InstCombineSelect.cpp revision 747032522f9f3b2d9bae71aa303c1a0fd953eee9
1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitSelect function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/PatternMatch.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18using namespace llvm;
19using namespace PatternMatch;
20
21/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
22/// returning the kind and providing the out parameter results if we
23/// successfully match.
24static SelectPatternFlavor
25MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
26  SelectInst *SI = dyn_cast<SelectInst>(V);
27  if (SI == 0) return SPF_UNKNOWN;
28
29  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
30  if (ICI == 0) return SPF_UNKNOWN;
31
32  LHS = ICI->getOperand(0);
33  RHS = ICI->getOperand(1);
34
35  // (icmp X, Y) ? X : Y
36  if (SI->getTrueValue() == ICI->getOperand(0) &&
37      SI->getFalseValue() == ICI->getOperand(1)) {
38    switch (ICI->getPredicate()) {
39    default: return SPF_UNKNOWN; // Equality.
40    case ICmpInst::ICMP_UGT:
41    case ICmpInst::ICMP_UGE: return SPF_UMAX;
42    case ICmpInst::ICMP_SGT:
43    case ICmpInst::ICMP_SGE: return SPF_SMAX;
44    case ICmpInst::ICMP_ULT:
45    case ICmpInst::ICMP_ULE: return SPF_UMIN;
46    case ICmpInst::ICMP_SLT:
47    case ICmpInst::ICMP_SLE: return SPF_SMIN;
48    }
49  }
50
51  // (icmp X, Y) ? Y : X
52  if (SI->getTrueValue() == ICI->getOperand(1) &&
53      SI->getFalseValue() == ICI->getOperand(0)) {
54    switch (ICI->getPredicate()) {
55      default: return SPF_UNKNOWN; // Equality.
56      case ICmpInst::ICMP_UGT:
57      case ICmpInst::ICMP_UGE: return SPF_UMIN;
58      case ICmpInst::ICMP_SGT:
59      case ICmpInst::ICMP_SGE: return SPF_SMIN;
60      case ICmpInst::ICMP_ULT:
61      case ICmpInst::ICMP_ULE: return SPF_UMAX;
62      case ICmpInst::ICMP_SLT:
63      case ICmpInst::ICMP_SLE: return SPF_SMAX;
64    }
65  }
66
67  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
68
69  return SPF_UNKNOWN;
70}
71
72
73/// GetSelectFoldableOperands - We want to turn code that looks like this:
74///   %C = or %A, %B
75///   %D = select %cond, %C, %A
76/// into:
77///   %C = select %cond, %B, 0
78///   %D = or %A, %C
79///
80/// Assuming that the specified instruction is an operand to the select, return
81/// a bitmask indicating which operands of this instruction are foldable if they
82/// equal the other incoming value of the select.
83///
84static unsigned GetSelectFoldableOperands(Instruction *I) {
85  switch (I->getOpcode()) {
86  case Instruction::Add:
87  case Instruction::Mul:
88  case Instruction::And:
89  case Instruction::Or:
90  case Instruction::Xor:
91    return 3;              // Can fold through either operand.
92  case Instruction::Sub:   // Can only fold on the amount subtracted.
93  case Instruction::Shl:   // Can only fold on the shift amount.
94  case Instruction::LShr:
95  case Instruction::AShr:
96    return 1;
97  default:
98    return 0;              // Cannot fold
99  }
100}
101
102/// GetSelectFoldableConstant - For the same transformation as the previous
103/// function, return the identity constant that goes into the select.
104static Constant *GetSelectFoldableConstant(Instruction *I) {
105  switch (I->getOpcode()) {
106  default: llvm_unreachable("This cannot happen!");
107  case Instruction::Add:
108  case Instruction::Sub:
109  case Instruction::Or:
110  case Instruction::Xor:
111  case Instruction::Shl:
112  case Instruction::LShr:
113  case Instruction::AShr:
114    return Constant::getNullValue(I->getType());
115  case Instruction::And:
116    return Constant::getAllOnesValue(I->getType());
117  case Instruction::Mul:
118    return ConstantInt::get(I->getType(), 1);
119  }
120}
121
122/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
123/// have the same opcode and only one use each.  Try to simplify this.
124Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
125                                          Instruction *FI) {
126  if (TI->getNumOperands() == 1) {
127    // If this is a non-volatile load or a cast from the same type,
128    // merge.
129    if (TI->isCast()) {
130      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
131        return 0;
132    } else {
133      return 0;  // unknown unary op.
134    }
135
136    // Fold this by inserting a select from the input values.
137    Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
138                                         FI->getOperand(0), SI.getName()+".v");
139    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
140                            TI->getType());
141  }
142
143  // Only handle binary operators here.
144  if (!isa<BinaryOperator>(TI))
145    return 0;
146
147  // Figure out if the operations have any operands in common.
148  Value *MatchOp, *OtherOpT, *OtherOpF;
149  bool MatchIsOpZero;
150  if (TI->getOperand(0) == FI->getOperand(0)) {
151    MatchOp  = TI->getOperand(0);
152    OtherOpT = TI->getOperand(1);
153    OtherOpF = FI->getOperand(1);
154    MatchIsOpZero = true;
155  } else if (TI->getOperand(1) == FI->getOperand(1)) {
156    MatchOp  = TI->getOperand(1);
157    OtherOpT = TI->getOperand(0);
158    OtherOpF = FI->getOperand(0);
159    MatchIsOpZero = false;
160  } else if (!TI->isCommutative()) {
161    return 0;
162  } else if (TI->getOperand(0) == FI->getOperand(1)) {
163    MatchOp  = TI->getOperand(0);
164    OtherOpT = TI->getOperand(1);
165    OtherOpF = FI->getOperand(0);
166    MatchIsOpZero = true;
167  } else if (TI->getOperand(1) == FI->getOperand(0)) {
168    MatchOp  = TI->getOperand(1);
169    OtherOpT = TI->getOperand(0);
170    OtherOpF = FI->getOperand(1);
171    MatchIsOpZero = true;
172  } else {
173    return 0;
174  }
175
176  // If we reach here, they do have operations in common.
177  Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
178                                       OtherOpF, SI.getName()+".v");
179
180  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
181    if (MatchIsOpZero)
182      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
183    else
184      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
185  }
186  llvm_unreachable("Shouldn't get here");
187  return 0;
188}
189
190static bool isSelect01(Constant *C1, Constant *C2) {
191  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
192  if (!C1I)
193    return false;
194  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
195  if (!C2I)
196    return false;
197  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
198    return false;
199  return C1I->isOne() || C1I->isAllOnesValue() ||
200         C2I->isOne() || C2I->isAllOnesValue();
201}
202
203/// FoldSelectIntoOp - Try fold the select into one of the operands to
204/// facilitate further optimization.
205Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
206                                            Value *FalseVal) {
207  // See the comment above GetSelectFoldableOperands for a description of the
208  // transformation we are doing here.
209  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
210    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
211        !isa<Constant>(FalseVal)) {
212      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
213        unsigned OpToFold = 0;
214        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
215          OpToFold = 1;
216        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
217          OpToFold = 2;
218        }
219
220        if (OpToFold) {
221          Constant *C = GetSelectFoldableConstant(TVI);
222          Value *OOp = TVI->getOperand(2-OpToFold);
223          // Avoid creating select between 2 constants unless it's selecting
224          // between 0, 1 and -1.
225          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
226            Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
227            NewSel->takeName(TVI);
228            BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
229            BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
230                                                        FalseVal, NewSel);
231            if (isa<PossiblyExactOperator>(BO))
232              BO->setIsExact(TVI_BO->isExact());
233            if (isa<OverflowingBinaryOperator>(BO)) {
234              BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
235              BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
236            }
237            return BO;
238          }
239        }
240      }
241    }
242  }
243
244  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
245    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
246        !isa<Constant>(TrueVal)) {
247      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
248        unsigned OpToFold = 0;
249        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
250          OpToFold = 1;
251        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
252          OpToFold = 2;
253        }
254
255        if (OpToFold) {
256          Constant *C = GetSelectFoldableConstant(FVI);
257          Value *OOp = FVI->getOperand(2-OpToFold);
258          // Avoid creating select between 2 constants unless it's selecting
259          // between 0, 1 and -1.
260          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
261            Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
262            NewSel->takeName(FVI);
263            BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
264            BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
265                                                        TrueVal, NewSel);
266            if (isa<PossiblyExactOperator>(BO))
267              BO->setIsExact(FVI_BO->isExact());
268            if (isa<OverflowingBinaryOperator>(BO)) {
269              BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
270              BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
271            }
272            return BO;
273          }
274        }
275      }
276    }
277  }
278
279  return 0;
280}
281
282/// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
283/// replaced with RepOp.
284static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
285                                     const TargetData *TD) {
286  // Trivial replacement.
287  if (V == Op)
288    return RepOp;
289
290  Instruction *I = dyn_cast<Instruction>(V);
291  if (!I)
292    return 0;
293
294  // If this is a binary operator, try to simplify it with the replaced op.
295  if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
296    if (B->getOperand(0) == Op)
297      return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD);
298    if (B->getOperand(1) == Op)
299      return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD);
300  }
301
302  // Same for CmpInsts.
303  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
304    if (C->getOperand(0) == Op)
305      return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD);
306    if (C->getOperand(1) == Op)
307      return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD);
308  }
309
310  // TODO: We could hand off more cases to instsimplify here.
311
312  // If all operands are constant after substituting Op for RepOp then we can
313  // constant fold the instruction.
314  if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
315    // Build a list of all constant operands.
316    SmallVector<Constant*, 8> ConstOps;
317    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
318      if (I->getOperand(i) == Op)
319        ConstOps.push_back(CRepOp);
320      else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
321        ConstOps.push_back(COp);
322      else
323        break;
324    }
325
326    // All operands were constants, fold it.
327    if (ConstOps.size() == I->getNumOperands())
328      return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
329                                      ConstOps, TD);
330  }
331
332  return 0;
333}
334
335/// visitSelectInstWithICmp - Visit a SelectInst that has an
336/// ICmpInst as its first operand.
337///
338Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
339                                                   ICmpInst *ICI) {
340  bool Changed = false;
341  ICmpInst::Predicate Pred = ICI->getPredicate();
342  Value *CmpLHS = ICI->getOperand(0);
343  Value *CmpRHS = ICI->getOperand(1);
344  Value *TrueVal = SI.getTrueValue();
345  Value *FalseVal = SI.getFalseValue();
346
347  // Check cases where the comparison is with a constant that
348  // can be adjusted to fit the min/max idiom. We may move or edit ICI
349  // here, so make sure the select is the only user.
350  if (ICI->hasOneUse())
351    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
352      // X < MIN ? T : F  -->  F
353      if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
354          && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
355        return ReplaceInstUsesWith(SI, FalseVal);
356      // X > MAX ? T : F  -->  F
357      else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
358               && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
359        return ReplaceInstUsesWith(SI, FalseVal);
360      switch (Pred) {
361      default: break;
362      case ICmpInst::ICMP_ULT:
363      case ICmpInst::ICMP_SLT:
364      case ICmpInst::ICMP_UGT:
365      case ICmpInst::ICMP_SGT: {
366        // These transformations only work for selects over integers.
367        IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
368        if (!SelectTy)
369          break;
370
371        Constant *AdjustedRHS;
372        if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
373          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
374        else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
375          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
376
377        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
378        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
379        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
380            (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
381          ; // Nothing to do here. Values match without any sign/zero extension.
382
383        // Types do not match. Instead of calculating this with mixed types
384        // promote all to the larger type. This enables scalar evolution to
385        // analyze this expression.
386        else if (CmpRHS->getType()->getScalarSizeInBits()
387                 < SelectTy->getBitWidth()) {
388          Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
389
390          // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
391          // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
392          // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
393          // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
394          if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
395                sextRHS == FalseVal) {
396            CmpLHS = TrueVal;
397            AdjustedRHS = sextRHS;
398          } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
399                     sextRHS == TrueVal) {
400            CmpLHS = FalseVal;
401            AdjustedRHS = sextRHS;
402          } else if (ICI->isUnsigned()) {
403            Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
404            // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
405            // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
406            // zext + signed compare cannot be changed:
407            //    0xff <s 0x00, but 0x00ff >s 0x0000
408            if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
409                zextRHS == FalseVal) {
410              CmpLHS = TrueVal;
411              AdjustedRHS = zextRHS;
412            } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
413                       zextRHS == TrueVal) {
414              CmpLHS = FalseVal;
415              AdjustedRHS = zextRHS;
416            } else
417              break;
418          } else
419            break;
420        } else
421          break;
422
423        Pred = ICmpInst::getSwappedPredicate(Pred);
424        CmpRHS = AdjustedRHS;
425        std::swap(FalseVal, TrueVal);
426        ICI->setPredicate(Pred);
427        ICI->setOperand(0, CmpLHS);
428        ICI->setOperand(1, CmpRHS);
429        SI.setOperand(1, TrueVal);
430        SI.setOperand(2, FalseVal);
431
432        // Move ICI instruction right before the select instruction. Otherwise
433        // the sext/zext value may be defined after the ICI instruction uses it.
434        ICI->moveBefore(&SI);
435
436        Changed = true;
437        break;
438      }
439      }
440    }
441
442  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
443  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
444  // FIXME: Type and constness constraints could be lifted, but we have to
445  //        watch code size carefully. We should consider xor instead of
446  //        sub/add when we decide to do that.
447  if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
448    if (TrueVal->getType() == Ty) {
449      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
450        ConstantInt *C1 = NULL, *C2 = NULL;
451        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
452          C1 = dyn_cast<ConstantInt>(TrueVal);
453          C2 = dyn_cast<ConstantInt>(FalseVal);
454        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
455          C1 = dyn_cast<ConstantInt>(FalseVal);
456          C2 = dyn_cast<ConstantInt>(TrueVal);
457        }
458        if (C1 && C2) {
459          // This shift results in either -1 or 0.
460          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
461
462          // Check if we can express the operation with a single or.
463          if (C2->isAllOnesValue())
464            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
465
466          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
467          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
468        }
469      }
470    }
471  }
472
473  // If we have an equality comparison then we know the value in one of the
474  // arms of the select. See if substituting this value into the arm and
475  // simplifying the result yields the same value as the other arm.
476  if (Pred == ICmpInst::ICMP_EQ) {
477    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD) == TrueVal ||
478        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD) == TrueVal)
479      return ReplaceInstUsesWith(SI, FalseVal);
480  } else if (Pred == ICmpInst::ICMP_NE) {
481    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD) == FalseVal ||
482        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD) == FalseVal)
483      return ReplaceInstUsesWith(SI, TrueVal);
484  }
485
486  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
487
488  if (isa<Constant>(CmpRHS)) {
489    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
490      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
491      SI.setOperand(1, CmpRHS);
492      Changed = true;
493    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
494      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
495      SI.setOperand(2, CmpRHS);
496      Changed = true;
497    }
498  }
499
500  return Changed ? &SI : 0;
501}
502
503
504/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
505/// PHI node (but the two may be in different blocks).  See if the true/false
506/// values (V) are live in all of the predecessor blocks of the PHI.  For
507/// example, cases like this cannot be mapped:
508///
509///   X = phi [ C1, BB1], [C2, BB2]
510///   Y = add
511///   Z = select X, Y, 0
512///
513/// because Y is not live in BB1/BB2.
514///
515static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
516                                                   const SelectInst &SI) {
517  // If the value is a non-instruction value like a constant or argument, it
518  // can always be mapped.
519  const Instruction *I = dyn_cast<Instruction>(V);
520  if (I == 0) return true;
521
522  // If V is a PHI node defined in the same block as the condition PHI, we can
523  // map the arguments.
524  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
525
526  if (const PHINode *VP = dyn_cast<PHINode>(I))
527    if (VP->getParent() == CondPHI->getParent())
528      return true;
529
530  // Otherwise, if the PHI and select are defined in the same block and if V is
531  // defined in a different block, then we can transform it.
532  if (SI.getParent() == CondPHI->getParent() &&
533      I->getParent() != CondPHI->getParent())
534    return true;
535
536  // Otherwise we have a 'hard' case and we can't tell without doing more
537  // detailed dominator based analysis, punt.
538  return false;
539}
540
541/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
542///   SPF2(SPF1(A, B), C)
543Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
544                                        SelectPatternFlavor SPF1,
545                                        Value *A, Value *B,
546                                        Instruction &Outer,
547                                        SelectPatternFlavor SPF2, Value *C) {
548  if (C == A || C == B) {
549    // MAX(MAX(A, B), B) -> MAX(A, B)
550    // MIN(MIN(a, b), a) -> MIN(a, b)
551    if (SPF1 == SPF2)
552      return ReplaceInstUsesWith(Outer, Inner);
553
554    // MAX(MIN(a, b), a) -> a
555    // MIN(MAX(a, b), a) -> a
556    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
557        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
558        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
559        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
560      return ReplaceInstUsesWith(Outer, C);
561  }
562
563  // TODO: MIN(MIN(A, 23), 97)
564  return 0;
565}
566
567
568/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
569/// both be) and we have an icmp instruction with zero, and we have an 'and'
570/// with the non-constant value and a power of two we can turn the select
571/// into a shift on the result of the 'and'.
572static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
573                                ConstantInt *FalseVal,
574                                InstCombiner::BuilderTy *Builder) {
575  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
576  if (!IC || !IC->isEquality())
577    return 0;
578
579  if (!match(IC->getOperand(1), m_Zero()))
580    return 0;
581
582  ConstantInt *AndRHS;
583  Value *LHS = IC->getOperand(0);
584  if (LHS->getType() != SI.getType() ||
585      !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
586    return 0;
587
588  // If both select arms are non-zero see if we have a select of the form
589  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
590  // for 'x ? 2^n : 0' and fix the thing up at the end.
591  ConstantInt *Offset = 0;
592  if (!TrueVal->isZero() && !FalseVal->isZero()) {
593    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
594      Offset = FalseVal;
595    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
596      Offset = TrueVal;
597    else
598      return 0;
599
600    // Adjust TrueVal and FalseVal to the offset.
601    TrueVal = ConstantInt::get(Builder->getContext(),
602                               TrueVal->getValue() - Offset->getValue());
603    FalseVal = ConstantInt::get(Builder->getContext(),
604                                FalseVal->getValue() - Offset->getValue());
605  }
606
607  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
608  if (!AndRHS->getValue().isPowerOf2() ||
609      (!TrueVal->getValue().isPowerOf2() &&
610       !FalseVal->getValue().isPowerOf2()))
611    return 0;
612
613  // Determine which shift is needed to transform result of the 'and' into the
614  // desired result.
615  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
616  unsigned ValZeros = ValC->getValue().logBase2();
617  unsigned AndZeros = AndRHS->getValue().logBase2();
618
619  Value *V = LHS;
620  if (ValZeros > AndZeros)
621    V = Builder->CreateShl(V, ValZeros - AndZeros);
622  else if (ValZeros < AndZeros)
623    V = Builder->CreateLShr(V, AndZeros - ValZeros);
624
625  // Okay, now we know that everything is set up, we just don't know whether we
626  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
627  bool ShouldNotVal = !TrueVal->isZero();
628  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
629  if (ShouldNotVal)
630    V = Builder->CreateXor(V, ValC);
631
632  // Apply an offset if needed.
633  if (Offset)
634    V = Builder->CreateAdd(V, Offset);
635  return V;
636}
637
638Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
639  Value *CondVal = SI.getCondition();
640  Value *TrueVal = SI.getTrueValue();
641  Value *FalseVal = SI.getFalseValue();
642
643  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
644    return ReplaceInstUsesWith(SI, V);
645
646  if (SI.getType()->isIntegerTy(1)) {
647    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
648      if (C->getZExtValue()) {
649        // Change: A = select B, true, C --> A = or B, C
650        return BinaryOperator::CreateOr(CondVal, FalseVal);
651      }
652      // Change: A = select B, false, C --> A = and !B, C
653      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
654      return BinaryOperator::CreateAnd(NotCond, FalseVal);
655    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
656      if (C->getZExtValue() == false) {
657        // Change: A = select B, C, false --> A = and B, C
658        return BinaryOperator::CreateAnd(CondVal, TrueVal);
659      }
660      // Change: A = select B, C, true --> A = or !B, C
661      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
662      return BinaryOperator::CreateOr(NotCond, TrueVal);
663    }
664
665    // select a, b, a  -> a&b
666    // select a, a, b  -> a|b
667    if (CondVal == TrueVal)
668      return BinaryOperator::CreateOr(CondVal, FalseVal);
669    else if (CondVal == FalseVal)
670      return BinaryOperator::CreateAnd(CondVal, TrueVal);
671  }
672
673  // Selecting between two integer constants?
674  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
675    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
676      // select C, 1, 0 -> zext C to int
677      if (FalseValC->isZero() && TrueValC->getValue() == 1)
678        return new ZExtInst(CondVal, SI.getType());
679
680      // select C, -1, 0 -> sext C to int
681      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
682        return new SExtInst(CondVal, SI.getType());
683
684      // select C, 0, 1 -> zext !C to int
685      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
686        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
687        return new ZExtInst(NotCond, SI.getType());
688      }
689
690      // select C, 0, -1 -> sext !C to int
691      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
692        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
693        return new SExtInst(NotCond, SI.getType());
694      }
695
696      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
697        return ReplaceInstUsesWith(SI, V);
698    }
699
700  // See if we are selecting two values based on a comparison of the two values.
701  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
702    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
703      // Transform (X == Y) ? X : Y  -> Y
704      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
705        // This is not safe in general for floating point:
706        // consider X== -0, Y== +0.
707        // It becomes safe if either operand is a nonzero constant.
708        ConstantFP *CFPt, *CFPf;
709        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
710              !CFPt->getValueAPF().isZero()) ||
711            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
712             !CFPf->getValueAPF().isZero()))
713        return ReplaceInstUsesWith(SI, FalseVal);
714      }
715      // Transform (X une Y) ? X : Y  -> X
716      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
717        // This is not safe in general for floating point:
718        // consider X== -0, Y== +0.
719        // It becomes safe if either operand is a nonzero constant.
720        ConstantFP *CFPt, *CFPf;
721        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
722              !CFPt->getValueAPF().isZero()) ||
723            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
724             !CFPf->getValueAPF().isZero()))
725        return ReplaceInstUsesWith(SI, TrueVal);
726      }
727      // NOTE: if we wanted to, this is where to detect MIN/MAX
728
729    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
730      // Transform (X == Y) ? Y : X  -> X
731      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
732        // This is not safe in general for floating point:
733        // consider X== -0, Y== +0.
734        // It becomes safe if either operand is a nonzero constant.
735        ConstantFP *CFPt, *CFPf;
736        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
737              !CFPt->getValueAPF().isZero()) ||
738            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
739             !CFPf->getValueAPF().isZero()))
740          return ReplaceInstUsesWith(SI, FalseVal);
741      }
742      // Transform (X une Y) ? Y : X  -> Y
743      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
744        // This is not safe in general for floating point:
745        // consider X== -0, Y== +0.
746        // It becomes safe if either operand is a nonzero constant.
747        ConstantFP *CFPt, *CFPf;
748        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
749              !CFPt->getValueAPF().isZero()) ||
750            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
751             !CFPf->getValueAPF().isZero()))
752          return ReplaceInstUsesWith(SI, TrueVal);
753      }
754      // NOTE: if we wanted to, this is where to detect MIN/MAX
755    }
756    // NOTE: if we wanted to, this is where to detect ABS
757  }
758
759  // See if we are selecting two values based on a comparison of the two values.
760  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
761    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
762      return Result;
763
764  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
765    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
766      if (TI->hasOneUse() && FI->hasOneUse()) {
767        Instruction *AddOp = 0, *SubOp = 0;
768
769        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
770        if (TI->getOpcode() == FI->getOpcode())
771          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
772            return IV;
773
774        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
775        // even legal for FP.
776        if ((TI->getOpcode() == Instruction::Sub &&
777             FI->getOpcode() == Instruction::Add) ||
778            (TI->getOpcode() == Instruction::FSub &&
779             FI->getOpcode() == Instruction::FAdd)) {
780          AddOp = FI; SubOp = TI;
781        } else if ((FI->getOpcode() == Instruction::Sub &&
782                    TI->getOpcode() == Instruction::Add) ||
783                   (FI->getOpcode() == Instruction::FSub &&
784                    TI->getOpcode() == Instruction::FAdd)) {
785          AddOp = TI; SubOp = FI;
786        }
787
788        if (AddOp) {
789          Value *OtherAddOp = 0;
790          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
791            OtherAddOp = AddOp->getOperand(1);
792          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
793            OtherAddOp = AddOp->getOperand(0);
794          }
795
796          if (OtherAddOp) {
797            // So at this point we know we have (Y -> OtherAddOp):
798            //        select C, (add X, Y), (sub X, Z)
799            Value *NegVal;  // Compute -Z
800            if (SI.getType()->isFPOrFPVectorTy()) {
801              NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
802            } else {
803              NegVal = Builder->CreateNeg(SubOp->getOperand(1));
804            }
805
806            Value *NewTrueOp = OtherAddOp;
807            Value *NewFalseOp = NegVal;
808            if (AddOp != TI)
809              std::swap(NewTrueOp, NewFalseOp);
810            Value *NewSel =
811              Builder->CreateSelect(CondVal, NewTrueOp,
812                                    NewFalseOp, SI.getName() + ".p");
813
814            if (SI.getType()->isFPOrFPVectorTy())
815              return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
816            else
817              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
818          }
819        }
820      }
821
822  // See if we can fold the select into one of our operands.
823  if (SI.getType()->isIntegerTy()) {
824    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
825      return FoldI;
826
827    // MAX(MAX(a, b), a) -> MAX(a, b)
828    // MIN(MIN(a, b), a) -> MIN(a, b)
829    // MAX(MIN(a, b), a) -> a
830    // MIN(MAX(a, b), a) -> a
831    Value *LHS, *RHS, *LHS2, *RHS2;
832    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
833      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
834        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
835                                          SI, SPF, RHS))
836          return R;
837      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
838        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
839                                          SI, SPF, LHS))
840          return R;
841    }
842
843    // TODO.
844    // ABS(-X) -> ABS(X)
845    // ABS(ABS(X)) -> ABS(X)
846  }
847
848  // See if we can fold the select into a phi node if the condition is a select.
849  if (isa<PHINode>(SI.getCondition()))
850    // The true/false values have to be live in the PHI predecessor's blocks.
851    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
852        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
853      if (Instruction *NV = FoldOpIntoPhi(SI))
854        return NV;
855
856  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
857    if (TrueSI->getCondition() == CondVal) {
858      SI.setOperand(1, TrueSI->getTrueValue());
859      return &SI;
860    }
861  }
862  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
863    if (FalseSI->getCondition() == CondVal) {
864      SI.setOperand(2, FalseSI->getFalseValue());
865      return &SI;
866    }
867  }
868
869  if (BinaryOperator::isNot(CondVal)) {
870    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
871    SI.setOperand(1, FalseVal);
872    SI.setOperand(2, TrueVal);
873    return &SI;
874  }
875
876  return 0;
877}
878