InstCombineCompares.cpp revision 3472766f9eb7d66f234c390ce1b3a8b76f0ee9ce
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Support/ConstantRange.h"
20#include "llvm/Support/GetElementPtrTypeIterator.h"
21#include "llvm/Support/PatternMatch.h"
22using namespace llvm;
23using namespace PatternMatch;
24
25/// AddOne - Add one to a ConstantInt
26static Constant *AddOne(Constant *C) {
27  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
28}
29/// SubOne - Subtract one from a ConstantInt
30static Constant *SubOne(ConstantInt *C) {
31  return ConstantExpr::getSub(C,  ConstantInt::get(C->getType(), 1));
32}
33
34static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
35  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
36}
37
38static bool HasAddOverflow(ConstantInt *Result,
39                           ConstantInt *In1, ConstantInt *In2,
40                           bool IsSigned) {
41  if (IsSigned)
42    if (In2->getValue().isNegative())
43      return Result->getValue().sgt(In1->getValue());
44    else
45      return Result->getValue().slt(In1->getValue());
46  else
47    return Result->getValue().ult(In1->getValue());
48}
49
50/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
51/// overflowed for this type.
52static bool AddWithOverflow(Constant *&Result, Constant *In1,
53                            Constant *In2, bool IsSigned = false) {
54  Result = ConstantExpr::getAdd(In1, In2);
55
56  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
57    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
58      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
59      if (HasAddOverflow(ExtractElement(Result, Idx),
60                         ExtractElement(In1, Idx),
61                         ExtractElement(In2, Idx),
62                         IsSigned))
63        return true;
64    }
65    return false;
66  }
67
68  return HasAddOverflow(cast<ConstantInt>(Result),
69                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
70                        IsSigned);
71}
72
73static bool HasSubOverflow(ConstantInt *Result,
74                           ConstantInt *In1, ConstantInt *In2,
75                           bool IsSigned) {
76  if (IsSigned)
77    if (In2->getValue().isNegative())
78      return Result->getValue().slt(In1->getValue());
79    else
80      return Result->getValue().sgt(In1->getValue());
81  else
82    return Result->getValue().ugt(In1->getValue());
83}
84
85/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
86/// overflowed for this type.
87static bool SubWithOverflow(Constant *&Result, Constant *In1,
88                            Constant *In2, bool IsSigned = false) {
89  Result = ConstantExpr::getSub(In1, In2);
90
91  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
92    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
93      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
94      if (HasSubOverflow(ExtractElement(Result, Idx),
95                         ExtractElement(In1, Idx),
96                         ExtractElement(In2, Idx),
97                         IsSigned))
98        return true;
99    }
100    return false;
101  }
102
103  return HasSubOverflow(cast<ConstantInt>(Result),
104                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
105                        IsSigned);
106}
107
108/// isSignBitCheck - Given an exploded icmp instruction, return true if the
109/// comparison only checks the sign bit.  If it only checks the sign bit, set
110/// TrueIfSigned if the result of the comparison is true when the input value is
111/// signed.
112static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
113                           bool &TrueIfSigned) {
114  switch (pred) {
115  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
116    TrueIfSigned = true;
117    return RHS->isZero();
118  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
119    TrueIfSigned = true;
120    return RHS->isAllOnesValue();
121  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
122    TrueIfSigned = false;
123    return RHS->isAllOnesValue();
124  case ICmpInst::ICMP_UGT:
125    // True if LHS u> RHS and RHS == high-bit-mask - 1
126    TrueIfSigned = true;
127    return RHS->getValue() ==
128      APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
129  case ICmpInst::ICMP_UGE:
130    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
131    TrueIfSigned = true;
132    return RHS->getValue().isSignBit();
133  default:
134    return false;
135  }
136}
137
138// isHighOnes - Return true if the constant is of the form 1+0+.
139// This is the same as lowones(~X).
140static bool isHighOnes(const ConstantInt *CI) {
141  return (~CI->getValue() + 1).isPowerOf2();
142}
143
144/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
145/// set of known zero and one bits, compute the maximum and minimum values that
146/// could have the specified known zero and known one bits, returning them in
147/// min/max.
148static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
149                                                   const APInt& KnownOne,
150                                                   APInt& Min, APInt& Max) {
151  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
152         KnownZero.getBitWidth() == Min.getBitWidth() &&
153         KnownZero.getBitWidth() == Max.getBitWidth() &&
154         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
155  APInt UnknownBits = ~(KnownZero|KnownOne);
156
157  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
158  // bit if it is unknown.
159  Min = KnownOne;
160  Max = KnownOne|UnknownBits;
161
162  if (UnknownBits.isNegative()) { // Sign bit is unknown
163    Min.set(Min.getBitWidth()-1);
164    Max.clear(Max.getBitWidth()-1);
165  }
166}
167
168// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
169// a set of known zero and one bits, compute the maximum and minimum values that
170// could have the specified known zero and known one bits, returning them in
171// min/max.
172static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
173                                                     const APInt &KnownOne,
174                                                     APInt &Min, APInt &Max) {
175  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
176         KnownZero.getBitWidth() == Min.getBitWidth() &&
177         KnownZero.getBitWidth() == Max.getBitWidth() &&
178         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
179  APInt UnknownBits = ~(KnownZero|KnownOne);
180
181  // The minimum value is when the unknown bits are all zeros.
182  Min = KnownOne;
183  // The maximum value is when the unknown bits are all ones.
184  Max = KnownOne|UnknownBits;
185}
186
187
188
189/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
190///   cmp pred (load (gep GV, ...)), cmpcst
191/// where GV is a global variable with a constant initializer.  Try to simplify
192/// this into some simple computation that does not need the load.  For example
193/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
194///
195/// If AndCst is non-null, then the loaded value is masked with that constant
196/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
197Instruction *InstCombiner::
198FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
199                             CmpInst &ICI, ConstantInt *AndCst) {
200  // We need TD information to know the pointer size unless this is inbounds.
201  if (!GEP->isInBounds() && TD == 0) return 0;
202
203  ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
204  if (Init == 0 || Init->getNumOperands() > 1024) return 0;
205
206  // There are many forms of this optimization we can handle, for now, just do
207  // the simple index into a single-dimensional array.
208  //
209  // Require: GEP GV, 0, i {{, constant indices}}
210  if (GEP->getNumOperands() < 3 ||
211      !isa<ConstantInt>(GEP->getOperand(1)) ||
212      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
213      isa<Constant>(GEP->getOperand(2)))
214    return 0;
215
216  // Check that indices after the variable are constants and in-range for the
217  // type they index.  Collect the indices.  This is typically for arrays of
218  // structs.
219  SmallVector<unsigned, 4> LaterIndices;
220
221  const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
222  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
223    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
224    if (Idx == 0) return 0;  // Variable index.
225
226    uint64_t IdxVal = Idx->getZExtValue();
227    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
228
229    if (const StructType *STy = dyn_cast<StructType>(EltTy))
230      EltTy = STy->getElementType(IdxVal);
231    else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
232      if (IdxVal >= ATy->getNumElements()) return 0;
233      EltTy = ATy->getElementType();
234    } else {
235      return 0; // Unknown type.
236    }
237
238    LaterIndices.push_back(IdxVal);
239  }
240
241  enum { Overdefined = -3, Undefined = -2 };
242
243  // Variables for our state machines.
244
245  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
246  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
247  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
248  // undefined, otherwise set to the first true element.  SecondTrueElement is
249  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
250  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
251
252  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
253  // form "i != 47 & i != 87".  Same state transitions as for true elements.
254  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
255
256  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
257  /// define a state machine that triggers for ranges of values that the index
258  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
259  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
260  /// index in the range (inclusive).  We use -2 for undefined here because we
261  /// use relative comparisons and don't want 0-1 to match -1.
262  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
263
264  // MagicBitvector - This is a magic bitvector where we set a bit if the
265  // comparison is true for element 'i'.  If there are 64 elements or less in
266  // the array, this will fully represent all the comparison results.
267  uint64_t MagicBitvector = 0;
268
269
270  // Scan the array and see if one of our patterns matches.
271  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
272  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
273    Constant *Elt = Init->getOperand(i);
274
275    // If this is indexing an array of structures, get the structure element.
276    if (!LaterIndices.empty())
277      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
278                                          LaterIndices.size());
279
280    // If the element is masked, handle it.
281    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
282
283    // Find out if the comparison would be true or false for the i'th element.
284    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
285                                                  CompareRHS, TD);
286    // If the result is undef for this element, ignore it.
287    if (isa<UndefValue>(C)) {
288      // Extend range state machines to cover this element in case there is an
289      // undef in the middle of the range.
290      if (TrueRangeEnd == (int)i-1)
291        TrueRangeEnd = i;
292      if (FalseRangeEnd == (int)i-1)
293        FalseRangeEnd = i;
294      continue;
295    }
296
297    // If we can't compute the result for any of the elements, we have to give
298    // up evaluating the entire conditional.
299    if (!isa<ConstantInt>(C)) return 0;
300
301    // Otherwise, we know if the comparison is true or false for this element,
302    // update our state machines.
303    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
304
305    // State machine for single/double/range index comparison.
306    if (IsTrueForElt) {
307      // Update the TrueElement state machine.
308      if (FirstTrueElement == Undefined)
309        FirstTrueElement = TrueRangeEnd = i;  // First true element.
310      else {
311        // Update double-compare state machine.
312        if (SecondTrueElement == Undefined)
313          SecondTrueElement = i;
314        else
315          SecondTrueElement = Overdefined;
316
317        // Update range state machine.
318        if (TrueRangeEnd == (int)i-1)
319          TrueRangeEnd = i;
320        else
321          TrueRangeEnd = Overdefined;
322      }
323    } else {
324      // Update the FalseElement state machine.
325      if (FirstFalseElement == Undefined)
326        FirstFalseElement = FalseRangeEnd = i; // First false element.
327      else {
328        // Update double-compare state machine.
329        if (SecondFalseElement == Undefined)
330          SecondFalseElement = i;
331        else
332          SecondFalseElement = Overdefined;
333
334        // Update range state machine.
335        if (FalseRangeEnd == (int)i-1)
336          FalseRangeEnd = i;
337        else
338          FalseRangeEnd = Overdefined;
339      }
340    }
341
342
343    // If this element is in range, update our magic bitvector.
344    if (i < 64 && IsTrueForElt)
345      MagicBitvector |= 1ULL << i;
346
347    // If all of our states become overdefined, bail out early.  Since the
348    // predicate is expensive, only check it every 8 elements.  This is only
349    // really useful for really huge arrays.
350    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
351        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
352        FalseRangeEnd == Overdefined)
353      return 0;
354  }
355
356  // Now that we've scanned the entire array, emit our new comparison(s).  We
357  // order the state machines in complexity of the generated code.
358  Value *Idx = GEP->getOperand(2);
359
360  // If the index is larger than the pointer size of the target, truncate the
361  // index down like the GEP would do implicitly.  We don't have to do this for
362  // an inbounds GEP because the index can't be out of range.
363  if (!GEP->isInBounds() &&
364      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
365    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
366
367  // If the comparison is only true for one or two elements, emit direct
368  // comparisons.
369  if (SecondTrueElement != Overdefined) {
370    // None true -> false.
371    if (FirstTrueElement == Undefined)
372      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
373
374    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
375
376    // True for one element -> 'i == 47'.
377    if (SecondTrueElement == Undefined)
378      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
379
380    // True for two elements -> 'i == 47 | i == 72'.
381    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
382    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
383    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
384    return BinaryOperator::CreateOr(C1, C2);
385  }
386
387  // If the comparison is only false for one or two elements, emit direct
388  // comparisons.
389  if (SecondFalseElement != Overdefined) {
390    // None false -> true.
391    if (FirstFalseElement == Undefined)
392      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
393
394    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
395
396    // False for one element -> 'i != 47'.
397    if (SecondFalseElement == Undefined)
398      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
399
400    // False for two elements -> 'i != 47 & i != 72'.
401    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
402    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
403    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
404    return BinaryOperator::CreateAnd(C1, C2);
405  }
406
407  // If the comparison can be replaced with a range comparison for the elements
408  // where it is true, emit the range check.
409  if (TrueRangeEnd != Overdefined) {
410    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
411
412    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
413    if (FirstTrueElement) {
414      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
415      Idx = Builder->CreateAdd(Idx, Offs);
416    }
417
418    Value *End = ConstantInt::get(Idx->getType(),
419                                  TrueRangeEnd-FirstTrueElement+1);
420    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
421  }
422
423  // False range check.
424  if (FalseRangeEnd != Overdefined) {
425    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
426    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
427    if (FirstFalseElement) {
428      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
429      Idx = Builder->CreateAdd(Idx, Offs);
430    }
431
432    Value *End = ConstantInt::get(Idx->getType(),
433                                  FalseRangeEnd-FirstFalseElement);
434    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
435  }
436
437
438  // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
439  // of this load, replace it with computation that does:
440  //   ((magic_cst >> i) & 1) != 0
441  if (Init->getNumOperands() <= 32 ||
442      (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
443    const Type *Ty;
444    if (Init->getNumOperands() <= 32)
445      Ty = Type::getInt32Ty(Init->getContext());
446    else
447      Ty = Type::getInt64Ty(Init->getContext());
448    Value *V = Builder->CreateIntCast(Idx, Ty, false);
449    V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
450    V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
451    return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
452  }
453
454  return 0;
455}
456
457
458/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
459/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
460/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
461/// be complex, and scales are involved.  The above expression would also be
462/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
463/// This later form is less amenable to optimization though, and we are allowed
464/// to generate the first by knowing that pointer arithmetic doesn't overflow.
465///
466/// If we can't emit an optimized form for this expression, this returns null.
467///
468static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
469                                          InstCombiner &IC) {
470  TargetData &TD = *IC.getTargetData();
471  gep_type_iterator GTI = gep_type_begin(GEP);
472
473  // Check to see if this gep only has a single variable index.  If so, and if
474  // any constant indices are a multiple of its scale, then we can compute this
475  // in terms of the scale of the variable index.  For example, if the GEP
476  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
477  // because the expression will cross zero at the same point.
478  unsigned i, e = GEP->getNumOperands();
479  int64_t Offset = 0;
480  for (i = 1; i != e; ++i, ++GTI) {
481    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
482      // Compute the aggregate offset of constant indices.
483      if (CI->isZero()) continue;
484
485      // Handle a struct index, which adds its field offset to the pointer.
486      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
487        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
488      } else {
489        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
490        Offset += Size*CI->getSExtValue();
491      }
492    } else {
493      // Found our variable index.
494      break;
495    }
496  }
497
498  // If there are no variable indices, we must have a constant offset, just
499  // evaluate it the general way.
500  if (i == e) return 0;
501
502  Value *VariableIdx = GEP->getOperand(i);
503  // Determine the scale factor of the variable element.  For example, this is
504  // 4 if the variable index is into an array of i32.
505  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
506
507  // Verify that there are no other variable indices.  If so, emit the hard way.
508  for (++i, ++GTI; i != e; ++i, ++GTI) {
509    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
510    if (!CI) return 0;
511
512    // Compute the aggregate offset of constant indices.
513    if (CI->isZero()) continue;
514
515    // Handle a struct index, which adds its field offset to the pointer.
516    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
517      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
518    } else {
519      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
520      Offset += Size*CI->getSExtValue();
521    }
522  }
523
524  // Okay, we know we have a single variable index, which must be a
525  // pointer/array/vector index.  If there is no offset, life is simple, return
526  // the index.
527  unsigned IntPtrWidth = TD.getPointerSizeInBits();
528  if (Offset == 0) {
529    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
530    // we don't need to bother extending: the extension won't affect where the
531    // computation crosses zero.
532    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
533      VariableIdx = new TruncInst(VariableIdx,
534                                  TD.getIntPtrType(VariableIdx->getContext()),
535                                  VariableIdx->getName(), &I);
536    return VariableIdx;
537  }
538
539  // Otherwise, there is an index.  The computation we will do will be modulo
540  // the pointer size, so get it.
541  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
542
543  Offset &= PtrSizeMask;
544  VariableScale &= PtrSizeMask;
545
546  // To do this transformation, any constant index must be a multiple of the
547  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
548  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
549  // multiple of the variable scale.
550  int64_t NewOffs = Offset / (int64_t)VariableScale;
551  if (Offset != NewOffs*(int64_t)VariableScale)
552    return 0;
553
554  // Okay, we can do this evaluation.  Start by converting the index to intptr.
555  const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
556  if (VariableIdx->getType() != IntPtrTy)
557    VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
558                                              true /*SExt*/,
559                                              VariableIdx->getName(), &I);
560  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
561  return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
562}
563
564/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
565/// else.  At this point we know that the GEP is on the LHS of the comparison.
566Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
567                                       ICmpInst::Predicate Cond,
568                                       Instruction &I) {
569  // Look through bitcasts.
570  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
571    RHS = BCI->getOperand(0);
572
573  Value *PtrBase = GEPLHS->getOperand(0);
574  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
575    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
576    // This transformation (ignoring the base and scales) is valid because we
577    // know pointers can't overflow since the gep is inbounds.  See if we can
578    // output an optimized form.
579    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
580
581    // If not, synthesize the offset the hard way.
582    if (Offset == 0)
583      Offset = EmitGEPOffset(GEPLHS);
584    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
585                        Constant::getNullValue(Offset->getType()));
586  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
587    // If the base pointers are different, but the indices are the same, just
588    // compare the base pointer.
589    if (PtrBase != GEPRHS->getOperand(0)) {
590      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
591      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
592                        GEPRHS->getOperand(0)->getType();
593      if (IndicesTheSame)
594        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
595          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
596            IndicesTheSame = false;
597            break;
598          }
599
600      // If all indices are the same, just compare the base pointers.
601      if (IndicesTheSame)
602        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
603                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
604
605      // Otherwise, the base pointers are different and the indices are
606      // different, bail out.
607      return 0;
608    }
609
610    // If one of the GEPs has all zero indices, recurse.
611    bool AllZeros = true;
612    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
613      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
614          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
615        AllZeros = false;
616        break;
617      }
618    if (AllZeros)
619      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
620                          ICmpInst::getSwappedPredicate(Cond), I);
621
622    // If the other GEP has all zero indices, recurse.
623    AllZeros = true;
624    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
625      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
626          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
627        AllZeros = false;
628        break;
629      }
630    if (AllZeros)
631      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
632
633    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
634      // If the GEPs only differ by one index, compare it.
635      unsigned NumDifferences = 0;  // Keep track of # differences.
636      unsigned DiffOperand = 0;     // The operand that differs.
637      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
638        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
639          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
640                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
641            // Irreconcilable differences.
642            NumDifferences = 2;
643            break;
644          } else {
645            if (NumDifferences++) break;
646            DiffOperand = i;
647          }
648        }
649
650      if (NumDifferences == 0)   // SAME GEP?
651        return ReplaceInstUsesWith(I, // No comparison is needed here.
652                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
653                                             ICmpInst::isTrueWhenEqual(Cond)));
654
655      else if (NumDifferences == 1) {
656        Value *LHSV = GEPLHS->getOperand(DiffOperand);
657        Value *RHSV = GEPRHS->getOperand(DiffOperand);
658        // Make sure we do a signed comparison here.
659        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
660      }
661    }
662
663    // Only lower this if the icmp is the only user of the GEP or if we expect
664    // the result to fold to a constant!
665    if (TD &&
666        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
667        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
668      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
669      Value *L = EmitGEPOffset(GEPLHS);
670      Value *R = EmitGEPOffset(GEPRHS);
671      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
672    }
673  }
674  return 0;
675}
676
677/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
678Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
679                                            Value *X, ConstantInt *CI,
680                                            ICmpInst::Predicate Pred,
681                                            Value *TheAdd) {
682  // If we have X+0, exit early (simplifying logic below) and let it get folded
683  // elsewhere.   icmp X+0, X  -> icmp X, X
684  if (CI->isZero()) {
685    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
686    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
687  }
688
689  // (X+4) == X -> false.
690  if (Pred == ICmpInst::ICMP_EQ)
691    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
692
693  // (X+4) != X -> true.
694  if (Pred == ICmpInst::ICMP_NE)
695    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
696
697  // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
698  bool isNUW = false, isNSW = false;
699  if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
700    isNUW = Add->hasNoUnsignedWrap();
701    isNSW = Add->hasNoSignedWrap();
702  }
703
704  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
705  // so the values can never be equal.  Similiarly for all other "or equals"
706  // operators.
707
708  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
709  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
710  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
711  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
712    // If this is an NUW add, then this is always false.
713    if (isNUW)
714      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
715
716    Value *R =
717      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
718    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
719  }
720
721  // (X+1) >u X        --> X <u (0-1)        --> X != 255
722  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
723  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
724  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
725    // If this is an NUW add, then this is always true.
726    if (isNUW)
727      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
728    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
729  }
730
731  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
732  ConstantInt *SMax = ConstantInt::get(X->getContext(),
733                                       APInt::getSignedMaxValue(BitWidth));
734
735  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
736  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
737  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
738  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
739  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
740  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
741  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
742    // If this is an NSW add, then we have two cases: if the constant is
743    // positive, then this is always false, if negative, this is always true.
744    if (isNSW) {
745      bool isTrue = CI->getValue().isNegative();
746      return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
747    }
748
749    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
750  }
751
752  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
753  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
754  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
755  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
756  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
757  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
758
759  // If this is an NSW add, then we have two cases: if the constant is
760  // positive, then this is always true, if negative, this is always false.
761  if (isNSW) {
762    bool isTrue = !CI->getValue().isNegative();
763    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
764  }
765
766  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
767  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
768  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
769}
770
771/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
772/// and CmpRHS are both known to be integer constants.
773Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
774                                          ConstantInt *DivRHS) {
775  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
776  const APInt &CmpRHSV = CmpRHS->getValue();
777
778  // FIXME: If the operand types don't match the type of the divide
779  // then don't attempt this transform. The code below doesn't have the
780  // logic to deal with a signed divide and an unsigned compare (and
781  // vice versa). This is because (x /s C1) <s C2  produces different
782  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
783  // (x /u C1) <u C2.  Simply casting the operands and result won't
784  // work. :(  The if statement below tests that condition and bails
785  // if it finds it.
786  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
787  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
788    return 0;
789  if (DivRHS->isZero())
790    return 0; // The ProdOV computation fails on divide by zero.
791  if (DivIsSigned && DivRHS->isAllOnesValue())
792    return 0; // The overflow computation also screws up here
793  if (DivRHS->isOne())
794    return 0; // Not worth bothering, and eliminates some funny cases
795              // with INT_MIN.
796
797  // Compute Prod = CI * DivRHS. We are essentially solving an equation
798  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
799  // C2 (CI). By solving for X we can turn this into a range check
800  // instead of computing a divide.
801  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
802
803  // Determine if the product overflows by seeing if the product is
804  // not equal to the divide. Make sure we do the same kind of divide
805  // as in the LHS instruction that we're folding.
806  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
807                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
808
809  // Get the ICmp opcode
810  ICmpInst::Predicate Pred = ICI.getPredicate();
811
812  // Figure out the interval that is being checked.  For example, a comparison
813  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
814  // Compute this interval based on the constants involved and the signedness of
815  // the compare/divide.  This computes a half-open interval, keeping track of
816  // whether either value in the interval overflows.  After analysis each
817  // overflow variable is set to 0 if it's corresponding bound variable is valid
818  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
819  int LoOverflow = 0, HiOverflow = 0;
820  Constant *LoBound = 0, *HiBound = 0;
821
822  if (!DivIsSigned) {  // udiv
823    // e.g. X/5 op 3  --> [15, 20)
824    LoBound = Prod;
825    HiOverflow = LoOverflow = ProdOV;
826    if (!HiOverflow)
827      HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
828  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
829    if (CmpRHSV == 0) {       // (X / pos) op 0
830      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
831      LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
832      HiBound = DivRHS;
833    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
834      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
835      HiOverflow = LoOverflow = ProdOV;
836      if (!HiOverflow)
837        HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
838    } else {                       // (X / pos) op neg
839      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
840      HiBound = AddOne(Prod);
841      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
842      if (!LoOverflow) {
843        ConstantInt* DivNeg =
844                         cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
845        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
846       }
847    }
848  } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
849    if (CmpRHSV == 0) {       // (X / neg) op 0
850      // e.g. X/-5 op 0  --> [-4, 5)
851      LoBound = AddOne(DivRHS);
852      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
853      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
854        HiOverflow = 1;            // [INTMIN+1, overflow)
855        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
856      }
857    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
858      // e.g. X/-5 op 3  --> [-19, -14)
859      HiBound = AddOne(Prod);
860      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
861      if (!LoOverflow)
862        LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
863    } else {                       // (X / neg) op neg
864      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
865      LoOverflow = HiOverflow = ProdOV;
866      if (!HiOverflow)
867        HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
868    }
869
870    // Dividing by a negative swaps the condition.  LT <-> GT
871    Pred = ICmpInst::getSwappedPredicate(Pred);
872  }
873
874  Value *X = DivI->getOperand(0);
875  switch (Pred) {
876  default: llvm_unreachable("Unhandled icmp opcode!");
877  case ICmpInst::ICMP_EQ:
878    if (LoOverflow && HiOverflow)
879      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
880    if (HiOverflow)
881      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
882                          ICmpInst::ICMP_UGE, X, LoBound);
883    if (LoOverflow)
884      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
885                          ICmpInst::ICMP_ULT, X, HiBound);
886    return ReplaceInstUsesWith(ICI,
887                               InsertRangeTest(X, LoBound, HiBound, DivIsSigned,
888                                               true));
889  case ICmpInst::ICMP_NE:
890    if (LoOverflow && HiOverflow)
891      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
892    if (HiOverflow)
893      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
894                          ICmpInst::ICMP_ULT, X, LoBound);
895    if (LoOverflow)
896      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
897                          ICmpInst::ICMP_UGE, X, HiBound);
898    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
899                                                    DivIsSigned, false));
900  case ICmpInst::ICMP_ULT:
901  case ICmpInst::ICMP_SLT:
902    if (LoOverflow == +1)   // Low bound is greater than input range.
903      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
904    if (LoOverflow == -1)   // Low bound is less than input range.
905      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
906    return new ICmpInst(Pred, X, LoBound);
907  case ICmpInst::ICMP_UGT:
908  case ICmpInst::ICMP_SGT:
909    if (HiOverflow == +1)       // High bound greater than input range.
910      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
911    else if (HiOverflow == -1)  // High bound less than input range.
912      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
913    if (Pred == ICmpInst::ICMP_UGT)
914      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
915    else
916      return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
917  }
918}
919
920
921/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
922///
923Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
924                                                          Instruction *LHSI,
925                                                          ConstantInt *RHS) {
926  const APInt &RHSV = RHS->getValue();
927
928  switch (LHSI->getOpcode()) {
929  case Instruction::Trunc:
930    if (ICI.isEquality() && LHSI->hasOneUse()) {
931      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
932      // of the high bits truncated out of x are known.
933      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
934             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
935      APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
936      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
937      ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
938
939      // If all the high bits are known, we can do this xform.
940      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
941        // Pull in the high bits from known-ones set.
942        APInt NewRHS(RHS->getValue());
943        NewRHS.zext(SrcBits);
944        NewRHS |= KnownOne;
945        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
946                            ConstantInt::get(ICI.getContext(), NewRHS));
947      }
948    }
949    break;
950
951  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
952    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
953      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
954      // fold the xor.
955      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
956          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
957        Value *CompareVal = LHSI->getOperand(0);
958
959        // If the sign bit of the XorCST is not set, there is no change to
960        // the operation, just stop using the Xor.
961        if (!XorCST->getValue().isNegative()) {
962          ICI.setOperand(0, CompareVal);
963          Worklist.Add(LHSI);
964          return &ICI;
965        }
966
967        // Was the old condition true if the operand is positive?
968        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
969
970        // If so, the new one isn't.
971        isTrueIfPositive ^= true;
972
973        if (isTrueIfPositive)
974          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
975                              SubOne(RHS));
976        else
977          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
978                              AddOne(RHS));
979      }
980
981      if (LHSI->hasOneUse()) {
982        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
983        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
984          const APInt &SignBit = XorCST->getValue();
985          ICmpInst::Predicate Pred = ICI.isSigned()
986                                         ? ICI.getUnsignedPredicate()
987                                         : ICI.getSignedPredicate();
988          return new ICmpInst(Pred, LHSI->getOperand(0),
989                              ConstantInt::get(ICI.getContext(),
990                                               RHSV ^ SignBit));
991        }
992
993        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
994        if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
995          const APInt &NotSignBit = XorCST->getValue();
996          ICmpInst::Predicate Pred = ICI.isSigned()
997                                         ? ICI.getUnsignedPredicate()
998                                         : ICI.getSignedPredicate();
999          Pred = ICI.getSwappedPredicate(Pred);
1000          return new ICmpInst(Pred, LHSI->getOperand(0),
1001                              ConstantInt::get(ICI.getContext(),
1002                                               RHSV ^ NotSignBit));
1003        }
1004      }
1005    }
1006    break;
1007  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1008    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1009        LHSI->getOperand(0)->hasOneUse()) {
1010      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1011
1012      // If the LHS is an AND of a truncating cast, we can widen the
1013      // and/compare to be the input width without changing the value
1014      // produced, eliminating a cast.
1015      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1016        // We can do this transformation if either the AND constant does not
1017        // have its sign bit set or if it is an equality comparison.
1018        // Extending a relational comparison when we're checking the sign
1019        // bit would not work.
1020        if (Cast->hasOneUse() &&
1021            (ICI.isEquality() ||
1022             (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
1023          uint32_t BitWidth =
1024            cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
1025          APInt NewCST = AndCST->getValue();
1026          NewCST.zext(BitWidth);
1027          APInt NewCI = RHSV;
1028          NewCI.zext(BitWidth);
1029          Value *NewAnd =
1030            Builder->CreateAnd(Cast->getOperand(0),
1031                           ConstantInt::get(ICI.getContext(), NewCST),
1032                               LHSI->getName());
1033          return new ICmpInst(ICI.getPredicate(), NewAnd,
1034                              ConstantInt::get(ICI.getContext(), NewCI));
1035        }
1036      }
1037
1038      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1039      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1040      // happens a LOT in code produced by the C front-end, for bitfield
1041      // access.
1042      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1043      if (Shift && !Shift->isShift())
1044        Shift = 0;
1045
1046      ConstantInt *ShAmt;
1047      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1048      const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1049      const Type *AndTy = AndCST->getType();          // Type of the and.
1050
1051      // We can fold this as long as we can't shift unknown bits
1052      // into the mask.  This can only happen with signed shift
1053      // rights, as they sign-extend.
1054      if (ShAmt) {
1055        bool CanFold = Shift->isLogicalShift();
1056        if (!CanFold) {
1057          // To test for the bad case of the signed shr, see if any
1058          // of the bits shifted in could be tested after the mask.
1059          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1060          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1061
1062          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1063          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1064               AndCST->getValue()) == 0)
1065            CanFold = true;
1066        }
1067
1068        if (CanFold) {
1069          Constant *NewCst;
1070          if (Shift->getOpcode() == Instruction::Shl)
1071            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1072          else
1073            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1074
1075          // Check to see if we are shifting out any of the bits being
1076          // compared.
1077          if (ConstantExpr::get(Shift->getOpcode(),
1078                                       NewCst, ShAmt) != RHS) {
1079            // If we shifted bits out, the fold is not going to work out.
1080            // As a special case, check to see if this means that the
1081            // result is always true or false now.
1082            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1083              return ReplaceInstUsesWith(ICI,
1084                                       ConstantInt::getFalse(ICI.getContext()));
1085            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1086              return ReplaceInstUsesWith(ICI,
1087                                       ConstantInt::getTrue(ICI.getContext()));
1088          } else {
1089            ICI.setOperand(1, NewCst);
1090            Constant *NewAndCST;
1091            if (Shift->getOpcode() == Instruction::Shl)
1092              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1093            else
1094              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1095            LHSI->setOperand(1, NewAndCST);
1096            LHSI->setOperand(0, Shift->getOperand(0));
1097            Worklist.Add(Shift); // Shift is dead.
1098            return &ICI;
1099          }
1100        }
1101      }
1102
1103      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1104      // preferable because it allows the C<<Y expression to be hoisted out
1105      // of a loop if Y is invariant and X is not.
1106      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1107          ICI.isEquality() && !Shift->isArithmeticShift() &&
1108          !isa<Constant>(Shift->getOperand(0))) {
1109        // Compute C << Y.
1110        Value *NS;
1111        if (Shift->getOpcode() == Instruction::LShr) {
1112          NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
1113        } else {
1114          // Insert a logical shift.
1115          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
1116        }
1117
1118        // Compute X & (C << Y).
1119        Value *NewAnd =
1120          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1121
1122        ICI.setOperand(0, NewAnd);
1123        return &ICI;
1124      }
1125    }
1126
1127    // Try to optimize things like "A[i]&42 == 0" to index computations.
1128    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1129      if (GetElementPtrInst *GEP =
1130          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1131        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1132          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1133              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1134            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1135            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1136              return Res;
1137          }
1138    }
1139    break;
1140
1141  case Instruction::Or: {
1142    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1143      break;
1144    Value *P, *Q;
1145    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1146      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1147      // -> and (icmp eq P, null), (icmp eq Q, null).
1148
1149      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1150                                        Constant::getNullValue(P->getType()));
1151      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1152                                        Constant::getNullValue(Q->getType()));
1153      Instruction *Op;
1154      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1155        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1156      else
1157        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1158      return Op;
1159    }
1160    break;
1161  }
1162
1163  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1164    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1165    if (!ShAmt) break;
1166
1167    uint32_t TypeBits = RHSV.getBitWidth();
1168
1169    // Check that the shift amount is in range.  If not, don't perform
1170    // undefined shifts.  When the shift is visited it will be
1171    // simplified.
1172    if (ShAmt->uge(TypeBits))
1173      break;
1174
1175    if (ICI.isEquality()) {
1176      // If we are comparing against bits always shifted out, the
1177      // comparison cannot succeed.
1178      Constant *Comp =
1179        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1180                                                                 ShAmt);
1181      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1182        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1183        Constant *Cst =
1184          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1185        return ReplaceInstUsesWith(ICI, Cst);
1186      }
1187
1188      if (LHSI->hasOneUse()) {
1189        // Otherwise strength reduce the shift into an and.
1190        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1191        Constant *Mask =
1192          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1193                                                       TypeBits-ShAmtVal));
1194
1195        Value *And =
1196          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1197        return new ICmpInst(ICI.getPredicate(), And,
1198                            ConstantInt::get(ICI.getContext(),
1199                                             RHSV.lshr(ShAmtVal)));
1200      }
1201    }
1202
1203    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1204    bool TrueIfSigned = false;
1205    if (LHSI->hasOneUse() &&
1206        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1207      // (X << 31) <s 0  --> (X&1) != 0
1208      Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) <<
1209                                           (TypeBits-ShAmt->getZExtValue()-1));
1210      Value *And =
1211        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1212      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1213                          And, Constant::getNullValue(And->getType()));
1214    }
1215    break;
1216  }
1217
1218  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1219  case Instruction::AShr: {
1220    // Only handle equality comparisons of shift-by-constant.
1221    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1222    if (!ShAmt || !ICI.isEquality()) break;
1223
1224    // Check that the shift amount is in range.  If not, don't perform
1225    // undefined shifts.  When the shift is visited it will be
1226    // simplified.
1227    uint32_t TypeBits = RHSV.getBitWidth();
1228    if (ShAmt->uge(TypeBits))
1229      break;
1230
1231    uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1232
1233    // If we are comparing against bits always shifted out, the
1234    // comparison cannot succeed.
1235    APInt Comp = RHSV << ShAmtVal;
1236    if (LHSI->getOpcode() == Instruction::LShr)
1237      Comp = Comp.lshr(ShAmtVal);
1238    else
1239      Comp = Comp.ashr(ShAmtVal);
1240
1241    if (Comp != RHSV) { // Comparing against a bit that we know is zero.
1242      bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1243      Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1244                                       IsICMP_NE);
1245      return ReplaceInstUsesWith(ICI, Cst);
1246    }
1247
1248    // Otherwise, check to see if the bits shifted out are known to be zero.
1249    // If so, we can compare against the unshifted value:
1250    //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1251    if (LHSI->hasOneUse() &&
1252        MaskedValueIsZero(LHSI->getOperand(0),
1253                          APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
1254      return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1255                          ConstantExpr::getShl(RHS, ShAmt));
1256    }
1257
1258    if (LHSI->hasOneUse()) {
1259      // Otherwise strength reduce the shift into an and.
1260      APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1261      Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
1262
1263      Value *And = Builder->CreateAnd(LHSI->getOperand(0),
1264                                      Mask, LHSI->getName()+".mask");
1265      return new ICmpInst(ICI.getPredicate(), And,
1266                          ConstantExpr::getShl(RHS, ShAmt));
1267    }
1268    break;
1269  }
1270
1271  case Instruction::SDiv:
1272  case Instruction::UDiv:
1273    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1274    // Fold this div into the comparison, producing a range check.
1275    // Determine, based on the divide type, what the range is being
1276    // checked.  If there is an overflow on the low or high side, remember
1277    // it, otherwise compute the range [low, hi) bounding the new value.
1278    // See: InsertRangeTest above for the kinds of replacements possible.
1279    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1280      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1281                                          DivRHS))
1282        return R;
1283    break;
1284
1285  case Instruction::Add:
1286    // Fold: icmp pred (add X, C1), C2
1287    if (!ICI.isEquality()) {
1288      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1289      if (!LHSC) break;
1290      const APInt &LHSV = LHSC->getValue();
1291
1292      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1293                            .subtract(LHSV);
1294
1295      if (ICI.isSigned()) {
1296        if (CR.getLower().isSignBit()) {
1297          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1298                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1299        } else if (CR.getUpper().isSignBit()) {
1300          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1301                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1302        }
1303      } else {
1304        if (CR.getLower().isMinValue()) {
1305          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1306                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1307        } else if (CR.getUpper().isMinValue()) {
1308          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1309                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1310        }
1311      }
1312    }
1313    break;
1314  }
1315
1316  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1317  if (ICI.isEquality()) {
1318    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1319
1320    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1321    // the second operand is a constant, simplify a bit.
1322    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1323      switch (BO->getOpcode()) {
1324      case Instruction::SRem:
1325        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1326        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1327          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1328          if (V.sgt(1) && V.isPowerOf2()) {
1329            Value *NewRem =
1330              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1331                                  BO->getName());
1332            return new ICmpInst(ICI.getPredicate(), NewRem,
1333                                Constant::getNullValue(BO->getType()));
1334          }
1335        }
1336        break;
1337      case Instruction::Add:
1338        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1339        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1340          if (BO->hasOneUse())
1341            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1342                                ConstantExpr::getSub(RHS, BOp1C));
1343        } else if (RHSV == 0) {
1344          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1345          // efficiently invertible, or if the add has just this one use.
1346          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1347
1348          if (Value *NegVal = dyn_castNegVal(BOp1))
1349            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1350          else if (Value *NegVal = dyn_castNegVal(BOp0))
1351            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1352          else if (BO->hasOneUse()) {
1353            Value *Neg = Builder->CreateNeg(BOp1);
1354            Neg->takeName(BO);
1355            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1356          }
1357        }
1358        break;
1359      case Instruction::Xor:
1360        // For the xor case, we can xor two constants together, eliminating
1361        // the explicit xor.
1362        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1363          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1364                              ConstantExpr::getXor(RHS, BOC));
1365
1366        // FALLTHROUGH
1367      case Instruction::Sub:
1368        // Replace (([sub|xor] A, B) != 0) with (A != B)
1369        if (RHSV == 0)
1370          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1371                              BO->getOperand(1));
1372        break;
1373
1374      case Instruction::Or:
1375        // If bits are being or'd in that are not present in the constant we
1376        // are comparing against, then the comparison could never succeed!
1377        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1378          Constant *NotCI = ConstantExpr::getNot(RHS);
1379          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1380            return ReplaceInstUsesWith(ICI,
1381                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1382                                       isICMP_NE));
1383        }
1384        break;
1385
1386      case Instruction::And:
1387        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1388          // If bits are being compared against that are and'd out, then the
1389          // comparison can never succeed!
1390          if ((RHSV & ~BOC->getValue()) != 0)
1391            return ReplaceInstUsesWith(ICI,
1392                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1393                                       isICMP_NE));
1394
1395          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1396          if (RHS == BOC && RHSV.isPowerOf2())
1397            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1398                                ICmpInst::ICMP_NE, LHSI,
1399                                Constant::getNullValue(RHS->getType()));
1400
1401          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1402          if (BOC->getValue().isSignBit()) {
1403            Value *X = BO->getOperand(0);
1404            Constant *Zero = Constant::getNullValue(X->getType());
1405            ICmpInst::Predicate pred = isICMP_NE ?
1406              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1407            return new ICmpInst(pred, X, Zero);
1408          }
1409
1410          // ((X & ~7) == 0) --> X < 8
1411          if (RHSV == 0 && isHighOnes(BOC)) {
1412            Value *X = BO->getOperand(0);
1413            Constant *NegX = ConstantExpr::getNeg(BOC);
1414            ICmpInst::Predicate pred = isICMP_NE ?
1415              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1416            return new ICmpInst(pred, X, NegX);
1417          }
1418        }
1419      default: break;
1420      }
1421    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1422      // Handle icmp {eq|ne} <intrinsic>, intcst.
1423      switch (II->getIntrinsicID()) {
1424      case Intrinsic::bswap:
1425        Worklist.Add(II);
1426        ICI.setOperand(0, II->getArgOperand(0));
1427        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1428        return &ICI;
1429      case Intrinsic::ctlz:
1430      case Intrinsic::cttz:
1431        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1432        if (RHSV == RHS->getType()->getBitWidth()) {
1433          Worklist.Add(II);
1434          ICI.setOperand(0, II->getArgOperand(0));
1435          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1436          return &ICI;
1437        }
1438        break;
1439      case Intrinsic::ctpop:
1440        // popcount(A) == 0  ->  A == 0 and likewise for !=
1441        if (RHS->isZero()) {
1442          Worklist.Add(II);
1443          ICI.setOperand(0, II->getArgOperand(0));
1444          ICI.setOperand(1, RHS);
1445          return &ICI;
1446        }
1447        break;
1448      default:
1449        break;
1450      }
1451    }
1452  }
1453  return 0;
1454}
1455
1456/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1457/// We only handle extending casts so far.
1458///
1459Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1460  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1461  Value *LHSCIOp        = LHSCI->getOperand(0);
1462  const Type *SrcTy     = LHSCIOp->getType();
1463  const Type *DestTy    = LHSCI->getType();
1464  Value *RHSCIOp;
1465
1466  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1467  // integer type is the same size as the pointer type.
1468  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1469      TD->getPointerSizeInBits() ==
1470         cast<IntegerType>(DestTy)->getBitWidth()) {
1471    Value *RHSOp = 0;
1472    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1473      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1474    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1475      RHSOp = RHSC->getOperand(0);
1476      // If the pointer types don't match, insert a bitcast.
1477      if (LHSCIOp->getType() != RHSOp->getType())
1478        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1479    }
1480
1481    if (RHSOp)
1482      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1483  }
1484
1485  // The code below only handles extension cast instructions, so far.
1486  // Enforce this.
1487  if (LHSCI->getOpcode() != Instruction::ZExt &&
1488      LHSCI->getOpcode() != Instruction::SExt)
1489    return 0;
1490
1491  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1492  bool isSignedCmp = ICI.isSigned();
1493
1494  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1495    // Not an extension from the same type?
1496    RHSCIOp = CI->getOperand(0);
1497    if (RHSCIOp->getType() != LHSCIOp->getType())
1498      return 0;
1499
1500    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1501    // and the other is a zext), then we can't handle this.
1502    if (CI->getOpcode() != LHSCI->getOpcode())
1503      return 0;
1504
1505    // Deal with equality cases early.
1506    if (ICI.isEquality())
1507      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1508
1509    // A signed comparison of sign extended values simplifies into a
1510    // signed comparison.
1511    if (isSignedCmp && isSignedExt)
1512      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1513
1514    // The other three cases all fold into an unsigned comparison.
1515    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1516  }
1517
1518  // If we aren't dealing with a constant on the RHS, exit early
1519  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1520  if (!CI)
1521    return 0;
1522
1523  // Compute the constant that would happen if we truncated to SrcTy then
1524  // reextended to DestTy.
1525  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1526  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1527                                                Res1, DestTy);
1528
1529  // If the re-extended constant didn't change...
1530  if (Res2 == CI) {
1531    // Deal with equality cases early.
1532    if (ICI.isEquality())
1533      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1534
1535    // A signed comparison of sign extended values simplifies into a
1536    // signed comparison.
1537    if (isSignedExt && isSignedCmp)
1538      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1539
1540    // The other three cases all fold into an unsigned comparison.
1541    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1542  }
1543
1544  // The re-extended constant changed so the constant cannot be represented
1545  // in the shorter type. Consequently, we cannot emit a simple comparison.
1546
1547  // First, handle some easy cases. We know the result cannot be equal at this
1548  // point so handle the ICI.isEquality() cases
1549  if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1550    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
1551  if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1552    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
1553
1554  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1555  // should have been folded away previously and not enter in here.
1556  Value *Result;
1557  if (isSignedCmp) {
1558    // We're performing a signed comparison.
1559    if (cast<ConstantInt>(CI)->getValue().isNegative())
1560      Result = ConstantInt::getFalse(ICI.getContext()); // X < (small) --> false
1561    else
1562      Result = ConstantInt::getTrue(ICI.getContext());  // X < (large) --> true
1563  } else {
1564    // We're performing an unsigned comparison.
1565    if (isSignedExt) {
1566      // We're performing an unsigned comp with a sign extended value.
1567      // This is true if the input is >= 0. [aka >s -1]
1568      Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1569      Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1570    } else {
1571      // Unsigned extend & unsigned compare -> always true.
1572      Result = ConstantInt::getTrue(ICI.getContext());
1573    }
1574  }
1575
1576  // Finally, return the value computed.
1577  if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
1578      ICI.getPredicate() == ICmpInst::ICMP_SLT)
1579    return ReplaceInstUsesWith(ICI, Result);
1580
1581  assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
1582          ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
1583         "ICmp should be folded!");
1584  if (Constant *CI = dyn_cast<Constant>(Result))
1585    return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
1586  return BinaryOperator::CreateNot(Result);
1587}
1588
1589
1590
1591Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1592  bool Changed = false;
1593  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1594
1595  /// Orders the operands of the compare so that they are listed from most
1596  /// complex to least complex.  This puts constants before unary operators,
1597  /// before binary operators.
1598  if (getComplexity(Op0) < getComplexity(Op1)) {
1599    I.swapOperands();
1600    std::swap(Op0, Op1);
1601    Changed = true;
1602  }
1603
1604  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1605    return ReplaceInstUsesWith(I, V);
1606
1607  const Type *Ty = Op0->getType();
1608
1609  // icmp's with boolean values can always be turned into bitwise operations
1610  if (Ty->isIntegerTy(1)) {
1611    switch (I.getPredicate()) {
1612    default: llvm_unreachable("Invalid icmp instruction!");
1613    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
1614      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1615      return BinaryOperator::CreateNot(Xor);
1616    }
1617    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
1618      return BinaryOperator::CreateXor(Op0, Op1);
1619
1620    case ICmpInst::ICMP_UGT:
1621      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
1622      // FALL THROUGH
1623    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
1624      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1625      return BinaryOperator::CreateAnd(Not, Op1);
1626    }
1627    case ICmpInst::ICMP_SGT:
1628      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
1629      // FALL THROUGH
1630    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
1631      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1632      return BinaryOperator::CreateAnd(Not, Op0);
1633    }
1634    case ICmpInst::ICMP_UGE:
1635      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
1636      // FALL THROUGH
1637    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
1638      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1639      return BinaryOperator::CreateOr(Not, Op1);
1640    }
1641    case ICmpInst::ICMP_SGE:
1642      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
1643      // FALL THROUGH
1644    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
1645      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1646      return BinaryOperator::CreateOr(Not, Op0);
1647    }
1648    }
1649  }
1650
1651  unsigned BitWidth = 0;
1652  if (TD)
1653    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1654  else if (Ty->isIntOrIntVectorTy())
1655    BitWidth = Ty->getScalarSizeInBits();
1656
1657  bool isSignBit = false;
1658
1659  // See if we are doing a comparison with a constant.
1660  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1661    Value *A = 0, *B = 0;
1662
1663    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1664    if (I.isEquality() && CI->isZero() &&
1665        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1666      // (icmp cond A B) if cond is equality
1667      return new ICmpInst(I.getPredicate(), A, B);
1668    }
1669
1670    // If we have an icmp le or icmp ge instruction, turn it into the
1671    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
1672    // them being folded in the code below.  The SimplifyICmpInst code has
1673    // already handled the edge cases for us, so we just assert on them.
1674    switch (I.getPredicate()) {
1675    default: break;
1676    case ICmpInst::ICMP_ULE:
1677      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
1678      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1679                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1680    case ICmpInst::ICMP_SLE:
1681      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
1682      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1683                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1684    case ICmpInst::ICMP_UGE:
1685      assert(!CI->isMinValue(false));                  // A >=u MIN -> TRUE
1686      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1687                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1688    case ICmpInst::ICMP_SGE:
1689      assert(!CI->isMinValue(true));                   // A >=s MIN -> TRUE
1690      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1691                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1692    }
1693
1694    // If this comparison is a normal comparison, it demands all
1695    // bits, if it is a sign bit comparison, it only demands the sign bit.
1696    bool UnusedBit;
1697    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1698  }
1699
1700  // See if we can fold the comparison based on range information we can get
1701  // by checking whether bits are known to be zero or one in the input.
1702  if (BitWidth != 0) {
1703    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1704    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1705
1706    if (SimplifyDemandedBits(I.getOperandUse(0),
1707                             isSignBit ? APInt::getSignBit(BitWidth)
1708                                       : APInt::getAllOnesValue(BitWidth),
1709                             Op0KnownZero, Op0KnownOne, 0))
1710      return &I;
1711    if (SimplifyDemandedBits(I.getOperandUse(1),
1712                             APInt::getAllOnesValue(BitWidth),
1713                             Op1KnownZero, Op1KnownOne, 0))
1714      return &I;
1715
1716    // Given the known and unknown bits, compute a range that the LHS could be
1717    // in.  Compute the Min, Max and RHS values based on the known bits. For the
1718    // EQ and NE we use unsigned values.
1719    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1720    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1721    if (I.isSigned()) {
1722      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1723                                             Op0Min, Op0Max);
1724      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1725                                             Op1Min, Op1Max);
1726    } else {
1727      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1728                                               Op0Min, Op0Max);
1729      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1730                                               Op1Min, Op1Max);
1731    }
1732
1733    // If Min and Max are known to be the same, then SimplifyDemandedBits
1734    // figured out that the LHS is a constant.  Just constant fold this now so
1735    // that code below can assume that Min != Max.
1736    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1737      return new ICmpInst(I.getPredicate(),
1738                          ConstantInt::get(I.getContext(), Op0Min), Op1);
1739    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1740      return new ICmpInst(I.getPredicate(), Op0,
1741                          ConstantInt::get(I.getContext(), Op1Min));
1742
1743    // Based on the range information we know about the LHS, see if we can
1744    // simplify this comparison.  For example, (x&4) < 8  is always true.
1745    switch (I.getPredicate()) {
1746    default: llvm_unreachable("Unknown icmp opcode!");
1747    case ICmpInst::ICMP_EQ:
1748      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1749        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1750      break;
1751    case ICmpInst::ICMP_NE:
1752      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1753        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1754      break;
1755    case ICmpInst::ICMP_ULT:
1756      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
1757        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1758      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
1759        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1760      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
1761        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1762      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1763        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
1764          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1765                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1766
1767        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
1768        if (CI->isMinValue(true))
1769          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1770                           Constant::getAllOnesValue(Op0->getType()));
1771      }
1772      break;
1773    case ICmpInst::ICMP_UGT:
1774      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
1775        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1776      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
1777        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1778
1779      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
1780        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1781      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1782        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
1783          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1784                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1785
1786        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
1787        if (CI->isMaxValue(true))
1788          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1789                              Constant::getNullValue(Op0->getType()));
1790      }
1791      break;
1792    case ICmpInst::ICMP_SLT:
1793      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
1794        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1795      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
1796        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1797      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
1798        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1799      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1800        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
1801          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1802                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1803      }
1804      break;
1805    case ICmpInst::ICMP_SGT:
1806      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
1807        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1808      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
1809        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1810
1811      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
1812        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1813      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1814        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
1815          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1816                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1817      }
1818      break;
1819    case ICmpInst::ICMP_SGE:
1820      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
1821      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
1822        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1823      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
1824        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1825      break;
1826    case ICmpInst::ICMP_SLE:
1827      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
1828      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
1829        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1830      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
1831        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1832      break;
1833    case ICmpInst::ICMP_UGE:
1834      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
1835      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
1836        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1837      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
1838        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1839      break;
1840    case ICmpInst::ICMP_ULE:
1841      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
1842      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
1843        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1844      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
1845        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1846      break;
1847    }
1848
1849    // Turn a signed comparison into an unsigned one if both operands
1850    // are known to have the same sign.
1851    if (I.isSigned() &&
1852        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
1853         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
1854      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
1855  }
1856
1857  // Test if the ICmpInst instruction is used exclusively by a select as
1858  // part of a minimum or maximum operation. If so, refrain from doing
1859  // any other folding. This helps out other analyses which understand
1860  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1861  // and CodeGen. And in this case, at least one of the comparison
1862  // operands has at least one user besides the compare (the select),
1863  // which would often largely negate the benefit of folding anyway.
1864  if (I.hasOneUse())
1865    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
1866      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
1867          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
1868        return 0;
1869
1870  // See if we are doing a comparison between a constant and an instruction that
1871  // can be folded into the comparison.
1872  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1873    // Since the RHS is a ConstantInt (CI), if the left hand side is an
1874    // instruction, see if that instruction also has constants so that the
1875    // instruction can be folded into the icmp
1876    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
1877      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
1878        return Res;
1879  }
1880
1881  // Handle icmp with constant (but not simple integer constant) RHS
1882  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
1883    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
1884      switch (LHSI->getOpcode()) {
1885      case Instruction::GetElementPtr:
1886          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
1887        if (RHSC->isNullValue() &&
1888            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
1889          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
1890                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
1891        break;
1892      case Instruction::PHI:
1893        // Only fold icmp into the PHI if the phi and icmp are in the same
1894        // block.  If in the same block, we're encouraging jump threading.  If
1895        // not, we are just pessimizing the code by making an i1 phi.
1896        if (LHSI->getParent() == I.getParent())
1897          if (Instruction *NV = FoldOpIntoPhi(I, true))
1898            return NV;
1899        break;
1900      case Instruction::Select: {
1901        // If either operand of the select is a constant, we can fold the
1902        // comparison into the select arms, which will cause one to be
1903        // constant folded and the select turned into a bitwise or.
1904        Value *Op1 = 0, *Op2 = 0;
1905        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
1906          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
1907        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
1908          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
1909
1910        // We only want to perform this transformation if it will not lead to
1911        // additional code. This is true if either both sides of the select
1912        // fold to a constant (in which case the icmp is replaced with a select
1913        // which will usually simplify) or this is the only user of the
1914        // select (in which case we are trading a select+icmp for a simpler
1915        // select+icmp).
1916        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
1917          if (!Op1)
1918            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
1919                                      RHSC, I.getName());
1920          if (!Op2)
1921            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
1922                                      RHSC, I.getName());
1923          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
1924        }
1925        break;
1926      }
1927      case Instruction::IntToPtr:
1928        // icmp pred inttoptr(X), null -> icmp pred X, 0
1929        if (RHSC->isNullValue() && TD &&
1930            TD->getIntPtrType(RHSC->getContext()) ==
1931               LHSI->getOperand(0)->getType())
1932          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
1933                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
1934        break;
1935
1936      case Instruction::Load:
1937        // Try to optimize things like "A[i] > 4" to index computations.
1938        if (GetElementPtrInst *GEP =
1939              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
1940          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1941            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1942                !cast<LoadInst>(LHSI)->isVolatile())
1943              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
1944                return Res;
1945        }
1946        break;
1947      }
1948  }
1949
1950  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
1951  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
1952    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
1953      return NI;
1954  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
1955    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
1956                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
1957      return NI;
1958
1959  // Test to see if the operands of the icmp are casted versions of other
1960  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
1961  // now.
1962  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
1963    if (Op0->getType()->isPointerTy() &&
1964        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
1965      // We keep moving the cast from the left operand over to the right
1966      // operand, where it can often be eliminated completely.
1967      Op0 = CI->getOperand(0);
1968
1969      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
1970      // so eliminate it as well.
1971      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
1972        Op1 = CI2->getOperand(0);
1973
1974      // If Op1 is a constant, we can fold the cast into the constant.
1975      if (Op0->getType() != Op1->getType()) {
1976        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
1977          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
1978        } else {
1979          // Otherwise, cast the RHS right before the icmp
1980          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
1981        }
1982      }
1983      return new ICmpInst(I.getPredicate(), Op0, Op1);
1984    }
1985  }
1986
1987  if (isa<CastInst>(Op0)) {
1988    // Handle the special case of: icmp (cast bool to X), <cst>
1989    // This comes up when you have code like
1990    //   int X = A < B;
1991    //   if (X) ...
1992    // For generality, we handle any zero-extension of any operand comparison
1993    // with a constant or another cast from the same type.
1994    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
1995      if (Instruction *R = visitICmpInstWithCastAndCast(I))
1996        return R;
1997  }
1998
1999  // See if it's the same type of instruction on the left and right.
2000  if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2001    if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2002      if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
2003          Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
2004        switch (Op0I->getOpcode()) {
2005        default: break;
2006        case Instruction::Add:
2007        case Instruction::Sub:
2008        case Instruction::Xor:
2009          if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2010            return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
2011                                Op1I->getOperand(0));
2012          // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2013          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2014            if (CI->getValue().isSignBit()) {
2015              ICmpInst::Predicate Pred = I.isSigned()
2016                                             ? I.getUnsignedPredicate()
2017                                             : I.getSignedPredicate();
2018              return new ICmpInst(Pred, Op0I->getOperand(0),
2019                                  Op1I->getOperand(0));
2020            }
2021
2022            if (CI->getValue().isMaxSignedValue()) {
2023              ICmpInst::Predicate Pred = I.isSigned()
2024                                             ? I.getUnsignedPredicate()
2025                                             : I.getSignedPredicate();
2026              Pred = I.getSwappedPredicate(Pred);
2027              return new ICmpInst(Pred, Op0I->getOperand(0),
2028                                  Op1I->getOperand(0));
2029            }
2030          }
2031          break;
2032        case Instruction::Mul:
2033          if (!I.isEquality())
2034            break;
2035
2036          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2037            // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2038            // Mask = -1 >> count-trailing-zeros(Cst).
2039            if (!CI->isZero() && !CI->isOne()) {
2040              const APInt &AP = CI->getValue();
2041              ConstantInt *Mask = ConstantInt::get(I.getContext(),
2042                                      APInt::getLowBitsSet(AP.getBitWidth(),
2043                                                           AP.getBitWidth() -
2044                                                      AP.countTrailingZeros()));
2045              Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
2046              Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
2047              return new ICmpInst(I.getPredicate(), And1, And2);
2048            }
2049          }
2050          break;
2051        }
2052      }
2053    }
2054  }
2055
2056  // ~x < ~y --> y < x
2057  { Value *A, *B;
2058    if (match(Op0, m_Not(m_Value(A))) &&
2059        match(Op1, m_Not(m_Value(B))))
2060      return new ICmpInst(I.getPredicate(), B, A);
2061  }
2062
2063  if (I.isEquality()) {
2064    Value *A, *B, *C, *D;
2065
2066    // -x == -y --> x == y
2067    if (match(Op0, m_Neg(m_Value(A))) &&
2068        match(Op1, m_Neg(m_Value(B))))
2069      return new ICmpInst(I.getPredicate(), A, B);
2070
2071    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2072      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2073        Value *OtherVal = A == Op1 ? B : A;
2074        return new ICmpInst(I.getPredicate(), OtherVal,
2075                            Constant::getNullValue(A->getType()));
2076      }
2077
2078      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2079        // A^c1 == C^c2 --> A == C^(c1^c2)
2080        ConstantInt *C1, *C2;
2081        if (match(B, m_ConstantInt(C1)) &&
2082            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2083          Constant *NC = ConstantInt::get(I.getContext(),
2084                                          C1->getValue() ^ C2->getValue());
2085          Value *Xor = Builder->CreateXor(C, NC, "tmp");
2086          return new ICmpInst(I.getPredicate(), A, Xor);
2087        }
2088
2089        // A^B == A^D -> B == D
2090        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2091        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2092        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2093        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2094      }
2095    }
2096
2097    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2098        (A == Op0 || B == Op0)) {
2099      // A == (A^B)  ->  B == 0
2100      Value *OtherVal = A == Op0 ? B : A;
2101      return new ICmpInst(I.getPredicate(), OtherVal,
2102                          Constant::getNullValue(A->getType()));
2103    }
2104
2105    // (A-B) == A  ->  B == 0
2106    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
2107      return new ICmpInst(I.getPredicate(), B,
2108                          Constant::getNullValue(B->getType()));
2109
2110    // A == (A-B)  ->  B == 0
2111    if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
2112      return new ICmpInst(I.getPredicate(), B,
2113                          Constant::getNullValue(B->getType()));
2114
2115    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2116    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2117        match(Op0, m_And(m_Value(A), m_Value(B))) &&
2118        match(Op1, m_And(m_Value(C), m_Value(D)))) {
2119      Value *X = 0, *Y = 0, *Z = 0;
2120
2121      if (A == C) {
2122        X = B; Y = D; Z = A;
2123      } else if (A == D) {
2124        X = B; Y = C; Z = A;
2125      } else if (B == C) {
2126        X = A; Y = D; Z = B;
2127      } else if (B == D) {
2128        X = A; Y = C; Z = B;
2129      }
2130
2131      if (X) {   // Build (X^Y) & Z
2132        Op1 = Builder->CreateXor(X, Y, "tmp");
2133        Op1 = Builder->CreateAnd(Op1, Z, "tmp");
2134        I.setOperand(0, Op1);
2135        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2136        return &I;
2137      }
2138    }
2139  }
2140
2141  {
2142    Value *X; ConstantInt *Cst;
2143    // icmp X+Cst, X
2144    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2145      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2146
2147    // icmp X, X+Cst
2148    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2149      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2150  }
2151  return Changed ? &I : 0;
2152}
2153
2154
2155
2156
2157
2158
2159/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2160///
2161Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2162                                                Instruction *LHSI,
2163                                                Constant *RHSC) {
2164  if (!isa<ConstantFP>(RHSC)) return 0;
2165  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2166
2167  // Get the width of the mantissa.  We don't want to hack on conversions that
2168  // might lose information from the integer, e.g. "i64 -> float"
2169  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2170  if (MantissaWidth == -1) return 0;  // Unknown.
2171
2172  // Check to see that the input is converted from an integer type that is small
2173  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2174  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2175  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2176
2177  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2178  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2179  if (LHSUnsigned)
2180    ++InputSize;
2181
2182  // If the conversion would lose info, don't hack on this.
2183  if ((int)InputSize > MantissaWidth)
2184    return 0;
2185
2186  // Otherwise, we can potentially simplify the comparison.  We know that it
2187  // will always come through as an integer value and we know the constant is
2188  // not a NAN (it would have been previously simplified).
2189  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2190
2191  ICmpInst::Predicate Pred;
2192  switch (I.getPredicate()) {
2193  default: llvm_unreachable("Unexpected predicate!");
2194  case FCmpInst::FCMP_UEQ:
2195  case FCmpInst::FCMP_OEQ:
2196    Pred = ICmpInst::ICMP_EQ;
2197    break;
2198  case FCmpInst::FCMP_UGT:
2199  case FCmpInst::FCMP_OGT:
2200    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2201    break;
2202  case FCmpInst::FCMP_UGE:
2203  case FCmpInst::FCMP_OGE:
2204    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2205    break;
2206  case FCmpInst::FCMP_ULT:
2207  case FCmpInst::FCMP_OLT:
2208    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2209    break;
2210  case FCmpInst::FCMP_ULE:
2211  case FCmpInst::FCMP_OLE:
2212    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2213    break;
2214  case FCmpInst::FCMP_UNE:
2215  case FCmpInst::FCMP_ONE:
2216    Pred = ICmpInst::ICMP_NE;
2217    break;
2218  case FCmpInst::FCMP_ORD:
2219    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2220  case FCmpInst::FCMP_UNO:
2221    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2222  }
2223
2224  const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2225
2226  // Now we know that the APFloat is a normal number, zero or inf.
2227
2228  // See if the FP constant is too large for the integer.  For example,
2229  // comparing an i8 to 300.0.
2230  unsigned IntWidth = IntTy->getScalarSizeInBits();
2231
2232  if (!LHSUnsigned) {
2233    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
2234    // and large values.
2235    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2236    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2237                          APFloat::rmNearestTiesToEven);
2238    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
2239      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
2240          Pred == ICmpInst::ICMP_SLE)
2241        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2242      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2243    }
2244  } else {
2245    // If the RHS value is > UnsignedMax, fold the comparison. This handles
2246    // +INF and large values.
2247    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2248    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2249                          APFloat::rmNearestTiesToEven);
2250    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
2251      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
2252          Pred == ICmpInst::ICMP_ULE)
2253        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2254      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2255    }
2256  }
2257
2258  if (!LHSUnsigned) {
2259    // See if the RHS value is < SignedMin.
2260    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2261    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2262                          APFloat::rmNearestTiesToEven);
2263    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2264      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2265          Pred == ICmpInst::ICMP_SGE)
2266        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2267      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2268    }
2269  }
2270
2271  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2272  // [0, UMAX], but it may still be fractional.  See if it is fractional by
2273  // casting the FP value to the integer value and back, checking for equality.
2274  // Don't do this for zero, because -0.0 is not fractional.
2275  Constant *RHSInt = LHSUnsigned
2276    ? ConstantExpr::getFPToUI(RHSC, IntTy)
2277    : ConstantExpr::getFPToSI(RHSC, IntTy);
2278  if (!RHS.isZero()) {
2279    bool Equal = LHSUnsigned
2280      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2281      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2282    if (!Equal) {
2283      // If we had a comparison against a fractional value, we have to adjust
2284      // the compare predicate and sometimes the value.  RHSC is rounded towards
2285      // zero at this point.
2286      switch (Pred) {
2287      default: llvm_unreachable("Unexpected integer comparison!");
2288      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
2289        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2290      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
2291        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2292      case ICmpInst::ICMP_ULE:
2293        // (float)int <= 4.4   --> int <= 4
2294        // (float)int <= -4.4  --> false
2295        if (RHS.isNegative())
2296          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2297        break;
2298      case ICmpInst::ICMP_SLE:
2299        // (float)int <= 4.4   --> int <= 4
2300        // (float)int <= -4.4  --> int < -4
2301        if (RHS.isNegative())
2302          Pred = ICmpInst::ICMP_SLT;
2303        break;
2304      case ICmpInst::ICMP_ULT:
2305        // (float)int < -4.4   --> false
2306        // (float)int < 4.4    --> int <= 4
2307        if (RHS.isNegative())
2308          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2309        Pred = ICmpInst::ICMP_ULE;
2310        break;
2311      case ICmpInst::ICMP_SLT:
2312        // (float)int < -4.4   --> int < -4
2313        // (float)int < 4.4    --> int <= 4
2314        if (!RHS.isNegative())
2315          Pred = ICmpInst::ICMP_SLE;
2316        break;
2317      case ICmpInst::ICMP_UGT:
2318        // (float)int > 4.4    --> int > 4
2319        // (float)int > -4.4   --> true
2320        if (RHS.isNegative())
2321          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2322        break;
2323      case ICmpInst::ICMP_SGT:
2324        // (float)int > 4.4    --> int > 4
2325        // (float)int > -4.4   --> int >= -4
2326        if (RHS.isNegative())
2327          Pred = ICmpInst::ICMP_SGE;
2328        break;
2329      case ICmpInst::ICMP_UGE:
2330        // (float)int >= -4.4   --> true
2331        // (float)int >= 4.4    --> int > 4
2332        if (!RHS.isNegative())
2333          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2334        Pred = ICmpInst::ICMP_UGT;
2335        break;
2336      case ICmpInst::ICMP_SGE:
2337        // (float)int >= -4.4   --> int >= -4
2338        // (float)int >= 4.4    --> int > 4
2339        if (!RHS.isNegative())
2340          Pred = ICmpInst::ICMP_SGT;
2341        break;
2342      }
2343    }
2344  }
2345
2346  // Lower this FP comparison into an appropriate integer version of the
2347  // comparison.
2348  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2349}
2350
2351Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2352  bool Changed = false;
2353
2354  /// Orders the operands of the compare so that they are listed from most
2355  /// complex to least complex.  This puts constants before unary operators,
2356  /// before binary operators.
2357  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2358    I.swapOperands();
2359    Changed = true;
2360  }
2361
2362  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2363
2364  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2365    return ReplaceInstUsesWith(I, V);
2366
2367  // Simplify 'fcmp pred X, X'
2368  if (Op0 == Op1) {
2369    switch (I.getPredicate()) {
2370    default: llvm_unreachable("Unknown predicate!");
2371    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
2372    case FCmpInst::FCMP_ULT:    // True if unordered or less than
2373    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
2374    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
2375      // Canonicalize these to be 'fcmp uno %X, 0.0'.
2376      I.setPredicate(FCmpInst::FCMP_UNO);
2377      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2378      return &I;
2379
2380    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
2381    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
2382    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
2383    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
2384      // Canonicalize these to be 'fcmp ord %X, 0.0'.
2385      I.setPredicate(FCmpInst::FCMP_ORD);
2386      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2387      return &I;
2388    }
2389  }
2390
2391  // Handle fcmp with constant RHS
2392  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2393    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2394      switch (LHSI->getOpcode()) {
2395      case Instruction::PHI:
2396        // Only fold fcmp into the PHI if the phi and fcmp are in the same
2397        // block.  If in the same block, we're encouraging jump threading.  If
2398        // not, we are just pessimizing the code by making an i1 phi.
2399        if (LHSI->getParent() == I.getParent())
2400          if (Instruction *NV = FoldOpIntoPhi(I, true))
2401            return NV;
2402        break;
2403      case Instruction::SIToFP:
2404      case Instruction::UIToFP:
2405        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2406          return NV;
2407        break;
2408      case Instruction::Select: {
2409        // If either operand of the select is a constant, we can fold the
2410        // comparison into the select arms, which will cause one to be
2411        // constant folded and the select turned into a bitwise or.
2412        Value *Op1 = 0, *Op2 = 0;
2413        if (LHSI->hasOneUse()) {
2414          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2415            // Fold the known value into the constant operand.
2416            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2417            // Insert a new FCmp of the other select operand.
2418            Op2 = Builder->CreateFCmp(I.getPredicate(),
2419                                      LHSI->getOperand(2), RHSC, I.getName());
2420          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2421            // Fold the known value into the constant operand.
2422            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2423            // Insert a new FCmp of the other select operand.
2424            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2425                                      RHSC, I.getName());
2426          }
2427        }
2428
2429        if (Op1)
2430          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2431        break;
2432      }
2433      case Instruction::Load:
2434        if (GetElementPtrInst *GEP =
2435            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2436          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2437            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2438                !cast<LoadInst>(LHSI)->isVolatile())
2439              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2440                return Res;
2441        }
2442        break;
2443      }
2444  }
2445
2446  return Changed ? &I : 0;
2447}
2448