InstCombineCompares.cpp revision b6c8cb442298c79b1319078b3038156466be0c40
1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Support/ConstantRange.h"
20#include "llvm/Support/GetElementPtrTypeIterator.h"
21#include "llvm/Support/PatternMatch.h"
22using namespace llvm;
23using namespace PatternMatch;
24
25static ConstantInt *getOne(Constant *C) {
26  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
27}
28
29/// AddOne - Add one to a ConstantInt
30static Constant *AddOne(Constant *C) {
31  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
32}
33/// SubOne - Subtract one from a ConstantInt
34static Constant *SubOne(Constant *C) {
35  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
36}
37
38static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
39  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
40}
41
42static bool HasAddOverflow(ConstantInt *Result,
43                           ConstantInt *In1, ConstantInt *In2,
44                           bool IsSigned) {
45  if (IsSigned)
46    if (In2->getValue().isNegative())
47      return Result->getValue().sgt(In1->getValue());
48    else
49      return Result->getValue().slt(In1->getValue());
50  else
51    return Result->getValue().ult(In1->getValue());
52}
53
54/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55/// overflowed for this type.
56static bool AddWithOverflow(Constant *&Result, Constant *In1,
57                            Constant *In2, bool IsSigned = false) {
58  Result = ConstantExpr::getAdd(In1, In2);
59
60  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63      if (HasAddOverflow(ExtractElement(Result, Idx),
64                         ExtractElement(In1, Idx),
65                         ExtractElement(In2, Idx),
66                         IsSigned))
67        return true;
68    }
69    return false;
70  }
71
72  return HasAddOverflow(cast<ConstantInt>(Result),
73                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74                        IsSigned);
75}
76
77static bool HasSubOverflow(ConstantInt *Result,
78                           ConstantInt *In1, ConstantInt *In2,
79                           bool IsSigned) {
80  if (IsSigned)
81    if (In2->getValue().isNegative())
82      return Result->getValue().slt(In1->getValue());
83    else
84      return Result->getValue().sgt(In1->getValue());
85  else
86    return Result->getValue().ugt(In1->getValue());
87}
88
89/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90/// overflowed for this type.
91static bool SubWithOverflow(Constant *&Result, Constant *In1,
92                            Constant *In2, bool IsSigned = false) {
93  Result = ConstantExpr::getSub(In1, In2);
94
95  if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98      if (HasSubOverflow(ExtractElement(Result, Idx),
99                         ExtractElement(In1, Idx),
100                         ExtractElement(In2, Idx),
101                         IsSigned))
102        return true;
103    }
104    return false;
105  }
106
107  return HasSubOverflow(cast<ConstantInt>(Result),
108                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109                        IsSigned);
110}
111
112/// isSignBitCheck - Given an exploded icmp instruction, return true if the
113/// comparison only checks the sign bit.  If it only checks the sign bit, set
114/// TrueIfSigned if the result of the comparison is true when the input value is
115/// signed.
116static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
117                           bool &TrueIfSigned) {
118  switch (pred) {
119  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
120    TrueIfSigned = true;
121    return RHS->isZero();
122  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
123    TrueIfSigned = true;
124    return RHS->isAllOnesValue();
125  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
126    TrueIfSigned = false;
127    return RHS->isAllOnesValue();
128  case ICmpInst::ICMP_UGT:
129    // True if LHS u> RHS and RHS == high-bit-mask - 1
130    TrueIfSigned = true;
131    return RHS->getValue() ==
132      APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
133  case ICmpInst::ICMP_UGE:
134    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135    TrueIfSigned = true;
136    return RHS->getValue().isSignBit();
137  default:
138    return false;
139  }
140}
141
142// isHighOnes - Return true if the constant is of the form 1+0+.
143// This is the same as lowones(~X).
144static bool isHighOnes(const ConstantInt *CI) {
145  return (~CI->getValue() + 1).isPowerOf2();
146}
147
148/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
149/// set of known zero and one bits, compute the maximum and minimum values that
150/// could have the specified known zero and known one bits, returning them in
151/// min/max.
152static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
153                                                   const APInt& KnownOne,
154                                                   APInt& Min, APInt& Max) {
155  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
156         KnownZero.getBitWidth() == Min.getBitWidth() &&
157         KnownZero.getBitWidth() == Max.getBitWidth() &&
158         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
159  APInt UnknownBits = ~(KnownZero|KnownOne);
160
161  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
162  // bit if it is unknown.
163  Min = KnownOne;
164  Max = KnownOne|UnknownBits;
165
166  if (UnknownBits.isNegative()) { // Sign bit is unknown
167    Min.setBit(Min.getBitWidth()-1);
168    Max.clearBit(Max.getBitWidth()-1);
169  }
170}
171
172// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
173// a set of known zero and one bits, compute the maximum and minimum values that
174// could have the specified known zero and known one bits, returning them in
175// min/max.
176static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
177                                                     const APInt &KnownOne,
178                                                     APInt &Min, APInt &Max) {
179  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
180         KnownZero.getBitWidth() == Min.getBitWidth() &&
181         KnownZero.getBitWidth() == Max.getBitWidth() &&
182         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
183  APInt UnknownBits = ~(KnownZero|KnownOne);
184
185  // The minimum value is when the unknown bits are all zeros.
186  Min = KnownOne;
187  // The maximum value is when the unknown bits are all ones.
188  Max = KnownOne|UnknownBits;
189}
190
191
192
193/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
194///   cmp pred (load (gep GV, ...)), cmpcst
195/// where GV is a global variable with a constant initializer.  Try to simplify
196/// this into some simple computation that does not need the load.  For example
197/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
198///
199/// If AndCst is non-null, then the loaded value is masked with that constant
200/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
201Instruction *InstCombiner::
202FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
203                             CmpInst &ICI, ConstantInt *AndCst) {
204  // We need TD information to know the pointer size unless this is inbounds.
205  if (!GEP->isInBounds() && TD == 0) return 0;
206
207  ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
208  if (Init == 0 || Init->getNumOperands() > 1024) return 0;
209
210  // There are many forms of this optimization we can handle, for now, just do
211  // the simple index into a single-dimensional array.
212  //
213  // Require: GEP GV, 0, i {{, constant indices}}
214  if (GEP->getNumOperands() < 3 ||
215      !isa<ConstantInt>(GEP->getOperand(1)) ||
216      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
217      isa<Constant>(GEP->getOperand(2)))
218    return 0;
219
220  // Check that indices after the variable are constants and in-range for the
221  // type they index.  Collect the indices.  This is typically for arrays of
222  // structs.
223  SmallVector<unsigned, 4> LaterIndices;
224
225  const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
226  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
227    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
228    if (Idx == 0) return 0;  // Variable index.
229
230    uint64_t IdxVal = Idx->getZExtValue();
231    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
232
233    if (const StructType *STy = dyn_cast<StructType>(EltTy))
234      EltTy = STy->getElementType(IdxVal);
235    else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
236      if (IdxVal >= ATy->getNumElements()) return 0;
237      EltTy = ATy->getElementType();
238    } else {
239      return 0; // Unknown type.
240    }
241
242    LaterIndices.push_back(IdxVal);
243  }
244
245  enum { Overdefined = -3, Undefined = -2 };
246
247  // Variables for our state machines.
248
249  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
250  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
251  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
252  // undefined, otherwise set to the first true element.  SecondTrueElement is
253  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
254  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
255
256  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
257  // form "i != 47 & i != 87".  Same state transitions as for true elements.
258  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
259
260  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
261  /// define a state machine that triggers for ranges of values that the index
262  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
263  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
264  /// index in the range (inclusive).  We use -2 for undefined here because we
265  /// use relative comparisons and don't want 0-1 to match -1.
266  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
267
268  // MagicBitvector - This is a magic bitvector where we set a bit if the
269  // comparison is true for element 'i'.  If there are 64 elements or less in
270  // the array, this will fully represent all the comparison results.
271  uint64_t MagicBitvector = 0;
272
273
274  // Scan the array and see if one of our patterns matches.
275  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
276  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
277    Constant *Elt = Init->getOperand(i);
278
279    // If this is indexing an array of structures, get the structure element.
280    if (!LaterIndices.empty())
281      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
282                                          LaterIndices.size());
283
284    // If the element is masked, handle it.
285    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
286
287    // Find out if the comparison would be true or false for the i'th element.
288    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
289                                                  CompareRHS, TD);
290    // If the result is undef for this element, ignore it.
291    if (isa<UndefValue>(C)) {
292      // Extend range state machines to cover this element in case there is an
293      // undef in the middle of the range.
294      if (TrueRangeEnd == (int)i-1)
295        TrueRangeEnd = i;
296      if (FalseRangeEnd == (int)i-1)
297        FalseRangeEnd = i;
298      continue;
299    }
300
301    // If we can't compute the result for any of the elements, we have to give
302    // up evaluating the entire conditional.
303    if (!isa<ConstantInt>(C)) return 0;
304
305    // Otherwise, we know if the comparison is true or false for this element,
306    // update our state machines.
307    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
308
309    // State machine for single/double/range index comparison.
310    if (IsTrueForElt) {
311      // Update the TrueElement state machine.
312      if (FirstTrueElement == Undefined)
313        FirstTrueElement = TrueRangeEnd = i;  // First true element.
314      else {
315        // Update double-compare state machine.
316        if (SecondTrueElement == Undefined)
317          SecondTrueElement = i;
318        else
319          SecondTrueElement = Overdefined;
320
321        // Update range state machine.
322        if (TrueRangeEnd == (int)i-1)
323          TrueRangeEnd = i;
324        else
325          TrueRangeEnd = Overdefined;
326      }
327    } else {
328      // Update the FalseElement state machine.
329      if (FirstFalseElement == Undefined)
330        FirstFalseElement = FalseRangeEnd = i; // First false element.
331      else {
332        // Update double-compare state machine.
333        if (SecondFalseElement == Undefined)
334          SecondFalseElement = i;
335        else
336          SecondFalseElement = Overdefined;
337
338        // Update range state machine.
339        if (FalseRangeEnd == (int)i-1)
340          FalseRangeEnd = i;
341        else
342          FalseRangeEnd = Overdefined;
343      }
344    }
345
346
347    // If this element is in range, update our magic bitvector.
348    if (i < 64 && IsTrueForElt)
349      MagicBitvector |= 1ULL << i;
350
351    // If all of our states become overdefined, bail out early.  Since the
352    // predicate is expensive, only check it every 8 elements.  This is only
353    // really useful for really huge arrays.
354    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
355        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
356        FalseRangeEnd == Overdefined)
357      return 0;
358  }
359
360  // Now that we've scanned the entire array, emit our new comparison(s).  We
361  // order the state machines in complexity of the generated code.
362  Value *Idx = GEP->getOperand(2);
363
364  // If the index is larger than the pointer size of the target, truncate the
365  // index down like the GEP would do implicitly.  We don't have to do this for
366  // an inbounds GEP because the index can't be out of range.
367  if (!GEP->isInBounds() &&
368      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
369    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
370
371  // If the comparison is only true for one or two elements, emit direct
372  // comparisons.
373  if (SecondTrueElement != Overdefined) {
374    // None true -> false.
375    if (FirstTrueElement == Undefined)
376      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
377
378    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
379
380    // True for one element -> 'i == 47'.
381    if (SecondTrueElement == Undefined)
382      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
383
384    // True for two elements -> 'i == 47 | i == 72'.
385    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
386    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
387    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
388    return BinaryOperator::CreateOr(C1, C2);
389  }
390
391  // If the comparison is only false for one or two elements, emit direct
392  // comparisons.
393  if (SecondFalseElement != Overdefined) {
394    // None false -> true.
395    if (FirstFalseElement == Undefined)
396      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
397
398    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
399
400    // False for one element -> 'i != 47'.
401    if (SecondFalseElement == Undefined)
402      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
403
404    // False for two elements -> 'i != 47 & i != 72'.
405    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
406    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
407    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
408    return BinaryOperator::CreateAnd(C1, C2);
409  }
410
411  // If the comparison can be replaced with a range comparison for the elements
412  // where it is true, emit the range check.
413  if (TrueRangeEnd != Overdefined) {
414    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
415
416    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
417    if (FirstTrueElement) {
418      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
419      Idx = Builder->CreateAdd(Idx, Offs);
420    }
421
422    Value *End = ConstantInt::get(Idx->getType(),
423                                  TrueRangeEnd-FirstTrueElement+1);
424    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
425  }
426
427  // False range check.
428  if (FalseRangeEnd != Overdefined) {
429    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
430    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
431    if (FirstFalseElement) {
432      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
433      Idx = Builder->CreateAdd(Idx, Offs);
434    }
435
436    Value *End = ConstantInt::get(Idx->getType(),
437                                  FalseRangeEnd-FirstFalseElement);
438    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
439  }
440
441
442  // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
443  // of this load, replace it with computation that does:
444  //   ((magic_cst >> i) & 1) != 0
445  if (Init->getNumOperands() <= 32 ||
446      (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
447    const Type *Ty;
448    if (Init->getNumOperands() <= 32)
449      Ty = Type::getInt32Ty(Init->getContext());
450    else
451      Ty = Type::getInt64Ty(Init->getContext());
452    Value *V = Builder->CreateIntCast(Idx, Ty, false);
453    V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
454    V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
455    return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
456  }
457
458  return 0;
459}
460
461
462/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
463/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
464/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
465/// be complex, and scales are involved.  The above expression would also be
466/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
467/// This later form is less amenable to optimization though, and we are allowed
468/// to generate the first by knowing that pointer arithmetic doesn't overflow.
469///
470/// If we can't emit an optimized form for this expression, this returns null.
471///
472static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
473                                          InstCombiner &IC) {
474  TargetData &TD = *IC.getTargetData();
475  gep_type_iterator GTI = gep_type_begin(GEP);
476
477  // Check to see if this gep only has a single variable index.  If so, and if
478  // any constant indices are a multiple of its scale, then we can compute this
479  // in terms of the scale of the variable index.  For example, if the GEP
480  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
481  // because the expression will cross zero at the same point.
482  unsigned i, e = GEP->getNumOperands();
483  int64_t Offset = 0;
484  for (i = 1; i != e; ++i, ++GTI) {
485    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
486      // Compute the aggregate offset of constant indices.
487      if (CI->isZero()) continue;
488
489      // Handle a struct index, which adds its field offset to the pointer.
490      if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
491        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
492      } else {
493        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
494        Offset += Size*CI->getSExtValue();
495      }
496    } else {
497      // Found our variable index.
498      break;
499    }
500  }
501
502  // If there are no variable indices, we must have a constant offset, just
503  // evaluate it the general way.
504  if (i == e) return 0;
505
506  Value *VariableIdx = GEP->getOperand(i);
507  // Determine the scale factor of the variable element.  For example, this is
508  // 4 if the variable index is into an array of i32.
509  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
510
511  // Verify that there are no other variable indices.  If so, emit the hard way.
512  for (++i, ++GTI; i != e; ++i, ++GTI) {
513    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
514    if (!CI) return 0;
515
516    // Compute the aggregate offset of constant indices.
517    if (CI->isZero()) continue;
518
519    // Handle a struct index, which adds its field offset to the pointer.
520    if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
521      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522    } else {
523      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
524      Offset += Size*CI->getSExtValue();
525    }
526  }
527
528  // Okay, we know we have a single variable index, which must be a
529  // pointer/array/vector index.  If there is no offset, life is simple, return
530  // the index.
531  unsigned IntPtrWidth = TD.getPointerSizeInBits();
532  if (Offset == 0) {
533    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
534    // we don't need to bother extending: the extension won't affect where the
535    // computation crosses zero.
536    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
537      VariableIdx = new TruncInst(VariableIdx,
538                                  TD.getIntPtrType(VariableIdx->getContext()),
539                                  VariableIdx->getName(), &I);
540    return VariableIdx;
541  }
542
543  // Otherwise, there is an index.  The computation we will do will be modulo
544  // the pointer size, so get it.
545  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
546
547  Offset &= PtrSizeMask;
548  VariableScale &= PtrSizeMask;
549
550  // To do this transformation, any constant index must be a multiple of the
551  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
552  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
553  // multiple of the variable scale.
554  int64_t NewOffs = Offset / (int64_t)VariableScale;
555  if (Offset != NewOffs*(int64_t)VariableScale)
556    return 0;
557
558  // Okay, we can do this evaluation.  Start by converting the index to intptr.
559  const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
560  if (VariableIdx->getType() != IntPtrTy)
561    VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
562                                              true /*SExt*/,
563                                              VariableIdx->getName(), &I);
564  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
565  return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
566}
567
568/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
569/// else.  At this point we know that the GEP is on the LHS of the comparison.
570Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
571                                       ICmpInst::Predicate Cond,
572                                       Instruction &I) {
573  // Look through bitcasts.
574  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
575    RHS = BCI->getOperand(0);
576
577  Value *PtrBase = GEPLHS->getOperand(0);
578  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
579    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
580    // This transformation (ignoring the base and scales) is valid because we
581    // know pointers can't overflow since the gep is inbounds.  See if we can
582    // output an optimized form.
583    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
584
585    // If not, synthesize the offset the hard way.
586    if (Offset == 0)
587      Offset = EmitGEPOffset(GEPLHS);
588    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
589                        Constant::getNullValue(Offset->getType()));
590  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
591    // If the base pointers are different, but the indices are the same, just
592    // compare the base pointer.
593    if (PtrBase != GEPRHS->getOperand(0)) {
594      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
595      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
596                        GEPRHS->getOperand(0)->getType();
597      if (IndicesTheSame)
598        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
599          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
600            IndicesTheSame = false;
601            break;
602          }
603
604      // If all indices are the same, just compare the base pointers.
605      if (IndicesTheSame)
606        return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
607                            GEPLHS->getOperand(0), GEPRHS->getOperand(0));
608
609      // Otherwise, the base pointers are different and the indices are
610      // different, bail out.
611      return 0;
612    }
613
614    // If one of the GEPs has all zero indices, recurse.
615    bool AllZeros = true;
616    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
617      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
618          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
619        AllZeros = false;
620        break;
621      }
622    if (AllZeros)
623      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
624                          ICmpInst::getSwappedPredicate(Cond), I);
625
626    // If the other GEP has all zero indices, recurse.
627    AllZeros = true;
628    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
629      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
630          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
631        AllZeros = false;
632        break;
633      }
634    if (AllZeros)
635      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
636
637    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
638      // If the GEPs only differ by one index, compare it.
639      unsigned NumDifferences = 0;  // Keep track of # differences.
640      unsigned DiffOperand = 0;     // The operand that differs.
641      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
642        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
643          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
644                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
645            // Irreconcilable differences.
646            NumDifferences = 2;
647            break;
648          } else {
649            if (NumDifferences++) break;
650            DiffOperand = i;
651          }
652        }
653
654      if (NumDifferences == 0)   // SAME GEP?
655        return ReplaceInstUsesWith(I, // No comparison is needed here.
656                               ConstantInt::get(Type::getInt1Ty(I.getContext()),
657                                             ICmpInst::isTrueWhenEqual(Cond)));
658
659      else if (NumDifferences == 1) {
660        Value *LHSV = GEPLHS->getOperand(DiffOperand);
661        Value *RHSV = GEPRHS->getOperand(DiffOperand);
662        // Make sure we do a signed comparison here.
663        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
664      }
665    }
666
667    // Only lower this if the icmp is the only user of the GEP or if we expect
668    // the result to fold to a constant!
669    if (TD &&
670        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
671        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
672      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
673      Value *L = EmitGEPOffset(GEPLHS);
674      Value *R = EmitGEPOffset(GEPRHS);
675      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
676    }
677  }
678  return 0;
679}
680
681/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
682Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
683                                            Value *X, ConstantInt *CI,
684                                            ICmpInst::Predicate Pred,
685                                            Value *TheAdd) {
686  // If we have X+0, exit early (simplifying logic below) and let it get folded
687  // elsewhere.   icmp X+0, X  -> icmp X, X
688  if (CI->isZero()) {
689    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
690    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
691  }
692
693  // (X+4) == X -> false.
694  if (Pred == ICmpInst::ICMP_EQ)
695    return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
696
697  // (X+4) != X -> true.
698  if (Pred == ICmpInst::ICMP_NE)
699    return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
700
701  // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
702  bool isNUW = false, isNSW = false;
703  if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
704    isNUW = Add->hasNoUnsignedWrap();
705    isNSW = Add->hasNoSignedWrap();
706  }
707
708  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
709  // so the values can never be equal.  Similiarly for all other "or equals"
710  // operators.
711
712  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
713  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
714  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
715  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
716    // If this is an NUW add, then this is always false.
717    if (isNUW)
718      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
719
720    Value *R =
721      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
722    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
723  }
724
725  // (X+1) >u X        --> X <u (0-1)        --> X != 255
726  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
727  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
728  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
729    // If this is an NUW add, then this is always true.
730    if (isNUW)
731      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
732    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
733  }
734
735  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
736  ConstantInt *SMax = ConstantInt::get(X->getContext(),
737                                       APInt::getSignedMaxValue(BitWidth));
738
739  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
740  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
741  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
742  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
743  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
744  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
745  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
746    // If this is an NSW add, then we have two cases: if the constant is
747    // positive, then this is always false, if negative, this is always true.
748    if (isNSW) {
749      bool isTrue = CI->getValue().isNegative();
750      return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
751    }
752
753    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
754  }
755
756  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
757  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
758  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
759  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
760  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
761  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
762
763  // If this is an NSW add, then we have two cases: if the constant is
764  // positive, then this is always true, if negative, this is always false.
765  if (isNSW) {
766    bool isTrue = !CI->getValue().isNegative();
767    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
768  }
769
770  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
771  Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
772  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
773}
774
775/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
776/// and CmpRHS are both known to be integer constants.
777Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
778                                          ConstantInt *DivRHS) {
779  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
780  const APInt &CmpRHSV = CmpRHS->getValue();
781
782  // FIXME: If the operand types don't match the type of the divide
783  // then don't attempt this transform. The code below doesn't have the
784  // logic to deal with a signed divide and an unsigned compare (and
785  // vice versa). This is because (x /s C1) <s C2  produces different
786  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
787  // (x /u C1) <u C2.  Simply casting the operands and result won't
788  // work. :(  The if statement below tests that condition and bails
789  // if it finds it.
790  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
791  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
792    return 0;
793  if (DivRHS->isZero())
794    return 0; // The ProdOV computation fails on divide by zero.
795  if (DivIsSigned && DivRHS->isAllOnesValue())
796    return 0; // The overflow computation also screws up here
797  if (DivRHS->isOne())
798    return 0; // Not worth bothering, and eliminates some funny cases
799              // with INT_MIN.
800
801  // Compute Prod = CI * DivRHS. We are essentially solving an equation
802  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
803  // C2 (CI). By solving for X we can turn this into a range check
804  // instead of computing a divide.
805  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
806
807  // Determine if the product overflows by seeing if the product is
808  // not equal to the divide. Make sure we do the same kind of divide
809  // as in the LHS instruction that we're folding.
810  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
811                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
812
813  // Get the ICmp opcode
814  ICmpInst::Predicate Pred = ICI.getPredicate();
815
816  /// If the division is known to be exact, then there is no remainder from the
817  /// divide, so the covered range size is unit, otherwise it is the divisor.
818  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
819
820  // Figure out the interval that is being checked.  For example, a comparison
821  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
822  // Compute this interval based on the constants involved and the signedness of
823  // the compare/divide.  This computes a half-open interval, keeping track of
824  // whether either value in the interval overflows.  After analysis each
825  // overflow variable is set to 0 if it's corresponding bound variable is valid
826  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
827  int LoOverflow = 0, HiOverflow = 0;
828  Constant *LoBound = 0, *HiBound = 0;
829
830  if (!DivIsSigned) {  // udiv
831    // e.g. X/5 op 3  --> [15, 20)
832    LoBound = Prod;
833    HiOverflow = LoOverflow = ProdOV;
834    if (!HiOverflow) {
835      // If this is not an exact divide, then many values in the range collapse
836      // to the same result value.
837      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
838    }
839
840  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
841    if (CmpRHSV == 0) {       // (X / pos) op 0
842      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
843      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
844      HiBound = RangeSize;
845    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
846      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
847      HiOverflow = LoOverflow = ProdOV;
848      if (!HiOverflow)
849        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
850    } else {                       // (X / pos) op neg
851      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
852      HiBound = AddOne(Prod);
853      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
854      if (!LoOverflow) {
855        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
856        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
857      }
858    }
859  } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
860    if (DivI->isExact())
861      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
862    if (CmpRHSV == 0) {       // (X / neg) op 0
863      // e.g. X/-5 op 0  --> [-4, 5)
864      LoBound = AddOne(RangeSize);
865      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
866      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
867        HiOverflow = 1;            // [INTMIN+1, overflow)
868        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
869      }
870    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
871      // e.g. X/-5 op 3  --> [-19, -14)
872      HiBound = AddOne(Prod);
873      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
874      if (!LoOverflow)
875        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
876    } else {                       // (X / neg) op neg
877      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
878      LoOverflow = HiOverflow = ProdOV;
879      if (!HiOverflow)
880        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
881    }
882
883    // Dividing by a negative swaps the condition.  LT <-> GT
884    Pred = ICmpInst::getSwappedPredicate(Pred);
885  }
886
887  Value *X = DivI->getOperand(0);
888  switch (Pred) {
889  default: llvm_unreachable("Unhandled icmp opcode!");
890  case ICmpInst::ICMP_EQ:
891    if (LoOverflow && HiOverflow)
892      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
893    if (HiOverflow)
894      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
895                          ICmpInst::ICMP_UGE, X, LoBound);
896    if (LoOverflow)
897      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
898                          ICmpInst::ICMP_ULT, X, HiBound);
899    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
900                                                    DivIsSigned, true));
901  case ICmpInst::ICMP_NE:
902    if (LoOverflow && HiOverflow)
903      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
904    if (HiOverflow)
905      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
906                          ICmpInst::ICMP_ULT, X, LoBound);
907    if (LoOverflow)
908      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
909                          ICmpInst::ICMP_UGE, X, HiBound);
910    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
911                                                    DivIsSigned, false));
912  case ICmpInst::ICMP_ULT:
913  case ICmpInst::ICMP_SLT:
914    if (LoOverflow == +1)   // Low bound is greater than input range.
915      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
916    if (LoOverflow == -1)   // Low bound is less than input range.
917      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
918    return new ICmpInst(Pred, X, LoBound);
919  case ICmpInst::ICMP_UGT:
920  case ICmpInst::ICMP_SGT:
921    if (HiOverflow == +1)       // High bound greater than input range.
922      return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
923    if (HiOverflow == -1)       // High bound less than input range.
924      return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
925    if (Pred == ICmpInst::ICMP_UGT)
926      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
927    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
928  }
929}
930
931
932/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
933///
934Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
935                                                          Instruction *LHSI,
936                                                          ConstantInt *RHS) {
937  const APInt &RHSV = RHS->getValue();
938
939  switch (LHSI->getOpcode()) {
940  case Instruction::Trunc:
941    if (ICI.isEquality() && LHSI->hasOneUse()) {
942      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
943      // of the high bits truncated out of x are known.
944      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
945             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
946      APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
947      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
948      ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
949
950      // If all the high bits are known, we can do this xform.
951      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
952        // Pull in the high bits from known-ones set.
953        APInt NewRHS = RHS->getValue().zext(SrcBits);
954        NewRHS |= KnownOne;
955        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
956                            ConstantInt::get(ICI.getContext(), NewRHS));
957      }
958    }
959    break;
960
961  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
962    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
963      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
964      // fold the xor.
965      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
966          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
967        Value *CompareVal = LHSI->getOperand(0);
968
969        // If the sign bit of the XorCST is not set, there is no change to
970        // the operation, just stop using the Xor.
971        if (!XorCST->getValue().isNegative()) {
972          ICI.setOperand(0, CompareVal);
973          Worklist.Add(LHSI);
974          return &ICI;
975        }
976
977        // Was the old condition true if the operand is positive?
978        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
979
980        // If so, the new one isn't.
981        isTrueIfPositive ^= true;
982
983        if (isTrueIfPositive)
984          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
985                              SubOne(RHS));
986        else
987          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
988                              AddOne(RHS));
989      }
990
991      if (LHSI->hasOneUse()) {
992        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
993        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
994          const APInt &SignBit = XorCST->getValue();
995          ICmpInst::Predicate Pred = ICI.isSigned()
996                                         ? ICI.getUnsignedPredicate()
997                                         : ICI.getSignedPredicate();
998          return new ICmpInst(Pred, LHSI->getOperand(0),
999                              ConstantInt::get(ICI.getContext(),
1000                                               RHSV ^ SignBit));
1001        }
1002
1003        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1004        if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
1005          const APInt &NotSignBit = XorCST->getValue();
1006          ICmpInst::Predicate Pred = ICI.isSigned()
1007                                         ? ICI.getUnsignedPredicate()
1008                                         : ICI.getSignedPredicate();
1009          Pred = ICI.getSwappedPredicate(Pred);
1010          return new ICmpInst(Pred, LHSI->getOperand(0),
1011                              ConstantInt::get(ICI.getContext(),
1012                                               RHSV ^ NotSignBit));
1013        }
1014      }
1015    }
1016    break;
1017  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1018    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1019        LHSI->getOperand(0)->hasOneUse()) {
1020      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1021
1022      // If the LHS is an AND of a truncating cast, we can widen the
1023      // and/compare to be the input width without changing the value
1024      // produced, eliminating a cast.
1025      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1026        // We can do this transformation if either the AND constant does not
1027        // have its sign bit set or if it is an equality comparison.
1028        // Extending a relational comparison when we're checking the sign
1029        // bit would not work.
1030        if (Cast->hasOneUse() &&
1031            (ICI.isEquality() ||
1032             (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
1033          uint32_t BitWidth =
1034            cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
1035          APInt NewCST = AndCST->getValue().zext(BitWidth);
1036          APInt NewCI = RHSV.zext(BitWidth);
1037          Value *NewAnd =
1038            Builder->CreateAnd(Cast->getOperand(0),
1039                           ConstantInt::get(ICI.getContext(), NewCST),
1040                               LHSI->getName());
1041          return new ICmpInst(ICI.getPredicate(), NewAnd,
1042                              ConstantInt::get(ICI.getContext(), NewCI));
1043        }
1044      }
1045
1046      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1047      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1048      // happens a LOT in code produced by the C front-end, for bitfield
1049      // access.
1050      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1051      if (Shift && !Shift->isShift())
1052        Shift = 0;
1053
1054      ConstantInt *ShAmt;
1055      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1056      const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1057      const Type *AndTy = AndCST->getType();          // Type of the and.
1058
1059      // We can fold this as long as we can't shift unknown bits
1060      // into the mask.  This can only happen with signed shift
1061      // rights, as they sign-extend.
1062      if (ShAmt) {
1063        bool CanFold = Shift->isLogicalShift();
1064        if (!CanFold) {
1065          // To test for the bad case of the signed shr, see if any
1066          // of the bits shifted in could be tested after the mask.
1067          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1068          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1069
1070          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1071          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1072               AndCST->getValue()) == 0)
1073            CanFold = true;
1074        }
1075
1076        if (CanFold) {
1077          Constant *NewCst;
1078          if (Shift->getOpcode() == Instruction::Shl)
1079            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1080          else
1081            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1082
1083          // Check to see if we are shifting out any of the bits being
1084          // compared.
1085          if (ConstantExpr::get(Shift->getOpcode(),
1086                                       NewCst, ShAmt) != RHS) {
1087            // If we shifted bits out, the fold is not going to work out.
1088            // As a special case, check to see if this means that the
1089            // result is always true or false now.
1090            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1091              return ReplaceInstUsesWith(ICI,
1092                                       ConstantInt::getFalse(ICI.getContext()));
1093            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1094              return ReplaceInstUsesWith(ICI,
1095                                       ConstantInt::getTrue(ICI.getContext()));
1096          } else {
1097            ICI.setOperand(1, NewCst);
1098            Constant *NewAndCST;
1099            if (Shift->getOpcode() == Instruction::Shl)
1100              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1101            else
1102              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1103            LHSI->setOperand(1, NewAndCST);
1104            LHSI->setOperand(0, Shift->getOperand(0));
1105            Worklist.Add(Shift); // Shift is dead.
1106            return &ICI;
1107          }
1108        }
1109      }
1110
1111      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1112      // preferable because it allows the C<<Y expression to be hoisted out
1113      // of a loop if Y is invariant and X is not.
1114      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1115          ICI.isEquality() && !Shift->isArithmeticShift() &&
1116          !isa<Constant>(Shift->getOperand(0))) {
1117        // Compute C << Y.
1118        Value *NS;
1119        if (Shift->getOpcode() == Instruction::LShr) {
1120          NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
1121        } else {
1122          // Insert a logical shift.
1123          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
1124        }
1125
1126        // Compute X & (C << Y).
1127        Value *NewAnd =
1128          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1129
1130        ICI.setOperand(0, NewAnd);
1131        return &ICI;
1132      }
1133    }
1134
1135    // Try to optimize things like "A[i]&42 == 0" to index computations.
1136    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1137      if (GetElementPtrInst *GEP =
1138          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1139        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1140          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1141              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1142            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1143            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1144              return Res;
1145          }
1146    }
1147    break;
1148
1149  case Instruction::Or: {
1150    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1151      break;
1152    Value *P, *Q;
1153    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1154      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1155      // -> and (icmp eq P, null), (icmp eq Q, null).
1156
1157      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1158                                        Constant::getNullValue(P->getType()));
1159      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1160                                        Constant::getNullValue(Q->getType()));
1161      Instruction *Op;
1162      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1163        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1164      else
1165        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1166      return Op;
1167    }
1168    break;
1169  }
1170
1171  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1172    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1173    if (!ShAmt) break;
1174
1175    uint32_t TypeBits = RHSV.getBitWidth();
1176
1177    // Check that the shift amount is in range.  If not, don't perform
1178    // undefined shifts.  When the shift is visited it will be
1179    // simplified.
1180    if (ShAmt->uge(TypeBits))
1181      break;
1182
1183    if (ICI.isEquality()) {
1184      // If we are comparing against bits always shifted out, the
1185      // comparison cannot succeed.
1186      Constant *Comp =
1187        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1188                                                                 ShAmt);
1189      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1190        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1191        Constant *Cst =
1192          ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1193        return ReplaceInstUsesWith(ICI, Cst);
1194      }
1195
1196      // If the shift is NUW, then it is just shifting out zeros, no need for an
1197      // AND.
1198      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1199        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1200                            ConstantExpr::getLShr(RHS, ShAmt));
1201
1202      if (LHSI->hasOneUse()) {
1203        // Otherwise strength reduce the shift into an and.
1204        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1205        Constant *Mask =
1206          ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1207                                                       TypeBits-ShAmtVal));
1208
1209        Value *And =
1210          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1211        return new ICmpInst(ICI.getPredicate(), And,
1212                            ConstantExpr::getLShr(RHS, ShAmt));
1213      }
1214    }
1215
1216    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1217    bool TrueIfSigned = false;
1218    if (LHSI->hasOneUse() &&
1219        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1220      // (X << 31) <s 0  --> (X&1) != 0
1221      Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) <<
1222                                           (TypeBits-ShAmt->getZExtValue()-1));
1223      Value *And =
1224        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1225      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1226                          And, Constant::getNullValue(And->getType()));
1227    }
1228    break;
1229  }
1230
1231  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1232  case Instruction::AShr: {
1233    // Only handle equality comparisons of shift-by-constant.
1234    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1235    if (!ShAmt || !ICI.isEquality()) break;
1236
1237    // Check that the shift amount is in range.  If not, don't perform
1238    // undefined shifts.  When the shift is visited it will be
1239    // simplified.
1240    uint32_t TypeBits = RHSV.getBitWidth();
1241    uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1242    if (ShAmtVal >= TypeBits)
1243      break;
1244
1245    // If we are comparing against bits always shifted out, the
1246    // comparison cannot succeed.
1247    APInt Comp = RHSV << ShAmtVal;
1248    if (LHSI->getOpcode() == Instruction::LShr)
1249      Comp = Comp.lshr(ShAmtVal);
1250    else
1251      Comp = Comp.ashr(ShAmtVal);
1252
1253    if (Comp != RHSV) { // Comparing against a bit that we know is zero.
1254      bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1255      Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1256                                       IsICMP_NE);
1257      return ReplaceInstUsesWith(ICI, Cst);
1258    }
1259
1260    // Otherwise, check to see if the bits shifted out are known to be zero.
1261    // If so, we can compare against the unshifted value:
1262    //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1263    if (LHSI->hasOneUse() && cast<BinaryOperator>(LHSI)->isExact())
1264      return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1265                          ConstantExpr::getShl(RHS, ShAmt));
1266
1267    if (LHSI->hasOneUse()) {
1268      // Otherwise strength reduce the shift into an and.
1269      APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1270      Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
1271
1272      Value *And = Builder->CreateAnd(LHSI->getOperand(0),
1273                                      Mask, LHSI->getName()+".mask");
1274      return new ICmpInst(ICI.getPredicate(), And,
1275                          ConstantExpr::getShl(RHS, ShAmt));
1276    }
1277    break;
1278  }
1279
1280  case Instruction::SDiv:
1281  case Instruction::UDiv:
1282    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1283    // Fold this div into the comparison, producing a range check.
1284    // Determine, based on the divide type, what the range is being
1285    // checked.  If there is an overflow on the low or high side, remember
1286    // it, otherwise compute the range [low, hi) bounding the new value.
1287    // See: InsertRangeTest above for the kinds of replacements possible.
1288    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1289      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1290                                          DivRHS))
1291        return R;
1292    break;
1293
1294  case Instruction::Add:
1295    // Fold: icmp pred (add X, C1), C2
1296    if (!ICI.isEquality()) {
1297      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1298      if (!LHSC) break;
1299      const APInt &LHSV = LHSC->getValue();
1300
1301      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1302                            .subtract(LHSV);
1303
1304      if (ICI.isSigned()) {
1305        if (CR.getLower().isSignBit()) {
1306          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1307                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1308        } else if (CR.getUpper().isSignBit()) {
1309          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1310                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1311        }
1312      } else {
1313        if (CR.getLower().isMinValue()) {
1314          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1315                              ConstantInt::get(ICI.getContext(),CR.getUpper()));
1316        } else if (CR.getUpper().isMinValue()) {
1317          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1318                              ConstantInt::get(ICI.getContext(),CR.getLower()));
1319        }
1320      }
1321    }
1322    break;
1323  }
1324
1325  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1326  if (ICI.isEquality()) {
1327    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1328
1329    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1330    // the second operand is a constant, simplify a bit.
1331    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1332      switch (BO->getOpcode()) {
1333      case Instruction::SRem:
1334        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1335        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1336          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1337          if (V.sgt(1) && V.isPowerOf2()) {
1338            Value *NewRem =
1339              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1340                                  BO->getName());
1341            return new ICmpInst(ICI.getPredicate(), NewRem,
1342                                Constant::getNullValue(BO->getType()));
1343          }
1344        }
1345        break;
1346      case Instruction::Add:
1347        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1348        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1349          if (BO->hasOneUse())
1350            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1351                                ConstantExpr::getSub(RHS, BOp1C));
1352        } else if (RHSV == 0) {
1353          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1354          // efficiently invertible, or if the add has just this one use.
1355          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1356
1357          if (Value *NegVal = dyn_castNegVal(BOp1))
1358            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1359          else if (Value *NegVal = dyn_castNegVal(BOp0))
1360            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1361          else if (BO->hasOneUse()) {
1362            Value *Neg = Builder->CreateNeg(BOp1);
1363            Neg->takeName(BO);
1364            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1365          }
1366        }
1367        break;
1368      case Instruction::Xor:
1369        // For the xor case, we can xor two constants together, eliminating
1370        // the explicit xor.
1371        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1372          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1373                              ConstantExpr::getXor(RHS, BOC));
1374
1375        // FALLTHROUGH
1376      case Instruction::Sub:
1377        // Replace (([sub|xor] A, B) != 0) with (A != B)
1378        if (RHSV == 0)
1379          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1380                              BO->getOperand(1));
1381        break;
1382
1383      case Instruction::Or:
1384        // If bits are being or'd in that are not present in the constant we
1385        // are comparing against, then the comparison could never succeed!
1386        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1387          Constant *NotCI = ConstantExpr::getNot(RHS);
1388          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1389            return ReplaceInstUsesWith(ICI,
1390                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1391                                       isICMP_NE));
1392        }
1393        break;
1394
1395      case Instruction::And:
1396        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1397          // If bits are being compared against that are and'd out, then the
1398          // comparison can never succeed!
1399          if ((RHSV & ~BOC->getValue()) != 0)
1400            return ReplaceInstUsesWith(ICI,
1401                             ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1402                                       isICMP_NE));
1403
1404          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1405          if (RHS == BOC && RHSV.isPowerOf2())
1406            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1407                                ICmpInst::ICMP_NE, LHSI,
1408                                Constant::getNullValue(RHS->getType()));
1409
1410          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1411          if (BOC->getValue().isSignBit()) {
1412            Value *X = BO->getOperand(0);
1413            Constant *Zero = Constant::getNullValue(X->getType());
1414            ICmpInst::Predicate pred = isICMP_NE ?
1415              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1416            return new ICmpInst(pred, X, Zero);
1417          }
1418
1419          // ((X & ~7) == 0) --> X < 8
1420          if (RHSV == 0 && isHighOnes(BOC)) {
1421            Value *X = BO->getOperand(0);
1422            Constant *NegX = ConstantExpr::getNeg(BOC);
1423            ICmpInst::Predicate pred = isICMP_NE ?
1424              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1425            return new ICmpInst(pred, X, NegX);
1426          }
1427        }
1428      default: break;
1429      }
1430    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1431      // Handle icmp {eq|ne} <intrinsic>, intcst.
1432      switch (II->getIntrinsicID()) {
1433      case Intrinsic::bswap:
1434        Worklist.Add(II);
1435        ICI.setOperand(0, II->getArgOperand(0));
1436        ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1437        return &ICI;
1438      case Intrinsic::ctlz:
1439      case Intrinsic::cttz:
1440        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1441        if (RHSV == RHS->getType()->getBitWidth()) {
1442          Worklist.Add(II);
1443          ICI.setOperand(0, II->getArgOperand(0));
1444          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1445          return &ICI;
1446        }
1447        break;
1448      case Intrinsic::ctpop:
1449        // popcount(A) == 0  ->  A == 0 and likewise for !=
1450        if (RHS->isZero()) {
1451          Worklist.Add(II);
1452          ICI.setOperand(0, II->getArgOperand(0));
1453          ICI.setOperand(1, RHS);
1454          return &ICI;
1455        }
1456        break;
1457      default:
1458        break;
1459      }
1460    }
1461  }
1462  return 0;
1463}
1464
1465/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1466/// We only handle extending casts so far.
1467///
1468Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1469  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1470  Value *LHSCIOp        = LHSCI->getOperand(0);
1471  const Type *SrcTy     = LHSCIOp->getType();
1472  const Type *DestTy    = LHSCI->getType();
1473  Value *RHSCIOp;
1474
1475  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1476  // integer type is the same size as the pointer type.
1477  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1478      TD->getPointerSizeInBits() ==
1479         cast<IntegerType>(DestTy)->getBitWidth()) {
1480    Value *RHSOp = 0;
1481    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1482      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1483    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1484      RHSOp = RHSC->getOperand(0);
1485      // If the pointer types don't match, insert a bitcast.
1486      if (LHSCIOp->getType() != RHSOp->getType())
1487        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1488    }
1489
1490    if (RHSOp)
1491      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1492  }
1493
1494  // The code below only handles extension cast instructions, so far.
1495  // Enforce this.
1496  if (LHSCI->getOpcode() != Instruction::ZExt &&
1497      LHSCI->getOpcode() != Instruction::SExt)
1498    return 0;
1499
1500  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1501  bool isSignedCmp = ICI.isSigned();
1502
1503  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1504    // Not an extension from the same type?
1505    RHSCIOp = CI->getOperand(0);
1506    if (RHSCIOp->getType() != LHSCIOp->getType())
1507      return 0;
1508
1509    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1510    // and the other is a zext), then we can't handle this.
1511    if (CI->getOpcode() != LHSCI->getOpcode())
1512      return 0;
1513
1514    // Deal with equality cases early.
1515    if (ICI.isEquality())
1516      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1517
1518    // A signed comparison of sign extended values simplifies into a
1519    // signed comparison.
1520    if (isSignedCmp && isSignedExt)
1521      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1522
1523    // The other three cases all fold into an unsigned comparison.
1524    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1525  }
1526
1527  // If we aren't dealing with a constant on the RHS, exit early
1528  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1529  if (!CI)
1530    return 0;
1531
1532  // Compute the constant that would happen if we truncated to SrcTy then
1533  // reextended to DestTy.
1534  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1535  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1536                                                Res1, DestTy);
1537
1538  // If the re-extended constant didn't change...
1539  if (Res2 == CI) {
1540    // Deal with equality cases early.
1541    if (ICI.isEquality())
1542      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1543
1544    // A signed comparison of sign extended values simplifies into a
1545    // signed comparison.
1546    if (isSignedExt && isSignedCmp)
1547      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1548
1549    // The other three cases all fold into an unsigned comparison.
1550    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1551  }
1552
1553  // The re-extended constant changed so the constant cannot be represented
1554  // in the shorter type. Consequently, we cannot emit a simple comparison.
1555  // All the cases that fold to true or false will have already been handled
1556  // by SimplifyICmpInst, so only deal with the tricky case.
1557
1558  if (isSignedCmp || !isSignedExt)
1559    return 0;
1560
1561  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1562  // should have been folded away previously and not enter in here.
1563
1564  // We're performing an unsigned comp with a sign extended value.
1565  // This is true if the input is >= 0. [aka >s -1]
1566  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1567  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1568
1569  // Finally, return the value computed.
1570  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1571    return ReplaceInstUsesWith(ICI, Result);
1572
1573  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1574  return BinaryOperator::CreateNot(Result);
1575}
1576
1577/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1578///   I = icmp ugt (add (add A, B), CI2), CI1
1579/// If this is of the form:
1580///   sum = a + b
1581///   if (sum+128 >u 255)
1582/// Then replace it with llvm.sadd.with.overflow.i8.
1583///
1584static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1585                                          ConstantInt *CI2, ConstantInt *CI1,
1586                                          InstCombiner &IC) {
1587  // The transformation we're trying to do here is to transform this into an
1588  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1589  // with a narrower add, and discard the add-with-constant that is part of the
1590  // range check (if we can't eliminate it, this isn't profitable).
1591
1592  // In order to eliminate the add-with-constant, the compare can be its only
1593  // use.
1594  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1595  if (!AddWithCst->hasOneUse()) return 0;
1596
1597  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1598  if (!CI2->getValue().isPowerOf2()) return 0;
1599  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1600  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1601
1602  // The width of the new add formed is 1 more than the bias.
1603  ++NewWidth;
1604
1605  // Check to see that CI1 is an all-ones value with NewWidth bits.
1606  if (CI1->getBitWidth() == NewWidth ||
1607      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1608    return 0;
1609
1610  // In order to replace the original add with a narrower
1611  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1612  // and truncates that discard the high bits of the add.  Verify that this is
1613  // the case.
1614  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1615  for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1616       UI != E; ++UI) {
1617    if (*UI == AddWithCst) continue;
1618
1619    // Only accept truncates for now.  We would really like a nice recursive
1620    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1621    // chain to see which bits of a value are actually demanded.  If the
1622    // original add had another add which was then immediately truncated, we
1623    // could still do the transformation.
1624    TruncInst *TI = dyn_cast<TruncInst>(*UI);
1625    if (TI == 0 ||
1626        TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1627  }
1628
1629  // If the pattern matches, truncate the inputs to the narrower type and
1630  // use the sadd_with_overflow intrinsic to efficiently compute both the
1631  // result and the overflow bit.
1632  Module *M = I.getParent()->getParent()->getParent();
1633
1634  const Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1635  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1636                                       &NewType, 1);
1637
1638  InstCombiner::BuilderTy *Builder = IC.Builder;
1639
1640  // Put the new code above the original add, in case there are any uses of the
1641  // add between the add and the compare.
1642  Builder->SetInsertPoint(OrigAdd);
1643
1644  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1645  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1646  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1647  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1648  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1649
1650  // The inner add was the result of the narrow add, zero extended to the
1651  // wider type.  Replace it with the result computed by the intrinsic.
1652  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1653
1654  // The original icmp gets replaced with the overflow value.
1655  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1656}
1657
1658static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1659                                     InstCombiner &IC) {
1660  // Don't bother doing this transformation for pointers, don't do it for
1661  // vectors.
1662  if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1663
1664  // If the add is a constant expr, then we don't bother transforming it.
1665  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1666  if (OrigAdd == 0) return 0;
1667
1668  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1669
1670  // Put the new code above the original add, in case there are any uses of the
1671  // add between the add and the compare.
1672  InstCombiner::BuilderTy *Builder = IC.Builder;
1673  Builder->SetInsertPoint(OrigAdd);
1674
1675  Module *M = I.getParent()->getParent()->getParent();
1676  const Type *Ty = LHS->getType();
1677  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, &Ty,1);
1678  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1679  Value *Add = Builder->CreateExtractValue(Call, 0);
1680
1681  IC.ReplaceInstUsesWith(*OrigAdd, Add);
1682
1683  // The original icmp gets replaced with the overflow value.
1684  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1685}
1686
1687// DemandedBitsLHSMask - When performing a comparison against a constant,
1688// it is possible that not all the bits in the LHS are demanded.  This helper
1689// method computes the mask that IS demanded.
1690static APInt DemandedBitsLHSMask(ICmpInst &I,
1691                                 unsigned BitWidth, bool isSignCheck) {
1692  if (isSignCheck)
1693    return APInt::getSignBit(BitWidth);
1694
1695  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1696  if (!CI) return APInt::getAllOnesValue(BitWidth);
1697  const APInt &RHS = CI->getValue();
1698
1699  switch (I.getPredicate()) {
1700  // For a UGT comparison, we don't care about any bits that
1701  // correspond to the trailing ones of the comparand.  The value of these
1702  // bits doesn't impact the outcome of the comparison, because any value
1703  // greater than the RHS must differ in a bit higher than these due to carry.
1704  case ICmpInst::ICMP_UGT: {
1705    unsigned trailingOnes = RHS.countTrailingOnes();
1706    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1707    return ~lowBitsSet;
1708  }
1709
1710  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1711  // Any value less than the RHS must differ in a higher bit because of carries.
1712  case ICmpInst::ICMP_ULT: {
1713    unsigned trailingZeros = RHS.countTrailingZeros();
1714    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1715    return ~lowBitsSet;
1716  }
1717
1718  default:
1719    return APInt::getAllOnesValue(BitWidth);
1720  }
1721
1722}
1723
1724Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1725  bool Changed = false;
1726  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1727
1728  /// Orders the operands of the compare so that they are listed from most
1729  /// complex to least complex.  This puts constants before unary operators,
1730  /// before binary operators.
1731  if (getComplexity(Op0) < getComplexity(Op1)) {
1732    I.swapOperands();
1733    std::swap(Op0, Op1);
1734    Changed = true;
1735  }
1736
1737  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1738    return ReplaceInstUsesWith(I, V);
1739
1740  const Type *Ty = Op0->getType();
1741
1742  // icmp's with boolean values can always be turned into bitwise operations
1743  if (Ty->isIntegerTy(1)) {
1744    switch (I.getPredicate()) {
1745    default: llvm_unreachable("Invalid icmp instruction!");
1746    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
1747      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1748      return BinaryOperator::CreateNot(Xor);
1749    }
1750    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
1751      return BinaryOperator::CreateXor(Op0, Op1);
1752
1753    case ICmpInst::ICMP_UGT:
1754      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
1755      // FALL THROUGH
1756    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
1757      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1758      return BinaryOperator::CreateAnd(Not, Op1);
1759    }
1760    case ICmpInst::ICMP_SGT:
1761      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
1762      // FALL THROUGH
1763    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
1764      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1765      return BinaryOperator::CreateAnd(Not, Op0);
1766    }
1767    case ICmpInst::ICMP_UGE:
1768      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
1769      // FALL THROUGH
1770    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
1771      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1772      return BinaryOperator::CreateOr(Not, Op1);
1773    }
1774    case ICmpInst::ICMP_SGE:
1775      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
1776      // FALL THROUGH
1777    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
1778      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1779      return BinaryOperator::CreateOr(Not, Op0);
1780    }
1781    }
1782  }
1783
1784  unsigned BitWidth = 0;
1785  if (Ty->isIntOrIntVectorTy())
1786    BitWidth = Ty->getScalarSizeInBits();
1787  else if (TD)  // Pointers require TD info to get their size.
1788    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1789
1790  bool isSignBit = false;
1791
1792  // See if we are doing a comparison with a constant.
1793  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1794    Value *A = 0, *B = 0;
1795
1796    // Match the following pattern, which is a common idiom when writing
1797    // overflow-safe integer arithmetic function.  The source performs an
1798    // addition in wider type, and explicitly checks for overflow using
1799    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
1800    // sadd_with_overflow intrinsic.
1801    //
1802    // TODO: This could probably be generalized to handle other overflow-safe
1803    // operations if we worked out the formulas to compute the appropriate
1804    // magic constants.
1805    //
1806    // sum = a + b
1807    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1808    {
1809    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
1810    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
1811        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1812      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
1813        return Res;
1814    }
1815
1816    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1817    if (I.isEquality() && CI->isZero() &&
1818        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1819      // (icmp cond A B) if cond is equality
1820      return new ICmpInst(I.getPredicate(), A, B);
1821    }
1822
1823    // If we have an icmp le or icmp ge instruction, turn it into the
1824    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
1825    // them being folded in the code below.  The SimplifyICmpInst code has
1826    // already handled the edge cases for us, so we just assert on them.
1827    switch (I.getPredicate()) {
1828    default: break;
1829    case ICmpInst::ICMP_ULE:
1830      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
1831      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1832                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1833    case ICmpInst::ICMP_SLE:
1834      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
1835      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1836                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
1837    case ICmpInst::ICMP_UGE:
1838      assert(!CI->isMinValue(false));                  // A >=u MIN -> TRUE
1839      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1840                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1841    case ICmpInst::ICMP_SGE:
1842      assert(!CI->isMinValue(true));                   // A >=s MIN -> TRUE
1843      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1844                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1845    }
1846
1847    // If this comparison is a normal comparison, it demands all
1848    // bits, if it is a sign bit comparison, it only demands the sign bit.
1849    bool UnusedBit;
1850    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1851  }
1852
1853  // See if we can fold the comparison based on range information we can get
1854  // by checking whether bits are known to be zero or one in the input.
1855  if (BitWidth != 0) {
1856    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1857    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1858
1859    if (SimplifyDemandedBits(I.getOperandUse(0),
1860                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
1861                             Op0KnownZero, Op0KnownOne, 0))
1862      return &I;
1863    if (SimplifyDemandedBits(I.getOperandUse(1),
1864                             APInt::getAllOnesValue(BitWidth),
1865                             Op1KnownZero, Op1KnownOne, 0))
1866      return &I;
1867
1868    // Given the known and unknown bits, compute a range that the LHS could be
1869    // in.  Compute the Min, Max and RHS values based on the known bits. For the
1870    // EQ and NE we use unsigned values.
1871    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1872    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1873    if (I.isSigned()) {
1874      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1875                                             Op0Min, Op0Max);
1876      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1877                                             Op1Min, Op1Max);
1878    } else {
1879      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1880                                               Op0Min, Op0Max);
1881      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1882                                               Op1Min, Op1Max);
1883    }
1884
1885    // If Min and Max are known to be the same, then SimplifyDemandedBits
1886    // figured out that the LHS is a constant.  Just constant fold this now so
1887    // that code below can assume that Min != Max.
1888    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1889      return new ICmpInst(I.getPredicate(),
1890                          ConstantInt::get(I.getContext(), Op0Min), Op1);
1891    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1892      return new ICmpInst(I.getPredicate(), Op0,
1893                          ConstantInt::get(I.getContext(), Op1Min));
1894
1895    // Based on the range information we know about the LHS, see if we can
1896    // simplify this comparison.  For example, (x&4) < 8  is always true.
1897    switch (I.getPredicate()) {
1898    default: llvm_unreachable("Unknown icmp opcode!");
1899    case ICmpInst::ICMP_EQ: {
1900      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1901        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1902
1903      // If all bits are known zero except for one, then we know at most one
1904      // bit is set.   If the comparison is against zero, then this is a check
1905      // to see if *that* bit is set.
1906      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1907      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1908        // If the LHS is an AND with the same constant, look through it.
1909        Value *LHS = 0;
1910        ConstantInt *LHSC = 0;
1911        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1912            LHSC->getValue() != Op0KnownZeroInverted)
1913          LHS = Op0;
1914
1915        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1916        // then turn "((1 << x)&8) == 0" into "x != 3".
1917        Value *X = 0;
1918        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1919          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1920          return new ICmpInst(ICmpInst::ICMP_NE, X,
1921                              ConstantInt::get(X->getType(), CmpVal));
1922        }
1923
1924        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1925        // then turn "((8 >>u x)&1) == 0" into "x != 3".
1926        const APInt *CI;
1927        if (Op0KnownZeroInverted == 1 &&
1928            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
1929          return new ICmpInst(ICmpInst::ICMP_NE, X,
1930                              ConstantInt::get(X->getType(),
1931                                               CI->countTrailingZeros()));
1932      }
1933
1934      break;
1935    }
1936    case ICmpInst::ICMP_NE: {
1937      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1938        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1939
1940      // If all bits are known zero except for one, then we know at most one
1941      // bit is set.   If the comparison is against zero, then this is a check
1942      // to see if *that* bit is set.
1943      APInt Op0KnownZeroInverted = ~Op0KnownZero;
1944      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1945        // If the LHS is an AND with the same constant, look through it.
1946        Value *LHS = 0;
1947        ConstantInt *LHSC = 0;
1948        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1949            LHSC->getValue() != Op0KnownZeroInverted)
1950          LHS = Op0;
1951
1952        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
1953        // then turn "((1 << x)&8) != 0" into "x == 3".
1954        Value *X = 0;
1955        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1956          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
1957          return new ICmpInst(ICmpInst::ICMP_EQ, X,
1958                              ConstantInt::get(X->getType(), CmpVal));
1959        }
1960
1961        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
1962        // then turn "((8 >>u x)&1) != 0" into "x == 3".
1963        const APInt *CI;
1964        if (Op0KnownZeroInverted == 1 &&
1965            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
1966          return new ICmpInst(ICmpInst::ICMP_EQ, X,
1967                              ConstantInt::get(X->getType(),
1968                                               CI->countTrailingZeros()));
1969      }
1970
1971      break;
1972    }
1973    case ICmpInst::ICMP_ULT:
1974      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
1975        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1976      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
1977        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1978      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
1979        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1980      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1981        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
1982          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1983                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
1984
1985        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
1986        if (CI->isMinValue(true))
1987          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1988                           Constant::getAllOnesValue(Op0->getType()));
1989      }
1990      break;
1991    case ICmpInst::ICMP_UGT:
1992      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
1993        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1994      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
1995        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1996
1997      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
1998        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1999      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2000        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2001          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2002                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2003
2004        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2005        if (CI->isMaxValue(true))
2006          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2007                              Constant::getNullValue(Op0->getType()));
2008      }
2009      break;
2010    case ICmpInst::ICMP_SLT:
2011      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2012        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2013      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2014        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2015      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2016        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2017      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2018        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2019          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2020                          ConstantInt::get(CI->getContext(), CI->getValue()-1));
2021      }
2022      break;
2023    case ICmpInst::ICMP_SGT:
2024      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2025        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2026      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2027        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2028
2029      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2030        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2031      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2032        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2033          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2034                          ConstantInt::get(CI->getContext(), CI->getValue()+1));
2035      }
2036      break;
2037    case ICmpInst::ICMP_SGE:
2038      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2039      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2040        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2041      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2042        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2043      break;
2044    case ICmpInst::ICMP_SLE:
2045      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2046      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2047        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2048      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2049        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2050      break;
2051    case ICmpInst::ICMP_UGE:
2052      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2053      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2054        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2055      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2056        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2057      break;
2058    case ICmpInst::ICMP_ULE:
2059      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2060      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2061        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2062      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2063        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2064      break;
2065    }
2066
2067    // Turn a signed comparison into an unsigned one if both operands
2068    // are known to have the same sign.
2069    if (I.isSigned() &&
2070        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2071         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2072      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2073  }
2074
2075  // Test if the ICmpInst instruction is used exclusively by a select as
2076  // part of a minimum or maximum operation. If so, refrain from doing
2077  // any other folding. This helps out other analyses which understand
2078  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2079  // and CodeGen. And in this case, at least one of the comparison
2080  // operands has at least one user besides the compare (the select),
2081  // which would often largely negate the benefit of folding anyway.
2082  if (I.hasOneUse())
2083    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2084      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2085          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2086        return 0;
2087
2088  // See if we are doing a comparison between a constant and an instruction that
2089  // can be folded into the comparison.
2090  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2091    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2092    // instruction, see if that instruction also has constants so that the
2093    // instruction can be folded into the icmp
2094    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2095      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2096        return Res;
2097  }
2098
2099  // Handle icmp with constant (but not simple integer constant) RHS
2100  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2101    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2102      switch (LHSI->getOpcode()) {
2103      case Instruction::GetElementPtr:
2104          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2105        if (RHSC->isNullValue() &&
2106            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2107          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2108                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2109        break;
2110      case Instruction::PHI:
2111        // Only fold icmp into the PHI if the phi and icmp are in the same
2112        // block.  If in the same block, we're encouraging jump threading.  If
2113        // not, we are just pessimizing the code by making an i1 phi.
2114        if (LHSI->getParent() == I.getParent())
2115          if (Instruction *NV = FoldOpIntoPhi(I))
2116            return NV;
2117        break;
2118      case Instruction::Select: {
2119        // If either operand of the select is a constant, we can fold the
2120        // comparison into the select arms, which will cause one to be
2121        // constant folded and the select turned into a bitwise or.
2122        Value *Op1 = 0, *Op2 = 0;
2123        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2124          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2125        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2126          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2127
2128        // We only want to perform this transformation if it will not lead to
2129        // additional code. This is true if either both sides of the select
2130        // fold to a constant (in which case the icmp is replaced with a select
2131        // which will usually simplify) or this is the only user of the
2132        // select (in which case we are trading a select+icmp for a simpler
2133        // select+icmp).
2134        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2135          if (!Op1)
2136            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2137                                      RHSC, I.getName());
2138          if (!Op2)
2139            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2140                                      RHSC, I.getName());
2141          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2142        }
2143        break;
2144      }
2145      case Instruction::IntToPtr:
2146        // icmp pred inttoptr(X), null -> icmp pred X, 0
2147        if (RHSC->isNullValue() && TD &&
2148            TD->getIntPtrType(RHSC->getContext()) ==
2149               LHSI->getOperand(0)->getType())
2150          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2151                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2152        break;
2153
2154      case Instruction::Load:
2155        // Try to optimize things like "A[i] > 4" to index computations.
2156        if (GetElementPtrInst *GEP =
2157              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2158          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2159            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2160                !cast<LoadInst>(LHSI)->isVolatile())
2161              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2162                return Res;
2163        }
2164        break;
2165      }
2166  }
2167
2168  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2169  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2170    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2171      return NI;
2172  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2173    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2174                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2175      return NI;
2176
2177  // Test to see if the operands of the icmp are casted versions of other
2178  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2179  // now.
2180  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2181    if (Op0->getType()->isPointerTy() &&
2182        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2183      // We keep moving the cast from the left operand over to the right
2184      // operand, where it can often be eliminated completely.
2185      Op0 = CI->getOperand(0);
2186
2187      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2188      // so eliminate it as well.
2189      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2190        Op1 = CI2->getOperand(0);
2191
2192      // If Op1 is a constant, we can fold the cast into the constant.
2193      if (Op0->getType() != Op1->getType()) {
2194        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2195          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2196        } else {
2197          // Otherwise, cast the RHS right before the icmp
2198          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2199        }
2200      }
2201      return new ICmpInst(I.getPredicate(), Op0, Op1);
2202    }
2203  }
2204
2205  if (isa<CastInst>(Op0)) {
2206    // Handle the special case of: icmp (cast bool to X), <cst>
2207    // This comes up when you have code like
2208    //   int X = A < B;
2209    //   if (X) ...
2210    // For generality, we handle any zero-extension of any operand comparison
2211    // with a constant or another cast from the same type.
2212    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2213      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2214        return R;
2215  }
2216
2217  // See if it's the same type of instruction on the left and right.
2218  if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2219    if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2220      if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
2221          Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
2222        switch (Op0I->getOpcode()) {
2223        default: break;
2224        case Instruction::Add:
2225        case Instruction::Sub:
2226        case Instruction::Xor:
2227          if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2228            return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
2229                                Op1I->getOperand(0));
2230          // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2231          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2232            if (CI->getValue().isSignBit()) {
2233              ICmpInst::Predicate Pred = I.isSigned()
2234                                             ? I.getUnsignedPredicate()
2235                                             : I.getSignedPredicate();
2236              return new ICmpInst(Pred, Op0I->getOperand(0),
2237                                  Op1I->getOperand(0));
2238            }
2239
2240            if (CI->getValue().isMaxSignedValue()) {
2241              ICmpInst::Predicate Pred = I.isSigned()
2242                                             ? I.getUnsignedPredicate()
2243                                             : I.getSignedPredicate();
2244              Pred = I.getSwappedPredicate(Pred);
2245              return new ICmpInst(Pred, Op0I->getOperand(0),
2246                                  Op1I->getOperand(0));
2247            }
2248          }
2249          break;
2250        case Instruction::Mul:
2251          if (!I.isEquality())
2252            break;
2253
2254          if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2255            // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2256            // Mask = -1 >> count-trailing-zeros(Cst).
2257            if (!CI->isZero() && !CI->isOne()) {
2258              const APInt &AP = CI->getValue();
2259              ConstantInt *Mask = ConstantInt::get(I.getContext(),
2260                                      APInt::getLowBitsSet(AP.getBitWidth(),
2261                                                           AP.getBitWidth() -
2262                                                      AP.countTrailingZeros()));
2263              Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
2264              Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
2265              return new ICmpInst(I.getPredicate(), And1, And2);
2266            }
2267          }
2268          break;
2269        }
2270      }
2271    }
2272  }
2273
2274  { Value *A, *B;
2275    // ~x < ~y --> y < x
2276    // ~x < cst --> ~cst < x
2277    if (match(Op0, m_Not(m_Value(A)))) {
2278      if (match(Op1, m_Not(m_Value(B))))
2279        return new ICmpInst(I.getPredicate(), B, A);
2280      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2281        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2282    }
2283
2284    // (a+b) <u a  --> llvm.uadd.with.overflow.
2285    // (a+b) <u b  --> llvm.uadd.with.overflow.
2286    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2287        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2288        (Op1 == A || Op1 == B))
2289      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2290        return R;
2291
2292    // a >u (a+b)  --> llvm.uadd.with.overflow.
2293    // b >u (a+b)  --> llvm.uadd.with.overflow.
2294    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2295        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2296        (Op0 == A || Op0 == B))
2297      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2298        return R;
2299  }
2300
2301  if (I.isEquality()) {
2302    Value *A, *B, *C, *D;
2303
2304    // -x == -y --> x == y
2305    if (match(Op0, m_Neg(m_Value(A))) &&
2306        match(Op1, m_Neg(m_Value(B))))
2307      return new ICmpInst(I.getPredicate(), A, B);
2308
2309    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2310      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2311        Value *OtherVal = A == Op1 ? B : A;
2312        return new ICmpInst(I.getPredicate(), OtherVal,
2313                            Constant::getNullValue(A->getType()));
2314      }
2315
2316      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2317        // A^c1 == C^c2 --> A == C^(c1^c2)
2318        ConstantInt *C1, *C2;
2319        if (match(B, m_ConstantInt(C1)) &&
2320            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2321          Constant *NC = ConstantInt::get(I.getContext(),
2322                                          C1->getValue() ^ C2->getValue());
2323          Value *Xor = Builder->CreateXor(C, NC, "tmp");
2324          return new ICmpInst(I.getPredicate(), A, Xor);
2325        }
2326
2327        // A^B == A^D -> B == D
2328        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2329        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2330        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2331        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2332      }
2333    }
2334
2335    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2336        (A == Op0 || B == Op0)) {
2337      // A == (A^B)  ->  B == 0
2338      Value *OtherVal = A == Op0 ? B : A;
2339      return new ICmpInst(I.getPredicate(), OtherVal,
2340                          Constant::getNullValue(A->getType()));
2341    }
2342
2343    // (A-B) == A  ->  B == 0
2344    if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
2345      return new ICmpInst(I.getPredicate(), B,
2346                          Constant::getNullValue(B->getType()));
2347
2348    // A == (A-B)  ->  B == 0
2349    if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
2350      return new ICmpInst(I.getPredicate(), B,
2351                          Constant::getNullValue(B->getType()));
2352
2353    // (A+B) == A  ->  B == 0
2354    if (match(Op0, m_Add(m_Specific(Op1), m_Value(B))) ||
2355        match(Op0, m_Add(m_Value(B), m_Specific(Op1))))
2356      return new ICmpInst(I.getPredicate(), B,
2357                          Constant::getNullValue(B->getType()));
2358
2359    // A == (A+B)  ->  B == 0
2360    if (match(Op1, m_Add(m_Specific(Op0), m_Value(B))) ||
2361        match(Op1, m_Add(m_Value(B), m_Specific(Op0))))
2362      return new ICmpInst(I.getPredicate(), B,
2363                          Constant::getNullValue(B->getType()));
2364
2365    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2366    if (Op0->hasOneUse() && Op1->hasOneUse() &&
2367        match(Op0, m_And(m_Value(A), m_Value(B))) &&
2368        match(Op1, m_And(m_Value(C), m_Value(D)))) {
2369      Value *X = 0, *Y = 0, *Z = 0;
2370
2371      if (A == C) {
2372        X = B; Y = D; Z = A;
2373      } else if (A == D) {
2374        X = B; Y = C; Z = A;
2375      } else if (B == C) {
2376        X = A; Y = D; Z = B;
2377      } else if (B == D) {
2378        X = A; Y = C; Z = B;
2379      }
2380
2381      if (X) {   // Build (X^Y) & Z
2382        Op1 = Builder->CreateXor(X, Y, "tmp");
2383        Op1 = Builder->CreateAnd(Op1, Z, "tmp");
2384        I.setOperand(0, Op1);
2385        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2386        return &I;
2387      }
2388    }
2389  }
2390
2391  {
2392    Value *X; ConstantInt *Cst;
2393    // icmp X+Cst, X
2394    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2395      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2396
2397    // icmp X, X+Cst
2398    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2399      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2400  }
2401  return Changed ? &I : 0;
2402}
2403
2404
2405
2406
2407
2408
2409/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2410///
2411Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2412                                                Instruction *LHSI,
2413                                                Constant *RHSC) {
2414  if (!isa<ConstantFP>(RHSC)) return 0;
2415  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2416
2417  // Get the width of the mantissa.  We don't want to hack on conversions that
2418  // might lose information from the integer, e.g. "i64 -> float"
2419  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2420  if (MantissaWidth == -1) return 0;  // Unknown.
2421
2422  // Check to see that the input is converted from an integer type that is small
2423  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2424  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2425  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2426
2427  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2428  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2429  if (LHSUnsigned)
2430    ++InputSize;
2431
2432  // If the conversion would lose info, don't hack on this.
2433  if ((int)InputSize > MantissaWidth)
2434    return 0;
2435
2436  // Otherwise, we can potentially simplify the comparison.  We know that it
2437  // will always come through as an integer value and we know the constant is
2438  // not a NAN (it would have been previously simplified).
2439  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2440
2441  ICmpInst::Predicate Pred;
2442  switch (I.getPredicate()) {
2443  default: llvm_unreachable("Unexpected predicate!");
2444  case FCmpInst::FCMP_UEQ:
2445  case FCmpInst::FCMP_OEQ:
2446    Pred = ICmpInst::ICMP_EQ;
2447    break;
2448  case FCmpInst::FCMP_UGT:
2449  case FCmpInst::FCMP_OGT:
2450    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2451    break;
2452  case FCmpInst::FCMP_UGE:
2453  case FCmpInst::FCMP_OGE:
2454    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2455    break;
2456  case FCmpInst::FCMP_ULT:
2457  case FCmpInst::FCMP_OLT:
2458    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2459    break;
2460  case FCmpInst::FCMP_ULE:
2461  case FCmpInst::FCMP_OLE:
2462    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2463    break;
2464  case FCmpInst::FCMP_UNE:
2465  case FCmpInst::FCMP_ONE:
2466    Pred = ICmpInst::ICMP_NE;
2467    break;
2468  case FCmpInst::FCMP_ORD:
2469    return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2470  case FCmpInst::FCMP_UNO:
2471    return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2472  }
2473
2474  const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2475
2476  // Now we know that the APFloat is a normal number, zero or inf.
2477
2478  // See if the FP constant is too large for the integer.  For example,
2479  // comparing an i8 to 300.0.
2480  unsigned IntWidth = IntTy->getScalarSizeInBits();
2481
2482  if (!LHSUnsigned) {
2483    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
2484    // and large values.
2485    APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2486    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2487                          APFloat::rmNearestTiesToEven);
2488    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
2489      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
2490          Pred == ICmpInst::ICMP_SLE)
2491        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2492      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2493    }
2494  } else {
2495    // If the RHS value is > UnsignedMax, fold the comparison. This handles
2496    // +INF and large values.
2497    APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2498    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2499                          APFloat::rmNearestTiesToEven);
2500    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
2501      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
2502          Pred == ICmpInst::ICMP_ULE)
2503        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2504      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2505    }
2506  }
2507
2508  if (!LHSUnsigned) {
2509    // See if the RHS value is < SignedMin.
2510    APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2511    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2512                          APFloat::rmNearestTiesToEven);
2513    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2514      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2515          Pred == ICmpInst::ICMP_SGE)
2516        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2517      return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2518    }
2519  }
2520
2521  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2522  // [0, UMAX], but it may still be fractional.  See if it is fractional by
2523  // casting the FP value to the integer value and back, checking for equality.
2524  // Don't do this for zero, because -0.0 is not fractional.
2525  Constant *RHSInt = LHSUnsigned
2526    ? ConstantExpr::getFPToUI(RHSC, IntTy)
2527    : ConstantExpr::getFPToSI(RHSC, IntTy);
2528  if (!RHS.isZero()) {
2529    bool Equal = LHSUnsigned
2530      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2531      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2532    if (!Equal) {
2533      // If we had a comparison against a fractional value, we have to adjust
2534      // the compare predicate and sometimes the value.  RHSC is rounded towards
2535      // zero at this point.
2536      switch (Pred) {
2537      default: llvm_unreachable("Unexpected integer comparison!");
2538      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
2539        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2540      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
2541        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2542      case ICmpInst::ICMP_ULE:
2543        // (float)int <= 4.4   --> int <= 4
2544        // (float)int <= -4.4  --> false
2545        if (RHS.isNegative())
2546          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2547        break;
2548      case ICmpInst::ICMP_SLE:
2549        // (float)int <= 4.4   --> int <= 4
2550        // (float)int <= -4.4  --> int < -4
2551        if (RHS.isNegative())
2552          Pred = ICmpInst::ICMP_SLT;
2553        break;
2554      case ICmpInst::ICMP_ULT:
2555        // (float)int < -4.4   --> false
2556        // (float)int < 4.4    --> int <= 4
2557        if (RHS.isNegative())
2558          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2559        Pred = ICmpInst::ICMP_ULE;
2560        break;
2561      case ICmpInst::ICMP_SLT:
2562        // (float)int < -4.4   --> int < -4
2563        // (float)int < 4.4    --> int <= 4
2564        if (!RHS.isNegative())
2565          Pred = ICmpInst::ICMP_SLE;
2566        break;
2567      case ICmpInst::ICMP_UGT:
2568        // (float)int > 4.4    --> int > 4
2569        // (float)int > -4.4   --> true
2570        if (RHS.isNegative())
2571          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2572        break;
2573      case ICmpInst::ICMP_SGT:
2574        // (float)int > 4.4    --> int > 4
2575        // (float)int > -4.4   --> int >= -4
2576        if (RHS.isNegative())
2577          Pred = ICmpInst::ICMP_SGE;
2578        break;
2579      case ICmpInst::ICMP_UGE:
2580        // (float)int >= -4.4   --> true
2581        // (float)int >= 4.4    --> int > 4
2582        if (!RHS.isNegative())
2583          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2584        Pred = ICmpInst::ICMP_UGT;
2585        break;
2586      case ICmpInst::ICMP_SGE:
2587        // (float)int >= -4.4   --> int >= -4
2588        // (float)int >= 4.4    --> int > 4
2589        if (!RHS.isNegative())
2590          Pred = ICmpInst::ICMP_SGT;
2591        break;
2592      }
2593    }
2594  }
2595
2596  // Lower this FP comparison into an appropriate integer version of the
2597  // comparison.
2598  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2599}
2600
2601Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2602  bool Changed = false;
2603
2604  /// Orders the operands of the compare so that they are listed from most
2605  /// complex to least complex.  This puts constants before unary operators,
2606  /// before binary operators.
2607  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2608    I.swapOperands();
2609    Changed = true;
2610  }
2611
2612  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2613
2614  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2615    return ReplaceInstUsesWith(I, V);
2616
2617  // Simplify 'fcmp pred X, X'
2618  if (Op0 == Op1) {
2619    switch (I.getPredicate()) {
2620    default: llvm_unreachable("Unknown predicate!");
2621    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
2622    case FCmpInst::FCMP_ULT:    // True if unordered or less than
2623    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
2624    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
2625      // Canonicalize these to be 'fcmp uno %X, 0.0'.
2626      I.setPredicate(FCmpInst::FCMP_UNO);
2627      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2628      return &I;
2629
2630    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
2631    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
2632    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
2633    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
2634      // Canonicalize these to be 'fcmp ord %X, 0.0'.
2635      I.setPredicate(FCmpInst::FCMP_ORD);
2636      I.setOperand(1, Constant::getNullValue(Op0->getType()));
2637      return &I;
2638    }
2639  }
2640
2641  // Handle fcmp with constant RHS
2642  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2643    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2644      switch (LHSI->getOpcode()) {
2645      case Instruction::PHI:
2646        // Only fold fcmp into the PHI if the phi and fcmp are in the same
2647        // block.  If in the same block, we're encouraging jump threading.  If
2648        // not, we are just pessimizing the code by making an i1 phi.
2649        if (LHSI->getParent() == I.getParent())
2650          if (Instruction *NV = FoldOpIntoPhi(I))
2651            return NV;
2652        break;
2653      case Instruction::SIToFP:
2654      case Instruction::UIToFP:
2655        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2656          return NV;
2657        break;
2658      case Instruction::Select: {
2659        // If either operand of the select is a constant, we can fold the
2660        // comparison into the select arms, which will cause one to be
2661        // constant folded and the select turned into a bitwise or.
2662        Value *Op1 = 0, *Op2 = 0;
2663        if (LHSI->hasOneUse()) {
2664          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2665            // Fold the known value into the constant operand.
2666            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2667            // Insert a new FCmp of the other select operand.
2668            Op2 = Builder->CreateFCmp(I.getPredicate(),
2669                                      LHSI->getOperand(2), RHSC, I.getName());
2670          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2671            // Fold the known value into the constant operand.
2672            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2673            // Insert a new FCmp of the other select operand.
2674            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2675                                      RHSC, I.getName());
2676          }
2677        }
2678
2679        if (Op1)
2680          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2681        break;
2682      }
2683      case Instruction::Load:
2684        if (GetElementPtrInst *GEP =
2685            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2686          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2687            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2688                !cast<LoadInst>(LHSI)->isVolatile())
2689              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2690                return Res;
2691        }
2692        break;
2693      }
2694  }
2695
2696  return Changed ? &I : 0;
2697}
2698