueAPF().convertToFloat() :
1128                      Op1->getValueAPF().convertToDouble();
1129      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1130        if (Op2->getType() != Op1->getType())
1131          return 0;
1132
1133        double Op2V = Ty->isFloatTy() ?
1134                      (double)Op2->getValueAPF().convertToFloat():
1135                      Op2->getValueAPF().convertToDouble();
1136
1137        if (Name == "pow")
1138          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
1139        if (Name == "fmod")
1140          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
1141        if (Name == "atan2")
1142          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
1143      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1144        if (Name == "llvm.powi.f32")
1145          return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V,
1146                                                 (int)Op2C->getZExtValue())));
1147        if (Name == "llvm.powi.f64")
1148          return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V,
1149                                                 (int)Op2C->getZExtValue())));
1150      }
1151      return 0;
1152    }
1153
1154
1155    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1156      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1157        switch (F->getIntrinsicID()) {
1158        default: break;
1159        case Intrinsic::uadd_with_overflow: {
1160          Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result.
1161          Constant *Ops[] = {
1162            Res, ConstantExpr::getICmp(CmpInst::ICMP_ULT, Res, Op1) // overflow.
1163          };
1164          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1165        }
1166        case Intrinsic::usub_with_overflow: {
1167          Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result.
1168          Constant *Ops[] = {
1169            Res, ConstantExpr::getICmp(CmpInst::ICMP_UGT, Res, Op1) // overflow.
1170          };
1171          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1172        }
1173        case Intrinsic::sadd_with_overflow: {
1174          Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result.
1175          Constant *Overflow = ConstantExpr::getSelect(
1176              ConstantExpr::getICmp(CmpInst::ICMP_SGT,
1177                ConstantInt::get(Op1->getType(), 0), Op1),
1178              ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op2),
1179              ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op2)); // overflow.
1180
1181          Constant *Ops[] = { Res, Overflow };
1182          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1183        }
1184        case Intrinsic::ssub_with_overflow: {
1185          Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result.
1186          Constant *Overflow = ConstantExpr::getSelect(
1187              ConstantExpr::getICmp(CmpInst::ICMP_SGT,
1188                ConstantInt::get(Op2->getType(), 0), Op2),
1189              ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op1),
1190              ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op1)); // overflow.
1191
1192          Constant *Ops[] = { Res, Overflow };
1193          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1194        }
1195        }
1196      }
1197
1198      return 0;
1199    }
1200    return 0;
1201  }
1202  return 0;
1203}
1204
1205