ConstantFolding.cpp revision e8e00f5efb4a22238f2407bf813de4606f30c5aa
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Operator.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringMap.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include <cerrno>
35#include <cmath>
36
37#include "FEnv.h"
38using namespace llvm;
39
40//===----------------------------------------------------------------------===//
41// Constant Folding internal helper functions
42//===----------------------------------------------------------------------===//
43
44/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
45/// TargetData.  This always returns a non-null constant, but it may be a
46/// ConstantExpr if unfoldable.
47static Constant *FoldBitCast(Constant *C, const Type *DestTy,
48                             const TargetData &TD) {
49
50  // This only handles casts to vectors currently.
51  const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
52  if (DestVTy == 0)
53    return ConstantExpr::getBitCast(C, DestTy);
54
55  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
56  // vector so the code below can handle it uniformly.
57  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
58    Constant *Ops = C; // don't take the address of C!
59    return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
60  }
61
62  // If this is a bitcast from constant vector -> vector, fold it.
63  ConstantVector *CV = dyn_cast<ConstantVector>(C);
64  if (CV == 0)
65    return ConstantExpr::getBitCast(C, DestTy);
66
67  // If the element types match, VMCore can fold it.
68  unsigned NumDstElt = DestVTy->getNumElements();
69  unsigned NumSrcElt = CV->getNumOperands();
70  if (NumDstElt == NumSrcElt)
71    return ConstantExpr::getBitCast(C, DestTy);
72
73  const Type *SrcEltTy = CV->getType()->getElementType();
74  const Type *DstEltTy = DestVTy->getElementType();
75
76  // Otherwise, we're changing the number of elements in a vector, which
77  // requires endianness information to do the right thing.  For example,
78  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
79  // folds to (little endian):
80  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
81  // and to (big endian):
82  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
83
84  // First thing is first.  We only want to think about integer here, so if
85  // we have something in FP form, recast it as integer.
86  if (DstEltTy->isFloatingPointTy()) {
87    // Fold to an vector of integers with same size as our FP type.
88    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
89    const Type *DestIVTy =
90      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
91    // Recursively handle this integer conversion, if possible.
92    C = FoldBitCast(C, DestIVTy, TD);
93    if (!C) return ConstantExpr::getBitCast(C, DestTy);
94
95    // Finally, VMCore can handle this now that #elts line up.
96    return ConstantExpr::getBitCast(C, DestTy);
97  }
98
99  // Okay, we know the destination is integer, if the input is FP, convert
100  // it to integer first.
101  if (SrcEltTy->isFloatingPointTy()) {
102    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
103    const Type *SrcIVTy =
104      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
105    // Ask VMCore to do the conversion now that #elts line up.
106    C = ConstantExpr::getBitCast(C, SrcIVTy);
107    CV = dyn_cast<ConstantVector>(C);
108    if (!CV)  // If VMCore wasn't able to fold it, bail out.
109      return C;
110  }
111
112  // Now we know that the input and output vectors are both integer vectors
113  // of the same size, and that their #elements is not the same.  Do the
114  // conversion here, which depends on whether the input or output has
115  // more elements.
116  bool isLittleEndian = TD.isLittleEndian();
117
118  SmallVector<Constant*, 32> Result;
119  if (NumDstElt < NumSrcElt) {
120    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
121    Constant *Zero = Constant::getNullValue(DstEltTy);
122    unsigned Ratio = NumSrcElt/NumDstElt;
123    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
124    unsigned SrcElt = 0;
125    for (unsigned i = 0; i != NumDstElt; ++i) {
126      // Build each element of the result.
127      Constant *Elt = Zero;
128      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
129      for (unsigned j = 0; j != Ratio; ++j) {
130        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
131        if (!Src)  // Reject constantexpr elements.
132          return ConstantExpr::getBitCast(C, DestTy);
133
134        // Zero extend the element to the right size.
135        Src = ConstantExpr::getZExt(Src, Elt->getType());
136
137        // Shift it to the right place, depending on endianness.
138        Src = ConstantExpr::getShl(Src,
139                                   ConstantInt::get(Src->getType(), ShiftAmt));
140        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
141
142        // Mix it in.
143        Elt = ConstantExpr::getOr(Elt, Src);
144      }
145      Result.push_back(Elt);
146    }
147  } else {
148    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
149    unsigned Ratio = NumDstElt/NumSrcElt;
150    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
151
152    // Loop over each source value, expanding into multiple results.
153    for (unsigned i = 0; i != NumSrcElt; ++i) {
154      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
155      if (!Src)  // Reject constantexpr elements.
156        return ConstantExpr::getBitCast(C, DestTy);
157
158      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
159      for (unsigned j = 0; j != Ratio; ++j) {
160        // Shift the piece of the value into the right place, depending on
161        // endianness.
162        Constant *Elt = ConstantExpr::getLShr(Src,
163                                    ConstantInt::get(Src->getType(), ShiftAmt));
164        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
165
166        // Truncate and remember this piece.
167        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
168      }
169    }
170  }
171
172  return ConstantVector::get(Result);
173}
174
175
176/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
177/// from a global, return the global and the constant.  Because of
178/// constantexprs, this function is recursive.
179static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
180                                       int64_t &Offset, const TargetData &TD) {
181  // Trivial case, constant is the global.
182  if ((GV = dyn_cast<GlobalValue>(C))) {
183    Offset = 0;
184    return true;
185  }
186
187  // Otherwise, if this isn't a constant expr, bail out.
188  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
189  if (!CE) return false;
190
191  // Look through ptr->int and ptr->ptr casts.
192  if (CE->getOpcode() == Instruction::PtrToInt ||
193      CE->getOpcode() == Instruction::BitCast)
194    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
195
196  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
197  if (CE->getOpcode() == Instruction::GetElementPtr) {
198    // Cannot compute this if the element type of the pointer is missing size
199    // info.
200    if (!cast<PointerType>(CE->getOperand(0)->getType())
201                 ->getElementType()->isSized())
202      return false;
203
204    // If the base isn't a global+constant, we aren't either.
205    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
206      return false;
207
208    // Otherwise, add any offset that our operands provide.
209    gep_type_iterator GTI = gep_type_begin(CE);
210    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
211         i != e; ++i, ++GTI) {
212      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
213      if (!CI) return false;  // Index isn't a simple constant?
214      if (CI->isZero()) continue;  // Not adding anything.
215
216      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
217        // N = N + Offset
218        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
219      } else {
220        const SequentialType *SQT = cast<SequentialType>(*GTI);
221        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
222      }
223    }
224    return true;
225  }
226
227  return false;
228}
229
230/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
231/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
232/// pointer to copy results into and BytesLeft is the number of bytes left in
233/// the CurPtr buffer.  TD is the target data.
234static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
235                               unsigned char *CurPtr, unsigned BytesLeft,
236                               const TargetData &TD) {
237  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
238         "Out of range access");
239
240  // If this element is zero or undefined, we can just return since *CurPtr is
241  // zero initialized.
242  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
243    return true;
244
245  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
246    if (CI->getBitWidth() > 64 ||
247        (CI->getBitWidth() & 7) != 0)
248      return false;
249
250    uint64_t Val = CI->getZExtValue();
251    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
252
253    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
254      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
255      ++ByteOffset;
256    }
257    return true;
258  }
259
260  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
261    if (CFP->getType()->isDoubleTy()) {
262      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
263      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
264    }
265    if (CFP->getType()->isFloatTy()){
266      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
267      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
268    }
269    return false;
270  }
271
272  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
273    const StructLayout *SL = TD.getStructLayout(CS->getType());
274    unsigned Index = SL->getElementContainingOffset(ByteOffset);
275    uint64_t CurEltOffset = SL->getElementOffset(Index);
276    ByteOffset -= CurEltOffset;
277
278    while (1) {
279      // If the element access is to the element itself and not to tail padding,
280      // read the bytes from the element.
281      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
282
283      if (ByteOffset < EltSize &&
284          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
285                              BytesLeft, TD))
286        return false;
287
288      ++Index;
289
290      // Check to see if we read from the last struct element, if so we're done.
291      if (Index == CS->getType()->getNumElements())
292        return true;
293
294      // If we read all of the bytes we needed from this element we're done.
295      uint64_t NextEltOffset = SL->getElementOffset(Index);
296
297      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
298        return true;
299
300      // Move to the next element of the struct.
301      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
302      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
303      ByteOffset = 0;
304      CurEltOffset = NextEltOffset;
305    }
306    // not reached.
307  }
308
309  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
310    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
311    uint64_t Index = ByteOffset / EltSize;
312    uint64_t Offset = ByteOffset - Index * EltSize;
313    for (; Index != CA->getType()->getNumElements(); ++Index) {
314      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
315                              BytesLeft, TD))
316        return false;
317      if (EltSize >= BytesLeft)
318        return true;
319
320      Offset = 0;
321      BytesLeft -= EltSize;
322      CurPtr += EltSize;
323    }
324    return true;
325  }
326
327  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
328    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
329    uint64_t Index = ByteOffset / EltSize;
330    uint64_t Offset = ByteOffset - Index * EltSize;
331    for (; Index != CV->getType()->getNumElements(); ++Index) {
332      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
333                              BytesLeft, TD))
334        return false;
335      if (EltSize >= BytesLeft)
336        return true;
337
338      Offset = 0;
339      BytesLeft -= EltSize;
340      CurPtr += EltSize;
341    }
342    return true;
343  }
344
345  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
346    if (CE->getOpcode() == Instruction::IntToPtr &&
347        CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
348        return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
349                                  BytesLeft, TD);
350  }
351
352  // Otherwise, unknown initializer type.
353  return false;
354}
355
356static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
357                                                 const TargetData &TD) {
358  const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
359  const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
360
361  // If this isn't an integer load we can't fold it directly.
362  if (!IntType) {
363    // If this is a float/double load, we can try folding it as an int32/64 load
364    // and then bitcast the result.  This can be useful for union cases.  Note
365    // that address spaces don't matter here since we're not going to result in
366    // an actual new load.
367    const Type *MapTy;
368    if (LoadTy->isFloatTy())
369      MapTy = Type::getInt32PtrTy(C->getContext());
370    else if (LoadTy->isDoubleTy())
371      MapTy = Type::getInt64PtrTy(C->getContext());
372    else if (LoadTy->isVectorTy()) {
373      MapTy = IntegerType::get(C->getContext(),
374                               TD.getTypeAllocSizeInBits(LoadTy));
375      MapTy = PointerType::getUnqual(MapTy);
376    } else
377      return 0;
378
379    C = FoldBitCast(C, MapTy, TD);
380    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
381      return FoldBitCast(Res, LoadTy, TD);
382    return 0;
383  }
384
385  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
386  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
387
388  GlobalValue *GVal;
389  int64_t Offset;
390  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
391    return 0;
392
393  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
394  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
395      !GV->getInitializer()->getType()->isSized())
396    return 0;
397
398  // If we're loading off the beginning of the global, some bytes may be valid,
399  // but we don't try to handle this.
400  if (Offset < 0) return 0;
401
402  // If we're not accessing anything in this constant, the result is undefined.
403  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
404    return UndefValue::get(IntType);
405
406  unsigned char RawBytes[32] = {0};
407  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
408                          BytesLoaded, TD))
409    return 0;
410
411  APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
412  for (unsigned i = 1; i != BytesLoaded; ++i) {
413    ResultVal <<= 8;
414    ResultVal |= RawBytes[BytesLoaded-1-i];
415  }
416
417  return ConstantInt::get(IntType->getContext(), ResultVal);
418}
419
420/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
421/// produce if it is constant and determinable.  If this is not determinable,
422/// return null.
423Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
424                                             const TargetData *TD) {
425  // First, try the easy cases:
426  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
427    if (GV->isConstant() && GV->hasDefinitiveInitializer())
428      return GV->getInitializer();
429
430  // If the loaded value isn't a constant expr, we can't handle it.
431  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
432  if (!CE) return 0;
433
434  if (CE->getOpcode() == Instruction::GetElementPtr) {
435    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
436      if (GV->isConstant() && GV->hasDefinitiveInitializer())
437        if (Constant *V =
438             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
439          return V;
440  }
441
442  // Instead of loading constant c string, use corresponding integer value
443  // directly if string length is small enough.
444  std::string Str;
445  if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
446    unsigned StrLen = Str.length();
447    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
448    unsigned NumBits = Ty->getPrimitiveSizeInBits();
449    // Replace load with immediate integer if the result is an integer or fp
450    // value.
451    if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
452        (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
453      APInt StrVal(NumBits, 0);
454      APInt SingleChar(NumBits, 0);
455      if (TD->isLittleEndian()) {
456        for (signed i = StrLen-1; i >= 0; i--) {
457          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
458          StrVal = (StrVal << 8) | SingleChar;
459        }
460      } else {
461        for (unsigned i = 0; i < StrLen; i++) {
462          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
463          StrVal = (StrVal << 8) | SingleChar;
464        }
465        // Append NULL at the end.
466        SingleChar = 0;
467        StrVal = (StrVal << 8) | SingleChar;
468      }
469
470      Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
471      if (Ty->isFloatingPointTy())
472        Res = ConstantExpr::getBitCast(Res, Ty);
473      return Res;
474    }
475  }
476
477  // If this load comes from anywhere in a constant global, and if the global
478  // is all undef or zero, we know what it loads.
479  if (GlobalVariable *GV =
480        dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
481    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
482      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
483      if (GV->getInitializer()->isNullValue())
484        return Constant::getNullValue(ResTy);
485      if (isa<UndefValue>(GV->getInitializer()))
486        return UndefValue::get(ResTy);
487    }
488  }
489
490  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
491  // currently don't do any of this for big endian systems.  It can be
492  // generalized in the future if someone is interested.
493  if (TD && TD->isLittleEndian())
494    return FoldReinterpretLoadFromConstPtr(CE, *TD);
495  return 0;
496}
497
498static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
499  if (LI->isVolatile()) return 0;
500
501  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
502    return ConstantFoldLoadFromConstPtr(C, TD);
503
504  return 0;
505}
506
507/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
508/// Attempt to symbolically evaluate the result of a binary operator merging
509/// these together.  If target data info is available, it is provided as TD,
510/// otherwise TD is null.
511static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
512                                           Constant *Op1, const TargetData *TD){
513  // SROA
514
515  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
516  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
517  // bits.
518
519
520  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
521  // constant.  This happens frequently when iterating over a global array.
522  if (Opc == Instruction::Sub && TD) {
523    GlobalValue *GV1, *GV2;
524    int64_t Offs1, Offs2;
525
526    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
527      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
528          GV1 == GV2) {
529        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
530        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
531      }
532  }
533
534  return 0;
535}
536
537/// CastGEPIndices - If array indices are not pointer-sized integers,
538/// explicitly cast them so that they aren't implicitly casted by the
539/// getelementptr.
540static Constant *CastGEPIndices(Constant *const *Ops, unsigned NumOps,
541                                const Type *ResultTy,
542                                const TargetData *TD) {
543  if (!TD) return 0;
544  const Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
545
546  bool Any = false;
547  SmallVector<Constant*, 32> NewIdxs;
548  for (unsigned i = 1; i != NumOps; ++i) {
549    if ((i == 1 ||
550         !isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
551                                        reinterpret_cast<Value *const *>(Ops+1),
552                                                            i-1))) &&
553        Ops[i]->getType() != IntPtrTy) {
554      Any = true;
555      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
556                                                                      true,
557                                                                      IntPtrTy,
558                                                                      true),
559                                              Ops[i], IntPtrTy));
560    } else
561      NewIdxs.push_back(Ops[i]);
562  }
563  if (!Any) return 0;
564
565  Constant *C =
566    ConstantExpr::getGetElementPtr(Ops[0], &NewIdxs[0], NewIdxs.size());
567  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
568    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
569      C = Folded;
570  return C;
571}
572
573/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
574/// constant expression, do so.
575static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
576                                         const Type *ResultTy,
577                                         const TargetData *TD) {
578  Constant *Ptr = Ops[0];
579  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
580    return 0;
581
582  const Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
583
584  // If this is a constant expr gep that is effectively computing an
585  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
586  for (unsigned i = 1; i != NumOps; ++i)
587    if (!isa<ConstantInt>(Ops[i])) {
588
589      // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
590      // "inttoptr (sub (ptrtoint Ptr), V)"
591      if (NumOps == 2 &&
592          cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
593        ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
594        assert((CE == 0 || CE->getType() == IntPtrTy) &&
595               "CastGEPIndices didn't canonicalize index types!");
596        if (CE && CE->getOpcode() == Instruction::Sub &&
597            CE->getOperand(0)->isNullValue()) {
598          Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
599          Res = ConstantExpr::getSub(Res, CE->getOperand(1));
600          Res = ConstantExpr::getIntToPtr(Res, ResultTy);
601          if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
602            Res = ConstantFoldConstantExpression(ResCE, TD);
603          return Res;
604        }
605      }
606      return 0;
607    }
608
609  unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
610  APInt Offset = APInt(BitWidth,
611                       TD->getIndexedOffset(Ptr->getType(),
612                                            (Value**)Ops+1, NumOps-1));
613  Ptr = cast<Constant>(Ptr->stripPointerCasts());
614
615  // If this is a GEP of a GEP, fold it all into a single GEP.
616  while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
617    SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
618
619    // Do not try the incorporate the sub-GEP if some index is not a number.
620    bool AllConstantInt = true;
621    for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
622      if (!isa<ConstantInt>(NestedOps[i])) {
623        AllConstantInt = false;
624        break;
625      }
626    if (!AllConstantInt)
627      break;
628
629    Ptr = cast<Constant>(GEP->getOperand(0));
630    Offset += APInt(BitWidth,
631                    TD->getIndexedOffset(Ptr->getType(),
632                                         (Value**)NestedOps.data(),
633                                         NestedOps.size()));
634    Ptr = cast<Constant>(Ptr->stripPointerCasts());
635  }
636
637  // If the base value for this address is a literal integer value, fold the
638  // getelementptr to the resulting integer value casted to the pointer type.
639  APInt BasePtr(BitWidth, 0);
640  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
641    if (CE->getOpcode() == Instruction::IntToPtr)
642      if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
643        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
644  if (Ptr->isNullValue() || BasePtr != 0) {
645    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
646    return ConstantExpr::getIntToPtr(C, ResultTy);
647  }
648
649  // Otherwise form a regular getelementptr. Recompute the indices so that
650  // we eliminate over-indexing of the notional static type array bounds.
651  // This makes it easy to determine if the getelementptr is "inbounds".
652  // Also, this helps GlobalOpt do SROA on GlobalVariables.
653  const Type *Ty = Ptr->getType();
654  SmallVector<Constant*, 32> NewIdxs;
655  do {
656    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
657      if (ATy->isPointerTy()) {
658        // The only pointer indexing we'll do is on the first index of the GEP.
659        if (!NewIdxs.empty())
660          break;
661
662        // Only handle pointers to sized types, not pointers to functions.
663        if (!ATy->getElementType()->isSized())
664          return 0;
665      }
666
667      // Determine which element of the array the offset points into.
668      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
669      const IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
670      if (ElemSize == 0)
671        // The element size is 0. This may be [0 x Ty]*, so just use a zero
672        // index for this level and proceed to the next level to see if it can
673        // accommodate the offset.
674        NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
675      else {
676        // The element size is non-zero divide the offset by the element
677        // size (rounding down), to compute the index at this level.
678        APInt NewIdx = Offset.udiv(ElemSize);
679        Offset -= NewIdx * ElemSize;
680        NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
681      }
682      Ty = ATy->getElementType();
683    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
684      // Determine which field of the struct the offset points into. The
685      // getZExtValue is at least as safe as the StructLayout API because we
686      // know the offset is within the struct at this point.
687      const StructLayout &SL = *TD->getStructLayout(STy);
688      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
689      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
690                                         ElIdx));
691      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
692      Ty = STy->getTypeAtIndex(ElIdx);
693    } else {
694      // We've reached some non-indexable type.
695      break;
696    }
697  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
698
699  // If we haven't used up the entire offset by descending the static
700  // type, then the offset is pointing into the middle of an indivisible
701  // member, so we can't simplify it.
702  if (Offset != 0)
703    return 0;
704
705  // Create a GEP.
706  Constant *C =
707    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
708  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
709         "Computed GetElementPtr has unexpected type!");
710
711  // If we ended up indexing a member with a type that doesn't match
712  // the type of what the original indices indexed, add a cast.
713  if (Ty != cast<PointerType>(ResultTy)->getElementType())
714    C = FoldBitCast(C, ResultTy, *TD);
715
716  return C;
717}
718
719
720
721//===----------------------------------------------------------------------===//
722// Constant Folding public APIs
723//===----------------------------------------------------------------------===//
724
725/// ConstantFoldInstruction - Try to constant fold the specified instruction.
726/// If successful, the constant result is returned, if not, null is returned.
727/// Note that this fails if not all of the operands are constant.  Otherwise,
728/// this function can only fail when attempting to fold instructions like loads
729/// and stores, which have no constant expression form.
730Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
731  // Handle PHI nodes quickly here...
732  if (PHINode *PN = dyn_cast<PHINode>(I)) {
733    Constant *CommonValue = 0;
734
735    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
736      Value *Incoming = PN->getIncomingValue(i);
737      // If the incoming value is undef then skip it.  Note that while we could
738      // skip the value if it is equal to the phi node itself we choose not to
739      // because that would break the rule that constant folding only applies if
740      // all operands are constants.
741      if (isa<UndefValue>(Incoming))
742        continue;
743      // If the incoming value is not a constant, or is a different constant to
744      // the one we saw previously, then give up.
745      Constant *C = dyn_cast<Constant>(Incoming);
746      if (!C || (CommonValue && C != CommonValue))
747        return 0;
748      CommonValue = C;
749    }
750
751    // If we reach here, all incoming values are the same constant or undef.
752    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
753  }
754
755  // Scan the operand list, checking to see if they are all constants, if so,
756  // hand off to ConstantFoldInstOperands.
757  SmallVector<Constant*, 8> Ops;
758  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
759    if (Constant *Op = dyn_cast<Constant>(*i))
760      Ops.push_back(Op);
761    else
762      return 0;  // All operands not constant!
763
764  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
765    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
766                                           TD);
767
768  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
769    return ConstantFoldLoadInst(LI, TD);
770
771  if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
772    return ConstantExpr::getInsertValue(
773                                cast<Constant>(IVI->getAggregateOperand()),
774                                cast<Constant>(IVI->getInsertedValueOperand()),
775                                IVI->idx_begin(), IVI->getNumIndices());
776
777  if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
778    return ConstantExpr::getExtractValue(
779                                    cast<Constant>(EVI->getAggregateOperand()),
780                                    EVI->idx_begin(), EVI->getNumIndices());
781
782  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
783                                  Ops.data(), Ops.size(), TD);
784}
785
786/// ConstantFoldConstantExpression - Attempt to fold the constant expression
787/// using the specified TargetData.  If successful, the constant result is
788/// result is returned, if not, null is returned.
789Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
790                                               const TargetData *TD) {
791  SmallVector<Constant*, 8> Ops;
792  for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
793       i != e; ++i) {
794    Constant *NewC = cast<Constant>(*i);
795    // Recursively fold the ConstantExpr's operands.
796    if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
797      NewC = ConstantFoldConstantExpression(NewCE, TD);
798    Ops.push_back(NewC);
799  }
800
801  if (CE->isCompare())
802    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
803                                           TD);
804  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
805                                  Ops.data(), Ops.size(), TD);
806}
807
808/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
809/// specified opcode and operands.  If successful, the constant result is
810/// returned, if not, null is returned.  Note that this function can fail when
811/// attempting to fold instructions like loads and stores, which have no
812/// constant expression form.
813///
814/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
815/// information, due to only being passed an opcode and operands. Constant
816/// folding using this function strips this information.
817///
818Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
819                                         Constant* const* Ops, unsigned NumOps,
820                                         const TargetData *TD) {
821  // Handle easy binops first.
822  if (Instruction::isBinaryOp(Opcode)) {
823    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
824      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
825        return C;
826
827    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
828  }
829
830  switch (Opcode) {
831  default: return 0;
832  case Instruction::ICmp:
833  case Instruction::FCmp: assert(0 && "Invalid for compares");
834  case Instruction::Call:
835    if (Function *F = dyn_cast<Function>(Ops[NumOps - 1]))
836      if (canConstantFoldCallTo(F))
837        return ConstantFoldCall(F, Ops, NumOps - 1);
838    return 0;
839  case Instruction::PtrToInt:
840    // If the input is a inttoptr, eliminate the pair.  This requires knowing
841    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
842    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
843      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
844        Constant *Input = CE->getOperand(0);
845        unsigned InWidth = Input->getType()->getScalarSizeInBits();
846        if (TD->getPointerSizeInBits() < InWidth) {
847          Constant *Mask =
848            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
849                                                  TD->getPointerSizeInBits()));
850          Input = ConstantExpr::getAnd(Input, Mask);
851        }
852        // Do a zext or trunc to get to the dest size.
853        return ConstantExpr::getIntegerCast(Input, DestTy, false);
854      }
855    }
856    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
857  case Instruction::IntToPtr:
858    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
859    // the int size is >= the ptr size.  This requires knowing the width of a
860    // pointer, so it can't be done in ConstantExpr::getCast.
861    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
862      if (TD &&
863          TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
864          CE->getOpcode() == Instruction::PtrToInt)
865        return FoldBitCast(CE->getOperand(0), DestTy, *TD);
866
867    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
868  case Instruction::Trunc:
869  case Instruction::ZExt:
870  case Instruction::SExt:
871  case Instruction::FPTrunc:
872  case Instruction::FPExt:
873  case Instruction::UIToFP:
874  case Instruction::SIToFP:
875  case Instruction::FPToUI:
876  case Instruction::FPToSI:
877      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
878  case Instruction::BitCast:
879    if (TD)
880      return FoldBitCast(Ops[0], DestTy, *TD);
881    return ConstantExpr::getBitCast(Ops[0], DestTy);
882  case Instruction::Select:
883    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
884  case Instruction::ExtractElement:
885    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
886  case Instruction::InsertElement:
887    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
888  case Instruction::ShuffleVector:
889    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
890  case Instruction::GetElementPtr:
891    if (Constant *C = CastGEPIndices(Ops, NumOps, DestTy, TD))
892      return C;
893    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
894      return C;
895
896    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
897  }
898}
899
900/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
901/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
902/// returns a constant expression of the specified operands.
903///
904Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
905                                                Constant *Ops0, Constant *Ops1,
906                                                const TargetData *TD) {
907  // fold: icmp (inttoptr x), null         -> icmp x, 0
908  // fold: icmp (ptrtoint x), 0            -> icmp x, null
909  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
910  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
911  //
912  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
913  // around to know if bit truncation is happening.
914  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
915    if (TD && Ops1->isNullValue()) {
916      const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
917      if (CE0->getOpcode() == Instruction::IntToPtr) {
918        // Convert the integer value to the right size to ensure we get the
919        // proper extension or truncation.
920        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
921                                                   IntPtrTy, false);
922        Constant *Null = Constant::getNullValue(C->getType());
923        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
924      }
925
926      // Only do this transformation if the int is intptrty in size, otherwise
927      // there is a truncation or extension that we aren't modeling.
928      if (CE0->getOpcode() == Instruction::PtrToInt &&
929          CE0->getType() == IntPtrTy) {
930        Constant *C = CE0->getOperand(0);
931        Constant *Null = Constant::getNullValue(C->getType());
932        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
933      }
934    }
935
936    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
937      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
938        const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
939
940        if (CE0->getOpcode() == Instruction::IntToPtr) {
941          // Convert the integer value to the right size to ensure we get the
942          // proper extension or truncation.
943          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
944                                                      IntPtrTy, false);
945          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
946                                                      IntPtrTy, false);
947          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
948        }
949
950        // Only do this transformation if the int is intptrty in size, otherwise
951        // there is a truncation or extension that we aren't modeling.
952        if ((CE0->getOpcode() == Instruction::PtrToInt &&
953             CE0->getType() == IntPtrTy &&
954             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
955          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
956                                                 CE1->getOperand(0), TD);
957      }
958    }
959
960    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
961    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
962    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
963        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
964      Constant *LHS =
965        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,TD);
966      Constant *RHS =
967        ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,TD);
968      unsigned OpC =
969        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
970      Constant *Ops[] = { LHS, RHS };
971      return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, 2, TD);
972    }
973  }
974
975  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
976}
977
978
979/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
980/// getelementptr constantexpr, return the constant value being addressed by the
981/// constant expression, or null if something is funny and we can't decide.
982Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
983                                                       ConstantExpr *CE) {
984  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
985    return 0;  // Do not allow stepping over the value!
986
987  // Loop over all of the operands, tracking down which value we are
988  // addressing...
989  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
990  for (++I; I != E; ++I)
991    if (const StructType *STy = dyn_cast<StructType>(*I)) {
992      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
993      assert(CU->getZExtValue() < STy->getNumElements() &&
994             "Struct index out of range!");
995      unsigned El = (unsigned)CU->getZExtValue();
996      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
997        C = CS->getOperand(El);
998      } else if (isa<ConstantAggregateZero>(C)) {
999        C = Constant::getNullValue(STy->getElementType(El));
1000      } else if (isa<UndefValue>(C)) {
1001        C = UndefValue::get(STy->getElementType(El));
1002      } else {
1003        return 0;
1004      }
1005    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
1006      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
1007        if (CI->getZExtValue() >= ATy->getNumElements())
1008         return 0;
1009        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
1010          C = CA->getOperand(CI->getZExtValue());
1011        else if (isa<ConstantAggregateZero>(C))
1012          C = Constant::getNullValue(ATy->getElementType());
1013        else if (isa<UndefValue>(C))
1014          C = UndefValue::get(ATy->getElementType());
1015        else
1016          return 0;
1017      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
1018        if (CI->getZExtValue() >= VTy->getNumElements())
1019          return 0;
1020        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
1021          C = CP->getOperand(CI->getZExtValue());
1022        else if (isa<ConstantAggregateZero>(C))
1023          C = Constant::getNullValue(VTy->getElementType());
1024        else if (isa<UndefValue>(C))
1025          C = UndefValue::get(VTy->getElementType());
1026        else
1027          return 0;
1028      } else {
1029        return 0;
1030      }
1031    } else {
1032      return 0;
1033    }
1034  return C;
1035}
1036
1037
1038//===----------------------------------------------------------------------===//
1039//  Constant Folding for Calls
1040//
1041
1042/// canConstantFoldCallTo - Return true if its even possible to fold a call to
1043/// the specified function.
1044bool
1045llvm::canConstantFoldCallTo(const Function *F) {
1046  switch (F->getIntrinsicID()) {
1047  case Intrinsic::sqrt:
1048  case Intrinsic::powi:
1049  case Intrinsic::bswap:
1050  case Intrinsic::ctpop:
1051  case Intrinsic::ctlz:
1052  case Intrinsic::cttz:
1053  case Intrinsic::sadd_with_overflow:
1054  case Intrinsic::uadd_with_overflow:
1055  case Intrinsic::ssub_with_overflow:
1056  case Intrinsic::usub_with_overflow:
1057  case Intrinsic::smul_with_overflow:
1058  case Intrinsic::umul_with_overflow:
1059  case Intrinsic::convert_from_fp16:
1060  case Intrinsic::convert_to_fp16:
1061  case Intrinsic::x86_sse_cvtss2si:
1062  case Intrinsic::x86_sse_cvtss2si64:
1063  case Intrinsic::x86_sse_cvttss2si:
1064  case Intrinsic::x86_sse_cvttss2si64:
1065  case Intrinsic::x86_sse2_cvtsd2si:
1066  case Intrinsic::x86_sse2_cvtsd2si64:
1067  case Intrinsic::x86_sse2_cvttsd2si:
1068  case Intrinsic::x86_sse2_cvttsd2si64:
1069    return true;
1070  default:
1071    return false;
1072  case 0: break;
1073  }
1074
1075  if (!F->hasName()) return false;
1076  StringRef Name = F->getName();
1077
1078  // In these cases, the check of the length is required.  We don't want to
1079  // return true for a name like "cos\0blah" which strcmp would return equal to
1080  // "cos", but has length 8.
1081  switch (Name[0]) {
1082  default: return false;
1083  case 'a':
1084    return Name == "acos" || Name == "asin" ||
1085      Name == "atan" || Name == "atan2";
1086  case 'c':
1087    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
1088  case 'e':
1089    return Name == "exp" || Name == "exp2";
1090  case 'f':
1091    return Name == "fabs" || Name == "fmod" || Name == "floor";
1092  case 'l':
1093    return Name == "log" || Name == "log10";
1094  case 'p':
1095    return Name == "pow";
1096  case 's':
1097    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1098      Name == "sinf" || Name == "sqrtf";
1099  case 't':
1100    return Name == "tan" || Name == "tanh";
1101  }
1102}
1103
1104static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1105                                const Type *Ty) {
1106  sys::llvm_fenv_clearexcept();
1107  V = NativeFP(V);
1108  if (sys::llvm_fenv_testexcept()) {
1109    sys::llvm_fenv_clearexcept();
1110    return 0;
1111  }
1112
1113  if (Ty->isFloatTy())
1114    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1115  if (Ty->isDoubleTy())
1116    return ConstantFP::get(Ty->getContext(), APFloat(V));
1117  llvm_unreachable("Can only constant fold float/double");
1118  return 0; // dummy return to suppress warning
1119}
1120
1121static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1122                                      double V, double W, const Type *Ty) {
1123  sys::llvm_fenv_clearexcept();
1124  V = NativeFP(V, W);
1125  if (sys::llvm_fenv_testexcept()) {
1126    sys::llvm_fenv_clearexcept();
1127    return 0;
1128  }
1129
1130  if (Ty->isFloatTy())
1131    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1132  if (Ty->isDoubleTy())
1133    return ConstantFP::get(Ty->getContext(), APFloat(V));
1134  llvm_unreachable("Can only constant fold float/double");
1135  return 0; // dummy return to suppress warning
1136}
1137
1138/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
1139/// conversion of a constant floating point. If roundTowardZero is false, the
1140/// default IEEE rounding is used (toward nearest, ties to even). This matches
1141/// the behavior of the non-truncating SSE instructions in the default rounding
1142/// mode. The desired integer type Ty is used to select how many bits are
1143/// available for the result. Returns null if the conversion cannot be
1144/// performed, otherwise returns the Constant value resulting from the
1145/// conversion.
1146static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
1147                                          const Type *Ty) {
1148  assert(Op && "Called with NULL operand");
1149  APFloat Val(Op->getValueAPF());
1150
1151  // All of these conversion intrinsics form an integer of at most 64bits.
1152  unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
1153  assert(ResultWidth <= 64 &&
1154         "Can only constant fold conversions to 64 and 32 bit ints");
1155
1156  uint64_t UIntVal;
1157  bool isExact = false;
1158  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1159                                              : APFloat::rmNearestTiesToEven;
1160  APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1161                                                  /*isSigned=*/true, mode,
1162                                                  &isExact);
1163  if (status != APFloat::opOK && status != APFloat::opInexact)
1164    return 0;
1165  return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1166}
1167
1168/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1169/// with the specified arguments, returning null if unsuccessful.
1170Constant *
1171llvm::ConstantFoldCall(Function *F,
1172                       Constant *const *Operands, unsigned NumOperands) {
1173  if (!F->hasName()) return 0;
1174  StringRef Name = F->getName();
1175
1176  const Type *Ty = F->getReturnType();
1177  if (NumOperands == 1) {
1178    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1179      if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
1180        APFloat Val(Op->getValueAPF());
1181
1182        bool lost = false;
1183        Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1184
1185        return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
1186      }
1187
1188      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1189        return 0;
1190
1191      /// We only fold functions with finite arguments. Folding NaN and inf is
1192      /// likely to be aborted with an exception anyway, and some host libms
1193      /// have known errors raising exceptions.
1194      if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1195        return 0;
1196
1197      /// Currently APFloat versions of these functions do not exist, so we use
1198      /// the host native double versions.  Float versions are not called
1199      /// directly but for all these it is true (float)(f((double)arg)) ==
1200      /// f(arg).  Long double not supported yet.
1201      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1202                                     Op->getValueAPF().convertToDouble();
1203      switch (Name[0]) {
1204      case 'a':
1205        if (Name == "acos")
1206          return ConstantFoldFP(acos, V, Ty);
1207        else if (Name == "asin")
1208          return ConstantFoldFP(asin, V, Ty);
1209        else if (Name == "atan")
1210          return ConstantFoldFP(atan, V, Ty);
1211        break;
1212      case 'c':
1213        if (Name == "ceil")
1214          return ConstantFoldFP(ceil, V, Ty);
1215        else if (Name == "cos")
1216          return ConstantFoldFP(cos, V, Ty);
1217        else if (Name == "cosh")
1218          return ConstantFoldFP(cosh, V, Ty);
1219        else if (Name == "cosf")
1220          return ConstantFoldFP(cos, V, Ty);
1221        break;
1222      case 'e':
1223        if (Name == "exp")
1224          return ConstantFoldFP(exp, V, Ty);
1225
1226        if (Name == "exp2") {
1227          // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1228          // C99 library.
1229          return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1230        }
1231        break;
1232      case 'f':
1233        if (Name == "fabs")
1234          return ConstantFoldFP(fabs, V, Ty);
1235        else if (Name == "floor")
1236          return ConstantFoldFP(floor, V, Ty);
1237        break;
1238      case 'l':
1239        if (Name == "log" && V > 0)
1240          return ConstantFoldFP(log, V, Ty);
1241        else if (Name == "log10" && V > 0)
1242          return ConstantFoldFP(log10, V, Ty);
1243        else if (F->getIntrinsicID() == Intrinsic::sqrt &&
1244                 (Ty->isFloatTy() || Ty->isDoubleTy())) {
1245          if (V >= -0.0)
1246            return ConstantFoldFP(sqrt, V, Ty);
1247          else // Undefined
1248            return Constant::getNullValue(Ty);
1249        }
1250        break;
1251      case 's':
1252        if (Name == "sin")
1253          return ConstantFoldFP(sin, V, Ty);
1254        else if (Name == "sinh")
1255          return ConstantFoldFP(sinh, V, Ty);
1256        else if (Name == "sqrt" && V >= 0)
1257          return ConstantFoldFP(sqrt, V, Ty);
1258        else if (Name == "sqrtf" && V >= 0)
1259          return ConstantFoldFP(sqrt, V, Ty);
1260        else if (Name == "sinf")
1261          return ConstantFoldFP(sin, V, Ty);
1262        break;
1263      case 't':
1264        if (Name == "tan")
1265          return ConstantFoldFP(tan, V, Ty);
1266        else if (Name == "tanh")
1267          return ConstantFoldFP(tanh, V, Ty);
1268        break;
1269      default:
1270        break;
1271      }
1272      return 0;
1273    }
1274
1275    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1276      switch (F->getIntrinsicID()) {
1277      case Intrinsic::bswap:
1278        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1279      case Intrinsic::ctpop:
1280        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1281      case Intrinsic::cttz:
1282        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1283      case Intrinsic::ctlz:
1284        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1285      case Intrinsic::convert_from_fp16: {
1286        APFloat Val(Op->getValue());
1287
1288        bool lost = false;
1289        APFloat::opStatus status =
1290          Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
1291
1292        // Conversion is always precise.
1293        (void)status;
1294        assert(status == APFloat::opOK && !lost &&
1295               "Precision lost during fp16 constfolding");
1296
1297        return ConstantFP::get(F->getContext(), Val);
1298      }
1299      default:
1300        return 0;
1301      }
1302    }
1303
1304    if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
1305      switch (F->getIntrinsicID()) {
1306      default: break;
1307      case Intrinsic::x86_sse_cvtss2si:
1308      case Intrinsic::x86_sse_cvtss2si64:
1309      case Intrinsic::x86_sse2_cvtsd2si:
1310      case Intrinsic::x86_sse2_cvtsd2si64:
1311        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1312          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
1313      case Intrinsic::x86_sse_cvttss2si:
1314      case Intrinsic::x86_sse_cvttss2si64:
1315      case Intrinsic::x86_sse2_cvttsd2si:
1316      case Intrinsic::x86_sse2_cvttsd2si64:
1317        if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
1318          return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
1319      }
1320    }
1321
1322    if (isa<UndefValue>(Operands[0])) {
1323      if (F->getIntrinsicID() == Intrinsic::bswap)
1324        return Operands[0];
1325      return 0;
1326    }
1327
1328    return 0;
1329  }
1330
1331  if (NumOperands == 2) {
1332    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1333      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1334        return 0;
1335      double Op1V = Ty->isFloatTy() ?
1336                      (double)Op1->getValueAPF().convertToFloat() :
1337                      Op1->getValueAPF().convertToDouble();
1338      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1339        if (Op2->getType() != Op1->getType())
1340          return 0;
1341
1342        double Op2V = Ty->isFloatTy() ?
1343                      (double)Op2->getValueAPF().convertToFloat():
1344                      Op2->getValueAPF().convertToDouble();
1345
1346        if (Name == "pow")
1347          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1348        if (Name == "fmod")
1349          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1350        if (Name == "atan2")
1351          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1352      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1353        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
1354          return ConstantFP::get(F->getContext(),
1355                                 APFloat((float)std::pow((float)Op1V,
1356                                                 (int)Op2C->getZExtValue())));
1357        if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
1358          return ConstantFP::get(F->getContext(),
1359                                 APFloat((double)std::pow((double)Op1V,
1360                                                   (int)Op2C->getZExtValue())));
1361      }
1362      return 0;
1363    }
1364
1365
1366    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1367      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1368        switch (F->getIntrinsicID()) {
1369        default: break;
1370        case Intrinsic::sadd_with_overflow:
1371        case Intrinsic::uadd_with_overflow:
1372        case Intrinsic::ssub_with_overflow:
1373        case Intrinsic::usub_with_overflow:
1374        case Intrinsic::smul_with_overflow:
1375        case Intrinsic::umul_with_overflow: {
1376          APInt Res;
1377          bool Overflow;
1378          switch (F->getIntrinsicID()) {
1379          default: assert(0 && "Invalid case");
1380          case Intrinsic::sadd_with_overflow:
1381            Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1382            break;
1383          case Intrinsic::uadd_with_overflow:
1384            Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1385            break;
1386          case Intrinsic::ssub_with_overflow:
1387            Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1388            break;
1389          case Intrinsic::usub_with_overflow:
1390            Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1391            break;
1392          case Intrinsic::smul_with_overflow:
1393            Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1394            break;
1395          case Intrinsic::umul_with_overflow:
1396            Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1397            break;
1398          }
1399          Constant *Ops[] = {
1400            ConstantInt::get(F->getContext(), Res),
1401            ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
1402          };
1403          return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
1404        }
1405        }
1406      }
1407
1408      return 0;
1409    }
1410    return 0;
1411  }
1412  return 0;
1413}
1414