InstCombineSelect.cpp revision 46431d7a931ecc54d563a7674977a9a566b1d4fb
1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitSelect function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/PatternMatch.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
21/// returning the kind and providing the out parameter results if we
22/// successfully match.
23static SelectPatternFlavor
24MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
25  SelectInst *SI = dyn_cast<SelectInst>(V);
26  if (SI == 0) return SPF_UNKNOWN;
27
28  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
29  if (ICI == 0) return SPF_UNKNOWN;
30
31  LHS = ICI->getOperand(0);
32  RHS = ICI->getOperand(1);
33
34  // (icmp X, Y) ? X : Y
35  if (SI->getTrueValue() == ICI->getOperand(0) &&
36      SI->getFalseValue() == ICI->getOperand(1)) {
37    switch (ICI->getPredicate()) {
38    default: return SPF_UNKNOWN; // Equality.
39    case ICmpInst::ICMP_UGT:
40    case ICmpInst::ICMP_UGE: return SPF_UMAX;
41    case ICmpInst::ICMP_SGT:
42    case ICmpInst::ICMP_SGE: return SPF_SMAX;
43    case ICmpInst::ICMP_ULT:
44    case ICmpInst::ICMP_ULE: return SPF_UMIN;
45    case ICmpInst::ICMP_SLT:
46    case ICmpInst::ICMP_SLE: return SPF_SMIN;
47    }
48  }
49
50  // (icmp X, Y) ? Y : X
51  if (SI->getTrueValue() == ICI->getOperand(1) &&
52      SI->getFalseValue() == ICI->getOperand(0)) {
53    switch (ICI->getPredicate()) {
54      default: return SPF_UNKNOWN; // Equality.
55      case ICmpInst::ICMP_UGT:
56      case ICmpInst::ICMP_UGE: return SPF_UMIN;
57      case ICmpInst::ICMP_SGT:
58      case ICmpInst::ICMP_SGE: return SPF_SMIN;
59      case ICmpInst::ICMP_ULT:
60      case ICmpInst::ICMP_ULE: return SPF_UMAX;
61      case ICmpInst::ICMP_SLT:
62      case ICmpInst::ICMP_SLE: return SPF_SMAX;
63    }
64  }
65
66  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
67
68  return SPF_UNKNOWN;
69}
70
71
72/// GetSelectFoldableOperands - We want to turn code that looks like this:
73///   %C = or %A, %B
74///   %D = select %cond, %C, %A
75/// into:
76///   %C = select %cond, %B, 0
77///   %D = or %A, %C
78///
79/// Assuming that the specified instruction is an operand to the select, return
80/// a bitmask indicating which operands of this instruction are foldable if they
81/// equal the other incoming value of the select.
82///
83static unsigned GetSelectFoldableOperands(Instruction *I) {
84  switch (I->getOpcode()) {
85  case Instruction::Add:
86  case Instruction::Mul:
87  case Instruction::And:
88  case Instruction::Or:
89  case Instruction::Xor:
90    return 3;              // Can fold through either operand.
91  case Instruction::Sub:   // Can only fold on the amount subtracted.
92  case Instruction::Shl:   // Can only fold on the shift amount.
93  case Instruction::LShr:
94  case Instruction::AShr:
95    return 1;
96  default:
97    return 0;              // Cannot fold
98  }
99}
100
101/// GetSelectFoldableConstant - For the same transformation as the previous
102/// function, return the identity constant that goes into the select.
103static Constant *GetSelectFoldableConstant(Instruction *I) {
104  switch (I->getOpcode()) {
105  default: llvm_unreachable("This cannot happen!");
106  case Instruction::Add:
107  case Instruction::Sub:
108  case Instruction::Or:
109  case Instruction::Xor:
110  case Instruction::Shl:
111  case Instruction::LShr:
112  case Instruction::AShr:
113    return Constant::getNullValue(I->getType());
114  case Instruction::And:
115    return Constant::getAllOnesValue(I->getType());
116  case Instruction::Mul:
117    return ConstantInt::get(I->getType(), 1);
118  }
119}
120
121/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
122/// have the same opcode and only one use each.  Try to simplify this.
123Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
124                                          Instruction *FI) {
125  if (TI->getNumOperands() == 1) {
126    // If this is a non-volatile load or a cast from the same type,
127    // merge.
128    if (TI->isCast()) {
129      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
130        return 0;
131    } else {
132      return 0;  // unknown unary op.
133    }
134
135    // Fold this by inserting a select from the input values.
136    SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
137                                          FI->getOperand(0), SI.getName()+".v");
138    InsertNewInstBefore(NewSI, SI);
139    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
140                            TI->getType());
141  }
142
143  // Only handle binary operators here.
144  if (!isa<BinaryOperator>(TI))
145    return 0;
146
147  // Figure out if the operations have any operands in common.
148  Value *MatchOp, *OtherOpT, *OtherOpF;
149  bool MatchIsOpZero;
150  if (TI->getOperand(0) == FI->getOperand(0)) {
151    MatchOp  = TI->getOperand(0);
152    OtherOpT = TI->getOperand(1);
153    OtherOpF = FI->getOperand(1);
154    MatchIsOpZero = true;
155  } else if (TI->getOperand(1) == FI->getOperand(1)) {
156    MatchOp  = TI->getOperand(1);
157    OtherOpT = TI->getOperand(0);
158    OtherOpF = FI->getOperand(0);
159    MatchIsOpZero = false;
160  } else if (!TI->isCommutative()) {
161    return 0;
162  } else if (TI->getOperand(0) == FI->getOperand(1)) {
163    MatchOp  = TI->getOperand(0);
164    OtherOpT = TI->getOperand(1);
165    OtherOpF = FI->getOperand(0);
166    MatchIsOpZero = true;
167  } else if (TI->getOperand(1) == FI->getOperand(0)) {
168    MatchOp  = TI->getOperand(1);
169    OtherOpT = TI->getOperand(0);
170    OtherOpF = FI->getOperand(1);
171    MatchIsOpZero = true;
172  } else {
173    return 0;
174  }
175
176  // If we reach here, they do have operations in common.
177  SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
178                                         OtherOpF, SI.getName()+".v");
179  InsertNewInstBefore(NewSI, SI);
180
181  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
182    if (MatchIsOpZero)
183      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
184    else
185      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
186  }
187  llvm_unreachable("Shouldn't get here");
188  return 0;
189}
190
191static bool isSelect01(Constant *C1, Constant *C2) {
192  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
193  if (!C1I)
194    return false;
195  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
196  if (!C2I)
197    return false;
198  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
199    return false;
200  return C1I->isOne() || C1I->isAllOnesValue() ||
201         C2I->isOne() || C2I->isAllOnesValue();
202}
203
204/// FoldSelectIntoOp - Try fold the select into one of the operands to
205/// facilitate further optimization.
206Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
207                                            Value *FalseVal) {
208  // See the comment above GetSelectFoldableOperands for a description of the
209  // transformation we are doing here.
210  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
211    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
212        !isa<Constant>(FalseVal)) {
213      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
214        unsigned OpToFold = 0;
215        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
216          OpToFold = 1;
217        } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
218          OpToFold = 2;
219        }
220
221        if (OpToFold) {
222          Constant *C = GetSelectFoldableConstant(TVI);
223          Value *OOp = TVI->getOperand(2-OpToFold);
224          // Avoid creating select between 2 constants unless it's selecting
225          // between 0, 1 and -1.
226          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
227            Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
228            InsertNewInstBefore(NewSel, SI);
229            NewSel->takeName(TVI);
230            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
231              return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
232            llvm_unreachable("Unknown instruction!!");
233          }
234        }
235      }
236    }
237  }
238
239  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
240    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
241        !isa<Constant>(TrueVal)) {
242      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
243        unsigned OpToFold = 0;
244        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
245          OpToFold = 1;
246        } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
247          OpToFold = 2;
248        }
249
250        if (OpToFold) {
251          Constant *C = GetSelectFoldableConstant(FVI);
252          Value *OOp = FVI->getOperand(2-OpToFold);
253          // Avoid creating select between 2 constants unless it's selecting
254          // between 0, 1 and -1.
255          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
256            Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
257            InsertNewInstBefore(NewSel, SI);
258            NewSel->takeName(FVI);
259            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
260              return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
261            llvm_unreachable("Unknown instruction!!");
262          }
263        }
264      }
265    }
266  }
267
268  return 0;
269}
270
271/// visitSelectInstWithICmp - Visit a SelectInst that has an
272/// ICmpInst as its first operand.
273///
274Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
275                                                   ICmpInst *ICI) {
276  bool Changed = false;
277  ICmpInst::Predicate Pred = ICI->getPredicate();
278  Value *CmpLHS = ICI->getOperand(0);
279  Value *CmpRHS = ICI->getOperand(1);
280  Value *TrueVal = SI.getTrueValue();
281  Value *FalseVal = SI.getFalseValue();
282
283  // Check cases where the comparison is with a constant that
284  // can be adjusted to fit the min/max idiom. We may edit ICI in
285  // place here, so make sure the select is the only user.
286  if (ICI->hasOneUse())
287    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
288      // X < MIN ? T : F  -->  F
289      if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
290          && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
291        return ReplaceInstUsesWith(SI, FalseVal);
292      // X > MAX ? T : F  -->  F
293      else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
294               && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
295        return ReplaceInstUsesWith(SI, FalseVal);
296      switch (Pred) {
297      default: break;
298      case ICmpInst::ICMP_ULT:
299      case ICmpInst::ICMP_SLT:
300      case ICmpInst::ICMP_UGT:
301      case ICmpInst::ICMP_SGT: {
302        Constant *AdjustedRHS;
303        if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
304          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
305        else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
306          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
307
308        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
309        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
310        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
311            (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
312          ; // Nothing to do here. Values match without any sign/zero extension.
313
314        // Types do not match. Instead of calculating this with mixed types
315        // promote all to the larger type. This enables scalar evolution to
316        // analyze this expression.
317        else if (CmpRHS->getType()->getScalarSizeInBits()
318                 < SI.getType()->getScalarSizeInBits()) {
319          Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS,
320                                                    SI.getType());
321
322          // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
323          // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
324          // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
325          // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
326          if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
327                sextRHS == FalseVal) {
328            CmpLHS = TrueVal;
329            AdjustedRHS = sextRHS;
330          } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
331                     sextRHS == TrueVal) {
332            CmpLHS = FalseVal;
333            AdjustedRHS = sextRHS;
334          } else if (ICI->isUnsigned()) {
335            Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS,
336                                                      SI.getType());
337            // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
338            // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
339            // zext + signed compare cannot be changed:
340            //    0xff <s 0x00, but 0x00ff >s 0x0000
341            if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
342                zextRHS == FalseVal) {
343              CmpLHS = TrueVal;
344              AdjustedRHS = zextRHS;
345            } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
346                       zextRHS == TrueVal) {
347              CmpLHS = FalseVal;
348              AdjustedRHS = zextRHS;
349            } else
350              break;
351          } else
352            break;
353        } else
354          break;
355
356        Pred = ICmpInst::getSwappedPredicate(Pred);
357        CmpRHS = AdjustedRHS;
358        std::swap(FalseVal, TrueVal);
359        ICI->setPredicate(Pred);
360        ICI->setOperand(0, CmpLHS);
361        ICI->setOperand(1, CmpRHS);
362        SI.setOperand(1, TrueVal);
363        SI.setOperand(2, FalseVal);
364        Changed = true;
365        break;
366      }
367      }
368    }
369
370  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
371  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
372  // FIXME: Type and constness constraints could be lifted, but we have to
373  //        watch code size carefully. We should consider xor instead of
374  //        sub/add when we decide to do that.
375  if (const IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
376    if (TrueVal->getType() == Ty) {
377      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
378        ConstantInt *C1 = NULL, *C2 = NULL;
379        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
380          C1 = dyn_cast<ConstantInt>(TrueVal);
381          C2 = dyn_cast<ConstantInt>(FalseVal);
382        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
383          C1 = dyn_cast<ConstantInt>(FalseVal);
384          C2 = dyn_cast<ConstantInt>(TrueVal);
385        }
386        if (C1 && C2) {
387          // This shift results in either -1 or 0.
388          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
389
390          // Check if we can express the operation with a single or.
391          if (C2->isAllOnesValue())
392            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
393
394          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
395          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
396        }
397      }
398    }
399  }
400
401  if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
402    // Transform (X == Y) ? X : Y  -> Y
403    if (Pred == ICmpInst::ICMP_EQ)
404      return ReplaceInstUsesWith(SI, FalseVal);
405    // Transform (X != Y) ? X : Y  -> X
406    if (Pred == ICmpInst::ICMP_NE)
407      return ReplaceInstUsesWith(SI, TrueVal);
408    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
409
410  } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
411    // Transform (X == Y) ? Y : X  -> X
412    if (Pred == ICmpInst::ICMP_EQ)
413      return ReplaceInstUsesWith(SI, FalseVal);
414    // Transform (X != Y) ? Y : X  -> Y
415    if (Pred == ICmpInst::ICMP_NE)
416      return ReplaceInstUsesWith(SI, TrueVal);
417    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
418  }
419  return Changed ? &SI : 0;
420}
421
422
423/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
424/// PHI node (but the two may be in different blocks).  See if the true/false
425/// values (V) are live in all of the predecessor blocks of the PHI.  For
426/// example, cases like this cannot be mapped:
427///
428///   X = phi [ C1, BB1], [C2, BB2]
429///   Y = add
430///   Z = select X, Y, 0
431///
432/// because Y is not live in BB1/BB2.
433///
434static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
435                                                   const SelectInst &SI) {
436  // If the value is a non-instruction value like a constant or argument, it
437  // can always be mapped.
438  const Instruction *I = dyn_cast<Instruction>(V);
439  if (I == 0) return true;
440
441  // If V is a PHI node defined in the same block as the condition PHI, we can
442  // map the arguments.
443  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
444
445  if (const PHINode *VP = dyn_cast<PHINode>(I))
446    if (VP->getParent() == CondPHI->getParent())
447      return true;
448
449  // Otherwise, if the PHI and select are defined in the same block and if V is
450  // defined in a different block, then we can transform it.
451  if (SI.getParent() == CondPHI->getParent() &&
452      I->getParent() != CondPHI->getParent())
453    return true;
454
455  // Otherwise we have a 'hard' case and we can't tell without doing more
456  // detailed dominator based analysis, punt.
457  return false;
458}
459
460/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
461///   SPF2(SPF1(A, B), C)
462Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
463                                        SelectPatternFlavor SPF1,
464                                        Value *A, Value *B,
465                                        Instruction &Outer,
466                                        SelectPatternFlavor SPF2, Value *C) {
467  if (C == A || C == B) {
468    // MAX(MAX(A, B), B) -> MAX(A, B)
469    // MIN(MIN(a, b), a) -> MIN(a, b)
470    if (SPF1 == SPF2)
471      return ReplaceInstUsesWith(Outer, Inner);
472
473    // MAX(MIN(a, b), a) -> a
474    // MIN(MAX(a, b), a) -> a
475    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
476        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
477        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
478        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
479      return ReplaceInstUsesWith(Outer, C);
480  }
481
482  // TODO: MIN(MIN(A, 23), 97)
483  return 0;
484}
485
486
487/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
488/// both be) and we have an icmp instruction with zero, and we have an 'and'
489/// with the non-constant value and a power of two we can turn the select
490/// into a shift on the result of the 'and'.
491static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
492                                ConstantInt *FalseVal,
493                                InstCombiner::BuilderTy *Builder) {
494  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
495  if (!IC || !IC->isEquality())
496    return 0;
497
498  if (ConstantInt *C = dyn_cast<ConstantInt>(IC->getOperand(1)))
499    if (!C->isZero())
500      return 0;
501
502  ConstantInt *AndRHS;
503  Value *LHS = IC->getOperand(0);
504  if (LHS->getType() != SI.getType() ||
505      !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
506    return 0;
507
508  // If both select arms are non-zero see if we have a select of the form
509  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
510  // for 'x ? 2^n : 0' and fix the thing up at the end.
511  ConstantInt *Offset = 0;
512  if (!TrueVal->isZero() && !FalseVal->isZero()) {
513    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
514      Offset = FalseVal;
515    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
516      Offset = TrueVal;
517    else
518      return 0;
519
520    // Adjust TrueVal and FalseVal to the offset.
521    TrueVal = ConstantInt::get(Builder->getContext(),
522                               TrueVal->getValue() - Offset->getValue());
523    FalseVal = ConstantInt::get(Builder->getContext(),
524                                FalseVal->getValue() - Offset->getValue());
525  }
526
527  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
528  if (!AndRHS->getValue().isPowerOf2() ||
529      (!TrueVal->getValue().isPowerOf2() &&
530       !FalseVal->getValue().isPowerOf2()))
531    return 0;
532
533  // Determine which shift is needed to transform result of the 'and' into the
534  // desired result.
535  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
536  unsigned ValZeros = ValC->getValue().logBase2();
537  unsigned AndZeros = AndRHS->getValue().logBase2();
538
539  Value *V = LHS;
540  if (ValZeros > AndZeros)
541    V = Builder->CreateShl(V, ValZeros - AndZeros);
542  else if (ValZeros < AndZeros)
543    V = Builder->CreateLShr(V, AndZeros - ValZeros);
544
545  // Okay, now we know that everything is set up, we just don't know whether we
546  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
547  bool ShouldNotVal = !TrueVal->isZero();
548  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
549  if (ShouldNotVal)
550    V = Builder->CreateXor(V, ValC);
551
552  // Apply an offset if needed.
553  if (Offset)
554    V = Builder->CreateAdd(V, Offset);
555  return V;
556}
557
558Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
559  Value *CondVal = SI.getCondition();
560  Value *TrueVal = SI.getTrueValue();
561  Value *FalseVal = SI.getFalseValue();
562
563  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
564    return ReplaceInstUsesWith(SI, V);
565
566  if (SI.getType()->isIntegerTy(1)) {
567    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
568      if (C->getZExtValue()) {
569        // Change: A = select B, true, C --> A = or B, C
570        return BinaryOperator::CreateOr(CondVal, FalseVal);
571      }
572      // Change: A = select B, false, C --> A = and !B, C
573      Value *NotCond =
574        InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
575                                           "not."+CondVal->getName()), SI);
576      return BinaryOperator::CreateAnd(NotCond, FalseVal);
577    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
578      if (C->getZExtValue() == false) {
579        // Change: A = select B, C, false --> A = and B, C
580        return BinaryOperator::CreateAnd(CondVal, TrueVal);
581      }
582      // Change: A = select B, C, true --> A = or !B, C
583      Value *NotCond =
584        InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
585                                           "not."+CondVal->getName()), SI);
586      return BinaryOperator::CreateOr(NotCond, TrueVal);
587    }
588
589    // select a, b, a  -> a&b
590    // select a, a, b  -> a|b
591    if (CondVal == TrueVal)
592      return BinaryOperator::CreateOr(CondVal, FalseVal);
593    else if (CondVal == FalseVal)
594      return BinaryOperator::CreateAnd(CondVal, TrueVal);
595  }
596
597  // Selecting between two integer constants?
598  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
599    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
600      // select C, 1, 0 -> zext C to int
601      if (FalseValC->isZero() && TrueValC->getValue() == 1)
602        return new ZExtInst(CondVal, SI.getType());
603
604      // select C, -1, 0 -> sext C to int
605      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
606        return new SExtInst(CondVal, SI.getType());
607
608      // select C, 0, 1 -> zext !C to int
609      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
610        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
611        return new ZExtInst(NotCond, SI.getType());
612      }
613
614      // select C, 0, -1 -> sext !C to int
615      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
616        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
617        return new SExtInst(NotCond, SI.getType());
618      }
619
620      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
621        return ReplaceInstUsesWith(SI, V);
622    }
623
624  // See if we are selecting two values based on a comparison of the two values.
625  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
626    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
627      // Transform (X == Y) ? X : Y  -> Y
628      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
629        // This is not safe in general for floating point:
630        // consider X== -0, Y== +0.
631        // It becomes safe if either operand is a nonzero constant.
632        ConstantFP *CFPt, *CFPf;
633        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
634              !CFPt->getValueAPF().isZero()) ||
635            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
636             !CFPf->getValueAPF().isZero()))
637        return ReplaceInstUsesWith(SI, FalseVal);
638      }
639      // Transform (X une Y) ? X : Y  -> X
640      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
641        // This is not safe in general for floating point:
642        // consider X== -0, Y== +0.
643        // It becomes safe if either operand is a nonzero constant.
644        ConstantFP *CFPt, *CFPf;
645        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
646              !CFPt->getValueAPF().isZero()) ||
647            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
648             !CFPf->getValueAPF().isZero()))
649        return ReplaceInstUsesWith(SI, TrueVal);
650      }
651      // NOTE: if we wanted to, this is where to detect MIN/MAX
652
653    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
654      // Transform (X == Y) ? Y : X  -> X
655      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
656        // This is not safe in general for floating point:
657        // consider X== -0, Y== +0.
658        // It becomes safe if either operand is a nonzero constant.
659        ConstantFP *CFPt, *CFPf;
660        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
661              !CFPt->getValueAPF().isZero()) ||
662            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
663             !CFPf->getValueAPF().isZero()))
664          return ReplaceInstUsesWith(SI, FalseVal);
665      }
666      // Transform (X une Y) ? Y : X  -> Y
667      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
668        // This is not safe in general for floating point:
669        // consider X== -0, Y== +0.
670        // It becomes safe if either operand is a nonzero constant.
671        ConstantFP *CFPt, *CFPf;
672        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
673              !CFPt->getValueAPF().isZero()) ||
674            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
675             !CFPf->getValueAPF().isZero()))
676          return ReplaceInstUsesWith(SI, TrueVal);
677      }
678      // NOTE: if we wanted to, this is where to detect MIN/MAX
679    }
680    // NOTE: if we wanted to, this is where to detect ABS
681  }
682
683  // See if we are selecting two values based on a comparison of the two values.
684  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
685    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
686      return Result;
687
688  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
689    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
690      if (TI->hasOneUse() && FI->hasOneUse()) {
691        Instruction *AddOp = 0, *SubOp = 0;
692
693        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
694        if (TI->getOpcode() == FI->getOpcode())
695          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
696            return IV;
697
698        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
699        // even legal for FP.
700        if ((TI->getOpcode() == Instruction::Sub &&
701             FI->getOpcode() == Instruction::Add) ||
702            (TI->getOpcode() == Instruction::FSub &&
703             FI->getOpcode() == Instruction::FAdd)) {
704          AddOp = FI; SubOp = TI;
705        } else if ((FI->getOpcode() == Instruction::Sub &&
706                    TI->getOpcode() == Instruction::Add) ||
707                   (FI->getOpcode() == Instruction::FSub &&
708                    TI->getOpcode() == Instruction::FAdd)) {
709          AddOp = TI; SubOp = FI;
710        }
711
712        if (AddOp) {
713          Value *OtherAddOp = 0;
714          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
715            OtherAddOp = AddOp->getOperand(1);
716          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
717            OtherAddOp = AddOp->getOperand(0);
718          }
719
720          if (OtherAddOp) {
721            // So at this point we know we have (Y -> OtherAddOp):
722            //        select C, (add X, Y), (sub X, Z)
723            Value *NegVal;  // Compute -Z
724            if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
725              NegVal = ConstantExpr::getNeg(C);
726            } else if (SI.getType()->isFloatingPointTy()) {
727              NegVal = InsertNewInstBefore(
728                    BinaryOperator::CreateFNeg(SubOp->getOperand(1),
729                                              "tmp"), SI);
730            } else {
731              NegVal = InsertNewInstBefore(
732                    BinaryOperator::CreateNeg(SubOp->getOperand(1),
733                                              "tmp"), SI);
734            }
735
736            Value *NewTrueOp = OtherAddOp;
737            Value *NewFalseOp = NegVal;
738            if (AddOp != TI)
739              std::swap(NewTrueOp, NewFalseOp);
740            Instruction *NewSel =
741              SelectInst::Create(CondVal, NewTrueOp,
742                                 NewFalseOp, SI.getName() + ".p");
743
744            NewSel = InsertNewInstBefore(NewSel, SI);
745            if (SI.getType()->isFloatingPointTy())
746              return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
747            else
748              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
749          }
750        }
751      }
752
753  // See if we can fold the select into one of our operands.
754  if (SI.getType()->isIntegerTy()) {
755    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
756      return FoldI;
757
758    // MAX(MAX(a, b), a) -> MAX(a, b)
759    // MIN(MIN(a, b), a) -> MIN(a, b)
760    // MAX(MIN(a, b), a) -> a
761    // MIN(MAX(a, b), a) -> a
762    Value *LHS, *RHS, *LHS2, *RHS2;
763    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
764      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
765        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
766                                          SI, SPF, RHS))
767          return R;
768      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
769        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
770                                          SI, SPF, LHS))
771          return R;
772    }
773
774    // TODO.
775    // ABS(-X) -> ABS(X)
776    // ABS(ABS(X)) -> ABS(X)
777  }
778
779  // See if we can fold the select into a phi node if the condition is a select.
780  if (isa<PHINode>(SI.getCondition()))
781    // The true/false values have to be live in the PHI predecessor's blocks.
782    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
783        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
784      if (Instruction *NV = FoldOpIntoPhi(SI))
785        return NV;
786
787  if (BinaryOperator::isNot(CondVal)) {
788    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
789    SI.setOperand(1, FalseVal);
790    SI.setOperand(2, TrueVal);
791    return &SI;
792  }
793
794  return 0;
795}
796