ARMAddressingModes.h revision f49810c7e60807c43a68ab02c936a4ee77a4d2cf
1//===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the ARM addressing mode implementation stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
15#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
16
17#include "llvm/CodeGen/SelectionDAGNodes.h"
18#include "llvm/Support/MathExtras.h"
19#include <cassert>
20
21namespace llvm {
22
23/// ARM_AM - ARM Addressing Mode Stuff
24namespace ARM_AM {
25  enum ShiftOpc {
26    no_shift = 0,
27    asr,
28    lsl,
29    lsr,
30    ror,
31    rrx
32  };
33
34  enum AddrOpc {
35    add = '+', sub = '-'
36  };
37
38  static inline const char *getShiftOpcStr(ShiftOpc Op) {
39    switch (Op) {
40    default: assert(0 && "Unknown shift opc!");
41    case ARM_AM::asr: return "asr";
42    case ARM_AM::lsl: return "lsl";
43    case ARM_AM::lsr: return "lsr";
44    case ARM_AM::ror: return "ror";
45    case ARM_AM::rrx: return "rrx";
46    }
47  }
48
49  static inline ShiftOpc getShiftOpcForNode(SDValue N) {
50    switch (N.getOpcode()) {
51    default:          return ARM_AM::no_shift;
52    case ISD::SHL:    return ARM_AM::lsl;
53    case ISD::SRL:    return ARM_AM::lsr;
54    case ISD::SRA:    return ARM_AM::asr;
55    case ISD::ROTR:   return ARM_AM::ror;
56    //case ISD::ROTL:  // Only if imm -> turn into ROTR.
57    // Can't handle RRX here, because it would require folding a flag into
58    // the addressing mode.  :(  This causes us to miss certain things.
59    //case ARMISD::RRX: return ARM_AM::rrx;
60    }
61  }
62
63  enum AMSubMode {
64    bad_am_submode = 0,
65    ia,
66    ib,
67    da,
68    db
69  };
70
71  static inline const char *getAMSubModeStr(AMSubMode Mode) {
72    switch (Mode) {
73    default: assert(0 && "Unknown addressing sub-mode!");
74    case ARM_AM::ia: return "ia";
75    case ARM_AM::ib: return "ib";
76    case ARM_AM::da: return "da";
77    case ARM_AM::db: return "db";
78    }
79  }
80
81  static inline const char *getAMSubModeAltStr(AMSubMode Mode, bool isLD) {
82    switch (Mode) {
83    default: assert(0 && "Unknown addressing sub-mode!");
84    case ARM_AM::ia: return isLD ? "fd" : "ea";
85    case ARM_AM::ib: return isLD ? "ed" : "fa";
86    case ARM_AM::da: return isLD ? "fa" : "ed";
87    case ARM_AM::db: return isLD ? "ea" : "fd";
88    }
89  }
90
91  /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
92  ///
93  static inline unsigned rotr32(unsigned Val, unsigned Amt) {
94    assert(Amt < 32 && "Invalid rotate amount");
95    return (Val >> Amt) | (Val << ((32-Amt)&31));
96  }
97
98  /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
99  ///
100  static inline unsigned rotl32(unsigned Val, unsigned Amt) {
101    assert(Amt < 32 && "Invalid rotate amount");
102    return (Val << Amt) | (Val >> ((32-Amt)&31));
103  }
104
105  //===--------------------------------------------------------------------===//
106  // Addressing Mode #1: shift_operand with registers
107  //===--------------------------------------------------------------------===//
108  //
109  // This 'addressing mode' is used for arithmetic instructions.  It can
110  // represent things like:
111  //   reg
112  //   reg [asr|lsl|lsr|ror|rrx] reg
113  //   reg [asr|lsl|lsr|ror|rrx] imm
114  //
115  // This is stored three operands [rega, regb, opc].  The first is the base
116  // reg, the second is the shift amount (or reg0 if not present or imm).  The
117  // third operand encodes the shift opcode and the imm if a reg isn't present.
118  //
119  static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
120    return ShOp | (Imm << 3);
121  }
122  static inline unsigned getSORegOffset(unsigned Op) {
123    return Op >> 3;
124  }
125  static inline ShiftOpc getSORegShOp(unsigned Op) {
126    return (ShiftOpc)(Op & 7);
127  }
128
129  /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
130  /// the 8-bit imm value.
131  static inline unsigned getSOImmValImm(unsigned Imm) {
132    return Imm & 0xFF;
133  }
134  /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
135  /// the rotate amount.
136  static inline unsigned getSOImmValRot(unsigned Imm) {
137    return (Imm >> 8) * 2;
138  }
139
140  /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
141  /// computing the rotate amount to use.  If this immediate value cannot be
142  /// handled with a single shifter-op, determine a good rotate amount that will
143  /// take a maximal chunk of bits out of the immediate.
144  static inline unsigned getSOImmValRotate(unsigned Imm) {
145    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
146    // of zero.
147    if ((Imm & ~255U) == 0) return 0;
148
149    // Use CTZ to compute the rotate amount.
150    unsigned TZ = CountTrailingZeros_32(Imm);
151
152    // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
153    // not 9.
154    unsigned RotAmt = TZ & ~1;
155
156    // If we can handle this spread, return it.
157    if ((rotr32(Imm, RotAmt) & ~255U) == 0)
158      return (32-RotAmt)&31;  // HW rotates right, not left.
159
160    // For values like 0xF000000F, we should skip the first run of ones, then
161    // retry the hunt.
162    if (Imm & 1) {
163      unsigned TrailingOnes = CountTrailingZeros_32(~Imm);
164      if (TrailingOnes != 32) {  // Avoid overflow on 0xFFFFFFFF
165        // Restart the search for a high-order bit after the initial seconds of
166        // ones.
167        unsigned TZ2 = CountTrailingZeros_32(Imm & ~((1 << TrailingOnes)-1));
168
169        // Rotate amount must be even.
170        unsigned RotAmt2 = TZ2 & ~1;
171
172        // If this fits, use it.
173        if (RotAmt2 != 32 && (rotr32(Imm, RotAmt2) & ~255U) == 0)
174          return (32-RotAmt2)&31;  // HW rotates right, not left.
175      }
176    }
177
178    // Otherwise, we have no way to cover this span of bits with a single
179    // shifter_op immediate.  Return a chunk of bits that will be useful to
180    // handle.
181    return (32-RotAmt)&31;  // HW rotates right, not left.
182  }
183
184  /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
185  /// into an shifter_operand immediate operand, return the 12-bit encoding for
186  /// it.  If not, return -1.
187  static inline int getSOImmVal(unsigned Arg) {
188    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
189    // of zero.
190    if ((Arg & ~255U) == 0) return Arg;
191
192    unsigned RotAmt = getSOImmValRotate(Arg);
193
194    // If this cannot be handled with a single shifter_op, bail out.
195    if (rotr32(~255U, RotAmt) & Arg)
196      return -1;
197
198    // Encode this correctly.
199    return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
200  }
201
202  /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
203  /// or'ing together two SOImmVal's.
204  static inline bool isSOImmTwoPartVal(unsigned V) {
205    // If this can be handled with a single shifter_op, bail out.
206    V = rotr32(~255U, getSOImmValRotate(V)) & V;
207    if (V == 0)
208      return false;
209
210    // If this can be handled with two shifter_op's, accept.
211    V = rotr32(~255U, getSOImmValRotate(V)) & V;
212    return V == 0;
213  }
214
215  /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
216  /// return the first chunk of it.
217  static inline unsigned getSOImmTwoPartFirst(unsigned V) {
218    return rotr32(255U, getSOImmValRotate(V)) & V;
219  }
220
221  /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
222  /// return the second chunk of it.
223  static inline unsigned getSOImmTwoPartSecond(unsigned V) {
224    // Mask out the first hunk.
225    V = rotr32(~255U, getSOImmValRotate(V)) & V;
226
227    // Take what's left.
228    assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
229    return V;
230  }
231
232  /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
233  /// by a left shift. Returns the shift amount to use.
234  static inline unsigned getThumbImmValShift(unsigned Imm) {
235    // 8-bit (or less) immediates are trivially immediate operand with a shift
236    // of zero.
237    if ((Imm & ~255U) == 0) return 0;
238
239    // Use CTZ to compute the shift amount.
240    return CountTrailingZeros_32(Imm);
241  }
242
243  /// isThumbImmShiftedVal - Return true if the specified value can be obtained
244  /// by left shifting a 8-bit immediate.
245  static inline bool isThumbImmShiftedVal(unsigned V) {
246    // If this can be handled with
247    V = (~255U << getThumbImmValShift(V)) & V;
248    return V == 0;
249  }
250
251  /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
252  /// by a left shift. Returns the shift amount to use.
253  static inline unsigned getThumbImm16ValShift(unsigned Imm) {
254    // 16-bit (or less) immediates are trivially immediate operand with a shift
255    // of zero.
256    if ((Imm & ~65535U) == 0) return 0;
257
258    // Use CTZ to compute the shift amount.
259    return CountTrailingZeros_32(Imm);
260  }
261
262  /// isThumbImm16ShiftedVal - Return true if the specified value can be
263  /// obtained by left shifting a 16-bit immediate.
264  static inline bool isThumbImm16ShiftedVal(unsigned V) {
265    // If this can be handled with
266    V = (~65535U << getThumbImm16ValShift(V)) & V;
267    return V == 0;
268  }
269
270  /// getThumbImmNonShiftedVal - If V is a value that satisfies
271  /// isThumbImmShiftedVal, return the non-shiftd value.
272  static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
273    return V >> getThumbImmValShift(V);
274  }
275
276  /// getT2SOImmValDecode - Given a 12-bit encoded Thumb-2 modified immediate,
277  /// return the corresponding 32-bit immediate value.
278  /// See ARM Reference Manual A6.3.2.
279  static inline unsigned getT2SOImmValDecode(unsigned Imm) {
280    unsigned Base = Imm & 0xff;
281    switch ((Imm >> 8) & 0xf) {
282    case 0:
283      return Base;
284    case 1:
285      return Base | (Base << 16);
286    case 2:
287      return (Base << 8) | (Base << 24);
288    case 3:
289      return Base | (Base << 8) | (Base << 16) | (Base << 24);
290    default:
291      break;
292    }
293
294    // shifted immediate
295    unsigned RotAmount = ((Imm >> 7) & 0x1f) - 8;
296    return (Base | 0x80) << (24 - RotAmount);
297  }
298
299  /// getT2SOImmValSplat - Return the 12-bit encoded representation
300  /// if the specified value can be obtained by splatting the low 8 bits
301  /// into every other byte or every byte of a 32-bit value. i.e.,
302  ///     00000000 00000000 00000000 abcdefgh    control = 0
303  ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
304  ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
305  ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
306  /// Return -1 if none of the above apply.
307  /// See ARM Reference Manual A6.3.2.
308  static inline int getT2SOImmValSplat (unsigned V) {
309    unsigned u, Vs, Imm;
310    // control = 0
311    if ((V & 0xffffff00) == 0)
312      return V;
313
314    // If the value is zeroes in the first byte, just shift those off
315    Vs = ((V & 0xff) == 0) ? V >> 8 : V;
316    // Any passing value only has 8 bits of payload, splatted across the word
317    Imm = Vs & 0xff;
318    // Likewise, any passing values have the payload splatted into the 3rd byte
319    u = Imm | (Imm << 16);
320
321    // control = 1 or 2
322    if (Vs == u)
323      return (((Vs == V) ? 1 : 2) << 8) | Imm;
324
325    // control = 3
326    if (Vs == (u | (u << 8)))
327      return (3 << 8) | Imm;
328
329    return -1;
330  }
331
332  /// getT2SOImmValRotate - Return the 12-bit encoded representation if the
333  /// specified value is a rotated 8-bit value. Return -1 if no rotation
334  /// encoding is possible.
335  /// See ARM Reference Manual A6.3.2.
336  static inline int getT2SOImmValRotate (unsigned V) {
337    unsigned RotAmt = CountLeadingZeros_32(V);
338    if (RotAmt >= 24)
339      return -1;
340
341    // If 'Arg' can be handled with a single shifter_op return the value.
342    if ((rotr32(0xff000000U, RotAmt) & V) == V)
343      return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
344
345    return -1;
346  }
347
348  /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
349  /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
350  /// encoding for it.  If not, return -1.
351  /// See ARM Reference Manual A6.3.2.
352  static inline int getT2SOImmVal(unsigned Arg) {
353    // If 'Arg' is an 8-bit splat, then get the encoded value.
354    int Splat = getT2SOImmValSplat(Arg);
355    if (Splat != -1)
356      return Splat;
357
358    // If 'Arg' can be handled with a single shifter_op return the value.
359    int Rot = getT2SOImmValRotate(Arg);
360    if (Rot != -1)
361      return Rot;
362
363    return -1;
364  }
365
366
367  //===--------------------------------------------------------------------===//
368  // Addressing Mode #2
369  //===--------------------------------------------------------------------===//
370  //
371  // This is used for most simple load/store instructions.
372  //
373  // addrmode2 := reg +/- reg shop imm
374  // addrmode2 := reg +/- imm12
375  //
376  // The first operand is always a Reg.  The second operand is a reg if in
377  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
378  // in bit 12, the immediate in bits 0-11, and the shift op in 13-15.
379  //
380  // If this addressing mode is a frame index (before prolog/epilog insertion
381  // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
382  // with no shift amount for the frame offset.
383  //
384  static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO) {
385    assert(Imm12 < (1 << 12) && "Imm too large!");
386    bool isSub = Opc == sub;
387    return Imm12 | ((int)isSub << 12) | (SO << 13);
388  }
389  static inline unsigned getAM2Offset(unsigned AM2Opc) {
390    return AM2Opc & ((1 << 12)-1);
391  }
392  static inline AddrOpc getAM2Op(unsigned AM2Opc) {
393    return ((AM2Opc >> 12) & 1) ? sub : add;
394  }
395  static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
396    return (ShiftOpc)(AM2Opc >> 13);
397  }
398
399
400  //===--------------------------------------------------------------------===//
401  // Addressing Mode #3
402  //===--------------------------------------------------------------------===//
403  //
404  // This is used for sign-extending loads, and load/store-pair instructions.
405  //
406  // addrmode3 := reg +/- reg
407  // addrmode3 := reg +/- imm8
408  //
409  // The first operand is always a Reg.  The second operand is a reg if in
410  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
411  // in bit 8, the immediate in bits 0-7.
412
413  /// getAM3Opc - This function encodes the addrmode3 opc field.
414  static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset) {
415    bool isSub = Opc == sub;
416    return ((int)isSub << 8) | Offset;
417  }
418  static inline unsigned char getAM3Offset(unsigned AM3Opc) {
419    return AM3Opc & 0xFF;
420  }
421  static inline AddrOpc getAM3Op(unsigned AM3Opc) {
422    return ((AM3Opc >> 8) & 1) ? sub : add;
423  }
424
425  //===--------------------------------------------------------------------===//
426  // Addressing Mode #4
427  //===--------------------------------------------------------------------===//
428  //
429  // This is used for load / store multiple instructions.
430  //
431  // addrmode4 := reg, <mode>
432  //
433  // The four modes are:
434  //    IA - Increment after
435  //    IB - Increment before
436  //    DA - Decrement after
437  //    DB - Decrement before
438  //
439  // If the 4th bit (writeback)is set, then the base register is updated after
440  // the memory transfer.
441
442  static inline AMSubMode getAM4SubMode(unsigned Mode) {
443    return (AMSubMode)(Mode & 0x7);
444  }
445
446  static inline unsigned getAM4ModeImm(AMSubMode SubMode, bool WB = false) {
447    return (int)SubMode | ((int)WB << 3);
448  }
449
450  static inline bool getAM4WBFlag(unsigned Mode) {
451    return (Mode >> 3) & 1;
452  }
453
454  //===--------------------------------------------------------------------===//
455  // Addressing Mode #5
456  //===--------------------------------------------------------------------===//
457  //
458  // This is used for coprocessor instructions, such as FP load/stores.
459  //
460  // addrmode5 := reg +/- imm8*4
461  //
462  // The first operand is always a Reg.  The third field encodes the operation
463  // in bit 8, the immediate in bits 0-7.
464  //
465  // This can also be used for FP load/store multiple ops. The third field encodes
466  // writeback mode in bit 8, the number of registers (or 2 times the number of
467  // registers for DPR ops) in bits 0-7. In addition, bit 9-11 encodes one of the
468  // following two sub-modes:
469  //
470  //    IA - Increment after
471  //    DB - Decrement before
472
473  /// getAM5Opc - This function encodes the addrmode5 opc field.
474  static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
475    bool isSub = Opc == sub;
476    return ((int)isSub << 8) | Offset;
477  }
478  static inline unsigned char getAM5Offset(unsigned AM5Opc) {
479    return AM5Opc & 0xFF;
480  }
481  static inline AddrOpc getAM5Op(unsigned AM5Opc) {
482    return ((AM5Opc >> 8) & 1) ? sub : add;
483  }
484
485  /// getAM5Opc - This function encodes the addrmode5 opc field for FLDM and
486  /// FSTM instructions.
487  static inline unsigned getAM5Opc(AMSubMode SubMode, bool WB,
488                                   unsigned char Offset) {
489    assert((SubMode == ia || SubMode == db) &&
490           "Illegal addressing mode 5 sub-mode!");
491    return ((int)SubMode << 9) | ((int)WB << 8) | Offset;
492  }
493  static inline AMSubMode getAM5SubMode(unsigned AM5Opc) {
494    return (AMSubMode)((AM5Opc >> 9) & 0x7);
495  }
496  static inline bool getAM5WBFlag(unsigned AM5Opc) {
497    return ((AM5Opc >> 8) & 1);
498  }
499
500} // end namespace ARM_AM
501} // end namespace llvm
502
503#endif
504
505