InstCombineSelect.cpp revision 4ac19470dc26decba85f5bf4dd7e6edb54d77152
1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitSelect function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/PatternMatch.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
21/// returning the kind and providing the out parameter results if we
22/// successfully match.
23static SelectPatternFlavor
24MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
25  SelectInst *SI = dyn_cast<SelectInst>(V);
26  if (SI == 0) return SPF_UNKNOWN;
27
28  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
29  if (ICI == 0) return SPF_UNKNOWN;
30
31  LHS = ICI->getOperand(0);
32  RHS = ICI->getOperand(1);
33
34  // (icmp X, Y) ? X : Y
35  if (SI->getTrueValue() == ICI->getOperand(0) &&
36      SI->getFalseValue() == ICI->getOperand(1)) {
37    switch (ICI->getPredicate()) {
38    default: return SPF_UNKNOWN; // Equality.
39    case ICmpInst::ICMP_UGT:
40    case ICmpInst::ICMP_UGE: return SPF_UMAX;
41    case ICmpInst::ICMP_SGT:
42    case ICmpInst::ICMP_SGE: return SPF_SMAX;
43    case ICmpInst::ICMP_ULT:
44    case ICmpInst::ICMP_ULE: return SPF_UMIN;
45    case ICmpInst::ICMP_SLT:
46    case ICmpInst::ICMP_SLE: return SPF_SMIN;
47    }
48  }
49
50  // (icmp X, Y) ? Y : X
51  if (SI->getTrueValue() == ICI->getOperand(1) &&
52      SI->getFalseValue() == ICI->getOperand(0)) {
53    switch (ICI->getPredicate()) {
54      default: return SPF_UNKNOWN; // Equality.
55      case ICmpInst::ICMP_UGT:
56      case ICmpInst::ICMP_UGE: return SPF_UMIN;
57      case ICmpInst::ICMP_SGT:
58      case ICmpInst::ICMP_SGE: return SPF_SMIN;
59      case ICmpInst::ICMP_ULT:
60      case ICmpInst::ICMP_ULE: return SPF_UMAX;
61      case ICmpInst::ICMP_SLT:
62      case ICmpInst::ICMP_SLE: return SPF_SMAX;
63    }
64  }
65
66  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
67
68  return SPF_UNKNOWN;
69}
70
71
72/// GetSelectFoldableOperands - We want to turn code that looks like this:
73///   %C = or %A, %B
74///   %D = select %cond, %C, %A
75/// into:
76///   %C = select %cond, %B, 0
77///   %D = or %A, %C
78///
79/// Assuming that the specified instruction is an operand to the select, return
80/// a bitmask indicating which operands of this instruction are foldable if they
81/// equal the other incoming value of the select.
82///
83static unsigned GetSelectFoldableOperands(Instruction *I) {
84  switch (I->getOpcode()) {
85  case Instruction::Add:
86  case Instruction::Mul:
87  case Instruction::And:
88  case Instruction::Or:
89  case Instruction::Xor:
90    return 3;              // Can fold through either operand.
91  case Instruction::Sub:   // Can only fold on the amount subtracted.
92  case Instruction::Shl:   // Can only fold on the shift amount.
93  case Instruction::LShr:
94  case Instruction::AShr:
95    return 1;
96  default:
97    return 0;              // Cannot fold
98  }
99}
100
101/// GetSelectFoldableConstant - For the same transformation as the previous
102/// function, return the identity constant that goes into the select.
103static Constant *GetSelectFoldableConstant(Instruction *I) {
104  switch (I->getOpcode()) {
105  default: llvm_unreachable("This cannot happen!");
106  case Instruction::Add:
107  case Instruction::Sub:
108  case Instruction::Or:
109  case Instruction::Xor:
110  case Instruction::Shl:
111  case Instruction::LShr:
112  case Instruction::AShr:
113    return Constant::getNullValue(I->getType());
114  case Instruction::And:
115    return Constant::getAllOnesValue(I->getType());
116  case Instruction::Mul:
117    return ConstantInt::get(I->getType(), 1);
118  }
119}
120
121/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
122/// have the same opcode and only one use each.  Try to simplify this.
123Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
124                                          Instruction *FI) {
125  if (TI->getNumOperands() == 1) {
126    // If this is a non-volatile load or a cast from the same type,
127    // merge.
128    if (TI->isCast()) {
129      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
130        return 0;
131    } else {
132      return 0;  // unknown unary op.
133    }
134
135    // Fold this by inserting a select from the input values.
136    SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
137                                          FI->getOperand(0), SI.getName()+".v");
138    InsertNewInstBefore(NewSI, SI);
139    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
140                            TI->getType());
141  }
142
143  // Only handle binary operators here.
144  if (!isa<BinaryOperator>(TI))
145    return 0;
146
147  // Figure out if the operations have any operands in common.
148  Value *MatchOp, *OtherOpT, *OtherOpF;
149  bool MatchIsOpZero;
150  if (TI->getOperand(0) == FI->getOperand(0)) {
151    MatchOp  = TI->getOperand(0);
152    OtherOpT = TI->getOperand(1);
153    OtherOpF = FI->getOperand(1);
154    MatchIsOpZero = true;
155  } else if (TI->getOperand(1) == FI->getOperand(1)) {
156    MatchOp  = TI->getOperand(1);
157    OtherOpT = TI->getOperand(0);
158    OtherOpF = FI->getOperand(0);
159    MatchIsOpZero = false;
160  } else if (!TI->isCommutative()) {
161    return 0;
162  } else if (TI->getOperand(0) == FI->getOperand(1)) {
163    MatchOp  = TI->getOperand(0);
164    OtherOpT = TI->getOperand(1);
165    OtherOpF = FI->getOperand(0);
166    MatchIsOpZero = true;
167  } else if (TI->getOperand(1) == FI->getOperand(0)) {
168    MatchOp  = TI->getOperand(1);
169    OtherOpT = TI->getOperand(0);
170    OtherOpF = FI->getOperand(1);
171    MatchIsOpZero = true;
172  } else {
173    return 0;
174  }
175
176  // If we reach here, they do have operations in common.
177  SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
178                                         OtherOpF, SI.getName()+".v");
179  InsertNewInstBefore(NewSI, SI);
180
181  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
182    if (MatchIsOpZero)
183      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
184    else
185      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
186  }
187  llvm_unreachable("Shouldn't get here");
188  return 0;
189}
190
191static bool isSelect01(Constant *C1, Constant *C2) {
192  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
193  if (!C1I)
194    return false;
195  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
196  if (!C2I)
197    return false;
198  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
199    return false;
200  return C1I->isOne() || C1I->isAllOnesValue() ||
201         C2I->isOne() || C2I->isAllOnesValue();
202}
203
204/// FoldSelectIntoOp - Try fold the select into one of the operands to
205/// facilitate further optimization.
206Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
207                                            Value *FalseVal) {
208  // See the comment above GetSelectFoldableOperands for a description of the
209  // transformation we are doing here.
210  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
211    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
212        !isa<Constant>(FalseVal)) {
213      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
214        unsigned OpToFold = 0;
215        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
216          OpToFold = 1;
217        } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
218          OpToFold = 2;
219        }
220
221        if (OpToFold) {
222          Constant *C = GetSelectFoldableConstant(TVI);
223          Value *OOp = TVI->getOperand(2-OpToFold);
224          // Avoid creating select between 2 constants unless it's selecting
225          // between 0, 1 and -1.
226          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
227            Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
228            InsertNewInstBefore(NewSel, SI);
229            NewSel->takeName(TVI);
230            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
231              return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
232            llvm_unreachable("Unknown instruction!!");
233          }
234        }
235      }
236    }
237  }
238
239  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
240    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
241        !isa<Constant>(TrueVal)) {
242      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
243        unsigned OpToFold = 0;
244        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
245          OpToFold = 1;
246        } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
247          OpToFold = 2;
248        }
249
250        if (OpToFold) {
251          Constant *C = GetSelectFoldableConstant(FVI);
252          Value *OOp = FVI->getOperand(2-OpToFold);
253          // Avoid creating select between 2 constants unless it's selecting
254          // between 0, 1 and -1.
255          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
256            Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
257            InsertNewInstBefore(NewSel, SI);
258            NewSel->takeName(FVI);
259            if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
260              return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
261            llvm_unreachable("Unknown instruction!!");
262          }
263        }
264      }
265    }
266  }
267
268  return 0;
269}
270
271/// visitSelectInstWithICmp - Visit a SelectInst that has an
272/// ICmpInst as its first operand.
273///
274Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
275                                                   ICmpInst *ICI) {
276  bool Changed = false;
277  ICmpInst::Predicate Pred = ICI->getPredicate();
278  Value *CmpLHS = ICI->getOperand(0);
279  Value *CmpRHS = ICI->getOperand(1);
280  Value *TrueVal = SI.getTrueValue();
281  Value *FalseVal = SI.getFalseValue();
282
283  // Check cases where the comparison is with a constant that
284  // can be adjusted to fit the min/max idiom. We may edit ICI in
285  // place here, so make sure the select is the only user.
286  if (ICI->hasOneUse())
287    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
288      switch (Pred) {
289      default: break;
290      case ICmpInst::ICMP_ULT:
291      case ICmpInst::ICMP_SLT: {
292        // X < MIN ? T : F  -->  F
293        if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
294          return ReplaceInstUsesWith(SI, FalseVal);
295        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
296        Constant *AdjustedRHS =
297          ConstantInt::get(CI->getContext(), CI->getValue()-1);
298        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
299            (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
300          Pred = ICmpInst::getSwappedPredicate(Pred);
301          CmpRHS = AdjustedRHS;
302          std::swap(FalseVal, TrueVal);
303          ICI->setPredicate(Pred);
304          ICI->setOperand(1, CmpRHS);
305          SI.setOperand(1, TrueVal);
306          SI.setOperand(2, FalseVal);
307          Changed = true;
308        }
309        break;
310      }
311      case ICmpInst::ICMP_UGT:
312      case ICmpInst::ICMP_SGT: {
313        // X > MAX ? T : F  -->  F
314        if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
315          return ReplaceInstUsesWith(SI, FalseVal);
316        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
317        Constant *AdjustedRHS =
318          ConstantInt::get(CI->getContext(), CI->getValue()+1);
319        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
320            (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
321          Pred = ICmpInst::getSwappedPredicate(Pred);
322          CmpRHS = AdjustedRHS;
323          std::swap(FalseVal, TrueVal);
324          ICI->setPredicate(Pred);
325          ICI->setOperand(1, CmpRHS);
326          SI.setOperand(1, TrueVal);
327          SI.setOperand(2, FalseVal);
328          Changed = true;
329        }
330        break;
331      }
332      }
333    }
334
335  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
336  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
337  // FIXME: Type and constness constraints could be lifted, but we have to
338  //        watch code size carefully. We should consider xor instead of
339  //        sub/add when we decide to do that.
340  if (const IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
341    if (TrueVal->getType() == Ty) {
342      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
343        ConstantInt *C1 = NULL, *C2 = NULL;
344        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
345          C1 = dyn_cast<ConstantInt>(TrueVal);
346          C2 = dyn_cast<ConstantInt>(FalseVal);
347        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
348          C1 = dyn_cast<ConstantInt>(FalseVal);
349          C2 = dyn_cast<ConstantInt>(TrueVal);
350        }
351        if (C1 && C2) {
352          // This shift results in either -1 or 0.
353          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
354
355          // Check if we can express the operation with a single or.
356          if (C2->isAllOnesValue())
357            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
358
359          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
360          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
361        }
362      }
363    }
364  }
365
366  if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
367    // Transform (X == Y) ? X : Y  -> Y
368    if (Pred == ICmpInst::ICMP_EQ)
369      return ReplaceInstUsesWith(SI, FalseVal);
370    // Transform (X != Y) ? X : Y  -> X
371    if (Pred == ICmpInst::ICMP_NE)
372      return ReplaceInstUsesWith(SI, TrueVal);
373    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
374
375  } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
376    // Transform (X == Y) ? Y : X  -> X
377    if (Pred == ICmpInst::ICMP_EQ)
378      return ReplaceInstUsesWith(SI, FalseVal);
379    // Transform (X != Y) ? Y : X  -> Y
380    if (Pred == ICmpInst::ICMP_NE)
381      return ReplaceInstUsesWith(SI, TrueVal);
382    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
383  }
384  return Changed ? &SI : 0;
385}
386
387
388/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
389/// PHI node (but the two may be in different blocks).  See if the true/false
390/// values (V) are live in all of the predecessor blocks of the PHI.  For
391/// example, cases like this cannot be mapped:
392///
393///   X = phi [ C1, BB1], [C2, BB2]
394///   Y = add
395///   Z = select X, Y, 0
396///
397/// because Y is not live in BB1/BB2.
398///
399static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
400                                                   const SelectInst &SI) {
401  // If the value is a non-instruction value like a constant or argument, it
402  // can always be mapped.
403  const Instruction *I = dyn_cast<Instruction>(V);
404  if (I == 0) return true;
405
406  // If V is a PHI node defined in the same block as the condition PHI, we can
407  // map the arguments.
408  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
409
410  if (const PHINode *VP = dyn_cast<PHINode>(I))
411    if (VP->getParent() == CondPHI->getParent())
412      return true;
413
414  // Otherwise, if the PHI and select are defined in the same block and if V is
415  // defined in a different block, then we can transform it.
416  if (SI.getParent() == CondPHI->getParent() &&
417      I->getParent() != CondPHI->getParent())
418    return true;
419
420  // Otherwise we have a 'hard' case and we can't tell without doing more
421  // detailed dominator based analysis, punt.
422  return false;
423}
424
425/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
426///   SPF2(SPF1(A, B), C)
427Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
428                                        SelectPatternFlavor SPF1,
429                                        Value *A, Value *B,
430                                        Instruction &Outer,
431                                        SelectPatternFlavor SPF2, Value *C) {
432  if (C == A || C == B) {
433    // MAX(MAX(A, B), B) -> MAX(A, B)
434    // MIN(MIN(a, b), a) -> MIN(a, b)
435    if (SPF1 == SPF2)
436      return ReplaceInstUsesWith(Outer, Inner);
437
438    // MAX(MIN(a, b), a) -> a
439    // MIN(MAX(a, b), a) -> a
440    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
441        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
442        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
443        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
444      return ReplaceInstUsesWith(Outer, C);
445  }
446
447  // TODO: MIN(MIN(A, 23), 97)
448  return 0;
449}
450
451
452/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
453/// both be) and we have an icmp instruction with zero, and we have an 'and'
454/// with the non-constant value and a power of two we can turn the select
455/// into a shift on the result of the 'and'.
456static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
457                                ConstantInt *FalseVal,
458                                InstCombiner::BuilderTy *Builder) {
459  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
460  if (!IC || !IC->isEquality())
461    return 0;
462
463  if (ConstantInt *C = dyn_cast<ConstantInt>(IC->getOperand(1)))
464    if (!C->isZero())
465      return 0;
466
467  ConstantInt *AndRHS;
468  Value *LHS = IC->getOperand(0);
469  if (LHS->getType() != SI.getType() ||
470      !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
471    return 0;
472
473  // If both select arms are non-zero see if we have a select of the form
474  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
475  // for 'x ? 2^n : 0' and fix the thing up at the end.
476  ConstantInt *Offset = 0;
477  if (!TrueVal->isZero() && !FalseVal->isZero()) {
478    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
479      Offset = FalseVal;
480    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
481      Offset = TrueVal;
482    else
483      return 0;
484
485    // Adjust TrueVal and FalseVal to the offset.
486    TrueVal = ConstantInt::get(Builder->getContext(),
487                               TrueVal->getValue() - Offset->getValue());
488    FalseVal = ConstantInt::get(Builder->getContext(),
489                                FalseVal->getValue() - Offset->getValue());
490  }
491
492  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
493  if (!AndRHS->getValue().isPowerOf2() ||
494      (!TrueVal->getValue().isPowerOf2() &&
495       !FalseVal->getValue().isPowerOf2()))
496    return 0;
497
498  // Determine which shift is needed to transform result of the 'and' into the
499  // desired result.
500  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
501  unsigned ValZeros = ValC->getValue().logBase2();
502  unsigned AndZeros = AndRHS->getValue().logBase2();
503
504  Value *V = LHS;
505  if (ValZeros > AndZeros)
506    V = Builder->CreateShl(V, ValZeros - AndZeros);
507  else if (ValZeros < AndZeros)
508    V = Builder->CreateLShr(V, AndZeros - ValZeros);
509
510  // Okay, now we know that everything is set up, we just don't know whether we
511  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
512  bool ShouldNotVal = !TrueVal->isZero();
513  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
514  if (ShouldNotVal)
515    V = Builder->CreateXor(V, ValC);
516
517  // Apply an offset if needed.
518  if (Offset)
519    V = Builder->CreateAdd(V, Offset);
520  return V;
521}
522
523Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
524  Value *CondVal = SI.getCondition();
525  Value *TrueVal = SI.getTrueValue();
526  Value *FalseVal = SI.getFalseValue();
527
528  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
529    return ReplaceInstUsesWith(SI, V);
530
531  if (SI.getType()->isIntegerTy(1)) {
532    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
533      if (C->getZExtValue()) {
534        // Change: A = select B, true, C --> A = or B, C
535        return BinaryOperator::CreateOr(CondVal, FalseVal);
536      }
537      // Change: A = select B, false, C --> A = and !B, C
538      Value *NotCond =
539        InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
540                                           "not."+CondVal->getName()), SI);
541      return BinaryOperator::CreateAnd(NotCond, FalseVal);
542    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
543      if (C->getZExtValue() == false) {
544        // Change: A = select B, C, false --> A = and B, C
545        return BinaryOperator::CreateAnd(CondVal, TrueVal);
546      }
547      // Change: A = select B, C, true --> A = or !B, C
548      Value *NotCond =
549        InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
550                                           "not."+CondVal->getName()), SI);
551      return BinaryOperator::CreateOr(NotCond, TrueVal);
552    }
553
554    // select a, b, a  -> a&b
555    // select a, a, b  -> a|b
556    if (CondVal == TrueVal)
557      return BinaryOperator::CreateOr(CondVal, FalseVal);
558    else if (CondVal == FalseVal)
559      return BinaryOperator::CreateAnd(CondVal, TrueVal);
560  }
561
562  // Selecting between two integer constants?
563  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
564    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
565      // select C, 1, 0 -> zext C to int
566      if (FalseValC->isZero() && TrueValC->getValue() == 1)
567        return new ZExtInst(CondVal, SI.getType());
568
569      // select C, -1, 0 -> sext C to int
570      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
571        return new SExtInst(CondVal, SI.getType());
572
573      // select C, 0, 1 -> zext !C to int
574      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
575        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
576        return new ZExtInst(NotCond, SI.getType());
577      }
578
579      // select C, 0, -1 -> sext !C to int
580      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
581        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
582        return new SExtInst(NotCond, SI.getType());
583      }
584
585      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
586        return ReplaceInstUsesWith(SI, V);
587    }
588
589  // See if we are selecting two values based on a comparison of the two values.
590  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
591    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
592      // Transform (X == Y) ? X : Y  -> Y
593      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
594        // This is not safe in general for floating point:
595        // consider X== -0, Y== +0.
596        // It becomes safe if either operand is a nonzero constant.
597        ConstantFP *CFPt, *CFPf;
598        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
599              !CFPt->getValueAPF().isZero()) ||
600            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
601             !CFPf->getValueAPF().isZero()))
602        return ReplaceInstUsesWith(SI, FalseVal);
603      }
604      // Transform (X une Y) ? X : Y  -> X
605      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
606        // This is not safe in general for floating point:
607        // consider X== -0, Y== +0.
608        // It becomes safe if either operand is a nonzero constant.
609        ConstantFP *CFPt, *CFPf;
610        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
611              !CFPt->getValueAPF().isZero()) ||
612            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
613             !CFPf->getValueAPF().isZero()))
614        return ReplaceInstUsesWith(SI, TrueVal);
615      }
616      // NOTE: if we wanted to, this is where to detect MIN/MAX
617
618    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
619      // Transform (X == Y) ? Y : X  -> X
620      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
621        // This is not safe in general for floating point:
622        // consider X== -0, Y== +0.
623        // It becomes safe if either operand is a nonzero constant.
624        ConstantFP *CFPt, *CFPf;
625        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
626              !CFPt->getValueAPF().isZero()) ||
627            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
628             !CFPf->getValueAPF().isZero()))
629          return ReplaceInstUsesWith(SI, FalseVal);
630      }
631      // Transform (X une Y) ? Y : X  -> Y
632      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
633        // This is not safe in general for floating point:
634        // consider X== -0, Y== +0.
635        // It becomes safe if either operand is a nonzero constant.
636        ConstantFP *CFPt, *CFPf;
637        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
638              !CFPt->getValueAPF().isZero()) ||
639            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
640             !CFPf->getValueAPF().isZero()))
641          return ReplaceInstUsesWith(SI, TrueVal);
642      }
643      // NOTE: if we wanted to, this is where to detect MIN/MAX
644    }
645    // NOTE: if we wanted to, this is where to detect ABS
646  }
647
648  // See if we are selecting two values based on a comparison of the two values.
649  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
650    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
651      return Result;
652
653  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
654    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
655      if (TI->hasOneUse() && FI->hasOneUse()) {
656        Instruction *AddOp = 0, *SubOp = 0;
657
658        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
659        if (TI->getOpcode() == FI->getOpcode())
660          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
661            return IV;
662
663        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
664        // even legal for FP.
665        if ((TI->getOpcode() == Instruction::Sub &&
666             FI->getOpcode() == Instruction::Add) ||
667            (TI->getOpcode() == Instruction::FSub &&
668             FI->getOpcode() == Instruction::FAdd)) {
669          AddOp = FI; SubOp = TI;
670        } else if ((FI->getOpcode() == Instruction::Sub &&
671                    TI->getOpcode() == Instruction::Add) ||
672                   (FI->getOpcode() == Instruction::FSub &&
673                    TI->getOpcode() == Instruction::FAdd)) {
674          AddOp = TI; SubOp = FI;
675        }
676
677        if (AddOp) {
678          Value *OtherAddOp = 0;
679          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
680            OtherAddOp = AddOp->getOperand(1);
681          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
682            OtherAddOp = AddOp->getOperand(0);
683          }
684
685          if (OtherAddOp) {
686            // So at this point we know we have (Y -> OtherAddOp):
687            //        select C, (add X, Y), (sub X, Z)
688            Value *NegVal;  // Compute -Z
689            if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
690              NegVal = ConstantExpr::getNeg(C);
691            } else if (SI.getType()->isFloatingPointTy()) {
692              NegVal = InsertNewInstBefore(
693                    BinaryOperator::CreateFNeg(SubOp->getOperand(1),
694                                              "tmp"), SI);
695            } else {
696              NegVal = InsertNewInstBefore(
697                    BinaryOperator::CreateNeg(SubOp->getOperand(1),
698                                              "tmp"), SI);
699            }
700
701            Value *NewTrueOp = OtherAddOp;
702            Value *NewFalseOp = NegVal;
703            if (AddOp != TI)
704              std::swap(NewTrueOp, NewFalseOp);
705            Instruction *NewSel =
706              SelectInst::Create(CondVal, NewTrueOp,
707                                 NewFalseOp, SI.getName() + ".p");
708
709            NewSel = InsertNewInstBefore(NewSel, SI);
710            if (SI.getType()->isFloatingPointTy())
711              return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
712            else
713              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
714          }
715        }
716      }
717
718  // See if we can fold the select into one of our operands.
719  if (SI.getType()->isIntegerTy()) {
720    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
721      return FoldI;
722
723    // MAX(MAX(a, b), a) -> MAX(a, b)
724    // MIN(MIN(a, b), a) -> MIN(a, b)
725    // MAX(MIN(a, b), a) -> a
726    // MIN(MAX(a, b), a) -> a
727    Value *LHS, *RHS, *LHS2, *RHS2;
728    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
729      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
730        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
731                                          SI, SPF, RHS))
732          return R;
733      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
734        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
735                                          SI, SPF, LHS))
736          return R;
737    }
738
739    // TODO.
740    // ABS(-X) -> ABS(X)
741    // ABS(ABS(X)) -> ABS(X)
742  }
743
744  // See if we can fold the select into a phi node if the condition is a select.
745  if (isa<PHINode>(SI.getCondition()))
746    // The true/false values have to be live in the PHI predecessor's blocks.
747    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
748        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
749      if (Instruction *NV = FoldOpIntoPhi(SI))
750        return NV;
751
752  if (BinaryOperator::isNot(CondVal)) {
753    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
754    SI.setOperand(1, FalseVal);
755    SI.setOperand(2, TrueVal);
756    return &SI;
757  }
758
759  return 0;
760}
761