InstCombineSelect.cpp revision 976e7e1cc8282a965cf20ab54a7dce9165d87ea9
1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitSelect function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/PatternMatch.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17using namespace llvm;
18using namespace PatternMatch;
19
20/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
21/// returning the kind and providing the out parameter results if we
22/// successfully match.
23static SelectPatternFlavor
24MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
25  SelectInst *SI = dyn_cast<SelectInst>(V);
26  if (SI == 0) return SPF_UNKNOWN;
27
28  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
29  if (ICI == 0) return SPF_UNKNOWN;
30
31  LHS = ICI->getOperand(0);
32  RHS = ICI->getOperand(1);
33
34  // (icmp X, Y) ? X : Y
35  if (SI->getTrueValue() == ICI->getOperand(0) &&
36      SI->getFalseValue() == ICI->getOperand(1)) {
37    switch (ICI->getPredicate()) {
38    default: return SPF_UNKNOWN; // Equality.
39    case ICmpInst::ICMP_UGT:
40    case ICmpInst::ICMP_UGE: return SPF_UMAX;
41    case ICmpInst::ICMP_SGT:
42    case ICmpInst::ICMP_SGE: return SPF_SMAX;
43    case ICmpInst::ICMP_ULT:
44    case ICmpInst::ICMP_ULE: return SPF_UMIN;
45    case ICmpInst::ICMP_SLT:
46    case ICmpInst::ICMP_SLE: return SPF_SMIN;
47    }
48  }
49
50  // (icmp X, Y) ? Y : X
51  if (SI->getTrueValue() == ICI->getOperand(1) &&
52      SI->getFalseValue() == ICI->getOperand(0)) {
53    switch (ICI->getPredicate()) {
54      default: return SPF_UNKNOWN; // Equality.
55      case ICmpInst::ICMP_UGT:
56      case ICmpInst::ICMP_UGE: return SPF_UMIN;
57      case ICmpInst::ICMP_SGT:
58      case ICmpInst::ICMP_SGE: return SPF_SMIN;
59      case ICmpInst::ICMP_ULT:
60      case ICmpInst::ICMP_ULE: return SPF_UMAX;
61      case ICmpInst::ICMP_SLT:
62      case ICmpInst::ICMP_SLE: return SPF_SMAX;
63    }
64  }
65
66  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
67
68  return SPF_UNKNOWN;
69}
70
71
72/// GetSelectFoldableOperands - We want to turn code that looks like this:
73///   %C = or %A, %B
74///   %D = select %cond, %C, %A
75/// into:
76///   %C = select %cond, %B, 0
77///   %D = or %A, %C
78///
79/// Assuming that the specified instruction is an operand to the select, return
80/// a bitmask indicating which operands of this instruction are foldable if they
81/// equal the other incoming value of the select.
82///
83static unsigned GetSelectFoldableOperands(Instruction *I) {
84  switch (I->getOpcode()) {
85  case Instruction::Add:
86  case Instruction::Mul:
87  case Instruction::And:
88  case Instruction::Or:
89  case Instruction::Xor:
90    return 3;              // Can fold through either operand.
91  case Instruction::Sub:   // Can only fold on the amount subtracted.
92  case Instruction::Shl:   // Can only fold on the shift amount.
93  case Instruction::LShr:
94  case Instruction::AShr:
95    return 1;
96  default:
97    return 0;              // Cannot fold
98  }
99}
100
101/// GetSelectFoldableConstant - For the same transformation as the previous
102/// function, return the identity constant that goes into the select.
103static Constant *GetSelectFoldableConstant(Instruction *I) {
104  switch (I->getOpcode()) {
105  default: llvm_unreachable("This cannot happen!");
106  case Instruction::Add:
107  case Instruction::Sub:
108  case Instruction::Or:
109  case Instruction::Xor:
110  case Instruction::Shl:
111  case Instruction::LShr:
112  case Instruction::AShr:
113    return Constant::getNullValue(I->getType());
114  case Instruction::And:
115    return Constant::getAllOnesValue(I->getType());
116  case Instruction::Mul:
117    return ConstantInt::get(I->getType(), 1);
118  }
119}
120
121/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
122/// have the same opcode and only one use each.  Try to simplify this.
123Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
124                                          Instruction *FI) {
125  if (TI->getNumOperands() == 1) {
126    // If this is a non-volatile load or a cast from the same type,
127    // merge.
128    if (TI->isCast()) {
129      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
130        return 0;
131    } else {
132      return 0;  // unknown unary op.
133    }
134
135    // Fold this by inserting a select from the input values.
136    Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
137                                         FI->getOperand(0), SI.getName()+".v");
138    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
139                            TI->getType());
140  }
141
142  // Only handle binary operators here.
143  if (!isa<BinaryOperator>(TI))
144    return 0;
145
146  // Figure out if the operations have any operands in common.
147  Value *MatchOp, *OtherOpT, *OtherOpF;
148  bool MatchIsOpZero;
149  if (TI->getOperand(0) == FI->getOperand(0)) {
150    MatchOp  = TI->getOperand(0);
151    OtherOpT = TI->getOperand(1);
152    OtherOpF = FI->getOperand(1);
153    MatchIsOpZero = true;
154  } else if (TI->getOperand(1) == FI->getOperand(1)) {
155    MatchOp  = TI->getOperand(1);
156    OtherOpT = TI->getOperand(0);
157    OtherOpF = FI->getOperand(0);
158    MatchIsOpZero = false;
159  } else if (!TI->isCommutative()) {
160    return 0;
161  } else if (TI->getOperand(0) == FI->getOperand(1)) {
162    MatchOp  = TI->getOperand(0);
163    OtherOpT = TI->getOperand(1);
164    OtherOpF = FI->getOperand(0);
165    MatchIsOpZero = true;
166  } else if (TI->getOperand(1) == FI->getOperand(0)) {
167    MatchOp  = TI->getOperand(1);
168    OtherOpT = TI->getOperand(0);
169    OtherOpF = FI->getOperand(1);
170    MatchIsOpZero = true;
171  } else {
172    return 0;
173  }
174
175  // If we reach here, they do have operations in common.
176  Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
177                                       OtherOpF, SI.getName()+".v");
178
179  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
180    if (MatchIsOpZero)
181      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
182    else
183      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
184  }
185  llvm_unreachable("Shouldn't get here");
186  return 0;
187}
188
189static bool isSelect01(Constant *C1, Constant *C2) {
190  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
191  if (!C1I)
192    return false;
193  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
194  if (!C2I)
195    return false;
196  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
197    return false;
198  return C1I->isOne() || C1I->isAllOnesValue() ||
199         C2I->isOne() || C2I->isAllOnesValue();
200}
201
202/// FoldSelectIntoOp - Try fold the select into one of the operands to
203/// facilitate further optimization.
204Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
205                                            Value *FalseVal) {
206  // See the comment above GetSelectFoldableOperands for a description of the
207  // transformation we are doing here.
208  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
209    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
210        !isa<Constant>(FalseVal)) {
211      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
212        unsigned OpToFold = 0;
213        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
214          OpToFold = 1;
215        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
216          OpToFold = 2;
217        }
218
219        if (OpToFold) {
220          Constant *C = GetSelectFoldableConstant(TVI);
221          Value *OOp = TVI->getOperand(2-OpToFold);
222          // Avoid creating select between 2 constants unless it's selecting
223          // between 0, 1 and -1.
224          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
225            Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
226            NewSel->takeName(TVI);
227            BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
228            BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
229                                                        FalseVal, NewSel);
230            if (isa<PossiblyExactOperator>(BO))
231              BO->setIsExact(TVI_BO->isExact());
232            if (isa<OverflowingBinaryOperator>(BO)) {
233              BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
234              BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
235            }
236            return BO;
237          }
238        }
239      }
240    }
241  }
242
243  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
244    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
245        !isa<Constant>(TrueVal)) {
246      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
247        unsigned OpToFold = 0;
248        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
249          OpToFold = 1;
250        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
251          OpToFold = 2;
252        }
253
254        if (OpToFold) {
255          Constant *C = GetSelectFoldableConstant(FVI);
256          Value *OOp = FVI->getOperand(2-OpToFold);
257          // Avoid creating select between 2 constants unless it's selecting
258          // between 0, 1 and -1.
259          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
260            Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
261            NewSel->takeName(FVI);
262            BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
263            BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
264                                                        TrueVal, NewSel);
265            if (isa<PossiblyExactOperator>(BO))
266              BO->setIsExact(FVI_BO->isExact());
267            if (isa<OverflowingBinaryOperator>(BO)) {
268              BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
269              BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
270            }
271            return BO;
272          }
273        }
274      }
275    }
276  }
277
278  return 0;
279}
280
281/// visitSelectInstWithICmp - Visit a SelectInst that has an
282/// ICmpInst as its first operand.
283///
284Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
285                                                   ICmpInst *ICI) {
286  bool Changed = false;
287  ICmpInst::Predicate Pred = ICI->getPredicate();
288  Value *CmpLHS = ICI->getOperand(0);
289  Value *CmpRHS = ICI->getOperand(1);
290  Value *TrueVal = SI.getTrueValue();
291  Value *FalseVal = SI.getFalseValue();
292
293  // Check cases where the comparison is with a constant that
294  // can be adjusted to fit the min/max idiom. We may move or edit ICI
295  // here, so make sure the select is the only user.
296  if (ICI->hasOneUse())
297    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
298      // X < MIN ? T : F  -->  F
299      if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
300          && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
301        return ReplaceInstUsesWith(SI, FalseVal);
302      // X > MAX ? T : F  -->  F
303      else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
304               && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
305        return ReplaceInstUsesWith(SI, FalseVal);
306      switch (Pred) {
307      default: break;
308      case ICmpInst::ICMP_ULT:
309      case ICmpInst::ICMP_SLT:
310      case ICmpInst::ICMP_UGT:
311      case ICmpInst::ICMP_SGT: {
312        // These transformations only work for selects over integers.
313        const IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
314        if (!SelectTy)
315          break;
316
317        Constant *AdjustedRHS;
318        if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
319          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
320        else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
321          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
322
323        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
324        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
325        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
326            (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
327          ; // Nothing to do here. Values match without any sign/zero extension.
328
329        // Types do not match. Instead of calculating this with mixed types
330        // promote all to the larger type. This enables scalar evolution to
331        // analyze this expression.
332        else if (CmpRHS->getType()->getScalarSizeInBits()
333                 < SelectTy->getBitWidth()) {
334          Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
335
336          // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
337          // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
338          // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
339          // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
340          if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
341                sextRHS == FalseVal) {
342            CmpLHS = TrueVal;
343            AdjustedRHS = sextRHS;
344          } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
345                     sextRHS == TrueVal) {
346            CmpLHS = FalseVal;
347            AdjustedRHS = sextRHS;
348          } else if (ICI->isUnsigned()) {
349            Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
350            // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
351            // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
352            // zext + signed compare cannot be changed:
353            //    0xff <s 0x00, but 0x00ff >s 0x0000
354            if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
355                zextRHS == FalseVal) {
356              CmpLHS = TrueVal;
357              AdjustedRHS = zextRHS;
358            } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
359                       zextRHS == TrueVal) {
360              CmpLHS = FalseVal;
361              AdjustedRHS = zextRHS;
362            } else
363              break;
364          } else
365            break;
366        } else
367          break;
368
369        Pred = ICmpInst::getSwappedPredicate(Pred);
370        CmpRHS = AdjustedRHS;
371        std::swap(FalseVal, TrueVal);
372        ICI->setPredicate(Pred);
373        ICI->setOperand(0, CmpLHS);
374        ICI->setOperand(1, CmpRHS);
375        SI.setOperand(1, TrueVal);
376        SI.setOperand(2, FalseVal);
377
378        // Move ICI instruction right before the select instruction. Otherwise
379        // the sext/zext value may be defined after the ICI instruction uses it.
380        ICI->moveBefore(&SI);
381
382        Changed = true;
383        break;
384      }
385      }
386    }
387
388  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
389  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
390  // FIXME: Type and constness constraints could be lifted, but we have to
391  //        watch code size carefully. We should consider xor instead of
392  //        sub/add when we decide to do that.
393  if (const IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
394    if (TrueVal->getType() == Ty) {
395      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
396        ConstantInt *C1 = NULL, *C2 = NULL;
397        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
398          C1 = dyn_cast<ConstantInt>(TrueVal);
399          C2 = dyn_cast<ConstantInt>(FalseVal);
400        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
401          C1 = dyn_cast<ConstantInt>(FalseVal);
402          C2 = dyn_cast<ConstantInt>(TrueVal);
403        }
404        if (C1 && C2) {
405          // This shift results in either -1 or 0.
406          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
407
408          // Check if we can express the operation with a single or.
409          if (C2->isAllOnesValue())
410            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
411
412          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
413          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
414        }
415      }
416    }
417  }
418
419  if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
420    // Transform (X == Y) ? X : Y  -> Y
421    if (Pred == ICmpInst::ICMP_EQ)
422      return ReplaceInstUsesWith(SI, FalseVal);
423    // Transform (X != Y) ? X : Y  -> X
424    if (Pred == ICmpInst::ICMP_NE)
425      return ReplaceInstUsesWith(SI, TrueVal);
426    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
427
428  } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
429    // Transform (X == Y) ? Y : X  -> X
430    if (Pred == ICmpInst::ICMP_EQ)
431      return ReplaceInstUsesWith(SI, FalseVal);
432    // Transform (X != Y) ? Y : X  -> Y
433    if (Pred == ICmpInst::ICMP_NE)
434      return ReplaceInstUsesWith(SI, TrueVal);
435    /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
436  }
437
438  if (isa<Constant>(CmpRHS)) {
439    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
440      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
441      SI.setOperand(1, CmpRHS);
442      Changed = true;
443    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
444      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
445      SI.setOperand(2, CmpRHS);
446      Changed = true;
447    }
448  }
449
450  return Changed ? &SI : 0;
451}
452
453
454/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
455/// PHI node (but the two may be in different blocks).  See if the true/false
456/// values (V) are live in all of the predecessor blocks of the PHI.  For
457/// example, cases like this cannot be mapped:
458///
459///   X = phi [ C1, BB1], [C2, BB2]
460///   Y = add
461///   Z = select X, Y, 0
462///
463/// because Y is not live in BB1/BB2.
464///
465static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
466                                                   const SelectInst &SI) {
467  // If the value is a non-instruction value like a constant or argument, it
468  // can always be mapped.
469  const Instruction *I = dyn_cast<Instruction>(V);
470  if (I == 0) return true;
471
472  // If V is a PHI node defined in the same block as the condition PHI, we can
473  // map the arguments.
474  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
475
476  if (const PHINode *VP = dyn_cast<PHINode>(I))
477    if (VP->getParent() == CondPHI->getParent())
478      return true;
479
480  // Otherwise, if the PHI and select are defined in the same block and if V is
481  // defined in a different block, then we can transform it.
482  if (SI.getParent() == CondPHI->getParent() &&
483      I->getParent() != CondPHI->getParent())
484    return true;
485
486  // Otherwise we have a 'hard' case and we can't tell without doing more
487  // detailed dominator based analysis, punt.
488  return false;
489}
490
491/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
492///   SPF2(SPF1(A, B), C)
493Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
494                                        SelectPatternFlavor SPF1,
495                                        Value *A, Value *B,
496                                        Instruction &Outer,
497                                        SelectPatternFlavor SPF2, Value *C) {
498  if (C == A || C == B) {
499    // MAX(MAX(A, B), B) -> MAX(A, B)
500    // MIN(MIN(a, b), a) -> MIN(a, b)
501    if (SPF1 == SPF2)
502      return ReplaceInstUsesWith(Outer, Inner);
503
504    // MAX(MIN(a, b), a) -> a
505    // MIN(MAX(a, b), a) -> a
506    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
507        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
508        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
509        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
510      return ReplaceInstUsesWith(Outer, C);
511  }
512
513  // TODO: MIN(MIN(A, 23), 97)
514  return 0;
515}
516
517
518/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
519/// both be) and we have an icmp instruction with zero, and we have an 'and'
520/// with the non-constant value and a power of two we can turn the select
521/// into a shift on the result of the 'and'.
522static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
523                                ConstantInt *FalseVal,
524                                InstCombiner::BuilderTy *Builder) {
525  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
526  if (!IC || !IC->isEquality())
527    return 0;
528
529  if (!match(IC->getOperand(1), m_Zero()))
530    return 0;
531
532  ConstantInt *AndRHS;
533  Value *LHS = IC->getOperand(0);
534  if (LHS->getType() != SI.getType() ||
535      !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
536    return 0;
537
538  // If both select arms are non-zero see if we have a select of the form
539  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
540  // for 'x ? 2^n : 0' and fix the thing up at the end.
541  ConstantInt *Offset = 0;
542  if (!TrueVal->isZero() && !FalseVal->isZero()) {
543    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
544      Offset = FalseVal;
545    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
546      Offset = TrueVal;
547    else
548      return 0;
549
550    // Adjust TrueVal and FalseVal to the offset.
551    TrueVal = ConstantInt::get(Builder->getContext(),
552                               TrueVal->getValue() - Offset->getValue());
553    FalseVal = ConstantInt::get(Builder->getContext(),
554                                FalseVal->getValue() - Offset->getValue());
555  }
556
557  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
558  if (!AndRHS->getValue().isPowerOf2() ||
559      (!TrueVal->getValue().isPowerOf2() &&
560       !FalseVal->getValue().isPowerOf2()))
561    return 0;
562
563  // Determine which shift is needed to transform result of the 'and' into the
564  // desired result.
565  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
566  unsigned ValZeros = ValC->getValue().logBase2();
567  unsigned AndZeros = AndRHS->getValue().logBase2();
568
569  Value *V = LHS;
570  if (ValZeros > AndZeros)
571    V = Builder->CreateShl(V, ValZeros - AndZeros);
572  else if (ValZeros < AndZeros)
573    V = Builder->CreateLShr(V, AndZeros - ValZeros);
574
575  // Okay, now we know that everything is set up, we just don't know whether we
576  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
577  bool ShouldNotVal = !TrueVal->isZero();
578  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
579  if (ShouldNotVal)
580    V = Builder->CreateXor(V, ValC);
581
582  // Apply an offset if needed.
583  if (Offset)
584    V = Builder->CreateAdd(V, Offset);
585  return V;
586}
587
588Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
589  Value *CondVal = SI.getCondition();
590  Value *TrueVal = SI.getTrueValue();
591  Value *FalseVal = SI.getFalseValue();
592
593  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
594    return ReplaceInstUsesWith(SI, V);
595
596  if (SI.getType()->isIntegerTy(1)) {
597    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
598      if (C->getZExtValue()) {
599        // Change: A = select B, true, C --> A = or B, C
600        return BinaryOperator::CreateOr(CondVal, FalseVal);
601      }
602      // Change: A = select B, false, C --> A = and !B, C
603      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
604      return BinaryOperator::CreateAnd(NotCond, FalseVal);
605    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
606      if (C->getZExtValue() == false) {
607        // Change: A = select B, C, false --> A = and B, C
608        return BinaryOperator::CreateAnd(CondVal, TrueVal);
609      }
610      // Change: A = select B, C, true --> A = or !B, C
611      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
612      return BinaryOperator::CreateOr(NotCond, TrueVal);
613    }
614
615    // select a, b, a  -> a&b
616    // select a, a, b  -> a|b
617    if (CondVal == TrueVal)
618      return BinaryOperator::CreateOr(CondVal, FalseVal);
619    else if (CondVal == FalseVal)
620      return BinaryOperator::CreateAnd(CondVal, TrueVal);
621  }
622
623  // Selecting between two integer constants?
624  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
625    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
626      // select C, 1, 0 -> zext C to int
627      if (FalseValC->isZero() && TrueValC->getValue() == 1)
628        return new ZExtInst(CondVal, SI.getType());
629
630      // select C, -1, 0 -> sext C to int
631      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
632        return new SExtInst(CondVal, SI.getType());
633
634      // select C, 0, 1 -> zext !C to int
635      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
636        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
637        return new ZExtInst(NotCond, SI.getType());
638      }
639
640      // select C, 0, -1 -> sext !C to int
641      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
642        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
643        return new SExtInst(NotCond, SI.getType());
644      }
645
646      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
647        return ReplaceInstUsesWith(SI, V);
648    }
649
650  // See if we are selecting two values based on a comparison of the two values.
651  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
652    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
653      // Transform (X == Y) ? X : Y  -> Y
654      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
655        // This is not safe in general for floating point:
656        // consider X== -0, Y== +0.
657        // It becomes safe if either operand is a nonzero constant.
658        ConstantFP *CFPt, *CFPf;
659        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
660              !CFPt->getValueAPF().isZero()) ||
661            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
662             !CFPf->getValueAPF().isZero()))
663        return ReplaceInstUsesWith(SI, FalseVal);
664      }
665      // Transform (X une Y) ? X : Y  -> X
666      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
667        // This is not safe in general for floating point:
668        // consider X== -0, Y== +0.
669        // It becomes safe if either operand is a nonzero constant.
670        ConstantFP *CFPt, *CFPf;
671        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
672              !CFPt->getValueAPF().isZero()) ||
673            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
674             !CFPf->getValueAPF().isZero()))
675        return ReplaceInstUsesWith(SI, TrueVal);
676      }
677      // NOTE: if we wanted to, this is where to detect MIN/MAX
678
679    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
680      // Transform (X == Y) ? Y : X  -> X
681      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
682        // This is not safe in general for floating point:
683        // consider X== -0, Y== +0.
684        // It becomes safe if either operand is a nonzero constant.
685        ConstantFP *CFPt, *CFPf;
686        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
687              !CFPt->getValueAPF().isZero()) ||
688            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
689             !CFPf->getValueAPF().isZero()))
690          return ReplaceInstUsesWith(SI, FalseVal);
691      }
692      // Transform (X une Y) ? Y : X  -> Y
693      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
694        // This is not safe in general for floating point:
695        // consider X== -0, Y== +0.
696        // It becomes safe if either operand is a nonzero constant.
697        ConstantFP *CFPt, *CFPf;
698        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
699              !CFPt->getValueAPF().isZero()) ||
700            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
701             !CFPf->getValueAPF().isZero()))
702          return ReplaceInstUsesWith(SI, TrueVal);
703      }
704      // NOTE: if we wanted to, this is where to detect MIN/MAX
705    }
706    // NOTE: if we wanted to, this is where to detect ABS
707  }
708
709  // See if we are selecting two values based on a comparison of the two values.
710  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
711    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
712      return Result;
713
714  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
715    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
716      if (TI->hasOneUse() && FI->hasOneUse()) {
717        Instruction *AddOp = 0, *SubOp = 0;
718
719        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
720        if (TI->getOpcode() == FI->getOpcode())
721          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
722            return IV;
723
724        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
725        // even legal for FP.
726        if ((TI->getOpcode() == Instruction::Sub &&
727             FI->getOpcode() == Instruction::Add) ||
728            (TI->getOpcode() == Instruction::FSub &&
729             FI->getOpcode() == Instruction::FAdd)) {
730          AddOp = FI; SubOp = TI;
731        } else if ((FI->getOpcode() == Instruction::Sub &&
732                    TI->getOpcode() == Instruction::Add) ||
733                   (FI->getOpcode() == Instruction::FSub &&
734                    TI->getOpcode() == Instruction::FAdd)) {
735          AddOp = TI; SubOp = FI;
736        }
737
738        if (AddOp) {
739          Value *OtherAddOp = 0;
740          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
741            OtherAddOp = AddOp->getOperand(1);
742          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
743            OtherAddOp = AddOp->getOperand(0);
744          }
745
746          if (OtherAddOp) {
747            // So at this point we know we have (Y -> OtherAddOp):
748            //        select C, (add X, Y), (sub X, Z)
749            Value *NegVal;  // Compute -Z
750            if (SI.getType()->isFloatingPointTy()) {
751              NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
752            } else {
753              NegVal = Builder->CreateNeg(SubOp->getOperand(1));
754            }
755
756            Value *NewTrueOp = OtherAddOp;
757            Value *NewFalseOp = NegVal;
758            if (AddOp != TI)
759              std::swap(NewTrueOp, NewFalseOp);
760            Value *NewSel =
761              Builder->CreateSelect(CondVal, NewTrueOp,
762                                    NewFalseOp, SI.getName() + ".p");
763
764            if (SI.getType()->isFloatingPointTy())
765              return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
766            else
767              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
768          }
769        }
770      }
771
772  // See if we can fold the select into one of our operands.
773  if (SI.getType()->isIntegerTy()) {
774    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
775      return FoldI;
776
777    // MAX(MAX(a, b), a) -> MAX(a, b)
778    // MIN(MIN(a, b), a) -> MIN(a, b)
779    // MAX(MIN(a, b), a) -> a
780    // MIN(MAX(a, b), a) -> a
781    Value *LHS, *RHS, *LHS2, *RHS2;
782    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
783      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
784        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
785                                          SI, SPF, RHS))
786          return R;
787      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
788        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
789                                          SI, SPF, LHS))
790          return R;
791    }
792
793    // TODO.
794    // ABS(-X) -> ABS(X)
795    // ABS(ABS(X)) -> ABS(X)
796  }
797
798  // See if we can fold the select into a phi node if the condition is a select.
799  if (isa<PHINode>(SI.getCondition()))
800    // The true/false values have to be live in the PHI predecessor's blocks.
801    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
802        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
803      if (Instruction *NV = FoldOpIntoPhi(SI))
804        return NV;
805
806  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
807    if (TrueSI->getCondition() == CondVal) {
808      SI.setOperand(1, TrueSI->getTrueValue());
809      return &SI;
810    }
811  }
812  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
813    if (FalseSI->getCondition() == CondVal) {
814      SI.setOperand(2, FalseSI->getFalseValue());
815      return &SI;
816    }
817  }
818
819  if (BinaryOperator::isNot(CondVal)) {
820    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
821    SI.setOperand(1, FalseVal);
822    SI.setOperand(2, TrueVal);
823    return &SI;
824  }
825
826  return 0;
827}
828