DAGCombiner.cpp revision 5eed34d208159e02949097ec91d98d5d9eb30e27
1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// FIXME: Missing folds
14// sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into
15//  a sequence of multiplies, shifts, and adds.  This should be controlled by
16//  some kind of hint from the target that int div is expensive.
17// various folds of mulh[s,u] by constants such as -1, powers of 2, etc.
18//
19// FIXME: select C, pow2, pow2 -> something smart
20// FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z)
21// FIXME: Dead stores -> nuke
22// FIXME: shr X, (and Y,31) -> shr X, Y   (TRICKY!)
23// FIXME: mul (x, const) -> shifts + adds
24// FIXME: undef values
25// FIXME: make truncate see through SIGN_EXTEND and AND
26// FIXME: divide by zero is currently left unfolded.  do we want to turn this
27//        into an undef?
28// FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "dagcombine"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Target/TargetLowering.h"
38#include <algorithm>
39#include <cmath>
40#include <iostream>
41using namespace llvm;
42
43namespace {
44  Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined");
45
46  class DAGCombiner {
47    SelectionDAG &DAG;
48    TargetLowering &TLI;
49    bool AfterLegalize;
50
51    // Worklist of all of the nodes that need to be simplified.
52    std::vector<SDNode*> WorkList;
53
54    /// AddUsersToWorkList - When an instruction is simplified, add all users of
55    /// the instruction to the work lists because they might get more simplified
56    /// now.
57    ///
58    void AddUsersToWorkList(SDNode *N) {
59      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
60           UI != UE; ++UI)
61        WorkList.push_back(*UI);
62    }
63
64    /// removeFromWorkList - remove all instances of N from the worklist.
65    ///
66    void removeFromWorkList(SDNode *N) {
67      WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N),
68                     WorkList.end());
69    }
70
71  public:
72    void AddToWorkList(SDNode *N) {
73      WorkList.push_back(N);
74    }
75
76    SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
77      ++NodesCombined;
78      DEBUG(std::cerr << "\nReplacing "; N->dump();
79            std::cerr << "\nWith: "; To[0].Val->dump(&DAG);
80            std::cerr << " and " << To.size()-1 << " other values\n");
81      std::vector<SDNode*> NowDead;
82      DAG.ReplaceAllUsesWith(N, To, &NowDead);
83
84      // Push the new nodes and any users onto the worklist
85      for (unsigned i = 0, e = To.size(); i != e; ++i) {
86        WorkList.push_back(To[i].Val);
87        AddUsersToWorkList(To[i].Val);
88      }
89
90      // Nodes can end up on the worklist more than once.  Make sure we do
91      // not process a node that has been replaced.
92      removeFromWorkList(N);
93      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
94        removeFromWorkList(NowDead[i]);
95
96      // Finally, since the node is now dead, remove it from the graph.
97      DAG.DeleteNode(N);
98      return SDOperand(N, 0);
99    }
100
101    SDOperand CombineTo(SDNode *N, SDOperand Res) {
102      std::vector<SDOperand> To;
103      To.push_back(Res);
104      return CombineTo(N, To);
105    }
106
107    SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
108      std::vector<SDOperand> To;
109      To.push_back(Res0);
110      To.push_back(Res1);
111      return CombineTo(N, To);
112    }
113  private:
114
115    /// SimplifyDemandedBits - Check the specified integer node value to see if
116    /// it can be simplified or if things it uses can be simplified by bit
117    /// propagation.  If so, return true.
118    bool SimplifyDemandedBits(SDOperand Op) {
119      TargetLowering::TargetLoweringOpt TLO(DAG);
120      uint64_t KnownZero, KnownOne;
121      uint64_t Demanded = MVT::getIntVTBitMask(Op.getValueType());
122      if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
123        return false;
124
125      // Revisit the node.
126      WorkList.push_back(Op.Val);
127
128      // Replace the old value with the new one.
129      ++NodesCombined;
130      DEBUG(std::cerr << "\nReplacing "; TLO.Old.Val->dump();
131            std::cerr << "\nWith: "; TLO.New.Val->dump(&DAG));
132
133      std::vector<SDNode*> NowDead;
134      DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, NowDead);
135
136      // Push the new node and any (possibly new) users onto the worklist.
137      WorkList.push_back(TLO.New.Val);
138      AddUsersToWorkList(TLO.New.Val);
139
140      // Nodes can end up on the worklist more than once.  Make sure we do
141      // not process a node that has been replaced.
142      for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
143        removeFromWorkList(NowDead[i]);
144
145      // Finally, if the node is now dead, remove it from the graph.  The node
146      // may not be dead if the replacement process recursively simplified to
147      // something else needing this node.
148      if (TLO.Old.Val->use_empty()) {
149        removeFromWorkList(TLO.Old.Val);
150        DAG.DeleteNode(TLO.Old.Val);
151      }
152      return true;
153    }
154
155    /// visit - call the node-specific routine that knows how to fold each
156    /// particular type of node.
157    SDOperand visit(SDNode *N);
158
159    // Visitation implementation - Implement dag node combining for different
160    // node types.  The semantics are as follows:
161    // Return Value:
162    //   SDOperand.Val == 0   - No change was made
163    //   SDOperand.Val == N   - N was replaced, is dead, and is already handled.
164    //   otherwise            - N should be replaced by the returned Operand.
165    //
166    SDOperand visitTokenFactor(SDNode *N);
167    SDOperand visitADD(SDNode *N);
168    SDOperand visitSUB(SDNode *N);
169    SDOperand visitMUL(SDNode *N);
170    SDOperand visitSDIV(SDNode *N);
171    SDOperand visitUDIV(SDNode *N);
172    SDOperand visitSREM(SDNode *N);
173    SDOperand visitUREM(SDNode *N);
174    SDOperand visitMULHU(SDNode *N);
175    SDOperand visitMULHS(SDNode *N);
176    SDOperand visitAND(SDNode *N);
177    SDOperand visitOR(SDNode *N);
178    SDOperand visitXOR(SDNode *N);
179    SDOperand visitVBinOp(SDNode *N, ISD::NodeType IntOp, ISD::NodeType FPOp);
180    SDOperand visitSHL(SDNode *N);
181    SDOperand visitSRA(SDNode *N);
182    SDOperand visitSRL(SDNode *N);
183    SDOperand visitCTLZ(SDNode *N);
184    SDOperand visitCTTZ(SDNode *N);
185    SDOperand visitCTPOP(SDNode *N);
186    SDOperand visitSELECT(SDNode *N);
187    SDOperand visitSELECT_CC(SDNode *N);
188    SDOperand visitSETCC(SDNode *N);
189    SDOperand visitSIGN_EXTEND(SDNode *N);
190    SDOperand visitZERO_EXTEND(SDNode *N);
191    SDOperand visitANY_EXTEND(SDNode *N);
192    SDOperand visitSIGN_EXTEND_INREG(SDNode *N);
193    SDOperand visitTRUNCATE(SDNode *N);
194    SDOperand visitBIT_CONVERT(SDNode *N);
195    SDOperand visitVBIT_CONVERT(SDNode *N);
196    SDOperand visitFADD(SDNode *N);
197    SDOperand visitFSUB(SDNode *N);
198    SDOperand visitFMUL(SDNode *N);
199    SDOperand visitFDIV(SDNode *N);
200    SDOperand visitFREM(SDNode *N);
201    SDOperand visitFCOPYSIGN(SDNode *N);
202    SDOperand visitSINT_TO_FP(SDNode *N);
203    SDOperand visitUINT_TO_FP(SDNode *N);
204    SDOperand visitFP_TO_SINT(SDNode *N);
205    SDOperand visitFP_TO_UINT(SDNode *N);
206    SDOperand visitFP_ROUND(SDNode *N);
207    SDOperand visitFP_ROUND_INREG(SDNode *N);
208    SDOperand visitFP_EXTEND(SDNode *N);
209    SDOperand visitFNEG(SDNode *N);
210    SDOperand visitFABS(SDNode *N);
211    SDOperand visitBRCOND(SDNode *N);
212    SDOperand visitBR_CC(SDNode *N);
213    SDOperand visitLOAD(SDNode *N);
214    SDOperand visitXEXTLOAD(SDNode *N);
215    SDOperand visitSTORE(SDNode *N);
216    SDOperand visitINSERT_VECTOR_ELT(SDNode *N);
217    SDOperand visitVINSERT_VECTOR_ELT(SDNode *N);
218    SDOperand visitVBUILD_VECTOR(SDNode *N);
219    SDOperand visitVECTOR_SHUFFLE(SDNode *N);
220    SDOperand visitVVECTOR_SHUFFLE(SDNode *N);
221
222    SDOperand XformToShuffleWithZero(SDNode *N);
223    SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS);
224
225    bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS);
226    SDOperand SimplifyBinOpWithSameOpcodeHands(SDNode *N);
227    SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2);
228    SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2,
229                               SDOperand N3, ISD::CondCode CC);
230    SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
231                            ISD::CondCode Cond, bool foldBooleans = true);
232    SDOperand ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *, MVT::ValueType);
233    SDOperand BuildSDIV(SDNode *N);
234    SDOperand BuildUDIV(SDNode *N);
235public:
236    DAGCombiner(SelectionDAG &D)
237      : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {}
238
239    /// Run - runs the dag combiner on all nodes in the work list
240    void Run(bool RunningAfterLegalize);
241  };
242}
243
244//===----------------------------------------------------------------------===//
245//  TargetLowering::DAGCombinerInfo implementation
246//===----------------------------------------------------------------------===//
247
248void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
249  ((DAGCombiner*)DC)->AddToWorkList(N);
250}
251
252SDOperand TargetLowering::DAGCombinerInfo::
253CombineTo(SDNode *N, const std::vector<SDOperand> &To) {
254  return ((DAGCombiner*)DC)->CombineTo(N, To);
255}
256
257SDOperand TargetLowering::DAGCombinerInfo::
258CombineTo(SDNode *N, SDOperand Res) {
259  return ((DAGCombiner*)DC)->CombineTo(N, Res);
260}
261
262
263SDOperand TargetLowering::DAGCombinerInfo::
264CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) {
265  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1);
266}
267
268
269
270
271//===----------------------------------------------------------------------===//
272
273
274struct ms {
275  int64_t m;  // magic number
276  int64_t s;  // shift amount
277};
278
279struct mu {
280  uint64_t m; // magic number
281  int64_t a;  // add indicator
282  int64_t s;  // shift amount
283};
284
285/// magic - calculate the magic numbers required to codegen an integer sdiv as
286/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
287/// or -1.
288static ms magic32(int32_t d) {
289  int32_t p;
290  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
291  const uint32_t two31 = 0x80000000U;
292  struct ms mag;
293
294  ad = abs(d);
295  t = two31 + ((uint32_t)d >> 31);
296  anc = t - 1 - t%ad;   // absolute value of nc
297  p = 31;               // initialize p
298  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
299  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
300  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
301  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
302  do {
303    p = p + 1;
304    q1 = 2*q1;        // update q1 = 2p/abs(nc)
305    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
306    if (r1 >= anc) {  // must be unsigned comparison
307      q1 = q1 + 1;
308      r1 = r1 - anc;
309    }
310    q2 = 2*q2;        // update q2 = 2p/abs(d)
311    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
312    if (r2 >= ad) {   // must be unsigned comparison
313      q2 = q2 + 1;
314      r2 = r2 - ad;
315    }
316    delta = ad - r2;
317  } while (q1 < delta || (q1 == delta && r1 == 0));
318
319  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
320  if (d < 0) mag.m = -mag.m; // resulting magic number
321  mag.s = p - 32;            // resulting shift
322  return mag;
323}
324
325/// magicu - calculate the magic numbers required to codegen an integer udiv as
326/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
327static mu magicu32(uint32_t d) {
328  int32_t p;
329  uint32_t nc, delta, q1, r1, q2, r2;
330  struct mu magu;
331  magu.a = 0;               // initialize "add" indicator
332  nc = - 1 - (-d)%d;
333  p = 31;                   // initialize p
334  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
335  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
336  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
337  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
338  do {
339    p = p + 1;
340    if (r1 >= nc - r1 ) {
341      q1 = 2*q1 + 1;  // update q1
342      r1 = 2*r1 - nc; // update r1
343    }
344    else {
345      q1 = 2*q1; // update q1
346      r1 = 2*r1; // update r1
347    }
348    if (r2 + 1 >= d - r2) {
349      if (q2 >= 0x7FFFFFFF) magu.a = 1;
350      q2 = 2*q2 + 1;     // update q2
351      r2 = 2*r2 + 1 - d; // update r2
352    }
353    else {
354      if (q2 >= 0x80000000) magu.a = 1;
355      q2 = 2*q2;     // update q2
356      r2 = 2*r2 + 1; // update r2
357    }
358    delta = d - 1 - r2;
359  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
360  magu.m = q2 + 1; // resulting magic number
361  magu.s = p - 32;  // resulting shift
362  return magu;
363}
364
365/// magic - calculate the magic numbers required to codegen an integer sdiv as
366/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
367/// or -1.
368static ms magic64(int64_t d) {
369  int64_t p;
370  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
371  const uint64_t two63 = 9223372036854775808ULL; // 2^63
372  struct ms mag;
373
374  ad = d >= 0 ? d : -d;
375  t = two63 + ((uint64_t)d >> 63);
376  anc = t - 1 - t%ad;   // absolute value of nc
377  p = 63;               // initialize p
378  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
379  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
380  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
381  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
382  do {
383    p = p + 1;
384    q1 = 2*q1;        // update q1 = 2p/abs(nc)
385    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
386    if (r1 >= anc) {  // must be unsigned comparison
387      q1 = q1 + 1;
388      r1 = r1 - anc;
389    }
390    q2 = 2*q2;        // update q2 = 2p/abs(d)
391    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
392    if (r2 >= ad) {   // must be unsigned comparison
393      q2 = q2 + 1;
394      r2 = r2 - ad;
395    }
396    delta = ad - r2;
397  } while (q1 < delta || (q1 == delta && r1 == 0));
398
399  mag.m = q2 + 1;
400  if (d < 0) mag.m = -mag.m; // resulting magic number
401  mag.s = p - 64;            // resulting shift
402  return mag;
403}
404
405/// magicu - calculate the magic numbers required to codegen an integer udiv as
406/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
407static mu magicu64(uint64_t d)
408{
409  int64_t p;
410  uint64_t nc, delta, q1, r1, q2, r2;
411  struct mu magu;
412  magu.a = 0;               // initialize "add" indicator
413  nc = - 1 - (-d)%d;
414  p = 63;                   // initialize p
415  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
416  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
417  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
418  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
419  do {
420    p = p + 1;
421    if (r1 >= nc - r1 ) {
422      q1 = 2*q1 + 1;  // update q1
423      r1 = 2*r1 - nc; // update r1
424    }
425    else {
426      q1 = 2*q1; // update q1
427      r1 = 2*r1; // update r1
428    }
429    if (r2 + 1 >= d - r2) {
430      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
431      q2 = 2*q2 + 1;     // update q2
432      r2 = 2*r2 + 1 - d; // update r2
433    }
434    else {
435      if (q2 >= 0x8000000000000000ull) magu.a = 1;
436      q2 = 2*q2;     // update q2
437      r2 = 2*r2 + 1; // update r2
438    }
439    delta = d - 1 - r2;
440  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
441  magu.m = q2 + 1; // resulting magic number
442  magu.s = p - 64;  // resulting shift
443  return magu;
444}
445
446// isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc
447// that selects between the values 1 and 0, making it equivalent to a setcc.
448// Also, set the incoming LHS, RHS, and CC references to the appropriate
449// nodes based on the type of node we are checking.  This simplifies life a
450// bit for the callers.
451static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS,
452                              SDOperand &CC) {
453  if (N.getOpcode() == ISD::SETCC) {
454    LHS = N.getOperand(0);
455    RHS = N.getOperand(1);
456    CC  = N.getOperand(2);
457    return true;
458  }
459  if (N.getOpcode() == ISD::SELECT_CC &&
460      N.getOperand(2).getOpcode() == ISD::Constant &&
461      N.getOperand(3).getOpcode() == ISD::Constant &&
462      cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 &&
463      cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) {
464    LHS = N.getOperand(0);
465    RHS = N.getOperand(1);
466    CC  = N.getOperand(4);
467    return true;
468  }
469  return false;
470}
471
472// isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only
473// one use.  If this is true, it allows the users to invert the operation for
474// free when it is profitable to do so.
475static bool isOneUseSetCC(SDOperand N) {
476  SDOperand N0, N1, N2;
477  if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse())
478    return true;
479  return false;
480}
481
482// FIXME: This should probably go in the ISD class rather than being duplicated
483// in several files.
484static bool isCommutativeBinOp(unsigned Opcode) {
485  switch (Opcode) {
486    case ISD::ADD:
487    case ISD::MUL:
488    case ISD::AND:
489    case ISD::OR:
490    case ISD::XOR: return true;
491    default: return false; // FIXME: Need commutative info for user ops!
492  }
493}
494
495SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){
496  MVT::ValueType VT = N0.getValueType();
497  // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use
498  // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
499  if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) {
500    if (isa<ConstantSDNode>(N1)) {
501      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1);
502      AddToWorkList(OpNode.Val);
503      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0));
504    } else if (N0.hasOneUse()) {
505      SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1);
506      AddToWorkList(OpNode.Val);
507      return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1));
508    }
509  }
510  // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use
511  // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
512  if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) {
513    if (isa<ConstantSDNode>(N0)) {
514      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0);
515      AddToWorkList(OpNode.Val);
516      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0));
517    } else if (N1.hasOneUse()) {
518      SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0);
519      AddToWorkList(OpNode.Val);
520      return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1));
521    }
522  }
523  return SDOperand();
524}
525
526void DAGCombiner::Run(bool RunningAfterLegalize) {
527  // set the instance variable, so that the various visit routines may use it.
528  AfterLegalize = RunningAfterLegalize;
529
530  // Add all the dag nodes to the worklist.
531  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
532       E = DAG.allnodes_end(); I != E; ++I)
533    WorkList.push_back(I);
534
535  // Create a dummy node (which is not added to allnodes), that adds a reference
536  // to the root node, preventing it from being deleted, and tracking any
537  // changes of the root.
538  HandleSDNode Dummy(DAG.getRoot());
539
540
541  /// DagCombineInfo - Expose the DAG combiner to the target combiner impls.
542  TargetLowering::DAGCombinerInfo
543    DagCombineInfo(DAG, !RunningAfterLegalize, this);
544
545  // while the worklist isn't empty, inspect the node on the end of it and
546  // try and combine it.
547  while (!WorkList.empty()) {
548    SDNode *N = WorkList.back();
549    WorkList.pop_back();
550
551    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
552    // N is deleted from the DAG, since they too may now be dead or may have a
553    // reduced number of uses, allowing other xforms.
554    if (N->use_empty() && N != &Dummy) {
555      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
556        WorkList.push_back(N->getOperand(i).Val);
557
558      removeFromWorkList(N);
559      DAG.DeleteNode(N);
560      continue;
561    }
562
563    SDOperand RV = visit(N);
564
565    // If nothing happened, try a target-specific DAG combine.
566    if (RV.Val == 0) {
567      if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
568          TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode()))
569        RV = TLI.PerformDAGCombine(N, DagCombineInfo);
570    }
571
572    if (RV.Val) {
573      ++NodesCombined;
574      // If we get back the same node we passed in, rather than a new node or
575      // zero, we know that the node must have defined multiple values and
576      // CombineTo was used.  Since CombineTo takes care of the worklist
577      // mechanics for us, we have no work to do in this case.
578      if (RV.Val != N) {
579        DEBUG(std::cerr << "\nReplacing "; N->dump();
580              std::cerr << "\nWith: "; RV.Val->dump(&DAG);
581              std::cerr << '\n');
582        std::vector<SDNode*> NowDead;
583        DAG.ReplaceAllUsesWith(N, std::vector<SDOperand>(1, RV), &NowDead);
584
585        // Push the new node and any users onto the worklist
586        WorkList.push_back(RV.Val);
587        AddUsersToWorkList(RV.Val);
588
589        // Nodes can end up on the worklist more than once.  Make sure we do
590        // not process a node that has been replaced.
591        removeFromWorkList(N);
592        for (unsigned i = 0, e = NowDead.size(); i != e; ++i)
593          removeFromWorkList(NowDead[i]);
594
595        // Finally, since the node is now dead, remove it from the graph.
596        DAG.DeleteNode(N);
597      }
598    }
599  }
600
601  // If the root changed (e.g. it was a dead load, update the root).
602  DAG.setRoot(Dummy.getValue());
603}
604
605SDOperand DAGCombiner::visit(SDNode *N) {
606  switch(N->getOpcode()) {
607  default: break;
608  case ISD::TokenFactor:        return visitTokenFactor(N);
609  case ISD::ADD:                return visitADD(N);
610  case ISD::SUB:                return visitSUB(N);
611  case ISD::MUL:                return visitMUL(N);
612  case ISD::SDIV:               return visitSDIV(N);
613  case ISD::UDIV:               return visitUDIV(N);
614  case ISD::SREM:               return visitSREM(N);
615  case ISD::UREM:               return visitUREM(N);
616  case ISD::MULHU:              return visitMULHU(N);
617  case ISD::MULHS:              return visitMULHS(N);
618  case ISD::AND:                return visitAND(N);
619  case ISD::OR:                 return visitOR(N);
620  case ISD::XOR:                return visitXOR(N);
621  case ISD::SHL:                return visitSHL(N);
622  case ISD::SRA:                return visitSRA(N);
623  case ISD::SRL:                return visitSRL(N);
624  case ISD::CTLZ:               return visitCTLZ(N);
625  case ISD::CTTZ:               return visitCTTZ(N);
626  case ISD::CTPOP:              return visitCTPOP(N);
627  case ISD::SELECT:             return visitSELECT(N);
628  case ISD::SELECT_CC:          return visitSELECT_CC(N);
629  case ISD::SETCC:              return visitSETCC(N);
630  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
631  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
632  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
633  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
634  case ISD::TRUNCATE:           return visitTRUNCATE(N);
635  case ISD::BIT_CONVERT:        return visitBIT_CONVERT(N);
636  case ISD::VBIT_CONVERT:       return visitVBIT_CONVERT(N);
637  case ISD::FADD:               return visitFADD(N);
638  case ISD::FSUB:               return visitFSUB(N);
639  case ISD::FMUL:               return visitFMUL(N);
640  case ISD::FDIV:               return visitFDIV(N);
641  case ISD::FREM:               return visitFREM(N);
642  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
643  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
644  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
645  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
646  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
647  case ISD::FP_ROUND:           return visitFP_ROUND(N);
648  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
649  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
650  case ISD::FNEG:               return visitFNEG(N);
651  case ISD::FABS:               return visitFABS(N);
652  case ISD::BRCOND:             return visitBRCOND(N);
653  case ISD::BR_CC:              return visitBR_CC(N);
654  case ISD::LOAD:               return visitLOAD(N);
655  case ISD::EXTLOAD:
656  case ISD::SEXTLOAD:
657  case ISD::ZEXTLOAD:           return visitXEXTLOAD(N);
658  case ISD::STORE:              return visitSTORE(N);
659  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
660  case ISD::VINSERT_VECTOR_ELT: return visitVINSERT_VECTOR_ELT(N);
661  case ISD::VBUILD_VECTOR:      return visitVBUILD_VECTOR(N);
662  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
663  case ISD::VVECTOR_SHUFFLE:    return visitVVECTOR_SHUFFLE(N);
664  case ISD::VADD:               return visitVBinOp(N, ISD::ADD , ISD::FADD);
665  case ISD::VSUB:               return visitVBinOp(N, ISD::SUB , ISD::FSUB);
666  case ISD::VMUL:               return visitVBinOp(N, ISD::MUL , ISD::FMUL);
667  case ISD::VSDIV:              return visitVBinOp(N, ISD::SDIV, ISD::FDIV);
668  case ISD::VUDIV:              return visitVBinOp(N, ISD::UDIV, ISD::UDIV);
669  case ISD::VAND:               return visitVBinOp(N, ISD::AND , ISD::AND);
670  case ISD::VOR:                return visitVBinOp(N, ISD::OR  , ISD::OR);
671  case ISD::VXOR:               return visitVBinOp(N, ISD::XOR , ISD::XOR);
672  }
673  return SDOperand();
674}
675
676SDOperand DAGCombiner::visitTokenFactor(SDNode *N) {
677  std::vector<SDOperand> Ops;
678  bool Changed = false;
679
680  // If the token factor has two operands and one is the entry token, replace
681  // the token factor with the other operand.
682  if (N->getNumOperands() == 2) {
683    if (N->getOperand(0).getOpcode() == ISD::EntryToken ||
684        N->getOperand(0) == N->getOperand(1))
685      return N->getOperand(1);
686    if (N->getOperand(1).getOpcode() == ISD::EntryToken)
687      return N->getOperand(0);
688  }
689
690  // fold (tokenfactor (tokenfactor)) -> tokenfactor
691  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
692    SDOperand Op = N->getOperand(i);
693    if (Op.getOpcode() == ISD::TokenFactor && Op.hasOneUse()) {
694      AddToWorkList(Op.Val);  // Remove dead node.
695      Changed = true;
696      for (unsigned j = 0, e = Op.getNumOperands(); j != e; ++j)
697        Ops.push_back(Op.getOperand(j));
698    } else if (i == 0 || N->getOperand(i) != N->getOperand(i-1)) {
699      Ops.push_back(Op);
700    } else {
701      // Deleted an operand that was the same as the last one.
702      Changed = true;
703    }
704  }
705  if (Changed)
706    return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops);
707  return SDOperand();
708}
709
710SDOperand DAGCombiner::visitADD(SDNode *N) {
711  SDOperand N0 = N->getOperand(0);
712  SDOperand N1 = N->getOperand(1);
713  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
714  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
715  MVT::ValueType VT = N0.getValueType();
716
717  // fold (add c1, c2) -> c1+c2
718  if (N0C && N1C)
719    return DAG.getNode(ISD::ADD, VT, N0, N1);
720  // canonicalize constant to RHS
721  if (N0C && !N1C)
722    return DAG.getNode(ISD::ADD, VT, N1, N0);
723  // fold (add x, 0) -> x
724  if (N1C && N1C->isNullValue())
725    return N0;
726  // fold ((c1-A)+c2) -> (c1+c2)-A
727  if (N1C && N0.getOpcode() == ISD::SUB)
728    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
729      return DAG.getNode(ISD::SUB, VT,
730                         DAG.getConstant(N1C->getValue()+N0C->getValue(), VT),
731                         N0.getOperand(1));
732  // reassociate add
733  SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1);
734  if (RADD.Val != 0)
735    return RADD;
736  // fold ((0-A) + B) -> B-A
737  if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) &&
738      cast<ConstantSDNode>(N0.getOperand(0))->isNullValue())
739    return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1));
740  // fold (A + (0-B)) -> A-B
741  if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) &&
742      cast<ConstantSDNode>(N1.getOperand(0))->isNullValue())
743    return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1));
744  // fold (A+(B-A)) -> B
745  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
746    return N1.getOperand(0);
747
748  if (!MVT::isVector(VT) && SimplifyDemandedBits(SDOperand(N, 0)))
749    return SDOperand(N, 0);
750
751  // fold (a+b) -> (a|b) iff a and b share no bits.
752  if (MVT::isInteger(VT) && !MVT::isVector(VT)) {
753    uint64_t LHSZero, LHSOne;
754    uint64_t RHSZero, RHSOne;
755    uint64_t Mask = MVT::getIntVTBitMask(VT);
756    TLI.ComputeMaskedBits(N0, Mask, LHSZero, LHSOne);
757    if (LHSZero) {
758      TLI.ComputeMaskedBits(N1, Mask, RHSZero, RHSOne);
759
760      // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
761      // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
762      if ((RHSZero & (~LHSZero & Mask)) == (~LHSZero & Mask) ||
763          (LHSZero & (~RHSZero & Mask)) == (~RHSZero & Mask))
764        return DAG.getNode(ISD::OR, VT, N0, N1);
765    }
766  }
767
768  return SDOperand();
769}
770
771SDOperand DAGCombiner::visitSUB(SDNode *N) {
772  SDOperand N0 = N->getOperand(0);
773  SDOperand N1 = N->getOperand(1);
774  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
775  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
776  MVT::ValueType VT = N0.getValueType();
777
778  // fold (sub x, x) -> 0
779  if (N0 == N1)
780    return DAG.getConstant(0, N->getValueType(0));
781  // fold (sub c1, c2) -> c1-c2
782  if (N0C && N1C)
783    return DAG.getNode(ISD::SUB, VT, N0, N1);
784  // fold (sub x, c) -> (add x, -c)
785  if (N1C)
786    return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT));
787  // fold (A+B)-A -> B
788  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
789    return N0.getOperand(1);
790  // fold (A+B)-B -> A
791  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
792    return N0.getOperand(0);
793  return SDOperand();
794}
795
796SDOperand DAGCombiner::visitMUL(SDNode *N) {
797  SDOperand N0 = N->getOperand(0);
798  SDOperand N1 = N->getOperand(1);
799  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
800  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
801  MVT::ValueType VT = N0.getValueType();
802
803  // fold (mul c1, c2) -> c1*c2
804  if (N0C && N1C)
805    return DAG.getNode(ISD::MUL, VT, N0, N1);
806  // canonicalize constant to RHS
807  if (N0C && !N1C)
808    return DAG.getNode(ISD::MUL, VT, N1, N0);
809  // fold (mul x, 0) -> 0
810  if (N1C && N1C->isNullValue())
811    return N1;
812  // fold (mul x, -1) -> 0-x
813  if (N1C && N1C->isAllOnesValue())
814    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
815  // fold (mul x, (1 << c)) -> x << c
816  if (N1C && isPowerOf2_64(N1C->getValue()))
817    return DAG.getNode(ISD::SHL, VT, N0,
818                       DAG.getConstant(Log2_64(N1C->getValue()),
819                                       TLI.getShiftAmountTy()));
820  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
821  if (N1C && isPowerOf2_64(-N1C->getSignExtended())) {
822    // FIXME: If the input is something that is easily negated (e.g. a
823    // single-use add), we should put the negate there.
824    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT),
825                       DAG.getNode(ISD::SHL, VT, N0,
826                            DAG.getConstant(Log2_64(-N1C->getSignExtended()),
827                                            TLI.getShiftAmountTy())));
828  }
829
830  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
831  if (N1C && N0.getOpcode() == ISD::SHL &&
832      isa<ConstantSDNode>(N0.getOperand(1))) {
833    SDOperand C3 = DAG.getNode(ISD::SHL, VT, N1, N0.getOperand(1));
834    AddToWorkList(C3.Val);
835    return DAG.getNode(ISD::MUL, VT, N0.getOperand(0), C3);
836  }
837
838  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
839  // use.
840  {
841    SDOperand Sh(0,0), Y(0,0);
842    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
843    if (N0.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N0.getOperand(1)) &&
844        N0.Val->hasOneUse()) {
845      Sh = N0; Y = N1;
846    } else if (N1.getOpcode() == ISD::SHL &&
847               isa<ConstantSDNode>(N1.getOperand(1)) && N1.Val->hasOneUse()) {
848      Sh = N1; Y = N0;
849    }
850    if (Sh.Val) {
851      SDOperand Mul = DAG.getNode(ISD::MUL, VT, Sh.getOperand(0), Y);
852      return DAG.getNode(ISD::SHL, VT, Mul, Sh.getOperand(1));
853    }
854  }
855  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
856  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
857      isa<ConstantSDNode>(N0.getOperand(1))) {
858    return DAG.getNode(ISD::ADD, VT,
859                       DAG.getNode(ISD::MUL, VT, N0.getOperand(0), N1),
860                       DAG.getNode(ISD::MUL, VT, N0.getOperand(1), N1));
861  }
862
863  // reassociate mul
864  SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1);
865  if (RMUL.Val != 0)
866    return RMUL;
867  return SDOperand();
868}
869
870SDOperand DAGCombiner::visitSDIV(SDNode *N) {
871  SDOperand N0 = N->getOperand(0);
872  SDOperand N1 = N->getOperand(1);
873  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
874  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
875  MVT::ValueType VT = N->getValueType(0);
876
877  // fold (sdiv c1, c2) -> c1/c2
878  if (N0C && N1C && !N1C->isNullValue())
879    return DAG.getNode(ISD::SDIV, VT, N0, N1);
880  // fold (sdiv X, 1) -> X
881  if (N1C && N1C->getSignExtended() == 1LL)
882    return N0;
883  // fold (sdiv X, -1) -> 0-X
884  if (N1C && N1C->isAllOnesValue())
885    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0);
886  // If we know the sign bits of both operands are zero, strength reduce to a
887  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
888  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
889  if (TLI.MaskedValueIsZero(N1, SignBit) &&
890      TLI.MaskedValueIsZero(N0, SignBit))
891    return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
892  // fold (sdiv X, pow2) -> simple ops after legalize
893  if (N1C && N1C->getValue() && !TLI.isIntDivCheap() &&
894      (isPowerOf2_64(N1C->getSignExtended()) ||
895       isPowerOf2_64(-N1C->getSignExtended()))) {
896    // If dividing by powers of two is cheap, then don't perform the following
897    // fold.
898    if (TLI.isPow2DivCheap())
899      return SDOperand();
900    int64_t pow2 = N1C->getSignExtended();
901    int64_t abs2 = pow2 > 0 ? pow2 : -pow2;
902    unsigned lg2 = Log2_64(abs2);
903    // Splat the sign bit into the register
904    SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0,
905                                DAG.getConstant(MVT::getSizeInBits(VT)-1,
906                                                TLI.getShiftAmountTy()));
907    AddToWorkList(SGN.Val);
908    // Add (N0 < 0) ? abs2 - 1 : 0;
909    SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN,
910                                DAG.getConstant(MVT::getSizeInBits(VT)-lg2,
911                                                TLI.getShiftAmountTy()));
912    SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL);
913    AddToWorkList(SRL.Val);
914    AddToWorkList(ADD.Val);    // Divide by pow2
915    SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD,
916                                DAG.getConstant(lg2, TLI.getShiftAmountTy()));
917    // If we're dividing by a positive value, we're done.  Otherwise, we must
918    // negate the result.
919    if (pow2 > 0)
920      return SRA;
921    AddToWorkList(SRA.Val);
922    return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA);
923  }
924  // if integer divide is expensive and we satisfy the requirements, emit an
925  // alternate sequence.
926  if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
927      !TLI.isIntDivCheap()) {
928    SDOperand Op = BuildSDIV(N);
929    if (Op.Val) return Op;
930  }
931  return SDOperand();
932}
933
934SDOperand DAGCombiner::visitUDIV(SDNode *N) {
935  SDOperand N0 = N->getOperand(0);
936  SDOperand N1 = N->getOperand(1);
937  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
938  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
939  MVT::ValueType VT = N->getValueType(0);
940
941  // fold (udiv c1, c2) -> c1/c2
942  if (N0C && N1C && !N1C->isNullValue())
943    return DAG.getNode(ISD::UDIV, VT, N0, N1);
944  // fold (udiv x, (1 << c)) -> x >>u c
945  if (N1C && isPowerOf2_64(N1C->getValue()))
946    return DAG.getNode(ISD::SRL, VT, N0,
947                       DAG.getConstant(Log2_64(N1C->getValue()),
948                                       TLI.getShiftAmountTy()));
949  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
950  if (N1.getOpcode() == ISD::SHL) {
951    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
952      if (isPowerOf2_64(SHC->getValue())) {
953        MVT::ValueType ADDVT = N1.getOperand(1).getValueType();
954        SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1),
955                                    DAG.getConstant(Log2_64(SHC->getValue()),
956                                                    ADDVT));
957        AddToWorkList(Add.Val);
958        return DAG.getNode(ISD::SRL, VT, N0, Add);
959      }
960    }
961  }
962  // fold (udiv x, c) -> alternate
963  if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) {
964    SDOperand Op = BuildUDIV(N);
965    if (Op.Val) return Op;
966  }
967  return SDOperand();
968}
969
970SDOperand DAGCombiner::visitSREM(SDNode *N) {
971  SDOperand N0 = N->getOperand(0);
972  SDOperand N1 = N->getOperand(1);
973  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
974  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
975  MVT::ValueType VT = N->getValueType(0);
976
977  // fold (srem c1, c2) -> c1%c2
978  if (N0C && N1C && !N1C->isNullValue())
979    return DAG.getNode(ISD::SREM, VT, N0, N1);
980  // If we know the sign bits of both operands are zero, strength reduce to a
981  // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
982  uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1);
983  if (TLI.MaskedValueIsZero(N1, SignBit) &&
984      TLI.MaskedValueIsZero(N0, SignBit))
985    return DAG.getNode(ISD::UREM, VT, N0, N1);
986  return SDOperand();
987}
988
989SDOperand DAGCombiner::visitUREM(SDNode *N) {
990  SDOperand N0 = N->getOperand(0);
991  SDOperand N1 = N->getOperand(1);
992  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
994  MVT::ValueType VT = N->getValueType(0);
995
996  // fold (urem c1, c2) -> c1%c2
997  if (N0C && N1C && !N1C->isNullValue())
998    return DAG.getNode(ISD::UREM, VT, N0, N1);
999  // fold (urem x, pow2) -> (and x, pow2-1)
1000  if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue()))
1001    return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT));
1002  // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
1003  if (N1.getOpcode() == ISD::SHL) {
1004    if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) {
1005      if (isPowerOf2_64(SHC->getValue())) {
1006        SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT));
1007        AddToWorkList(Add.Val);
1008        return DAG.getNode(ISD::AND, VT, N0, Add);
1009      }
1010    }
1011  }
1012  return SDOperand();
1013}
1014
1015SDOperand DAGCombiner::visitMULHS(SDNode *N) {
1016  SDOperand N0 = N->getOperand(0);
1017  SDOperand N1 = N->getOperand(1);
1018  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1019
1020  // fold (mulhs x, 0) -> 0
1021  if (N1C && N1C->isNullValue())
1022    return N1;
1023  // fold (mulhs x, 1) -> (sra x, size(x)-1)
1024  if (N1C && N1C->getValue() == 1)
1025    return DAG.getNode(ISD::SRA, N0.getValueType(), N0,
1026                       DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1,
1027                                       TLI.getShiftAmountTy()));
1028  return SDOperand();
1029}
1030
1031SDOperand DAGCombiner::visitMULHU(SDNode *N) {
1032  SDOperand N0 = N->getOperand(0);
1033  SDOperand N1 = N->getOperand(1);
1034  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1035
1036  // fold (mulhu x, 0) -> 0
1037  if (N1C && N1C->isNullValue())
1038    return N1;
1039  // fold (mulhu x, 1) -> 0
1040  if (N1C && N1C->getValue() == 1)
1041    return DAG.getConstant(0, N0.getValueType());
1042  return SDOperand();
1043}
1044
1045/// SimplifyBinOpWithSameOpcodeHands - If this is a binary operator with
1046/// two operands of the same opcode, try to simplify it.
1047SDOperand DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
1048  SDOperand N0 = N->getOperand(0), N1 = N->getOperand(1);
1049  MVT::ValueType VT = N0.getValueType();
1050  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
1051
1052  // For each of OP in AND/OR/XOR:
1053  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
1054  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
1055  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
1056  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y))
1057  if ((N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND||
1058       N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
1059      N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
1060    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1061                                   N0.getOperand(0).getValueType(),
1062                                   N0.getOperand(0), N1.getOperand(0));
1063    AddToWorkList(ORNode.Val);
1064    return DAG.getNode(N0.getOpcode(), VT, ORNode);
1065  }
1066
1067  // For each of OP in SHL/SRL/SRA/AND...
1068  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
1069  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
1070  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
1071  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
1072       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
1073      N0.getOperand(1) == N1.getOperand(1)) {
1074    SDOperand ORNode = DAG.getNode(N->getOpcode(),
1075                                   N0.getOperand(0).getValueType(),
1076                                   N0.getOperand(0), N1.getOperand(0));
1077    AddToWorkList(ORNode.Val);
1078    return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1));
1079  }
1080
1081  return SDOperand();
1082}
1083
1084SDOperand DAGCombiner::visitAND(SDNode *N) {
1085  SDOperand N0 = N->getOperand(0);
1086  SDOperand N1 = N->getOperand(1);
1087  SDOperand LL, LR, RL, RR, CC0, CC1;
1088  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1089  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1090  MVT::ValueType VT = N1.getValueType();
1091  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1092
1093  // fold (and c1, c2) -> c1&c2
1094  if (N0C && N1C)
1095    return DAG.getNode(ISD::AND, VT, N0, N1);
1096  // canonicalize constant to RHS
1097  if (N0C && !N1C)
1098    return DAG.getNode(ISD::AND, VT, N1, N0);
1099  // fold (and x, -1) -> x
1100  if (N1C && N1C->isAllOnesValue())
1101    return N0;
1102  // if (and x, c) is known to be zero, return 0
1103  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1104    return DAG.getConstant(0, VT);
1105  // reassociate and
1106  SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
1107  if (RAND.Val != 0)
1108    return RAND;
1109  // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF
1110  if (N1C && N0.getOpcode() == ISD::OR)
1111    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1112      if ((ORI->getValue() & N1C->getValue()) == N1C->getValue())
1113        return N1;
1114  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
1115  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1116    unsigned InMask = MVT::getIntVTBitMask(N0.getOperand(0).getValueType());
1117    if (TLI.MaskedValueIsZero(N0.getOperand(0),
1118                              ~N1C->getValue() & InMask)) {
1119      SDOperand Zext = DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(),
1120                                   N0.getOperand(0));
1121
1122      // Replace uses of the AND with uses of the Zero extend node.
1123      CombineTo(N, Zext);
1124
1125      // We actually want to replace all uses of the any_extend with the
1126      // zero_extend, to avoid duplicating things.  This will later cause this
1127      // AND to be folded.
1128      CombineTo(N0.Val, Zext);
1129      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1130    }
1131  }
1132  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
1133  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1134    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1135    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1136
1137    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1138        MVT::isInteger(LL.getValueType())) {
1139      // fold (X == 0) & (Y == 0) -> (X|Y == 0)
1140      if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) {
1141        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1142        AddToWorkList(ORNode.Val);
1143        return DAG.getSetCC(VT, ORNode, LR, Op1);
1144      }
1145      // fold (X == -1) & (Y == -1) -> (X&Y == -1)
1146      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) {
1147        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1148        AddToWorkList(ANDNode.Val);
1149        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1150      }
1151      // fold (X >  -1) & (Y >  -1) -> (X|Y > -1)
1152      if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) {
1153        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1154        AddToWorkList(ORNode.Val);
1155        return DAG.getSetCC(VT, ORNode, LR, Op1);
1156      }
1157    }
1158    // canonicalize equivalent to ll == rl
1159    if (LL == RR && LR == RL) {
1160      Op1 = ISD::getSetCCSwappedOperands(Op1);
1161      std::swap(RL, RR);
1162    }
1163    if (LL == RL && LR == RR) {
1164      bool isInteger = MVT::isInteger(LL.getValueType());
1165      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
1166      if (Result != ISD::SETCC_INVALID)
1167        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1168    }
1169  }
1170
1171  // Simplify: and (op x...), (op y...)  -> (op (and x, y))
1172  if (N0.getOpcode() == N1.getOpcode()) {
1173    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1174    if (Tmp.Val) return Tmp;
1175  }
1176
1177  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
1178  // fold (and (sra)) -> (and (srl)) when possible.
1179  if (!MVT::isVector(VT) &&
1180      SimplifyDemandedBits(SDOperand(N, 0)))
1181    return SDOperand(N, 0);
1182  // fold (zext_inreg (extload x)) -> (zextload x)
1183  if (N0.getOpcode() == ISD::EXTLOAD) {
1184    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
1185    // If we zero all the possible extended bits, then we can turn this into
1186    // a zextload if we are running before legalize or the operation is legal.
1187    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1188        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
1189      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1190                                         N0.getOperand(1), N0.getOperand(2),
1191                                         EVT);
1192      AddToWorkList(N);
1193      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1194      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1195    }
1196  }
1197  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
1198  if (N0.getOpcode() == ISD::SEXTLOAD && N0.hasOneUse()) {
1199    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
1200    // If we zero all the possible extended bits, then we can turn this into
1201    // a zextload if we are running before legalize or the operation is legal.
1202    if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) &&
1203        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
1204      SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1205                                         N0.getOperand(1), N0.getOperand(2),
1206                                         EVT);
1207      AddToWorkList(N);
1208      CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1209      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1210    }
1211  }
1212
1213  // fold (and (load x), 255) -> (zextload x, i8)
1214  // fold (and (extload x, i16), 255) -> (zextload x, i8)
1215  if (N1C &&
1216      (N0.getOpcode() == ISD::LOAD || N0.getOpcode() == ISD::EXTLOAD ||
1217       N0.getOpcode() == ISD::ZEXTLOAD) &&
1218      N0.hasOneUse()) {
1219    MVT::ValueType EVT, LoadedVT;
1220    if (N1C->getValue() == 255)
1221      EVT = MVT::i8;
1222    else if (N1C->getValue() == 65535)
1223      EVT = MVT::i16;
1224    else if (N1C->getValue() == ~0U)
1225      EVT = MVT::i32;
1226    else
1227      EVT = MVT::Other;
1228
1229    LoadedVT = N0.getOpcode() == ISD::LOAD ? VT :
1230                           cast<VTSDNode>(N0.getOperand(3))->getVT();
1231    if (EVT != MVT::Other && LoadedVT > EVT &&
1232        (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) {
1233      MVT::ValueType PtrType = N0.getOperand(1).getValueType();
1234      // For big endian targets, we need to add an offset to the pointer to load
1235      // the correct bytes.  For little endian systems, we merely need to read
1236      // fewer bytes from the same pointer.
1237      unsigned PtrOff =
1238        (MVT::getSizeInBits(LoadedVT) - MVT::getSizeInBits(EVT)) / 8;
1239      SDOperand NewPtr = N0.getOperand(1);
1240      if (!TLI.isLittleEndian())
1241        NewPtr = DAG.getNode(ISD::ADD, PtrType, NewPtr,
1242                             DAG.getConstant(PtrOff, PtrType));
1243      AddToWorkList(NewPtr.Val);
1244      SDOperand Load =
1245        DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), NewPtr,
1246                       N0.getOperand(2), EVT);
1247      AddToWorkList(N);
1248      CombineTo(N0.Val, Load, Load.getValue(1));
1249      return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1250    }
1251  }
1252
1253  return SDOperand();
1254}
1255
1256SDOperand DAGCombiner::visitOR(SDNode *N) {
1257  SDOperand N0 = N->getOperand(0);
1258  SDOperand N1 = N->getOperand(1);
1259  SDOperand LL, LR, RL, RR, CC0, CC1;
1260  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1261  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1262  MVT::ValueType VT = N1.getValueType();
1263  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1264
1265  // fold (or c1, c2) -> c1|c2
1266  if (N0C && N1C)
1267    return DAG.getNode(ISD::OR, VT, N0, N1);
1268  // canonicalize constant to RHS
1269  if (N0C && !N1C)
1270    return DAG.getNode(ISD::OR, VT, N1, N0);
1271  // fold (or x, 0) -> x
1272  if (N1C && N1C->isNullValue())
1273    return N0;
1274  // fold (or x, -1) -> -1
1275  if (N1C && N1C->isAllOnesValue())
1276    return N1;
1277  // fold (or x, c) -> c iff (x & ~c) == 0
1278  if (N1C &&
1279      TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
1280    return N1;
1281  // reassociate or
1282  SDOperand ROR = ReassociateOps(ISD::OR, N0, N1);
1283  if (ROR.Val != 0)
1284    return ROR;
1285  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
1286  if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() &&
1287             isa<ConstantSDNode>(N0.getOperand(1))) {
1288    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
1289    return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0),
1290                                                 N1),
1291                       DAG.getConstant(N1C->getValue() | C1->getValue(), VT));
1292  }
1293  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
1294  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
1295    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
1296    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
1297
1298    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
1299        MVT::isInteger(LL.getValueType())) {
1300      // fold (X != 0) | (Y != 0) -> (X|Y != 0)
1301      // fold (X <  0) | (Y <  0) -> (X|Y < 0)
1302      if (cast<ConstantSDNode>(LR)->getValue() == 0 &&
1303          (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
1304        SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL);
1305        AddToWorkList(ORNode.Val);
1306        return DAG.getSetCC(VT, ORNode, LR, Op1);
1307      }
1308      // fold (X != -1) | (Y != -1) -> (X&Y != -1)
1309      // fold (X >  -1) | (Y >  -1) -> (X&Y >  -1)
1310      if (cast<ConstantSDNode>(LR)->isAllOnesValue() &&
1311          (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
1312        SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL);
1313        AddToWorkList(ANDNode.Val);
1314        return DAG.getSetCC(VT, ANDNode, LR, Op1);
1315      }
1316    }
1317    // canonicalize equivalent to ll == rl
1318    if (LL == RR && LR == RL) {
1319      Op1 = ISD::getSetCCSwappedOperands(Op1);
1320      std::swap(RL, RR);
1321    }
1322    if (LL == RL && LR == RR) {
1323      bool isInteger = MVT::isInteger(LL.getValueType());
1324      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
1325      if (Result != ISD::SETCC_INVALID)
1326        return DAG.getSetCC(N0.getValueType(), LL, LR, Result);
1327    }
1328  }
1329
1330  // Simplify: or (op x...), (op y...)  -> (op (or x, y))
1331  if (N0.getOpcode() == N1.getOpcode()) {
1332    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1333    if (Tmp.Val) return Tmp;
1334  }
1335
1336  // canonicalize shl to left side in a shl/srl pair, to match rotate
1337  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
1338    std::swap(N0, N1);
1339  // check for rotl, rotr
1340  if (N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SRL &&
1341      N0.getOperand(0) == N1.getOperand(0) &&
1342      TLI.isOperationLegal(ISD::ROTL, VT) && TLI.isTypeLegal(VT)) {
1343    // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
1344    if (N0.getOperand(1).getOpcode() == ISD::Constant &&
1345        N1.getOperand(1).getOpcode() == ISD::Constant) {
1346      uint64_t c1val = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1347      uint64_t c2val = cast<ConstantSDNode>(N1.getOperand(1))->getValue();
1348      if ((c1val + c2val) == OpSizeInBits)
1349        return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
1350    }
1351    // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y)
1352    if (N1.getOperand(1).getOpcode() == ISD::SUB &&
1353        N0.getOperand(1) == N1.getOperand(1).getOperand(1))
1354      if (ConstantSDNode *SUBC =
1355          dyn_cast<ConstantSDNode>(N1.getOperand(1).getOperand(0)))
1356        if (SUBC->getValue() == OpSizeInBits)
1357          return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1));
1358    // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y)
1359    if (N0.getOperand(1).getOpcode() == ISD::SUB &&
1360        N1.getOperand(1) == N0.getOperand(1).getOperand(1))
1361      if (ConstantSDNode *SUBC =
1362          dyn_cast<ConstantSDNode>(N0.getOperand(1).getOperand(0)))
1363        if (SUBC->getValue() == OpSizeInBits) {
1364          if (TLI.isOperationLegal(ISD::ROTR, VT) && TLI.isTypeLegal(VT))
1365            return DAG.getNode(ISD::ROTR, VT, N0.getOperand(0),
1366                               N1.getOperand(1));
1367          else
1368            return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0),
1369                               N0.getOperand(1));
1370        }
1371  }
1372  return SDOperand();
1373}
1374
1375SDOperand DAGCombiner::visitXOR(SDNode *N) {
1376  SDOperand N0 = N->getOperand(0);
1377  SDOperand N1 = N->getOperand(1);
1378  SDOperand LHS, RHS, CC;
1379  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1380  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1381  MVT::ValueType VT = N0.getValueType();
1382
1383  // fold (xor c1, c2) -> c1^c2
1384  if (N0C && N1C)
1385    return DAG.getNode(ISD::XOR, VT, N0, N1);
1386  // canonicalize constant to RHS
1387  if (N0C && !N1C)
1388    return DAG.getNode(ISD::XOR, VT, N1, N0);
1389  // fold (xor x, 0) -> x
1390  if (N1C && N1C->isNullValue())
1391    return N0;
1392  // reassociate xor
1393  SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1);
1394  if (RXOR.Val != 0)
1395    return RXOR;
1396  // fold !(x cc y) -> (x !cc y)
1397  if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) {
1398    bool isInt = MVT::isInteger(LHS.getValueType());
1399    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
1400                                               isInt);
1401    if (N0.getOpcode() == ISD::SETCC)
1402      return DAG.getSetCC(VT, LHS, RHS, NotCC);
1403    if (N0.getOpcode() == ISD::SELECT_CC)
1404      return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC);
1405    assert(0 && "Unhandled SetCC Equivalent!");
1406    abort();
1407  }
1408  // fold !(x or y) -> (!x and !y) iff x or y are setcc
1409  if (N1C && N1C->getValue() == 1 &&
1410      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1411    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1412    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
1413      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1414      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1415      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1416      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1417      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1418    }
1419  }
1420  // fold !(x or y) -> (!x and !y) iff x or y are constants
1421  if (N1C && N1C->isAllOnesValue() &&
1422      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
1423    SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1);
1424    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
1425      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
1426      LHS = DAG.getNode(ISD::XOR, VT, LHS, N1);  // RHS = ~LHS
1427      RHS = DAG.getNode(ISD::XOR, VT, RHS, N1);  // RHS = ~RHS
1428      AddToWorkList(LHS.Val); AddToWorkList(RHS.Val);
1429      return DAG.getNode(NewOpcode, VT, LHS, RHS);
1430    }
1431  }
1432  // fold (xor (xor x, c1), c2) -> (xor x, c1^c2)
1433  if (N1C && N0.getOpcode() == ISD::XOR) {
1434    ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0));
1435    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1436    if (N00C)
1437      return DAG.getNode(ISD::XOR, VT, N0.getOperand(1),
1438                         DAG.getConstant(N1C->getValue()^N00C->getValue(), VT));
1439    if (N01C)
1440      return DAG.getNode(ISD::XOR, VT, N0.getOperand(0),
1441                         DAG.getConstant(N1C->getValue()^N01C->getValue(), VT));
1442  }
1443  // fold (xor x, x) -> 0
1444  if (N0 == N1) {
1445    if (!MVT::isVector(VT)) {
1446      return DAG.getConstant(0, VT);
1447    } else if (!AfterLegalize || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
1448      // Produce a vector of zeros.
1449      SDOperand El = DAG.getConstant(0, MVT::getVectorBaseType(VT));
1450      std::vector<SDOperand> Ops(MVT::getVectorNumElements(VT), El);
1451      return DAG.getNode(ISD::BUILD_VECTOR, VT, Ops);
1452    }
1453  }
1454
1455  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
1456  if (N0.getOpcode() == N1.getOpcode()) {
1457    SDOperand Tmp = SimplifyBinOpWithSameOpcodeHands(N);
1458    if (Tmp.Val) return Tmp;
1459  }
1460
1461  // Simplify the expression using non-local knowledge.
1462  if (!MVT::isVector(VT) &&
1463      SimplifyDemandedBits(SDOperand(N, 0)))
1464    return SDOperand(N, 0);
1465
1466  return SDOperand();
1467}
1468
1469SDOperand DAGCombiner::visitSHL(SDNode *N) {
1470  SDOperand N0 = N->getOperand(0);
1471  SDOperand N1 = N->getOperand(1);
1472  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1473  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1474  MVT::ValueType VT = N0.getValueType();
1475  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1476
1477  // fold (shl c1, c2) -> c1<<c2
1478  if (N0C && N1C)
1479    return DAG.getNode(ISD::SHL, VT, N0, N1);
1480  // fold (shl 0, x) -> 0
1481  if (N0C && N0C->isNullValue())
1482    return N0;
1483  // fold (shl x, c >= size(x)) -> undef
1484  if (N1C && N1C->getValue() >= OpSizeInBits)
1485    return DAG.getNode(ISD::UNDEF, VT);
1486  // fold (shl x, 0) -> x
1487  if (N1C && N1C->isNullValue())
1488    return N0;
1489  // if (shl x, c) is known to be zero, return 0
1490  if (TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
1491    return DAG.getConstant(0, VT);
1492  if (SimplifyDemandedBits(SDOperand(N, 0)))
1493    return SDOperand(N, 0);
1494  // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2)
1495  if (N1C && N0.getOpcode() == ISD::SHL &&
1496      N0.getOperand(1).getOpcode() == ISD::Constant) {
1497    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1498    uint64_t c2 = N1C->getValue();
1499    if (c1 + c2 > OpSizeInBits)
1500      return DAG.getConstant(0, VT);
1501    return DAG.getNode(ISD::SHL, VT, N0.getOperand(0),
1502                       DAG.getConstant(c1 + c2, N1.getValueType()));
1503  }
1504  // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or
1505  //                               (srl (and x, -1 << c1), c1-c2)
1506  if (N1C && N0.getOpcode() == ISD::SRL &&
1507      N0.getOperand(1).getOpcode() == ISD::Constant) {
1508    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1509    uint64_t c2 = N1C->getValue();
1510    SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1511                                 DAG.getConstant(~0ULL << c1, VT));
1512    if (c2 > c1)
1513      return DAG.getNode(ISD::SHL, VT, Mask,
1514                         DAG.getConstant(c2-c1, N1.getValueType()));
1515    else
1516      return DAG.getNode(ISD::SRL, VT, Mask,
1517                         DAG.getConstant(c1-c2, N1.getValueType()));
1518  }
1519  // fold (shl (sra x, c1), c1) -> (and x, -1 << c1)
1520  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1))
1521    return DAG.getNode(ISD::AND, VT, N0.getOperand(0),
1522                       DAG.getConstant(~0ULL << N1C->getValue(), VT));
1523  // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1<<c2)
1524  if (N1C && N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse() &&
1525      isa<ConstantSDNode>(N0.getOperand(1))) {
1526    return DAG.getNode(ISD::ADD, VT,
1527                       DAG.getNode(ISD::SHL, VT, N0.getOperand(0), N1),
1528                       DAG.getNode(ISD::SHL, VT, N0.getOperand(1), N1));
1529  }
1530  return SDOperand();
1531}
1532
1533SDOperand DAGCombiner::visitSRA(SDNode *N) {
1534  SDOperand N0 = N->getOperand(0);
1535  SDOperand N1 = N->getOperand(1);
1536  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1537  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1538  MVT::ValueType VT = N0.getValueType();
1539
1540  // fold (sra c1, c2) -> c1>>c2
1541  if (N0C && N1C)
1542    return DAG.getNode(ISD::SRA, VT, N0, N1);
1543  // fold (sra 0, x) -> 0
1544  if (N0C && N0C->isNullValue())
1545    return N0;
1546  // fold (sra -1, x) -> -1
1547  if (N0C && N0C->isAllOnesValue())
1548    return N0;
1549  // fold (sra x, c >= size(x)) -> undef
1550  if (N1C && N1C->getValue() >= MVT::getSizeInBits(VT))
1551    return DAG.getNode(ISD::UNDEF, VT);
1552  // fold (sra x, 0) -> x
1553  if (N1C && N1C->isNullValue())
1554    return N0;
1555  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
1556  // sext_inreg.
1557  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
1558    unsigned LowBits = MVT::getSizeInBits(VT) - (unsigned)N1C->getValue();
1559    MVT::ValueType EVT;
1560    switch (LowBits) {
1561    default: EVT = MVT::Other; break;
1562    case  1: EVT = MVT::i1;    break;
1563    case  8: EVT = MVT::i8;    break;
1564    case 16: EVT = MVT::i16;   break;
1565    case 32: EVT = MVT::i32;   break;
1566    }
1567    if (EVT > MVT::Other && TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, EVT))
1568      return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
1569                         DAG.getValueType(EVT));
1570  }
1571
1572  // fold (sra (sra x, c1), c2) -> (sra x, c1+c2)
1573  if (N1C && N0.getOpcode() == ISD::SRA) {
1574    if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1575      unsigned Sum = N1C->getValue() + C1->getValue();
1576      if (Sum >= MVT::getSizeInBits(VT)) Sum = MVT::getSizeInBits(VT)-1;
1577      return DAG.getNode(ISD::SRA, VT, N0.getOperand(0),
1578                         DAG.getConstant(Sum, N1C->getValueType(0)));
1579    }
1580  }
1581
1582  // Simplify, based on bits shifted out of the LHS.
1583  if (N1C && SimplifyDemandedBits(SDOperand(N, 0)))
1584    return SDOperand(N, 0);
1585
1586
1587  // If the sign bit is known to be zero, switch this to a SRL.
1588  if (TLI.MaskedValueIsZero(N0, MVT::getIntVTSignBit(VT)))
1589    return DAG.getNode(ISD::SRL, VT, N0, N1);
1590  return SDOperand();
1591}
1592
1593SDOperand DAGCombiner::visitSRL(SDNode *N) {
1594  SDOperand N0 = N->getOperand(0);
1595  SDOperand N1 = N->getOperand(1);
1596  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1597  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1598  MVT::ValueType VT = N0.getValueType();
1599  unsigned OpSizeInBits = MVT::getSizeInBits(VT);
1600
1601  // fold (srl c1, c2) -> c1 >>u c2
1602  if (N0C && N1C)
1603    return DAG.getNode(ISD::SRL, VT, N0, N1);
1604  // fold (srl 0, x) -> 0
1605  if (N0C && N0C->isNullValue())
1606    return N0;
1607  // fold (srl x, c >= size(x)) -> undef
1608  if (N1C && N1C->getValue() >= OpSizeInBits)
1609    return DAG.getNode(ISD::UNDEF, VT);
1610  // fold (srl x, 0) -> x
1611  if (N1C && N1C->isNullValue())
1612    return N0;
1613  // if (srl x, c) is known to be zero, return 0
1614  if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
1615    return DAG.getConstant(0, VT);
1616  // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2)
1617  if (N1C && N0.getOpcode() == ISD::SRL &&
1618      N0.getOperand(1).getOpcode() == ISD::Constant) {
1619    uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1620    uint64_t c2 = N1C->getValue();
1621    if (c1 + c2 > OpSizeInBits)
1622      return DAG.getConstant(0, VT);
1623    return DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
1624                       DAG.getConstant(c1 + c2, N1.getValueType()));
1625  }
1626
1627  // fold (srl (anyextend x), c) -> (anyextend (srl x, c))
1628  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
1629    // Shifting in all undef bits?
1630    MVT::ValueType SmallVT = N0.getOperand(0).getValueType();
1631    if (N1C->getValue() >= MVT::getSizeInBits(SmallVT))
1632      return DAG.getNode(ISD::UNDEF, VT);
1633
1634    SDOperand SmallShift = DAG.getNode(ISD::SRL, SmallVT, N0.getOperand(0), N1);
1635    AddToWorkList(SmallShift.Val);
1636    return DAG.getNode(ISD::ANY_EXTEND, VT, SmallShift);
1637  }
1638
1639  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
1640  if (N1C && N0.getOpcode() == ISD::CTLZ &&
1641      N1C->getValue() == Log2_32(MVT::getSizeInBits(VT))) {
1642    uint64_t KnownZero, KnownOne, Mask = MVT::getIntVTBitMask(VT);
1643    TLI.ComputeMaskedBits(N0.getOperand(0), Mask, KnownZero, KnownOne);
1644
1645    // If any of the input bits are KnownOne, then the input couldn't be all
1646    // zeros, thus the result of the srl will always be zero.
1647    if (KnownOne) return DAG.getConstant(0, VT);
1648
1649    // If all of the bits input the to ctlz node are known to be zero, then
1650    // the result of the ctlz is "32" and the result of the shift is one.
1651    uint64_t UnknownBits = ~KnownZero & Mask;
1652    if (UnknownBits == 0) return DAG.getConstant(1, VT);
1653
1654    // Otherwise, check to see if there is exactly one bit input to the ctlz.
1655    if ((UnknownBits & (UnknownBits-1)) == 0) {
1656      // Okay, we know that only that the single bit specified by UnknownBits
1657      // could be set on input to the CTLZ node.  If this bit is set, the SRL
1658      // will return 0, if it is clear, it returns 1.  Change the CTLZ/SRL pair
1659      // to an SRL,XOR pair, which is likely to simplify more.
1660      unsigned ShAmt = CountTrailingZeros_64(UnknownBits);
1661      SDOperand Op = N0.getOperand(0);
1662      if (ShAmt) {
1663        Op = DAG.getNode(ISD::SRL, VT, Op,
1664                         DAG.getConstant(ShAmt, TLI.getShiftAmountTy()));
1665        AddToWorkList(Op.Val);
1666      }
1667      return DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(1, VT));
1668    }
1669  }
1670
1671  return SDOperand();
1672}
1673
1674SDOperand DAGCombiner::visitCTLZ(SDNode *N) {
1675  SDOperand N0 = N->getOperand(0);
1676  MVT::ValueType VT = N->getValueType(0);
1677
1678  // fold (ctlz c1) -> c2
1679  if (isa<ConstantSDNode>(N0))
1680    return DAG.getNode(ISD::CTLZ, VT, N0);
1681  return SDOperand();
1682}
1683
1684SDOperand DAGCombiner::visitCTTZ(SDNode *N) {
1685  SDOperand N0 = N->getOperand(0);
1686  MVT::ValueType VT = N->getValueType(0);
1687
1688  // fold (cttz c1) -> c2
1689  if (isa<ConstantSDNode>(N0))
1690    return DAG.getNode(ISD::CTTZ, VT, N0);
1691  return SDOperand();
1692}
1693
1694SDOperand DAGCombiner::visitCTPOP(SDNode *N) {
1695  SDOperand N0 = N->getOperand(0);
1696  MVT::ValueType VT = N->getValueType(0);
1697
1698  // fold (ctpop c1) -> c2
1699  if (isa<ConstantSDNode>(N0))
1700    return DAG.getNode(ISD::CTPOP, VT, N0);
1701  return SDOperand();
1702}
1703
1704SDOperand DAGCombiner::visitSELECT(SDNode *N) {
1705  SDOperand N0 = N->getOperand(0);
1706  SDOperand N1 = N->getOperand(1);
1707  SDOperand N2 = N->getOperand(2);
1708  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1709  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1710  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1711  MVT::ValueType VT = N->getValueType(0);
1712
1713  // fold select C, X, X -> X
1714  if (N1 == N2)
1715    return N1;
1716  // fold select true, X, Y -> X
1717  if (N0C && !N0C->isNullValue())
1718    return N1;
1719  // fold select false, X, Y -> Y
1720  if (N0C && N0C->isNullValue())
1721    return N2;
1722  // fold select C, 1, X -> C | X
1723  if (MVT::i1 == VT && N1C && N1C->getValue() == 1)
1724    return DAG.getNode(ISD::OR, VT, N0, N2);
1725  // fold select C, 0, X -> ~C & X
1726  // FIXME: this should check for C type == X type, not i1?
1727  if (MVT::i1 == VT && N1C && N1C->isNullValue()) {
1728    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1729    AddToWorkList(XORNode.Val);
1730    return DAG.getNode(ISD::AND, VT, XORNode, N2);
1731  }
1732  // fold select C, X, 1 -> ~C | X
1733  if (MVT::i1 == VT && N2C && N2C->getValue() == 1) {
1734    SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT));
1735    AddToWorkList(XORNode.Val);
1736    return DAG.getNode(ISD::OR, VT, XORNode, N1);
1737  }
1738  // fold select C, X, 0 -> C & X
1739  // FIXME: this should check for C type == X type, not i1?
1740  if (MVT::i1 == VT && N2C && N2C->isNullValue())
1741    return DAG.getNode(ISD::AND, VT, N0, N1);
1742  // fold  X ? X : Y --> X ? 1 : Y --> X | Y
1743  if (MVT::i1 == VT && N0 == N1)
1744    return DAG.getNode(ISD::OR, VT, N0, N2);
1745  // fold X ? Y : X --> X ? Y : 0 --> X & Y
1746  if (MVT::i1 == VT && N0 == N2)
1747    return DAG.getNode(ISD::AND, VT, N0, N1);
1748  // If we can fold this based on the true/false value, do so.
1749  if (SimplifySelectOps(N, N1, N2))
1750    return SDOperand();
1751  // fold selects based on a setcc into other things, such as min/max/abs
1752  if (N0.getOpcode() == ISD::SETCC)
1753    // FIXME:
1754    // Check against MVT::Other for SELECT_CC, which is a workaround for targets
1755    // having to say they don't support SELECT_CC on every type the DAG knows
1756    // about, since there is no way to mark an opcode illegal at all value types
1757    if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other))
1758      return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1),
1759                         N1, N2, N0.getOperand(2));
1760    else
1761      return SimplifySelect(N0, N1, N2);
1762  return SDOperand();
1763}
1764
1765SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) {
1766  SDOperand N0 = N->getOperand(0);
1767  SDOperand N1 = N->getOperand(1);
1768  SDOperand N2 = N->getOperand(2);
1769  SDOperand N3 = N->getOperand(3);
1770  SDOperand N4 = N->getOperand(4);
1771  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1772  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1773  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
1774  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
1775
1776  // Determine if the condition we're dealing with is constant
1777  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
1778  //ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
1779
1780  // fold select_cc lhs, rhs, x, x, cc -> x
1781  if (N2 == N3)
1782    return N2;
1783
1784  // If we can fold this based on the true/false value, do so.
1785  if (SimplifySelectOps(N, N2, N3))
1786    return SDOperand();
1787
1788  // fold select_cc into other things, such as min/max/abs
1789  return SimplifySelectCC(N0, N1, N2, N3, CC);
1790}
1791
1792SDOperand DAGCombiner::visitSETCC(SDNode *N) {
1793  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
1794                       cast<CondCodeSDNode>(N->getOperand(2))->get());
1795}
1796
1797SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
1798  SDOperand N0 = N->getOperand(0);
1799  MVT::ValueType VT = N->getValueType(0);
1800
1801  // fold (sext c1) -> c1
1802  if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0))
1803    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0);
1804
1805  // fold (sext (sext x)) -> (sext x)
1806  // fold (sext (aext x)) -> (sext x)
1807  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
1808    return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0));
1809
1810  // fold (sext (truncate x)) -> (sextinreg x) iff x size == sext size.
1811  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
1812      (!AfterLegalize ||
1813       TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType())))
1814    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0),
1815                       DAG.getValueType(N0.getValueType()));
1816
1817  // fold (sext (load x)) -> (sext (truncate (sextload x)))
1818  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
1819      (!AfterLegalize||TLI.isOperationLegal(ISD::SEXTLOAD, N0.getValueType()))){
1820    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1821                                       N0.getOperand(1), N0.getOperand(2),
1822                                       N0.getValueType());
1823    CombineTo(N, ExtLoad);
1824    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1825              ExtLoad.getValue(1));
1826    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1827  }
1828
1829  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
1830  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
1831  if ((N0.getOpcode() == ISD::SEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
1832      N0.hasOneUse()) {
1833    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
1834    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1835                                       N0.getOperand(1), N0.getOperand(2), EVT);
1836    CombineTo(N, ExtLoad);
1837    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1838              ExtLoad.getValue(1));
1839    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1840  }
1841
1842  return SDOperand();
1843}
1844
1845SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) {
1846  SDOperand N0 = N->getOperand(0);
1847  MVT::ValueType VT = N->getValueType(0);
1848
1849  // fold (zext c1) -> c1
1850  if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0))
1851    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1852  // fold (zext (zext x)) -> (zext x)
1853  // fold (zext (aext x)) -> (zext x)
1854  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
1855    return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0));
1856  // fold (zext (truncate x)) -> (zextinreg x) iff x size == zext size.
1857  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&&
1858      (!AfterLegalize || TLI.isOperationLegal(ISD::AND, N0.getValueType())))
1859    return DAG.getZeroExtendInReg(N0.getOperand(0), N0.getValueType());
1860  // fold (zext (load x)) -> (zext (truncate (zextload x)))
1861  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
1862      (!AfterLegalize||TLI.isOperationLegal(ISD::ZEXTLOAD, N0.getValueType()))){
1863    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1864                                       N0.getOperand(1), N0.getOperand(2),
1865                                       N0.getValueType());
1866    CombineTo(N, ExtLoad);
1867    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1868              ExtLoad.getValue(1));
1869    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1870  }
1871
1872  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
1873  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
1874  if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) &&
1875      N0.hasOneUse()) {
1876    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
1877    SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0),
1878                                       N0.getOperand(1), N0.getOperand(2), EVT);
1879    CombineTo(N, ExtLoad);
1880    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1881              ExtLoad.getValue(1));
1882    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1883  }
1884  return SDOperand();
1885}
1886
1887SDOperand DAGCombiner::visitANY_EXTEND(SDNode *N) {
1888  SDOperand N0 = N->getOperand(0);
1889  MVT::ValueType VT = N->getValueType(0);
1890
1891  // fold (aext c1) -> c1
1892  if (isa<ConstantSDNode>(N0))
1893    return DAG.getNode(ISD::ANY_EXTEND, VT, N0);
1894  // fold (aext (aext x)) -> (aext x)
1895  // fold (aext (zext x)) -> (zext x)
1896  // fold (aext (sext x)) -> (sext x)
1897  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
1898      N0.getOpcode() == ISD::ZERO_EXTEND ||
1899      N0.getOpcode() == ISD::SIGN_EXTEND)
1900    return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
1901
1902  // fold (aext (truncate x)) -> x iff x size == zext size.
1903  if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT)
1904    return N0.getOperand(0);
1905  // fold (aext (load x)) -> (aext (truncate (extload x)))
1906  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
1907      (!AfterLegalize||TLI.isOperationLegal(ISD::EXTLOAD, N0.getValueType()))) {
1908    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, N0.getOperand(0),
1909                                       N0.getOperand(1), N0.getOperand(2),
1910                                       N0.getValueType());
1911    CombineTo(N, ExtLoad);
1912    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1913              ExtLoad.getValue(1));
1914    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1915  }
1916
1917  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
1918  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
1919  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
1920  if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD ||
1921       N0.getOpcode() == ISD::SEXTLOAD) &&
1922      N0.hasOneUse()) {
1923    MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
1924    SDOperand ExtLoad = DAG.getExtLoad(N0.getOpcode(), VT, N0.getOperand(0),
1925                                       N0.getOperand(1), N0.getOperand(2), EVT);
1926    CombineTo(N, ExtLoad);
1927    CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad),
1928              ExtLoad.getValue(1));
1929    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1930  }
1931  return SDOperand();
1932}
1933
1934
1935SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
1936  SDOperand N0 = N->getOperand(0);
1937  SDOperand N1 = N->getOperand(1);
1938  MVT::ValueType VT = N->getValueType(0);
1939  MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT();
1940  unsigned EVTBits = MVT::getSizeInBits(EVT);
1941
1942  // fold (sext_in_reg c1) -> c1
1943  if (isa<ConstantSDNode>(N0) || N0.getOpcode() == ISD::UNDEF)
1944    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0, N1);
1945
1946  // If the input is already sign extended, just drop the extension.
1947  if (TLI.ComputeNumSignBits(N0) >= MVT::getSizeInBits(VT)-EVTBits+1)
1948    return N0;
1949
1950  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
1951  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1952      EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) {
1953    return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1);
1954  }
1955
1956  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is zero
1957  if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1)))
1958    return DAG.getZeroExtendInReg(N0, EVT);
1959
1960  // fold (sext_in_reg (srl X, 24), i8) -> sra X, 24
1961  // fold (sext_in_reg (srl X, 23), i8) -> sra X, 23 iff possible.
1962  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
1963  if (N0.getOpcode() == ISD::SRL) {
1964    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
1965      if (ShAmt->getValue()+EVTBits <= MVT::getSizeInBits(VT)) {
1966        // We can turn this into an SRA iff the input to the SRL is already sign
1967        // extended enough.
1968        unsigned InSignBits = TLI.ComputeNumSignBits(N0.getOperand(0));
1969        if (MVT::getSizeInBits(VT)-(ShAmt->getValue()+EVTBits) < InSignBits)
1970          return DAG.getNode(ISD::SRA, VT, N0.getOperand(0), N0.getOperand(1));
1971      }
1972  }
1973
1974  // fold (sext_inreg (extload x)) -> (sextload x)
1975  if (N0.getOpcode() == ISD::EXTLOAD &&
1976      EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
1977      (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
1978    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1979                                       N0.getOperand(1), N0.getOperand(2),
1980                                       EVT);
1981    CombineTo(N, ExtLoad);
1982    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1983    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1984  }
1985  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
1986  if (N0.getOpcode() == ISD::ZEXTLOAD && N0.hasOneUse() &&
1987      EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() &&
1988      (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) {
1989    SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0),
1990                                       N0.getOperand(1), N0.getOperand(2),
1991                                       EVT);
1992    CombineTo(N, ExtLoad);
1993    CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1));
1994    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
1995  }
1996  return SDOperand();
1997}
1998
1999SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) {
2000  SDOperand N0 = N->getOperand(0);
2001  MVT::ValueType VT = N->getValueType(0);
2002
2003  // noop truncate
2004  if (N0.getValueType() == N->getValueType(0))
2005    return N0;
2006  // fold (truncate c1) -> c1
2007  if (isa<ConstantSDNode>(N0))
2008    return DAG.getNode(ISD::TRUNCATE, VT, N0);
2009  // fold (truncate (truncate x)) -> (truncate x)
2010  if (N0.getOpcode() == ISD::TRUNCATE)
2011    return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
2012  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
2013  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND||
2014      N0.getOpcode() == ISD::ANY_EXTEND) {
2015    if (N0.getValueType() < VT)
2016      // if the source is smaller than the dest, we still need an extend
2017      return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0));
2018    else if (N0.getValueType() > VT)
2019      // if the source is larger than the dest, than we just need the truncate
2020      return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0));
2021    else
2022      // if the source and dest are the same type, we can drop both the extend
2023      // and the truncate
2024      return N0.getOperand(0);
2025  }
2026  // fold (truncate (load x)) -> (smaller load x)
2027  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
2028    assert(MVT::getSizeInBits(N0.getValueType()) > MVT::getSizeInBits(VT) &&
2029           "Cannot truncate to larger type!");
2030    MVT::ValueType PtrType = N0.getOperand(1).getValueType();
2031    // For big endian targets, we need to add an offset to the pointer to load
2032    // the correct bytes.  For little endian systems, we merely need to read
2033    // fewer bytes from the same pointer.
2034    uint64_t PtrOff =
2035      (MVT::getSizeInBits(N0.getValueType()) - MVT::getSizeInBits(VT)) / 8;
2036    SDOperand NewPtr = TLI.isLittleEndian() ? N0.getOperand(1) :
2037      DAG.getNode(ISD::ADD, PtrType, N0.getOperand(1),
2038                  DAG.getConstant(PtrOff, PtrType));
2039    AddToWorkList(NewPtr.Val);
2040    SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), NewPtr,N0.getOperand(2));
2041    AddToWorkList(N);
2042    CombineTo(N0.Val, Load, Load.getValue(1));
2043    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2044  }
2045  return SDOperand();
2046}
2047
2048SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) {
2049  SDOperand N0 = N->getOperand(0);
2050  MVT::ValueType VT = N->getValueType(0);
2051
2052  // If the input is a constant, let getNode() fold it.
2053  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
2054    SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0);
2055    if (Res.Val != N) return Res;
2056  }
2057
2058  if (N0.getOpcode() == ISD::BIT_CONVERT)  // conv(conv(x,t1),t2) -> conv(x,t2)
2059    return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0));
2060
2061  // fold (conv (load x)) -> (load (conv*)x)
2062  // FIXME: These xforms need to know that the resultant load doesn't need a
2063  // higher alignment than the original!
2064  if (0 && N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) {
2065    SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), N0.getOperand(1),
2066                                 N0.getOperand(2));
2067    AddToWorkList(N);
2068    CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load),
2069              Load.getValue(1));
2070    return Load;
2071  }
2072
2073  return SDOperand();
2074}
2075
2076SDOperand DAGCombiner::visitVBIT_CONVERT(SDNode *N) {
2077  SDOperand N0 = N->getOperand(0);
2078  MVT::ValueType VT = N->getValueType(0);
2079
2080  // If the input is a VBUILD_VECTOR with all constant elements, fold this now.
2081  // First check to see if this is all constant.
2082  if (N0.getOpcode() == ISD::VBUILD_VECTOR && N0.Val->hasOneUse() &&
2083      VT == MVT::Vector) {
2084    bool isSimple = true;
2085    for (unsigned i = 0, e = N0.getNumOperands()-2; i != e; ++i)
2086      if (N0.getOperand(i).getOpcode() != ISD::UNDEF &&
2087          N0.getOperand(i).getOpcode() != ISD::Constant &&
2088          N0.getOperand(i).getOpcode() != ISD::ConstantFP) {
2089        isSimple = false;
2090        break;
2091      }
2092
2093    MVT::ValueType DestEltVT = cast<VTSDNode>(N->getOperand(2))->getVT();
2094    if (isSimple && !MVT::isVector(DestEltVT)) {
2095      return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(N0.Val, DestEltVT);
2096    }
2097  }
2098
2099  return SDOperand();
2100}
2101
2102/// ConstantFoldVBIT_CONVERTofVBUILD_VECTOR - We know that BV is a vbuild_vector
2103/// node with Constant, ConstantFP or Undef operands.  DstEltVT indicates the
2104/// destination element value type.
2105SDOperand DAGCombiner::
2106ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(SDNode *BV, MVT::ValueType DstEltVT) {
2107  MVT::ValueType SrcEltVT = BV->getOperand(0).getValueType();
2108
2109  // If this is already the right type, we're done.
2110  if (SrcEltVT == DstEltVT) return SDOperand(BV, 0);
2111
2112  unsigned SrcBitSize = MVT::getSizeInBits(SrcEltVT);
2113  unsigned DstBitSize = MVT::getSizeInBits(DstEltVT);
2114
2115  // If this is a conversion of N elements of one type to N elements of another
2116  // type, convert each element.  This handles FP<->INT cases.
2117  if (SrcBitSize == DstBitSize) {
2118    std::vector<SDOperand> Ops;
2119    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2120      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, DstEltVT, BV->getOperand(i)));
2121      AddToWorkList(Ops.back().Val);
2122    }
2123    Ops.push_back(*(BV->op_end()-2)); // Add num elements.
2124    Ops.push_back(DAG.getValueType(DstEltVT));
2125    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2126  }
2127
2128  // Otherwise, we're growing or shrinking the elements.  To avoid having to
2129  // handle annoying details of growing/shrinking FP values, we convert them to
2130  // int first.
2131  if (MVT::isFloatingPoint(SrcEltVT)) {
2132    // Convert the input float vector to a int vector where the elements are the
2133    // same sizes.
2134    assert((SrcEltVT == MVT::f32 || SrcEltVT == MVT::f64) && "Unknown FP VT!");
2135    MVT::ValueType IntVT = SrcEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2136    BV = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, IntVT).Val;
2137    SrcEltVT = IntVT;
2138  }
2139
2140  // Now we know the input is an integer vector.  If the output is a FP type,
2141  // convert to integer first, then to FP of the right size.
2142  if (MVT::isFloatingPoint(DstEltVT)) {
2143    assert((DstEltVT == MVT::f32 || DstEltVT == MVT::f64) && "Unknown FP VT!");
2144    MVT::ValueType TmpVT = DstEltVT == MVT::f32 ? MVT::i32 : MVT::i64;
2145    SDNode *Tmp = ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(BV, TmpVT).Val;
2146
2147    // Next, convert to FP elements of the same size.
2148    return ConstantFoldVBIT_CONVERTofVBUILD_VECTOR(Tmp, DstEltVT);
2149  }
2150
2151  // Okay, we know the src/dst types are both integers of differing types.
2152  // Handling growing first.
2153  assert(MVT::isInteger(SrcEltVT) && MVT::isInteger(DstEltVT));
2154  if (SrcBitSize < DstBitSize) {
2155    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
2156
2157    std::vector<SDOperand> Ops;
2158    for (unsigned i = 0, e = BV->getNumOperands()-2; i != e;
2159         i += NumInputsPerOutput) {
2160      bool isLE = TLI.isLittleEndian();
2161      uint64_t NewBits = 0;
2162      bool EltIsUndef = true;
2163      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
2164        // Shift the previously computed bits over.
2165        NewBits <<= SrcBitSize;
2166        SDOperand Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
2167        if (Op.getOpcode() == ISD::UNDEF) continue;
2168        EltIsUndef = false;
2169
2170        NewBits |= cast<ConstantSDNode>(Op)->getValue();
2171      }
2172
2173      if (EltIsUndef)
2174        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2175      else
2176        Ops.push_back(DAG.getConstant(NewBits, DstEltVT));
2177    }
2178
2179    Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2180    Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2181    return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2182  }
2183
2184  // Finally, this must be the case where we are shrinking elements: each input
2185  // turns into multiple outputs.
2186  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
2187  std::vector<SDOperand> Ops;
2188  for (unsigned i = 0, e = BV->getNumOperands()-2; i != e; ++i) {
2189    if (BV->getOperand(i).getOpcode() == ISD::UNDEF) {
2190      for (unsigned j = 0; j != NumOutputsPerInput; ++j)
2191        Ops.push_back(DAG.getNode(ISD::UNDEF, DstEltVT));
2192      continue;
2193    }
2194    uint64_t OpVal = cast<ConstantSDNode>(BV->getOperand(i))->getValue();
2195
2196    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
2197      unsigned ThisVal = OpVal & ((1ULL << DstBitSize)-1);
2198      OpVal >>= DstBitSize;
2199      Ops.push_back(DAG.getConstant(ThisVal, DstEltVT));
2200    }
2201
2202    // For big endian targets, swap the order of the pieces of each element.
2203    if (!TLI.isLittleEndian())
2204      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
2205  }
2206  Ops.push_back(DAG.getConstant(Ops.size(), MVT::i32)); // Add num elements.
2207  Ops.push_back(DAG.getValueType(DstEltVT));            // Add element size.
2208  return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2209}
2210
2211
2212
2213SDOperand DAGCombiner::visitFADD(SDNode *N) {
2214  SDOperand N0 = N->getOperand(0);
2215  SDOperand N1 = N->getOperand(1);
2216  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2217  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2218  MVT::ValueType VT = N->getValueType(0);
2219
2220  // fold (fadd c1, c2) -> c1+c2
2221  if (N0CFP && N1CFP)
2222    return DAG.getNode(ISD::FADD, VT, N0, N1);
2223  // canonicalize constant to RHS
2224  if (N0CFP && !N1CFP)
2225    return DAG.getNode(ISD::FADD, VT, N1, N0);
2226  // fold (A + (-B)) -> A-B
2227  if (N1.getOpcode() == ISD::FNEG)
2228    return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0));
2229  // fold ((-A) + B) -> B-A
2230  if (N0.getOpcode() == ISD::FNEG)
2231    return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0));
2232  return SDOperand();
2233}
2234
2235SDOperand DAGCombiner::visitFSUB(SDNode *N) {
2236  SDOperand N0 = N->getOperand(0);
2237  SDOperand N1 = N->getOperand(1);
2238  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2239  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2240  MVT::ValueType VT = N->getValueType(0);
2241
2242  // fold (fsub c1, c2) -> c1-c2
2243  if (N0CFP && N1CFP)
2244    return DAG.getNode(ISD::FSUB, VT, N0, N1);
2245  // fold (A-(-B)) -> A+B
2246  if (N1.getOpcode() == ISD::FNEG)
2247    return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0));
2248  return SDOperand();
2249}
2250
2251SDOperand DAGCombiner::visitFMUL(SDNode *N) {
2252  SDOperand N0 = N->getOperand(0);
2253  SDOperand N1 = N->getOperand(1);
2254  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2255  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2256  MVT::ValueType VT = N->getValueType(0);
2257
2258  // fold (fmul c1, c2) -> c1*c2
2259  if (N0CFP && N1CFP)
2260    return DAG.getNode(ISD::FMUL, VT, N0, N1);
2261  // canonicalize constant to RHS
2262  if (N0CFP && !N1CFP)
2263    return DAG.getNode(ISD::FMUL, VT, N1, N0);
2264  // fold (fmul X, 2.0) -> (fadd X, X)
2265  if (N1CFP && N1CFP->isExactlyValue(+2.0))
2266    return DAG.getNode(ISD::FADD, VT, N0, N0);
2267  return SDOperand();
2268}
2269
2270SDOperand DAGCombiner::visitFDIV(SDNode *N) {
2271  SDOperand N0 = N->getOperand(0);
2272  SDOperand N1 = N->getOperand(1);
2273  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2274  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2275  MVT::ValueType VT = N->getValueType(0);
2276
2277  // fold (fdiv c1, c2) -> c1/c2
2278  if (N0CFP && N1CFP)
2279    return DAG.getNode(ISD::FDIV, VT, N0, N1);
2280  return SDOperand();
2281}
2282
2283SDOperand DAGCombiner::visitFREM(SDNode *N) {
2284  SDOperand N0 = N->getOperand(0);
2285  SDOperand N1 = N->getOperand(1);
2286  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2287  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2288  MVT::ValueType VT = N->getValueType(0);
2289
2290  // fold (frem c1, c2) -> fmod(c1,c2)
2291  if (N0CFP && N1CFP)
2292    return DAG.getNode(ISD::FREM, VT, N0, N1);
2293  return SDOperand();
2294}
2295
2296SDOperand DAGCombiner::visitFCOPYSIGN(SDNode *N) {
2297  SDOperand N0 = N->getOperand(0);
2298  SDOperand N1 = N->getOperand(1);
2299  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2300  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2301  MVT::ValueType VT = N->getValueType(0);
2302
2303  if (N0CFP && N1CFP)  // Constant fold
2304    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1);
2305
2306  if (N1CFP) {
2307    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
2308    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
2309    union {
2310      double d;
2311      int64_t i;
2312    } u;
2313    u.d = N1CFP->getValue();
2314    if (u.i >= 0)
2315      return DAG.getNode(ISD::FABS, VT, N0);
2316    else
2317      return DAG.getNode(ISD::FNEG, VT, DAG.getNode(ISD::FABS, VT, N0));
2318  }
2319
2320  // copysign(fabs(x), y) -> copysign(x, y)
2321  // copysign(fneg(x), y) -> copysign(x, y)
2322  // copysign(copysign(x,z), y) -> copysign(x, y)
2323  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
2324      N0.getOpcode() == ISD::FCOPYSIGN)
2325    return DAG.getNode(ISD::FCOPYSIGN, VT, N0.getOperand(0), N1);
2326
2327  // copysign(x, abs(y)) -> abs(x)
2328  if (N1.getOpcode() == ISD::FABS)
2329    return DAG.getNode(ISD::FABS, VT, N0);
2330
2331  // copysign(x, copysign(y,z)) -> copysign(x, z)
2332  if (N1.getOpcode() == ISD::FCOPYSIGN)
2333    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(1));
2334
2335  // copysign(x, fp_extend(y)) -> copysign(x, y)
2336  // copysign(x, fp_round(y)) -> copysign(x, y)
2337  if (N1.getOpcode() == ISD::FP_EXTEND || N1.getOpcode() == ISD::FP_ROUND)
2338    return DAG.getNode(ISD::FCOPYSIGN, VT, N0, N1.getOperand(0));
2339
2340  return SDOperand();
2341}
2342
2343
2344
2345SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) {
2346  SDOperand N0 = N->getOperand(0);
2347  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2348  MVT::ValueType VT = N->getValueType(0);
2349
2350  // fold (sint_to_fp c1) -> c1fp
2351  if (N0C)
2352    return DAG.getNode(ISD::SINT_TO_FP, VT, N0);
2353  return SDOperand();
2354}
2355
2356SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) {
2357  SDOperand N0 = N->getOperand(0);
2358  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
2359  MVT::ValueType VT = N->getValueType(0);
2360
2361  // fold (uint_to_fp c1) -> c1fp
2362  if (N0C)
2363    return DAG.getNode(ISD::UINT_TO_FP, VT, N0);
2364  return SDOperand();
2365}
2366
2367SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) {
2368  SDOperand N0 = N->getOperand(0);
2369  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2370  MVT::ValueType VT = N->getValueType(0);
2371
2372  // fold (fp_to_sint c1fp) -> c1
2373  if (N0CFP)
2374    return DAG.getNode(ISD::FP_TO_SINT, VT, N0);
2375  return SDOperand();
2376}
2377
2378SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) {
2379  SDOperand N0 = N->getOperand(0);
2380  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2381  MVT::ValueType VT = N->getValueType(0);
2382
2383  // fold (fp_to_uint c1fp) -> c1
2384  if (N0CFP)
2385    return DAG.getNode(ISD::FP_TO_UINT, VT, N0);
2386  return SDOperand();
2387}
2388
2389SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) {
2390  SDOperand N0 = N->getOperand(0);
2391  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2392  MVT::ValueType VT = N->getValueType(0);
2393
2394  // fold (fp_round c1fp) -> c1fp
2395  if (N0CFP)
2396    return DAG.getNode(ISD::FP_ROUND, VT, N0);
2397
2398  // fold (fp_round (fp_extend x)) -> x
2399  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
2400    return N0.getOperand(0);
2401
2402  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
2403  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.Val->hasOneUse()) {
2404    SDOperand Tmp = DAG.getNode(ISD::FP_ROUND, VT, N0.getOperand(0));
2405    AddToWorkList(Tmp.Val);
2406    return DAG.getNode(ISD::FCOPYSIGN, VT, Tmp, N0.getOperand(1));
2407  }
2408
2409  return SDOperand();
2410}
2411
2412SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
2413  SDOperand N0 = N->getOperand(0);
2414  MVT::ValueType VT = N->getValueType(0);
2415  MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2416  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2417
2418  // fold (fp_round_inreg c1fp) -> c1fp
2419  if (N0CFP) {
2420    SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT);
2421    return DAG.getNode(ISD::FP_EXTEND, VT, Round);
2422  }
2423  return SDOperand();
2424}
2425
2426SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) {
2427  SDOperand N0 = N->getOperand(0);
2428  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2429  MVT::ValueType VT = N->getValueType(0);
2430
2431  // fold (fp_extend c1fp) -> c1fp
2432  if (N0CFP)
2433    return DAG.getNode(ISD::FP_EXTEND, VT, N0);
2434
2435  // fold (fpext (load x)) -> (fpext (fpround (extload x)))
2436  if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() &&
2437      (!AfterLegalize||TLI.isOperationLegal(ISD::EXTLOAD, N0.getValueType()))) {
2438    SDOperand ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, VT, N0.getOperand(0),
2439                                       N0.getOperand(1), N0.getOperand(2),
2440                                       N0.getValueType());
2441    CombineTo(N, ExtLoad);
2442    CombineTo(N0.Val, DAG.getNode(ISD::FP_ROUND, N0.getValueType(), ExtLoad),
2443              ExtLoad.getValue(1));
2444    return SDOperand(N, 0);   // Return N so it doesn't get rechecked!
2445  }
2446
2447
2448  return SDOperand();
2449}
2450
2451SDOperand DAGCombiner::visitFNEG(SDNode *N) {
2452  SDOperand N0 = N->getOperand(0);
2453  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2454  MVT::ValueType VT = N->getValueType(0);
2455
2456  // fold (fneg c1) -> -c1
2457  if (N0CFP)
2458    return DAG.getNode(ISD::FNEG, VT, N0);
2459  // fold (fneg (sub x, y)) -> (sub y, x)
2460  if (N0.getOpcode() == ISD::SUB)
2461    return DAG.getNode(ISD::SUB, VT, N0.getOperand(1), N0.getOperand(0));
2462  // fold (fneg (fneg x)) -> x
2463  if (N0.getOpcode() == ISD::FNEG)
2464    return N0.getOperand(0);
2465  return SDOperand();
2466}
2467
2468SDOperand DAGCombiner::visitFABS(SDNode *N) {
2469  SDOperand N0 = N->getOperand(0);
2470  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
2471  MVT::ValueType VT = N->getValueType(0);
2472
2473  // fold (fabs c1) -> fabs(c1)
2474  if (N0CFP)
2475    return DAG.getNode(ISD::FABS, VT, N0);
2476  // fold (fabs (fabs x)) -> (fabs x)
2477  if (N0.getOpcode() == ISD::FABS)
2478    return N->getOperand(0);
2479  // fold (fabs (fneg x)) -> (fabs x)
2480  // fold (fabs (fcopysign x, y)) -> (fabs x)
2481  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
2482    return DAG.getNode(ISD::FABS, VT, N0.getOperand(0));
2483
2484  return SDOperand();
2485}
2486
2487SDOperand DAGCombiner::visitBRCOND(SDNode *N) {
2488  SDOperand Chain = N->getOperand(0);
2489  SDOperand N1 = N->getOperand(1);
2490  SDOperand N2 = N->getOperand(2);
2491  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
2492
2493  // never taken branch, fold to chain
2494  if (N1C && N1C->isNullValue())
2495    return Chain;
2496  // unconditional branch
2497  if (N1C && N1C->getValue() == 1)
2498    return DAG.getNode(ISD::BR, MVT::Other, Chain, N2);
2499  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
2500  // on the target.
2501  if (N1.getOpcode() == ISD::SETCC &&
2502      TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) {
2503    return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2),
2504                       N1.getOperand(0), N1.getOperand(1), N2);
2505  }
2506  return SDOperand();
2507}
2508
2509// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
2510//
2511SDOperand DAGCombiner::visitBR_CC(SDNode *N) {
2512  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
2513  SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
2514
2515  // Use SimplifySetCC  to simplify SETCC's.
2516  SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false);
2517  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val);
2518
2519  // fold br_cc true, dest -> br dest (unconditional branch)
2520  if (SCCC && SCCC->getValue())
2521    return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0),
2522                       N->getOperand(4));
2523  // fold br_cc false, dest -> unconditional fall through
2524  if (SCCC && SCCC->isNullValue())
2525    return N->getOperand(0);
2526  // fold to a simpler setcc
2527  if (Simp.Val && Simp.getOpcode() == ISD::SETCC)
2528    return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0),
2529                       Simp.getOperand(2), Simp.getOperand(0),
2530                       Simp.getOperand(1), N->getOperand(4));
2531  return SDOperand();
2532}
2533
2534SDOperand DAGCombiner::visitLOAD(SDNode *N) {
2535  SDOperand Chain    = N->getOperand(0);
2536  SDOperand Ptr      = N->getOperand(1);
2537  SDOperand SrcValue = N->getOperand(2);
2538
2539  // If there are no uses of the loaded value, change uses of the chain value
2540  // into uses of the chain input (i.e. delete the dead load).
2541  if (N->hasNUsesOfValue(0, 0))
2542    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
2543
2544  // If this load is directly stored, replace the load value with the stored
2545  // value.
2546  // TODO: Handle store large -> read small portion.
2547  // TODO: Handle TRUNCSTORE/EXTLOAD
2548  if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
2549      Chain.getOperand(1).getValueType() == N->getValueType(0))
2550    return CombineTo(N, Chain.getOperand(1), Chain);
2551
2552  return SDOperand();
2553}
2554
2555/// visitXEXTLOAD - Handle EXTLOAD/ZEXTLOAD/SEXTLOAD.
2556SDOperand DAGCombiner::visitXEXTLOAD(SDNode *N) {
2557  SDOperand Chain    = N->getOperand(0);
2558  SDOperand Ptr      = N->getOperand(1);
2559  SDOperand SrcValue = N->getOperand(2);
2560  SDOperand EVT      = N->getOperand(3);
2561
2562  // If there are no uses of the loaded value, change uses of the chain value
2563  // into uses of the chain input (i.e. delete the dead load).
2564  if (N->hasNUsesOfValue(0, 0))
2565    return CombineTo(N, DAG.getNode(ISD::UNDEF, N->getValueType(0)), Chain);
2566
2567  return SDOperand();
2568}
2569
2570SDOperand DAGCombiner::visitSTORE(SDNode *N) {
2571  SDOperand Chain    = N->getOperand(0);
2572  SDOperand Value    = N->getOperand(1);
2573  SDOperand Ptr      = N->getOperand(2);
2574  SDOperand SrcValue = N->getOperand(3);
2575
2576  // If this is a store that kills a previous store, remove the previous store.
2577  if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr &&
2578      Chain.Val->hasOneUse() /* Avoid introducing DAG cycles */ &&
2579      // Make sure that these stores are the same value type:
2580      // FIXME: we really care that the second store is >= size of the first.
2581      Value.getValueType() == Chain.getOperand(1).getValueType()) {
2582    // Create a new store of Value that replaces both stores.
2583    SDNode *PrevStore = Chain.Val;
2584    if (PrevStore->getOperand(1) == Value) // Same value multiply stored.
2585      return Chain;
2586    SDOperand NewStore = DAG.getNode(ISD::STORE, MVT::Other,
2587                                     PrevStore->getOperand(0), Value, Ptr,
2588                                     SrcValue);
2589    CombineTo(N, NewStore);                 // Nuke this store.
2590    CombineTo(PrevStore, NewStore);  // Nuke the previous store.
2591    return SDOperand(N, 0);
2592  }
2593
2594  // If this is a store of a bit convert, store the input value.
2595  // FIXME: This needs to know that the resultant store does not need a
2596  // higher alignment than the original.
2597  if (0 && Value.getOpcode() == ISD::BIT_CONVERT)
2598    return DAG.getNode(ISD::STORE, MVT::Other, Chain, Value.getOperand(0),
2599                       Ptr, SrcValue);
2600
2601  return SDOperand();
2602}
2603
2604SDOperand DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
2605  SDOperand InVec = N->getOperand(0);
2606  SDOperand InVal = N->getOperand(1);
2607  SDOperand EltNo = N->getOperand(2);
2608
2609  // If the invec is a BUILD_VECTOR and if EltNo is a constant, build a new
2610  // vector with the inserted element.
2611  if (InVec.getOpcode() == ISD::BUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
2612    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
2613    std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
2614    if (Elt < Ops.size())
2615      Ops[Elt] = InVal;
2616    return DAG.getNode(ISD::BUILD_VECTOR, InVec.getValueType(), Ops);
2617  }
2618
2619  return SDOperand();
2620}
2621
2622SDOperand DAGCombiner::visitVINSERT_VECTOR_ELT(SDNode *N) {
2623  SDOperand InVec = N->getOperand(0);
2624  SDOperand InVal = N->getOperand(1);
2625  SDOperand EltNo = N->getOperand(2);
2626  SDOperand NumElts = N->getOperand(3);
2627  SDOperand EltType = N->getOperand(4);
2628
2629  // If the invec is a VBUILD_VECTOR and if EltNo is a constant, build a new
2630  // vector with the inserted element.
2631  if (InVec.getOpcode() == ISD::VBUILD_VECTOR && isa<ConstantSDNode>(EltNo)) {
2632    unsigned Elt = cast<ConstantSDNode>(EltNo)->getValue();
2633    std::vector<SDOperand> Ops(InVec.Val->op_begin(), InVec.Val->op_end());
2634    if (Elt < Ops.size()-2)
2635      Ops[Elt] = InVal;
2636    return DAG.getNode(ISD::VBUILD_VECTOR, InVec.getValueType(), Ops);
2637  }
2638
2639  return SDOperand();
2640}
2641
2642SDOperand DAGCombiner::visitVBUILD_VECTOR(SDNode *N) {
2643  unsigned NumInScalars = N->getNumOperands()-2;
2644  SDOperand NumElts = N->getOperand(NumInScalars);
2645  SDOperand EltType = N->getOperand(NumInScalars+1);
2646
2647  // Check to see if this is a VBUILD_VECTOR of a bunch of VEXTRACT_VECTOR_ELT
2648  // operations.  If so, and if the EXTRACT_ELT vector inputs come from at most
2649  // two distinct vectors, turn this into a shuffle node.
2650  SDOperand VecIn1, VecIn2;
2651  for (unsigned i = 0; i != NumInScalars; ++i) {
2652    // Ignore undef inputs.
2653    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
2654
2655    // If this input is something other than a VEXTRACT_VECTOR_ELT with a
2656    // constant index, bail out.
2657    if (N->getOperand(i).getOpcode() != ISD::VEXTRACT_VECTOR_ELT ||
2658        !isa<ConstantSDNode>(N->getOperand(i).getOperand(1))) {
2659      VecIn1 = VecIn2 = SDOperand(0, 0);
2660      break;
2661    }
2662
2663    // If the input vector type disagrees with the result of the vbuild_vector,
2664    // we can't make a shuffle.
2665    SDOperand ExtractedFromVec = N->getOperand(i).getOperand(0);
2666    if (*(ExtractedFromVec.Val->op_end()-2) != NumElts ||
2667        *(ExtractedFromVec.Val->op_end()-1) != EltType) {
2668      VecIn1 = VecIn2 = SDOperand(0, 0);
2669      break;
2670    }
2671
2672    // Otherwise, remember this.  We allow up to two distinct input vectors.
2673    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
2674      continue;
2675
2676    if (VecIn1.Val == 0) {
2677      VecIn1 = ExtractedFromVec;
2678    } else if (VecIn2.Val == 0) {
2679      VecIn2 = ExtractedFromVec;
2680    } else {
2681      // Too many inputs.
2682      VecIn1 = VecIn2 = SDOperand(0, 0);
2683      break;
2684    }
2685  }
2686
2687  // If everything is good, we can make a shuffle operation.
2688  if (VecIn1.Val) {
2689    std::vector<SDOperand> BuildVecIndices;
2690    for (unsigned i = 0; i != NumInScalars; ++i) {
2691      if (N->getOperand(i).getOpcode() == ISD::UNDEF) {
2692        BuildVecIndices.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2693        continue;
2694      }
2695
2696      SDOperand Extract = N->getOperand(i);
2697
2698      // If extracting from the first vector, just use the index directly.
2699      if (Extract.getOperand(0) == VecIn1) {
2700        BuildVecIndices.push_back(Extract.getOperand(1));
2701        continue;
2702      }
2703
2704      // Otherwise, use InIdx + VecSize
2705      unsigned Idx = cast<ConstantSDNode>(Extract.getOperand(1))->getValue();
2706      BuildVecIndices.push_back(DAG.getConstant(Idx+NumInScalars, MVT::i32));
2707    }
2708
2709    // Add count and size info.
2710    BuildVecIndices.push_back(NumElts);
2711    BuildVecIndices.push_back(DAG.getValueType(MVT::i32));
2712
2713    // Return the new VVECTOR_SHUFFLE node.
2714    std::vector<SDOperand> Ops;
2715    Ops.push_back(VecIn1);
2716    if (VecIn2.Val) {
2717      Ops.push_back(VecIn2);
2718    } else {
2719       // Use an undef vbuild_vector as input for the second operand.
2720      std::vector<SDOperand> UnOps(NumInScalars,
2721                                   DAG.getNode(ISD::UNDEF,
2722                                           cast<VTSDNode>(EltType)->getVT()));
2723      UnOps.push_back(NumElts);
2724      UnOps.push_back(EltType);
2725      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, UnOps));
2726      AddToWorkList(Ops.back().Val);
2727    }
2728    Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector, BuildVecIndices));
2729    Ops.push_back(NumElts);
2730    Ops.push_back(EltType);
2731    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops);
2732  }
2733
2734  return SDOperand();
2735}
2736
2737SDOperand DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
2738  SDOperand ShufMask = N->getOperand(2);
2739  unsigned NumElts = ShufMask.getNumOperands();
2740
2741  // If the shuffle mask is an identity operation on the LHS, return the LHS.
2742  bool isIdentity = true;
2743  for (unsigned i = 0; i != NumElts; ++i) {
2744    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2745        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
2746      isIdentity = false;
2747      break;
2748    }
2749  }
2750  if (isIdentity) return N->getOperand(0);
2751
2752  // If the shuffle mask is an identity operation on the RHS, return the RHS.
2753  isIdentity = true;
2754  for (unsigned i = 0; i != NumElts; ++i) {
2755    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2756        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
2757      isIdentity = false;
2758      break;
2759    }
2760  }
2761  if (isIdentity) return N->getOperand(1);
2762
2763  // If the LHS and the RHS are the same node, turn the RHS into an undef.
2764  if (N->getOperand(0) == N->getOperand(1)) {
2765    if (N->getOperand(0).getOpcode() == ISD::UNDEF)
2766      return DAG.getNode(ISD::UNDEF, N->getValueType(0));
2767    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
2768    // first operand.
2769    std::vector<SDOperand> MappedOps;
2770    for (unsigned i = 0, e = ShufMask.getNumOperands(); i != e; ++i) {
2771      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
2772          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
2773        MappedOps.push_back(ShufMask.getOperand(i));
2774      } else {
2775        unsigned NewIdx =
2776           cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
2777        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
2778      }
2779    }
2780    ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMask.getValueType(),
2781                           MappedOps);
2782    AddToWorkList(ShufMask.Val);
2783    return DAG.getNode(ISD::VECTOR_SHUFFLE, N->getValueType(0),
2784                       N->getOperand(0),
2785                       DAG.getNode(ISD::UNDEF, N->getValueType(0)),
2786                       ShufMask);
2787  }
2788
2789  return SDOperand();
2790}
2791
2792SDOperand DAGCombiner::visitVVECTOR_SHUFFLE(SDNode *N) {
2793  SDOperand ShufMask = N->getOperand(2);
2794  unsigned NumElts = ShufMask.getNumOperands()-2;
2795
2796  // If the shuffle mask is an identity operation on the LHS, return the LHS.
2797  bool isIdentity = true;
2798  for (unsigned i = 0; i != NumElts; ++i) {
2799    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2800        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i) {
2801      isIdentity = false;
2802      break;
2803    }
2804  }
2805  if (isIdentity) return N->getOperand(0);
2806
2807  // If the shuffle mask is an identity operation on the RHS, return the RHS.
2808  isIdentity = true;
2809  for (unsigned i = 0; i != NumElts; ++i) {
2810    if (ShufMask.getOperand(i).getOpcode() != ISD::UNDEF &&
2811        cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() != i+NumElts) {
2812      isIdentity = false;
2813      break;
2814    }
2815  }
2816  if (isIdentity) return N->getOperand(1);
2817
2818  // If the LHS and the RHS are the same node, turn the RHS into an undef.
2819  if (N->getOperand(0) == N->getOperand(1)) {
2820    // Check the SHUFFLE mask, mapping any inputs from the 2nd operand into the
2821    // first operand.
2822    std::vector<SDOperand> MappedOps;
2823    for (unsigned i = 0; i != NumElts; ++i) {
2824      if (ShufMask.getOperand(i).getOpcode() == ISD::UNDEF ||
2825          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() < NumElts) {
2826        MappedOps.push_back(ShufMask.getOperand(i));
2827      } else {
2828        unsigned NewIdx =
2829          cast<ConstantSDNode>(ShufMask.getOperand(i))->getValue() - NumElts;
2830        MappedOps.push_back(DAG.getConstant(NewIdx, MVT::i32));
2831      }
2832    }
2833    // Add the type/#elts values.
2834    MappedOps.push_back(ShufMask.getOperand(NumElts));
2835    MappedOps.push_back(ShufMask.getOperand(NumElts+1));
2836
2837    ShufMask = DAG.getNode(ISD::VBUILD_VECTOR, ShufMask.getValueType(),
2838                           MappedOps);
2839    AddToWorkList(ShufMask.Val);
2840
2841    // Build the undef vector.
2842    SDOperand UDVal = DAG.getNode(ISD::UNDEF, MappedOps[0].getValueType());
2843    for (unsigned i = 0; i != NumElts; ++i)
2844      MappedOps[i] = UDVal;
2845    MappedOps[NumElts  ] = *(N->getOperand(0).Val->op_end()-2);
2846    MappedOps[NumElts+1] = *(N->getOperand(0).Val->op_end()-1);
2847    UDVal = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, MappedOps);
2848
2849    return DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
2850                       N->getOperand(0), UDVal, ShufMask,
2851                       MappedOps[NumElts], MappedOps[NumElts+1]);
2852  }
2853
2854  return SDOperand();
2855}
2856
2857/// XformToShuffleWithZero - Returns a vector_shuffle if it able to transform
2858/// a VAND to a vector_shuffle with the destination vector and a zero vector.
2859/// e.g. VAND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
2860///      vector_shuffle V, Zero, <0, 4, 2, 4>
2861SDOperand DAGCombiner::XformToShuffleWithZero(SDNode *N) {
2862  SDOperand LHS = N->getOperand(0);
2863  SDOperand RHS = N->getOperand(1);
2864  if (N->getOpcode() == ISD::VAND) {
2865    SDOperand DstVecSize = *(LHS.Val->op_end()-2);
2866    SDOperand DstVecEVT  = *(LHS.Val->op_end()-1);
2867    if (RHS.getOpcode() == ISD::VBIT_CONVERT)
2868      RHS = RHS.getOperand(0);
2869    if (RHS.getOpcode() == ISD::VBUILD_VECTOR) {
2870      std::vector<SDOperand> IdxOps;
2871      unsigned NumOps = RHS.getNumOperands();
2872      unsigned NumElts = NumOps-2;
2873      MVT::ValueType EVT = cast<VTSDNode>(RHS.getOperand(NumOps-1))->getVT();
2874      for (unsigned i = 0; i != NumElts; ++i) {
2875        SDOperand Elt = RHS.getOperand(i);
2876        if (!isa<ConstantSDNode>(Elt))
2877          return SDOperand();
2878        else if (cast<ConstantSDNode>(Elt)->isAllOnesValue())
2879          IdxOps.push_back(DAG.getConstant(i, EVT));
2880        else if (cast<ConstantSDNode>(Elt)->isNullValue())
2881          IdxOps.push_back(DAG.getConstant(NumElts, EVT));
2882        else
2883          return SDOperand();
2884      }
2885
2886      // Let's see if the target supports this vector_shuffle.
2887      if (!TLI.isVectorClearMaskLegal(IdxOps, EVT, DAG))
2888        return SDOperand();
2889
2890      // Return the new VVECTOR_SHUFFLE node.
2891      SDOperand NumEltsNode = DAG.getConstant(NumElts, MVT::i32);
2892      SDOperand EVTNode = DAG.getValueType(EVT);
2893      std::vector<SDOperand> Ops;
2894      LHS = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, LHS, NumEltsNode, EVTNode);
2895      Ops.push_back(LHS);
2896      AddToWorkList(LHS.Val);
2897      std::vector<SDOperand> ZeroOps(NumElts, DAG.getConstant(0, EVT));
2898      ZeroOps.push_back(NumEltsNode);
2899      ZeroOps.push_back(EVTNode);
2900      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, ZeroOps));
2901      IdxOps.push_back(NumEltsNode);
2902      IdxOps.push_back(EVTNode);
2903      Ops.push_back(DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, IdxOps));
2904      Ops.push_back(NumEltsNode);
2905      Ops.push_back(EVTNode);
2906      SDOperand Result = DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector, Ops);
2907      if (NumEltsNode != DstVecSize || EVTNode != DstVecEVT) {
2908        Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
2909                             DstVecSize, DstVecEVT);
2910      }
2911      return Result;
2912    }
2913  }
2914  return SDOperand();
2915}
2916
2917/// visitVBinOp - Visit a binary vector operation, like VADD.  IntOp indicates
2918/// the scalar operation of the vop if it is operating on an integer vector
2919/// (e.g. ADD) and FPOp indicates the FP version (e.g. FADD).
2920SDOperand DAGCombiner::visitVBinOp(SDNode *N, ISD::NodeType IntOp,
2921                                   ISD::NodeType FPOp) {
2922  MVT::ValueType EltType = cast<VTSDNode>(*(N->op_end()-1))->getVT();
2923  ISD::NodeType ScalarOp = MVT::isInteger(EltType) ? IntOp : FPOp;
2924  SDOperand LHS = N->getOperand(0);
2925  SDOperand RHS = N->getOperand(1);
2926  SDOperand Shuffle = XformToShuffleWithZero(N);
2927  if (Shuffle.Val) return Shuffle;
2928
2929  // If the LHS and RHS are VBUILD_VECTOR nodes, see if we can constant fold
2930  // this operation.
2931  if (LHS.getOpcode() == ISD::VBUILD_VECTOR &&
2932      RHS.getOpcode() == ISD::VBUILD_VECTOR) {
2933    std::vector<SDOperand> Ops;
2934    for (unsigned i = 0, e = LHS.getNumOperands()-2; i != e; ++i) {
2935      SDOperand LHSOp = LHS.getOperand(i);
2936      SDOperand RHSOp = RHS.getOperand(i);
2937      // If these two elements can't be folded, bail out.
2938      if ((LHSOp.getOpcode() != ISD::UNDEF &&
2939           LHSOp.getOpcode() != ISD::Constant &&
2940           LHSOp.getOpcode() != ISD::ConstantFP) ||
2941          (RHSOp.getOpcode() != ISD::UNDEF &&
2942           RHSOp.getOpcode() != ISD::Constant &&
2943           RHSOp.getOpcode() != ISD::ConstantFP))
2944        break;
2945      Ops.push_back(DAG.getNode(ScalarOp, EltType, LHSOp, RHSOp));
2946      AddToWorkList(Ops.back().Val);
2947      assert((Ops.back().getOpcode() == ISD::UNDEF ||
2948              Ops.back().getOpcode() == ISD::Constant ||
2949              Ops.back().getOpcode() == ISD::ConstantFP) &&
2950             "Scalar binop didn't fold!");
2951    }
2952
2953    if (Ops.size() == LHS.getNumOperands()-2) {
2954      Ops.push_back(*(LHS.Val->op_end()-2));
2955      Ops.push_back(*(LHS.Val->op_end()-1));
2956      return DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
2957    }
2958  }
2959
2960  return SDOperand();
2961}
2962
2963SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){
2964  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
2965
2966  SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2,
2967                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
2968  // If we got a simplified select_cc node back from SimplifySelectCC, then
2969  // break it down into a new SETCC node, and a new SELECT node, and then return
2970  // the SELECT node, since we were called with a SELECT node.
2971  if (SCC.Val) {
2972    // Check to see if we got a select_cc back (to turn into setcc/select).
2973    // Otherwise, just return whatever node we got back, like fabs.
2974    if (SCC.getOpcode() == ISD::SELECT_CC) {
2975      SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(),
2976                                    SCC.getOperand(0), SCC.getOperand(1),
2977                                    SCC.getOperand(4));
2978      AddToWorkList(SETCC.Val);
2979      return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2),
2980                         SCC.getOperand(3), SETCC);
2981    }
2982    return SCC;
2983  }
2984  return SDOperand();
2985}
2986
2987/// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS
2988/// are the two values being selected between, see if we can simplify the
2989/// select.
2990///
2991bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS,
2992                                    SDOperand RHS) {
2993
2994  // If this is a select from two identical things, try to pull the operation
2995  // through the select.
2996  if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){
2997#if 0
2998    std::cerr << "SELECT: ["; LHS.Val->dump();
2999    std::cerr << "] ["; RHS.Val->dump();
3000    std::cerr << "]\n";
3001#endif
3002
3003    // If this is a load and the token chain is identical, replace the select
3004    // of two loads with a load through a select of the address to load from.
3005    // This triggers in things like "select bool X, 10.0, 123.0" after the FP
3006    // constants have been dropped into the constant pool.
3007    if ((LHS.getOpcode() == ISD::LOAD ||
3008         LHS.getOpcode() == ISD::EXTLOAD ||
3009         LHS.getOpcode() == ISD::ZEXTLOAD ||
3010         LHS.getOpcode() == ISD::SEXTLOAD) &&
3011        // Token chains must be identical.
3012        LHS.getOperand(0) == RHS.getOperand(0) &&
3013        // If this is an EXTLOAD, the VT's must match.
3014        (LHS.getOpcode() == ISD::LOAD ||
3015         LHS.getOperand(3) == RHS.getOperand(3))) {
3016      // FIXME: this conflates two src values, discarding one.  This is not
3017      // the right thing to do, but nothing uses srcvalues now.  When they do,
3018      // turn SrcValue into a list of locations.
3019      SDOperand Addr;
3020      if (TheSelect->getOpcode() == ISD::SELECT)
3021        Addr = DAG.getNode(ISD::SELECT, LHS.getOperand(1).getValueType(),
3022                           TheSelect->getOperand(0), LHS.getOperand(1),
3023                           RHS.getOperand(1));
3024      else
3025        Addr = DAG.getNode(ISD::SELECT_CC, LHS.getOperand(1).getValueType(),
3026                           TheSelect->getOperand(0),
3027                           TheSelect->getOperand(1),
3028                           LHS.getOperand(1), RHS.getOperand(1),
3029                           TheSelect->getOperand(4));
3030
3031      SDOperand Load;
3032      if (LHS.getOpcode() == ISD::LOAD)
3033        Load = DAG.getLoad(TheSelect->getValueType(0), LHS.getOperand(0),
3034                           Addr, LHS.getOperand(2));
3035      else
3036        Load = DAG.getExtLoad(LHS.getOpcode(), TheSelect->getValueType(0),
3037                              LHS.getOperand(0), Addr, LHS.getOperand(2),
3038                              cast<VTSDNode>(LHS.getOperand(3))->getVT());
3039      // Users of the select now use the result of the load.
3040      CombineTo(TheSelect, Load);
3041
3042      // Users of the old loads now use the new load's chain.  We know the
3043      // old-load value is dead now.
3044      CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1));
3045      CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1));
3046      return true;
3047    }
3048  }
3049
3050  return false;
3051}
3052
3053SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1,
3054                                        SDOperand N2, SDOperand N3,
3055                                        ISD::CondCode CC) {
3056
3057  MVT::ValueType VT = N2.getValueType();
3058  //ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
3059  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
3060  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
3061  ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
3062
3063  // Determine if the condition we're dealing with is constant
3064  SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false);
3065  ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val);
3066
3067  // fold select_cc true, x, y -> x
3068  if (SCCC && SCCC->getValue())
3069    return N2;
3070  // fold select_cc false, x, y -> y
3071  if (SCCC && SCCC->getValue() == 0)
3072    return N3;
3073
3074  // Check to see if we can simplify the select into an fabs node
3075  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
3076    // Allow either -0.0 or 0.0
3077    if (CFP->getValue() == 0.0) {
3078      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
3079      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
3080          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
3081          N2 == N3.getOperand(0))
3082        return DAG.getNode(ISD::FABS, VT, N0);
3083
3084      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
3085      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
3086          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
3087          N2.getOperand(0) == N3)
3088        return DAG.getNode(ISD::FABS, VT, N3);
3089    }
3090  }
3091
3092  // Check to see if we can perform the "gzip trick", transforming
3093  // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
3094  if (N1C && N1C->isNullValue() && N3C && N3C->isNullValue() &&
3095      MVT::isInteger(N0.getValueType()) &&
3096      MVT::isInteger(N2.getValueType()) && CC == ISD::SETLT) {
3097    MVT::ValueType XType = N0.getValueType();
3098    MVT::ValueType AType = N2.getValueType();
3099    if (XType >= AType) {
3100      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
3101      // single-bit constant.
3102      if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) {
3103        unsigned ShCtV = Log2_64(N2C->getValue());
3104        ShCtV = MVT::getSizeInBits(XType)-ShCtV-1;
3105        SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy());
3106        SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt);
3107        AddToWorkList(Shift.Val);
3108        if (XType > AType) {
3109          Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
3110          AddToWorkList(Shift.Val);
3111        }
3112        return DAG.getNode(ISD::AND, AType, Shift, N2);
3113      }
3114      SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
3115                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
3116                                                    TLI.getShiftAmountTy()));
3117      AddToWorkList(Shift.Val);
3118      if (XType > AType) {
3119        Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift);
3120        AddToWorkList(Shift.Val);
3121      }
3122      return DAG.getNode(ISD::AND, AType, Shift, N2);
3123    }
3124  }
3125
3126  // fold select C, 16, 0 -> shl C, 4
3127  if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) &&
3128      TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) {
3129    // Get a SetCC of the condition
3130    // FIXME: Should probably make sure that setcc is legal if we ever have a
3131    // target where it isn't.
3132    SDOperand Temp, SCC;
3133    // cast from setcc result type to select result type
3134    if (AfterLegalize) {
3135      SCC  = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
3136      Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType());
3137    } else {
3138      SCC  = DAG.getSetCC(MVT::i1, N0, N1, CC);
3139      Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC);
3140    }
3141    AddToWorkList(SCC.Val);
3142    AddToWorkList(Temp.Val);
3143    // shl setcc result by log2 n2c
3144    return DAG.getNode(ISD::SHL, N2.getValueType(), Temp,
3145                       DAG.getConstant(Log2_64(N2C->getValue()),
3146                                       TLI.getShiftAmountTy()));
3147  }
3148
3149  // Check to see if this is the equivalent of setcc
3150  // FIXME: Turn all of these into setcc if setcc if setcc is legal
3151  // otherwise, go ahead with the folds.
3152  if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) {
3153    MVT::ValueType XType = N0.getValueType();
3154    if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) {
3155      SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC);
3156      if (Res.getValueType() != VT)
3157        Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res);
3158      return Res;
3159    }
3160
3161    // seteq X, 0 -> srl (ctlz X, log2(size(X)))
3162    if (N1C && N1C->isNullValue() && CC == ISD::SETEQ &&
3163        TLI.isOperationLegal(ISD::CTLZ, XType)) {
3164      SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0);
3165      return DAG.getNode(ISD::SRL, XType, Ctlz,
3166                         DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)),
3167                                         TLI.getShiftAmountTy()));
3168    }
3169    // setgt X, 0 -> srl (and (-X, ~X), size(X)-1)
3170    if (N1C && N1C->isNullValue() && CC == ISD::SETGT) {
3171      SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType),
3172                                    N0);
3173      SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0,
3174                                    DAG.getConstant(~0ULL, XType));
3175      return DAG.getNode(ISD::SRL, XType,
3176                         DAG.getNode(ISD::AND, XType, NegN0, NotN0),
3177                         DAG.getConstant(MVT::getSizeInBits(XType)-1,
3178                                         TLI.getShiftAmountTy()));
3179    }
3180    // setgt X, -1 -> xor (srl (X, size(X)-1), 1)
3181    if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) {
3182      SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0,
3183                                   DAG.getConstant(MVT::getSizeInBits(XType)-1,
3184                                                   TLI.getShiftAmountTy()));
3185      return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType));
3186    }
3187  }
3188
3189  // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X ->
3190  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
3191  if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) &&
3192      N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) {
3193    if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0))) {
3194      MVT::ValueType XType = N0.getValueType();
3195      if (SubC->isNullValue() && MVT::isInteger(XType)) {
3196        SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0,
3197                                    DAG.getConstant(MVT::getSizeInBits(XType)-1,
3198                                                    TLI.getShiftAmountTy()));
3199        SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift);
3200        AddToWorkList(Shift.Val);
3201        AddToWorkList(Add.Val);
3202        return DAG.getNode(ISD::XOR, XType, Add, Shift);
3203      }
3204    }
3205  }
3206
3207  return SDOperand();
3208}
3209
3210SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0,
3211                                     SDOperand N1, ISD::CondCode Cond,
3212                                     bool foldBooleans) {
3213  // These setcc operations always fold.
3214  switch (Cond) {
3215  default: break;
3216  case ISD::SETFALSE:
3217  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
3218  case ISD::SETTRUE:
3219  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
3220  }
3221
3222  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
3223    uint64_t C1 = N1C->getValue();
3224    if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val)) {
3225      uint64_t C0 = N0C->getValue();
3226
3227      // Sign extend the operands if required
3228      if (ISD::isSignedIntSetCC(Cond)) {
3229        C0 = N0C->getSignExtended();
3230        C1 = N1C->getSignExtended();
3231      }
3232
3233      switch (Cond) {
3234      default: assert(0 && "Unknown integer setcc!");
3235      case ISD::SETEQ:  return DAG.getConstant(C0 == C1, VT);
3236      case ISD::SETNE:  return DAG.getConstant(C0 != C1, VT);
3237      case ISD::SETULT: return DAG.getConstant(C0 <  C1, VT);
3238      case ISD::SETUGT: return DAG.getConstant(C0 >  C1, VT);
3239      case ISD::SETULE: return DAG.getConstant(C0 <= C1, VT);
3240      case ISD::SETUGE: return DAG.getConstant(C0 >= C1, VT);
3241      case ISD::SETLT:  return DAG.getConstant((int64_t)C0 <  (int64_t)C1, VT);
3242      case ISD::SETGT:  return DAG.getConstant((int64_t)C0 >  (int64_t)C1, VT);
3243      case ISD::SETLE:  return DAG.getConstant((int64_t)C0 <= (int64_t)C1, VT);
3244      case ISD::SETGE:  return DAG.getConstant((int64_t)C0 >= (int64_t)C1, VT);
3245      }
3246    } else {
3247      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3248      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3249        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
3250
3251        // If the comparison constant has bits in the upper part, the
3252        // zero-extended value could never match.
3253        if (C1 & (~0ULL << InSize)) {
3254          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
3255          switch (Cond) {
3256          case ISD::SETUGT:
3257          case ISD::SETUGE:
3258          case ISD::SETEQ: return DAG.getConstant(0, VT);
3259          case ISD::SETULT:
3260          case ISD::SETULE:
3261          case ISD::SETNE: return DAG.getConstant(1, VT);
3262          case ISD::SETGT:
3263          case ISD::SETGE:
3264            // True if the sign bit of C1 is set.
3265            return DAG.getConstant((C1 & (1ULL << VSize)) != 0, VT);
3266          case ISD::SETLT:
3267          case ISD::SETLE:
3268            // True if the sign bit of C1 isn't set.
3269            return DAG.getConstant((C1 & (1ULL << VSize)) == 0, VT);
3270          default:
3271            break;
3272          }
3273        }
3274
3275        // Otherwise, we can perform the comparison with the low bits.
3276        switch (Cond) {
3277        case ISD::SETEQ:
3278        case ISD::SETNE:
3279        case ISD::SETUGT:
3280        case ISD::SETUGE:
3281        case ISD::SETULT:
3282        case ISD::SETULE:
3283          return DAG.getSetCC(VT, N0.getOperand(0),
3284                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
3285                          Cond);
3286        default:
3287          break;   // todo, be more careful with signed comparisons
3288        }
3289      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3290                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3291        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3292        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
3293        MVT::ValueType ExtDstTy = N0.getValueType();
3294        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
3295
3296        // If the extended part has any inconsistent bits, it cannot ever
3297        // compare equal.  In other words, they have to be all ones or all
3298        // zeros.
3299        uint64_t ExtBits =
3300          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
3301        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
3302          return DAG.getConstant(Cond == ISD::SETNE, VT);
3303
3304        SDOperand ZextOp;
3305        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
3306        if (Op0Ty == ExtSrcTy) {
3307          ZextOp = N0.getOperand(0);
3308        } else {
3309          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
3310          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
3311                               DAG.getConstant(Imm, Op0Ty));
3312        }
3313        AddToWorkList(ZextOp.Val);
3314        // Otherwise, make this a use of a zext.
3315        return DAG.getSetCC(VT, ZextOp,
3316                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
3317                                            ExtDstTy),
3318                            Cond);
3319      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
3320                 (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3321                 (N0.getOpcode() == ISD::XOR ||
3322                  (N0.getOpcode() == ISD::AND &&
3323                   N0.getOperand(0).getOpcode() == ISD::XOR &&
3324                   N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3325                 isa<ConstantSDNode>(N0.getOperand(1)) &&
3326                 cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
3327        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We can
3328        // only do this if the top bits are known zero.
3329        if (TLI.MaskedValueIsZero(N1,
3330                                  MVT::getIntVTBitMask(N0.getValueType())-1)) {
3331          // Okay, get the un-inverted input value.
3332          SDOperand Val;
3333          if (N0.getOpcode() == ISD::XOR)
3334            Val = N0.getOperand(0);
3335          else {
3336            assert(N0.getOpcode() == ISD::AND &&
3337                   N0.getOperand(0).getOpcode() == ISD::XOR);
3338            // ((X^1)&1)^1 -> X & 1
3339            Val = DAG.getNode(ISD::AND, N0.getValueType(),
3340                              N0.getOperand(0).getOperand(0), N0.getOperand(1));
3341          }
3342          return DAG.getSetCC(VT, Val, N1,
3343                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3344        }
3345      }
3346
3347      uint64_t MinVal, MaxVal;
3348      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
3349      if (ISD::isSignedIntSetCC(Cond)) {
3350        MinVal = 1ULL << (OperandBitSize-1);
3351        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
3352          MaxVal = ~0ULL >> (65-OperandBitSize);
3353        else
3354          MaxVal = 0;
3355      } else {
3356        MinVal = 0;
3357        MaxVal = ~0ULL >> (64-OperandBitSize);
3358      }
3359
3360      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3361      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3362        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
3363        --C1;                                          // X >= C0 --> X > (C0-1)
3364        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
3365                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
3366      }
3367
3368      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3369        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
3370        ++C1;                                          // X <= C0 --> X < (C0+1)
3371        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
3372                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
3373      }
3374
3375      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
3376        return DAG.getConstant(0, VT);      // X < MIN --> false
3377
3378      // Canonicalize setgt X, Min --> setne X, Min
3379      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
3380        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
3381      // Canonicalize setlt X, Max --> setne X, Max
3382      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
3383        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
3384
3385      // If we have setult X, 1, turn it into seteq X, 0
3386      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
3387        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
3388                        ISD::SETEQ);
3389      // If we have setugt X, Max-1, turn it into seteq X, Max
3390      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
3391        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
3392                        ISD::SETEQ);
3393
3394      // If we have "setcc X, C0", check to see if we can shrink the immediate
3395      // by changing cc.
3396
3397      // SETUGT X, SINTMAX  -> SETLT X, 0
3398      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
3399          C1 == (~0ULL >> (65-OperandBitSize)))
3400        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
3401                            ISD::SETLT);
3402
3403      // FIXME: Implement the rest of these.
3404
3405      // Fold bit comparisons when we can.
3406      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3407          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
3408        if (ConstantSDNode *AndRHS =
3409                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3410          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3411            // Perform the xform if the AND RHS is a single bit.
3412            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
3413              return DAG.getNode(ISD::SRL, VT, N0,
3414                             DAG.getConstant(Log2_64(AndRHS->getValue()),
3415                                                   TLI.getShiftAmountTy()));
3416            }
3417          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
3418            // (X & 8) == 8  -->  (X & 8) >> 3
3419            // Perform the xform if C1 is a single bit.
3420            if ((C1 & (C1-1)) == 0) {
3421              return DAG.getNode(ISD::SRL, VT, N0,
3422                             DAG.getConstant(Log2_64(C1),TLI.getShiftAmountTy()));
3423            }
3424          }
3425        }
3426    }
3427  } else if (isa<ConstantSDNode>(N0.Val)) {
3428      // Ensure that the constant occurs on the RHS.
3429    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
3430  }
3431
3432  if (ConstantFPSDNode *N0C = dyn_cast<ConstantFPSDNode>(N0.Val))
3433    if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
3434      double C0 = N0C->getValue(), C1 = N1C->getValue();
3435
3436      switch (Cond) {
3437      default: break; // FIXME: Implement the rest of these!
3438      case ISD::SETEQ:  return DAG.getConstant(C0 == C1, VT);
3439      case ISD::SETNE:  return DAG.getConstant(C0 != C1, VT);
3440      case ISD::SETLT:  return DAG.getConstant(C0 < C1, VT);
3441      case ISD::SETGT:  return DAG.getConstant(C0 > C1, VT);
3442      case ISD::SETLE:  return DAG.getConstant(C0 <= C1, VT);
3443      case ISD::SETGE:  return DAG.getConstant(C0 >= C1, VT);
3444      }
3445    } else {
3446      // Ensure that the constant occurs on the RHS.
3447      return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
3448    }
3449
3450  if (N0 == N1) {
3451    // We can always fold X == Y for integer setcc's.
3452    if (MVT::isInteger(N0.getValueType()))
3453      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
3454    unsigned UOF = ISD::getUnorderedFlavor(Cond);
3455    if (UOF == 2)   // FP operators that are undefined on NaNs.
3456      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
3457    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
3458      return DAG.getConstant(UOF, VT);
3459    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3460    // if it is not already.
3461    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3462    if (NewCond != Cond)
3463      return DAG.getSetCC(VT, N0, N1, NewCond);
3464  }
3465
3466  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3467      MVT::isInteger(N0.getValueType())) {
3468    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3469        N0.getOpcode() == ISD::XOR) {
3470      // Simplify (X+Y) == (X+Z) -->  Y == Z
3471      if (N0.getOpcode() == N1.getOpcode()) {
3472        if (N0.getOperand(0) == N1.getOperand(0))
3473          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
3474        if (N0.getOperand(1) == N1.getOperand(1))
3475          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
3476        if (isCommutativeBinOp(N0.getOpcode())) {
3477          // If X op Y == Y op X, try other combinations.
3478          if (N0.getOperand(0) == N1.getOperand(1))
3479            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
3480          if (N0.getOperand(1) == N1.getOperand(0))
3481            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
3482        }
3483      }
3484
3485      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3486        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3487          // Turn (X+C1) == C2 --> X == C2-C1
3488          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
3489            return DAG.getSetCC(VT, N0.getOperand(0),
3490                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
3491                                N0.getValueType()), Cond);
3492          }
3493
3494          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3495          if (N0.getOpcode() == ISD::XOR)
3496            // If we know that all of the inverted bits are zero, don't bother
3497            // performing the inversion.
3498            if (TLI.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
3499              return DAG.getSetCC(VT, N0.getOperand(0),
3500                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
3501                                              N0.getValueType()), Cond);
3502        }
3503
3504        // Turn (C1-X) == C2 --> X == C1-C2
3505        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3506          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
3507            return DAG.getSetCC(VT, N0.getOperand(1),
3508                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
3509                                             N0.getValueType()), Cond);
3510          }
3511        }
3512      }
3513
3514      // Simplify (X+Z) == X -->  Z == 0
3515      if (N0.getOperand(0) == N1)
3516        return DAG.getSetCC(VT, N0.getOperand(1),
3517                        DAG.getConstant(0, N0.getValueType()), Cond);
3518      if (N0.getOperand(1) == N1) {
3519        if (isCommutativeBinOp(N0.getOpcode()))
3520          return DAG.getSetCC(VT, N0.getOperand(0),
3521                          DAG.getConstant(0, N0.getValueType()), Cond);
3522        else {
3523          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
3524          // (Z-X) == X  --> Z == X<<1
3525          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
3526                                     N1,
3527                                     DAG.getConstant(1,TLI.getShiftAmountTy()));
3528          AddToWorkList(SH.Val);
3529          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
3530        }
3531      }
3532    }
3533
3534    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3535        N1.getOpcode() == ISD::XOR) {
3536      // Simplify  X == (X+Z) -->  Z == 0
3537      if (N1.getOperand(0) == N0) {
3538        return DAG.getSetCC(VT, N1.getOperand(1),
3539                        DAG.getConstant(0, N1.getValueType()), Cond);
3540      } else if (N1.getOperand(1) == N0) {
3541        if (isCommutativeBinOp(N1.getOpcode())) {
3542          return DAG.getSetCC(VT, N1.getOperand(0),
3543                          DAG.getConstant(0, N1.getValueType()), Cond);
3544        } else {
3545          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
3546          // X == (Z-X)  --> X<<1 == Z
3547          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
3548                                     DAG.getConstant(1,TLI.getShiftAmountTy()));
3549          AddToWorkList(SH.Val);
3550          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
3551        }
3552      }
3553    }
3554  }
3555
3556  // Fold away ALL boolean setcc's.
3557  SDOperand Temp;
3558  if (N0.getValueType() == MVT::i1 && foldBooleans) {
3559    switch (Cond) {
3560    default: assert(0 && "Unknown integer setcc!");
3561    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
3562      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
3563      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
3564      AddToWorkList(Temp.Val);
3565      break;
3566    case ISD::SETNE:  // X != Y   -->  (X^Y)
3567      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
3568      break;
3569    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
3570    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
3571      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
3572      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
3573      AddToWorkList(Temp.Val);
3574      break;
3575    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
3576    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
3577      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
3578      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
3579      AddToWorkList(Temp.Val);
3580      break;
3581    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
3582    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
3583      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
3584      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
3585      AddToWorkList(Temp.Val);
3586      break;
3587    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
3588    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
3589      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
3590      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
3591      break;
3592    }
3593    if (VT != MVT::i1) {
3594      AddToWorkList(N0.Val);
3595      // FIXME: If running after legalize, we probably can't do this.
3596      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
3597    }
3598    return N0;
3599  }
3600
3601  // Could not fold it.
3602  return SDOperand();
3603}
3604
3605/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3606/// return a DAG expression to select that will generate the same value by
3607/// multiplying by a magic number.  See:
3608/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3609SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
3610  MVT::ValueType VT = N->getValueType(0);
3611
3612  // Check to see if we can do this.
3613  if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
3614    return SDOperand();       // BuildSDIV only operates on i32 or i64
3615  if (!TLI.isOperationLegal(ISD::MULHS, VT))
3616    return SDOperand();       // Make sure the target supports MULHS.
3617
3618  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
3619  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
3620
3621  // Multiply the numerator (operand 0) by the magic value
3622  SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
3623                            DAG.getConstant(magics.m, VT));
3624  // If d > 0 and m < 0, add the numerator
3625  if (d > 0 && magics.m < 0) {
3626    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
3627    AddToWorkList(Q.Val);
3628  }
3629  // If d < 0 and m > 0, subtract the numerator.
3630  if (d < 0 && magics.m > 0) {
3631    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
3632    AddToWorkList(Q.Val);
3633  }
3634  // Shift right algebraic if shift value is nonzero
3635  if (magics.s > 0) {
3636    Q = DAG.getNode(ISD::SRA, VT, Q,
3637                    DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
3638    AddToWorkList(Q.Val);
3639  }
3640  // Extract the sign bit and add it to the quotient
3641  SDOperand T =
3642    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
3643                                                 TLI.getShiftAmountTy()));
3644  AddToWorkList(T.Val);
3645  return DAG.getNode(ISD::ADD, VT, Q, T);
3646}
3647
3648/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3649/// return a DAG expression to select that will generate the same value by
3650/// multiplying by a magic number.  See:
3651/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3652SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
3653  MVT::ValueType VT = N->getValueType(0);
3654
3655  // Check to see if we can do this.
3656  if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
3657    return SDOperand();       // BuildUDIV only operates on i32 or i64
3658  if (!TLI.isOperationLegal(ISD::MULHU, VT))
3659    return SDOperand();       // Make sure the target supports MULHU.
3660
3661  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
3662  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
3663
3664  // Multiply the numerator (operand 0) by the magic value
3665  SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
3666                            DAG.getConstant(magics.m, VT));
3667  AddToWorkList(Q.Val);
3668
3669  if (magics.a == 0) {
3670    return DAG.getNode(ISD::SRL, VT, Q,
3671                       DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
3672  } else {
3673    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
3674    AddToWorkList(NPQ.Val);
3675    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
3676                      DAG.getConstant(1, TLI.getShiftAmountTy()));
3677    AddToWorkList(NPQ.Val);
3678    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
3679    AddToWorkList(NPQ.Val);
3680    return DAG.getNode(ISD::SRL, VT, NPQ,
3681                       DAG.getConstant(magics.s-1, TLI.getShiftAmountTy()));
3682  }
3683}
3684
3685// SelectionDAG::Combine - This is the entry point for the file.
3686//
3687void SelectionDAG::Combine(bool RunningAfterLegalize) {
3688  /// run - This is the main entry point to this class.
3689  ///
3690  DAGCombiner(*this).Run(RunningAfterLegalize);
3691}
3692