TwoAddressInstructionPass.cpp revision 6ed0e20eb2dee4b08d33917ba569ad448aa0f047
1//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the TwoAddress instruction pass which is used
11// by most register allocators. Two-Address instructions are rewritten
12// from:
13//
14//     A = B op C
15//
16// to:
17//
18//     A = B
19//     A op= C
20//
21// Note that if a register allocator chooses to use this pass, that it
22// has to be capable of handling the non-SSA nature of these rewritten
23// virtual registers.
24//
25// It is also worth noting that the duplicate operand of the two
26// address instruction is removed.
27//
28//===----------------------------------------------------------------------===//
29
30#define DEBUG_TYPE "twoaddrinstr"
31#include "llvm/CodeGen/Passes.h"
32#include "llvm/Function.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/SmallSet.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/ADT/STLExtras.h"
48using namespace llvm;
49
50STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
52STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
53STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
55STATISTIC(NumReMats,           "Number of instructions re-materialized");
56STATISTIC(NumDeletes,          "Number of dead instructions deleted");
57
58namespace {
59  class VISIBILITY_HIDDEN TwoAddressInstructionPass
60    : public MachineFunctionPass {
61    const TargetInstrInfo *TII;
62    const TargetRegisterInfo *TRI;
63    MachineRegisterInfo *MRI;
64    LiveVariables *LV;
65
66    // DistanceMap - Keep track the distance of a MI from the start of the
67    // current basic block.
68    DenseMap<MachineInstr*, unsigned> DistanceMap;
69
70    // SrcRegMap - A map from virtual registers to physical registers which
71    // are likely targets to be coalesced to due to copies from physical
72    // registers to virtual registers. e.g. v1024 = move r0.
73    DenseMap<unsigned, unsigned> SrcRegMap;
74
75    // DstRegMap - A map from virtual registers to physical registers which
76    // are likely targets to be coalesced to due to copies to physical
77    // registers from virtual registers. e.g. r1 = move v1024.
78    DenseMap<unsigned, unsigned> DstRegMap;
79
80    bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
81                              unsigned Reg,
82                              MachineBasicBlock::iterator OldPos);
83
84    bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
85                             MachineInstr *MI, MachineInstr *DefMI,
86                             MachineBasicBlock *MBB, unsigned Loc);
87
88    bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
89                           unsigned &LastDef);
90
91    bool isProfitableToCommute(unsigned regB, unsigned regC,
92                               MachineInstr *MI, MachineBasicBlock *MBB,
93                               unsigned Dist);
94
95    bool CommuteInstruction(MachineBasicBlock::iterator &mi,
96                            MachineFunction::iterator &mbbi,
97                            unsigned RegB, unsigned RegC, unsigned Dist);
98
99    bool isProfitableToConv3Addr(unsigned RegA);
100
101    bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
102                            MachineBasicBlock::iterator &nmi,
103                            MachineFunction::iterator &mbbi,
104                            unsigned RegB, unsigned Dist);
105
106    void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
107                     SmallPtrSet<MachineInstr*, 8> &Processed);
108  public:
109    static char ID; // Pass identification, replacement for typeid
110    TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
111
112    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
113      AU.addPreserved<LiveVariables>();
114      AU.addPreservedID(MachineLoopInfoID);
115      AU.addPreservedID(MachineDominatorsID);
116      if (StrongPHIElim)
117        AU.addPreservedID(StrongPHIEliminationID);
118      else
119        AU.addPreservedID(PHIEliminationID);
120      MachineFunctionPass::getAnalysisUsage(AU);
121    }
122
123    /// runOnMachineFunction - Pass entry point.
124    bool runOnMachineFunction(MachineFunction&);
125  };
126}
127
128char TwoAddressInstructionPass::ID = 0;
129static RegisterPass<TwoAddressInstructionPass>
130X("twoaddressinstruction", "Two-Address instruction pass");
131
132const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
133
134/// Sink3AddrInstruction - A two-address instruction has been converted to a
135/// three-address instruction to avoid clobbering a register. Try to sink it
136/// past the instruction that would kill the above mentioned register to reduce
137/// register pressure.
138bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
139                                           MachineInstr *MI, unsigned SavedReg,
140                                           MachineBasicBlock::iterator OldPos) {
141  // Check if it's safe to move this instruction.
142  bool SeenStore = true; // Be conservative.
143  if (!MI->isSafeToMove(TII, SeenStore))
144    return false;
145
146  unsigned DefReg = 0;
147  SmallSet<unsigned, 4> UseRegs;
148
149  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
150    const MachineOperand &MO = MI->getOperand(i);
151    if (!MO.isReg())
152      continue;
153    unsigned MOReg = MO.getReg();
154    if (!MOReg)
155      continue;
156    if (MO.isUse() && MOReg != SavedReg)
157      UseRegs.insert(MO.getReg());
158    if (!MO.isDef())
159      continue;
160    if (MO.isImplicit())
161      // Don't try to move it if it implicitly defines a register.
162      return false;
163    if (DefReg)
164      // For now, don't move any instructions that define multiple registers.
165      return false;
166    DefReg = MO.getReg();
167  }
168
169  // Find the instruction that kills SavedReg.
170  MachineInstr *KillMI = NULL;
171  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
172         UE = MRI->use_end(); UI != UE; ++UI) {
173    MachineOperand &UseMO = UI.getOperand();
174    if (!UseMO.isKill())
175      continue;
176    KillMI = UseMO.getParent();
177    break;
178  }
179
180  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
181    return false;
182
183  // If any of the definitions are used by another instruction between the
184  // position and the kill use, then it's not safe to sink it.
185  //
186  // FIXME: This can be sped up if there is an easy way to query whether an
187  // instruction is before or after another instruction. Then we can use
188  // MachineRegisterInfo def / use instead.
189  MachineOperand *KillMO = NULL;
190  MachineBasicBlock::iterator KillPos = KillMI;
191  ++KillPos;
192
193  unsigned NumVisited = 0;
194  for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
195    MachineInstr *OtherMI = I;
196    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
197      return false;
198    ++NumVisited;
199    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
200      MachineOperand &MO = OtherMI->getOperand(i);
201      if (!MO.isReg())
202        continue;
203      unsigned MOReg = MO.getReg();
204      if (!MOReg)
205        continue;
206      if (DefReg == MOReg)
207        return false;
208
209      if (MO.isKill()) {
210        if (OtherMI == KillMI && MOReg == SavedReg)
211          // Save the operand that kills the register. We want to unset the kill
212          // marker if we can sink MI past it.
213          KillMO = &MO;
214        else if (UseRegs.count(MOReg))
215          // One of the uses is killed before the destination.
216          return false;
217      }
218    }
219  }
220
221  // Update kill and LV information.
222  KillMO->setIsKill(false);
223  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
224  KillMO->setIsKill(true);
225
226  if (LV)
227    LV->replaceKillInstruction(SavedReg, KillMI, MI);
228
229  // Move instruction to its destination.
230  MBB->remove(MI);
231  MBB->insert(KillPos, MI);
232
233  ++Num3AddrSunk;
234  return true;
235}
236
237/// isTwoAddrUse - Return true if the specified MI is using the specified
238/// register as a two-address operand.
239static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
240  const TargetInstrDesc &TID = UseMI->getDesc();
241  for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
242    MachineOperand &MO = UseMI->getOperand(i);
243    if (MO.isReg() && MO.getReg() == Reg &&
244        (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
245      // Earlier use is a two-address one.
246      return true;
247  }
248  return false;
249}
250
251/// isProfitableToReMat - Return true if the heuristics determines it is likely
252/// to be profitable to re-materialize the definition of Reg rather than copy
253/// the register.
254bool
255TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
256                                         const TargetRegisterClass *RC,
257                                         MachineInstr *MI, MachineInstr *DefMI,
258                                         MachineBasicBlock *MBB, unsigned Loc) {
259  bool OtherUse = false;
260  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
261         UE = MRI->use_end(); UI != UE; ++UI) {
262    MachineOperand &UseMO = UI.getOperand();
263    MachineInstr *UseMI = UseMO.getParent();
264    MachineBasicBlock *UseMBB = UseMI->getParent();
265    if (UseMBB == MBB) {
266      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
267      if (DI != DistanceMap.end() && DI->second == Loc)
268        continue;  // Current use.
269      OtherUse = true;
270      // There is at least one other use in the MBB that will clobber the
271      // register.
272      if (isTwoAddrUse(UseMI, Reg))
273        return true;
274    }
275  }
276
277  // If other uses in MBB are not two-address uses, then don't remat.
278  if (OtherUse)
279    return false;
280
281  // No other uses in the same block, remat if it's defined in the same
282  // block so it does not unnecessarily extend the live range.
283  return MBB == DefMI->getParent();
284}
285
286/// NoUseAfterLastDef - Return true if there are no intervening uses between the
287/// last instruction in the MBB that defines the specified register and the
288/// two-address instruction which is being processed. It also returns the last
289/// def location by reference
290bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
291                                           MachineBasicBlock *MBB, unsigned Dist,
292                                           unsigned &LastDef) {
293  LastDef = 0;
294  unsigned LastUse = Dist;
295  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
296         E = MRI->reg_end(); I != E; ++I) {
297    MachineOperand &MO = I.getOperand();
298    MachineInstr *MI = MO.getParent();
299    if (MI->getParent() != MBB)
300      continue;
301    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
302    if (DI == DistanceMap.end())
303      continue;
304    if (MO.isUse() && DI->second < LastUse)
305      LastUse = DI->second;
306    if (MO.isDef() && DI->second > LastDef)
307      LastDef = DI->second;
308  }
309
310  return !(LastUse > LastDef && LastUse < Dist);
311}
312
313/// isCopyToReg - Return true if the specified MI is a copy instruction or
314/// a extract_subreg instruction. It also returns the source and destination
315/// registers and whether they are physical registers by reference.
316static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
317                        unsigned &SrcReg, unsigned &DstReg,
318                        bool &IsSrcPhys, bool &IsDstPhys) {
319  SrcReg = 0;
320  DstReg = 0;
321  unsigned SrcSubIdx, DstSubIdx;
322  if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
323    if (MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
324      DstReg = MI.getOperand(0).getReg();
325      SrcReg = MI.getOperand(1).getReg();
326    } else if (MI.getOpcode() == TargetInstrInfo::INSERT_SUBREG) {
327      DstReg = MI.getOperand(0).getReg();
328      SrcReg = MI.getOperand(2).getReg();
329    } else if (MI.getOpcode() == TargetInstrInfo::SUBREG_TO_REG) {
330      DstReg = MI.getOperand(0).getReg();
331      SrcReg = MI.getOperand(2).getReg();
332    }
333  }
334
335  if (DstReg) {
336    IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
337    IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
338    return true;
339  }
340  return false;
341}
342
343/// isKilled - Test if the given register value, which is used by the given
344/// instruction, is killed by the given instruction. This looks through
345/// coalescable copies to see if the original value is potentially not killed.
346///
347/// For example, in this code:
348///
349///   %reg1034 = copy %reg1024
350///   %reg1035 = copy %reg1025<kill>
351///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
352///
353/// %reg1034 is not considered to be killed, since it is copied from a
354/// register which is not killed. Treating it as not killed lets the
355/// normal heuristics commute the (two-address) add, which lets
356/// coalescing eliminate the extra copy.
357///
358static bool isKilled(MachineInstr &MI, unsigned Reg,
359                     const MachineRegisterInfo *MRI,
360                     const TargetInstrInfo *TII) {
361  MachineInstr *DefMI = &MI;
362  for (;;) {
363    if (!DefMI->killsRegister(Reg))
364      return false;
365    if (TargetRegisterInfo::isPhysicalRegister(Reg))
366      return true;
367    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
368    // If there are multiple defs, we can't do a simple analysis, so just
369    // go with what the kill flag says.
370    if (next(Begin) != MRI->def_end())
371      return true;
372    DefMI = &*Begin;
373    bool IsSrcPhys, IsDstPhys;
374    unsigned SrcReg,  DstReg;
375    // If the def is something other than a copy, then it isn't going to
376    // be coalesced, so follow the kill flag.
377    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
378      return true;
379    Reg = SrcReg;
380  }
381}
382
383/// isTwoAddrUse - Return true if the specified MI uses the specified register
384/// as a two-address use. If so, return the destination register by reference.
385static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
386  const TargetInstrDesc &TID = MI.getDesc();
387  unsigned NumOps = (MI.getOpcode() == TargetInstrInfo::INLINEASM)
388    ? MI.getNumOperands() : TID.getNumOperands();
389  for (unsigned i = 0; i != NumOps; ++i) {
390    const MachineOperand &MO = MI.getOperand(i);
391    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
392      continue;
393    unsigned ti;
394    if (MI.isRegTiedToDefOperand(i, &ti)) {
395      DstReg = MI.getOperand(ti).getReg();
396      return true;
397    }
398  }
399  return false;
400}
401
402/// findOnlyInterestingUse - Given a register, if has a single in-basic block
403/// use, return the use instruction if it's a copy or a two-address use.
404static
405MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
406                                     MachineRegisterInfo *MRI,
407                                     const TargetInstrInfo *TII,
408                                     bool &isCopy,
409                                     unsigned &DstReg, bool &IsDstPhys) {
410  MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg);
411  if (UI == MRI->use_end())
412    return 0;
413  MachineInstr &UseMI = *UI;
414  if (++UI != MRI->use_end())
415    // More than one use.
416    return 0;
417  if (UseMI.getParent() != MBB)
418    return 0;
419  unsigned SrcReg;
420  bool IsSrcPhys;
421  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
422    return &UseMI;
423  IsDstPhys = false;
424  if (isTwoAddrUse(UseMI, Reg, DstReg))
425    return &UseMI;
426  return 0;
427}
428
429/// getMappedReg - Return the physical register the specified virtual register
430/// might be mapped to.
431static unsigned
432getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
433  while (TargetRegisterInfo::isVirtualRegister(Reg))  {
434    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
435    if (SI == RegMap.end())
436      return 0;
437    Reg = SI->second;
438  }
439  if (TargetRegisterInfo::isPhysicalRegister(Reg))
440    return Reg;
441  return 0;
442}
443
444/// regsAreCompatible - Return true if the two registers are equal or aliased.
445///
446static bool
447regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
448  if (RegA == RegB)
449    return true;
450  if (!RegA || !RegB)
451    return false;
452  return TRI->regsOverlap(RegA, RegB);
453}
454
455
456/// isProfitableToReMat - Return true if it's potentially profitable to commute
457/// the two-address instruction that's being processed.
458bool
459TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
460                                       MachineInstr *MI, MachineBasicBlock *MBB,
461                                       unsigned Dist) {
462  // Determine if it's profitable to commute this two address instruction. In
463  // general, we want no uses between this instruction and the definition of
464  // the two-address register.
465  // e.g.
466  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
467  // %reg1029<def> = MOV8rr %reg1028
468  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
469  // insert => %reg1030<def> = MOV8rr %reg1028
470  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
471  // In this case, it might not be possible to coalesce the second MOV8rr
472  // instruction if the first one is coalesced. So it would be profitable to
473  // commute it:
474  // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
475  // %reg1029<def> = MOV8rr %reg1028
476  // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
477  // insert => %reg1030<def> = MOV8rr %reg1029
478  // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
479
480  if (!MI->killsRegister(regC))
481    return false;
482
483  // Ok, we have something like:
484  // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
485  // let's see if it's worth commuting it.
486
487  // Look for situations like this:
488  // %reg1024<def> = MOV r1
489  // %reg1025<def> = MOV r0
490  // %reg1026<def> = ADD %reg1024, %reg1025
491  // r0            = MOV %reg1026
492  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
493  unsigned FromRegB = getMappedReg(regB, SrcRegMap);
494  unsigned FromRegC = getMappedReg(regC, SrcRegMap);
495  unsigned ToRegB = getMappedReg(regB, DstRegMap);
496  unsigned ToRegC = getMappedReg(regC, DstRegMap);
497  if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
498      (regsAreCompatible(FromRegB, ToRegC, TRI) ||
499       regsAreCompatible(FromRegC, ToRegB, TRI)))
500    return true;
501
502  // If there is a use of regC between its last def (could be livein) and this
503  // instruction, then bail.
504  unsigned LastDefC = 0;
505  if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
506    return false;
507
508  // If there is a use of regB between its last def (could be livein) and this
509  // instruction, then go ahead and make this transformation.
510  unsigned LastDefB = 0;
511  if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
512    return true;
513
514  // Since there are no intervening uses for both registers, then commute
515  // if the def of regC is closer. Its live interval is shorter.
516  return LastDefB && LastDefC && LastDefC > LastDefB;
517}
518
519/// CommuteInstruction - Commute a two-address instruction and update the basic
520/// block, distance map, and live variables if needed. Return true if it is
521/// successful.
522bool
523TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
524                               MachineFunction::iterator &mbbi,
525                               unsigned RegB, unsigned RegC, unsigned Dist) {
526  MachineInstr *MI = mi;
527  DOUT << "2addr: COMMUTING  : " << *MI;
528  MachineInstr *NewMI = TII->commuteInstruction(MI);
529
530  if (NewMI == 0) {
531    DOUT << "2addr: COMMUTING FAILED!\n";
532    return false;
533  }
534
535  DOUT << "2addr: COMMUTED TO: " << *NewMI;
536  // If the instruction changed to commute it, update livevar.
537  if (NewMI != MI) {
538    if (LV)
539      // Update live variables
540      LV->replaceKillInstruction(RegC, MI, NewMI);
541
542    mbbi->insert(mi, NewMI);           // Insert the new inst
543    mbbi->erase(mi);                   // Nuke the old inst.
544    mi = NewMI;
545    DistanceMap.insert(std::make_pair(NewMI, Dist));
546  }
547
548  // Update source register map.
549  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
550  if (FromRegC) {
551    unsigned RegA = MI->getOperand(0).getReg();
552    SrcRegMap[RegA] = FromRegC;
553  }
554
555  return true;
556}
557
558/// isProfitableToConv3Addr - Return true if it is profitable to convert the
559/// given 2-address instruction to a 3-address one.
560bool
561TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
562  // Look for situations like this:
563  // %reg1024<def> = MOV r1
564  // %reg1025<def> = MOV r0
565  // %reg1026<def> = ADD %reg1024, %reg1025
566  // r2            = MOV %reg1026
567  // Turn ADD into a 3-address instruction to avoid a copy.
568  unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
569  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
570  return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
571}
572
573/// ConvertInstTo3Addr - Convert the specified two-address instruction into a
574/// three address one. Return true if this transformation was successful.
575bool
576TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
577                                              MachineBasicBlock::iterator &nmi,
578                                              MachineFunction::iterator &mbbi,
579                                              unsigned RegB, unsigned Dist) {
580  MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
581  if (NewMI) {
582    DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
583    DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
584    bool Sunk = false;
585
586    if (NewMI->findRegisterUseOperand(RegB, false, TRI))
587      // FIXME: Temporary workaround. If the new instruction doesn't
588      // uses RegB, convertToThreeAddress must have created more
589      // then one instruction.
590      Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
591
592    mbbi->erase(mi); // Nuke the old inst.
593
594    if (!Sunk) {
595      DistanceMap.insert(std::make_pair(NewMI, Dist));
596      mi = NewMI;
597      nmi = next(mi);
598    }
599    return true;
600  }
601
602  return false;
603}
604
605/// ProcessCopy - If the specified instruction is not yet processed, process it
606/// if it's a copy. For a copy instruction, we find the physical registers the
607/// source and destination registers might be mapped to. These are kept in
608/// point-to maps used to determine future optimizations. e.g.
609/// v1024 = mov r0
610/// v1025 = mov r1
611/// v1026 = add v1024, v1025
612/// r1    = mov r1026
613/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
614/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
615/// potentially joined with r1 on the output side. It's worthwhile to commute
616/// 'add' to eliminate a copy.
617void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
618                                     MachineBasicBlock *MBB,
619                                     SmallPtrSet<MachineInstr*, 8> &Processed) {
620  if (Processed.count(MI))
621    return;
622
623  bool IsSrcPhys, IsDstPhys;
624  unsigned SrcReg, DstReg;
625  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
626    return;
627
628  if (IsDstPhys && !IsSrcPhys)
629    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
630  else if (!IsDstPhys && IsSrcPhys) {
631    bool isNew =
632      SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
633    isNew = isNew; // Silence compiler warning.
634    assert(isNew && "Can't map to two src physical registers!");
635
636    SmallVector<unsigned, 4> VirtRegPairs;
637    bool isCopy = false;
638    unsigned NewReg = 0;
639    while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
640                                                   isCopy, NewReg, IsDstPhys)) {
641      if (isCopy) {
642        if (Processed.insert(UseMI))
643          break;
644      }
645
646      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
647      if (DI != DistanceMap.end())
648        // Earlier in the same MBB.Reached via a back edge.
649        break;
650
651      if (IsDstPhys) {
652        VirtRegPairs.push_back(NewReg);
653        break;
654      }
655      bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
656      isNew = isNew; // Silence compiler warning.
657      assert(isNew && "Can't map to two src physical registers!");
658      VirtRegPairs.push_back(NewReg);
659      DstReg = NewReg;
660    }
661
662    if (!VirtRegPairs.empty()) {
663      unsigned ToReg = VirtRegPairs.back();
664      VirtRegPairs.pop_back();
665      while (!VirtRegPairs.empty()) {
666        unsigned FromReg = VirtRegPairs.back();
667        VirtRegPairs.pop_back();
668        bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
669        isNew = isNew; // Silence compiler warning.
670        assert(isNew && "Can't map to two dst physical registers!");
671        ToReg = FromReg;
672      }
673    }
674  }
675
676  Processed.insert(MI);
677}
678
679/// isSafeToDelete - If the specified instruction does not produce any side
680/// effects and all of its defs are dead, then it's safe to delete.
681static bool isSafeToDelete(MachineInstr *MI, const TargetInstrInfo *TII) {
682  const TargetInstrDesc &TID = MI->getDesc();
683  if (TID.mayStore() || TID.isCall())
684    return false;
685  if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
686    return false;
687
688  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
689    MachineOperand &MO = MI->getOperand(i);
690    if (!MO.isReg() || !MO.isDef())
691      continue;
692    if (!MO.isDead())
693      return false;
694  }
695
696  return true;
697}
698
699/// runOnMachineFunction - Reduce two-address instructions to two operands.
700///
701bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
702  DOUT << "Machine Function\n";
703  const TargetMachine &TM = MF.getTarget();
704  MRI = &MF.getRegInfo();
705  TII = TM.getInstrInfo();
706  TRI = TM.getRegisterInfo();
707  LV = getAnalysisIfAvailable<LiveVariables>();
708
709  bool MadeChange = false;
710
711  DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
712  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
713
714  // ReMatRegs - Keep track of the registers whose def's are remat'ed.
715  BitVector ReMatRegs;
716  ReMatRegs.resize(MRI->getLastVirtReg()+1);
717
718  SmallPtrSet<MachineInstr*, 8> Processed;
719  for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
720       mbbi != mbbe; ++mbbi) {
721    unsigned Dist = 0;
722    DistanceMap.clear();
723    SrcRegMap.clear();
724    DstRegMap.clear();
725    Processed.clear();
726    for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
727         mi != me; ) {
728      MachineBasicBlock::iterator nmi = next(mi);
729      const TargetInstrDesc &TID = mi->getDesc();
730      bool FirstTied = true;
731
732      DistanceMap.insert(std::make_pair(mi, ++Dist));
733
734      ProcessCopy(&*mi, &*mbbi, Processed);
735
736      unsigned NumOps = (mi->getOpcode() == TargetInstrInfo::INLINEASM)
737        ? mi->getNumOperands() : TID.getNumOperands();
738      for (unsigned si = 0; si < NumOps; ++si) {
739        unsigned ti = 0;
740        if (!mi->isRegTiedToDefOperand(si, &ti))
741          continue;
742
743        if (FirstTied) {
744          ++NumTwoAddressInstrs;
745          DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
746        }
747
748        FirstTied = false;
749
750        assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
751               mi->getOperand(si).isUse() && "two address instruction invalid");
752
753        // If the two operands are the same we just remove the use
754        // and mark the def as def&use, otherwise we have to insert a copy.
755        if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
756          // Rewrite:
757          //     a = b op c
758          // to:
759          //     a = b
760          //     a = a op c
761          unsigned regA = mi->getOperand(ti).getReg();
762          unsigned regB = mi->getOperand(si).getReg();
763
764          assert(TargetRegisterInfo::isVirtualRegister(regB) &&
765                 "cannot update physical register live information");
766
767#ifndef NDEBUG
768          // First, verify that we don't have a use of a in the instruction (a =
769          // b + a for example) because our transformation will not work. This
770          // should never occur because we are in SSA form.
771          for (unsigned i = 0; i != mi->getNumOperands(); ++i)
772            assert(i == ti ||
773                   !mi->getOperand(i).isReg() ||
774                   mi->getOperand(i).getReg() != regA);
775#endif
776
777          // If this instruction is not the killing user of B, see if we can
778          // rearrange the code to make it so.  Making it the killing user will
779          // allow us to coalesce A and B together, eliminating the copy we are
780          // about to insert.
781          if (!isKilled(*mi, regB, MRI, TII)) {
782            // If regA is dead and the instruction can be deleted, just delete
783            // it so it doesn't clobber regB.
784            if (mi->getOperand(ti).isDead() && isSafeToDelete(mi, TII)) {
785              mbbi->erase(mi); // Nuke the old inst.
786              mi = nmi;
787              ++NumDeletes;
788              break; // Done with this instruction.
789            }
790
791            // If this instruction is commutative, check to see if C dies.  If
792            // so, swap the B and C operands.  This makes the live ranges of A
793            // and C joinable.
794            // FIXME: This code also works for A := B op C instructions.
795            if (TID.isCommutable() && mi->getNumOperands() >= 3) {
796              assert(mi->getOperand(3-si).isReg() &&
797                     "Not a proper commutative instruction!");
798              unsigned regC = mi->getOperand(3-si).getReg();
799              if (isKilled(*mi, regC, MRI, TII)) {
800                if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
801                  ++NumCommuted;
802                  regB = regC;
803                  goto InstructionRearranged;
804                }
805              }
806            }
807
808            // If this instruction is potentially convertible to a true
809            // three-address instruction,
810            if (TID.isConvertibleTo3Addr()) {
811              // FIXME: This assumes there are no more operands which are tied
812              // to another register.
813#ifndef NDEBUG
814              for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
815                assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
816#endif
817
818              if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
819                ++NumConvertedTo3Addr;
820                break; // Done with this instruction.
821              }
822            }
823          }
824
825          // If it's profitable to commute the instruction, do so.
826          if (TID.isCommutable() && mi->getNumOperands() >= 3) {
827            unsigned regC = mi->getOperand(3-si).getReg();
828            if (isProfitableToCommute(regB, regC, mi, mbbi, Dist))
829              if (CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
830                ++NumAggrCommuted;
831                ++NumCommuted;
832                regB = regC;
833                goto InstructionRearranged;
834              }
835          }
836
837          // If it's profitable to convert the 2-address instruction to a
838          // 3-address one, do so.
839          if (TID.isConvertibleTo3Addr() && isProfitableToConv3Addr(regA)) {
840            if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
841              ++NumConvertedTo3Addr;
842              break; // Done with this instruction.
843            }
844          }
845
846        InstructionRearranged:
847          const TargetRegisterClass* rc = MRI->getRegClass(regB);
848          MachineInstr *DefMI = MRI->getVRegDef(regB);
849          // If it's safe and profitable, remat the definition instead of
850          // copying it.
851          if (DefMI &&
852              DefMI->getDesc().isAsCheapAsAMove() &&
853              DefMI->isSafeToReMat(TII, regB) &&
854              isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
855            DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
856            TII->reMaterialize(*mbbi, mi, regA, DefMI);
857            ReMatRegs.set(regB);
858            ++NumReMats;
859          } else {
860            bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
861            assert(Emitted && "Unable to issue a copy instruction!\n");
862          }
863
864          MachineBasicBlock::iterator prevMI = prior(mi);
865          // Update DistanceMap.
866          DistanceMap.insert(std::make_pair(prevMI, Dist));
867          DistanceMap[mi] = ++Dist;
868
869          // Update live variables for regB.
870          if (LV) {
871            LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
872
873            // regB is used in this BB.
874            varInfoB.UsedBlocks[mbbi->getNumber()] = true;
875
876            if (LV->removeVirtualRegisterKilled(regB,  mi))
877              LV->addVirtualRegisterKilled(regB, prevMI);
878
879            if (LV->removeVirtualRegisterDead(regB, mi))
880              LV->addVirtualRegisterDead(regB, prevMI);
881          }
882
883          DOUT << "\t\tprepend:\t"; DEBUG(prevMI->print(*cerr.stream(), &TM));
884
885          // Replace all occurences of regB with regA.
886          for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
887            if (mi->getOperand(i).isReg() &&
888                mi->getOperand(i).getReg() == regB)
889              mi->getOperand(i).setReg(regA);
890          }
891        }
892
893        assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
894        mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
895        MadeChange = true;
896
897        DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
898      }
899
900      mi = nmi;
901    }
902  }
903
904  // Some remat'ed instructions are dead.
905  int VReg = ReMatRegs.find_first();
906  while (VReg != -1) {
907    if (MRI->use_empty(VReg)) {
908      MachineInstr *DefMI = MRI->getVRegDef(VReg);
909      DefMI->eraseFromParent();
910    }
911    VReg = ReMatRegs.find_next(VReg);
912  }
913
914  return MadeChange;
915}
916