JumpThreading.cpp revision 081c34b725980f995be9080eaec24cd3dfaaf065
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36using namespace llvm;
37
38STATISTIC(NumThreads, "Number of jumps threaded");
39STATISTIC(NumFolds,   "Number of terminators folded");
40STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
41
42static cl::opt<unsigned>
43Threshold("jump-threading-threshold",
44          cl::desc("Max block size to duplicate for jump threading"),
45          cl::init(6), cl::Hidden);
46
47namespace {
48  /// This pass performs 'jump threading', which looks at blocks that have
49  /// multiple predecessors and multiple successors.  If one or more of the
50  /// predecessors of the block can be proven to always jump to one of the
51  /// successors, we forward the edge from the predecessor to the successor by
52  /// duplicating the contents of this block.
53  ///
54  /// An example of when this can occur is code like this:
55  ///
56  ///   if () { ...
57  ///     X = 4;
58  ///   }
59  ///   if (X < 3) {
60  ///
61  /// In this case, the unconditional branch at the end of the first if can be
62  /// revectored to the false side of the second if.
63  ///
64  class JumpThreading : public FunctionPass {
65    TargetData *TD;
66    LazyValueInfo *LVI;
67#ifdef NDEBUG
68    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
69#else
70    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
71#endif
72    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
73
74    // RAII helper for updating the recursion stack.
75    struct RecursionSetRemover {
76      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
77      std::pair<Value*, BasicBlock*> ThePair;
78
79      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
80                          std::pair<Value*, BasicBlock*> P)
81        : TheSet(S), ThePair(P) { }
82
83      ~RecursionSetRemover() {
84        TheSet.erase(ThePair);
85      }
86    };
87  public:
88    static char ID; // Pass identification
89    JumpThreading() : FunctionPass(ID) {
90      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
91    }
92
93    bool runOnFunction(Function &F);
94
95    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
96      AU.addRequired<LazyValueInfo>();
97      AU.addPreserved<LazyValueInfo>();
98    }
99
100    void FindLoopHeaders(Function &F);
101    bool ProcessBlock(BasicBlock *BB);
102    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
103                    BasicBlock *SuccBB);
104    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
105                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
106
107    typedef SmallVectorImpl<std::pair<ConstantInt*,
108                                      BasicBlock*> > PredValueInfo;
109
110    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
111                                         PredValueInfo &Result);
112    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
113
114
115    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
116    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
117
118    bool ProcessBranchOnPHI(PHINode *PN);
119    bool ProcessBranchOnXOR(BinaryOperator *BO);
120
121    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
122  };
123}
124
125char JumpThreading::ID = 0;
126INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
127                "Jump Threading", false, false)
128INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
129INITIALIZE_PASS_END(JumpThreading, "jump-threading",
130                "Jump Threading", false, false)
131
132// Public interface to the Jump Threading pass
133FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
134
135/// runOnFunction - Top level algorithm.
136///
137bool JumpThreading::runOnFunction(Function &F) {
138  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
139  TD = getAnalysisIfAvailable<TargetData>();
140  LVI = &getAnalysis<LazyValueInfo>();
141
142  FindLoopHeaders(F);
143
144  bool Changed, EverChanged = false;
145  do {
146    Changed = false;
147    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
148      BasicBlock *BB = I;
149      // Thread all of the branches we can over this block.
150      while (ProcessBlock(BB))
151        Changed = true;
152
153      ++I;
154
155      // If the block is trivially dead, zap it.  This eliminates the successor
156      // edges which simplifies the CFG.
157      if (pred_begin(BB) == pred_end(BB) &&
158          BB != &BB->getParent()->getEntryBlock()) {
159        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
160              << "' with terminator: " << *BB->getTerminator() << '\n');
161        LoopHeaders.erase(BB);
162        LVI->eraseBlock(BB);
163        DeleteDeadBlock(BB);
164        Changed = true;
165      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
166        // Can't thread an unconditional jump, but if the block is "almost
167        // empty", we can replace uses of it with uses of the successor and make
168        // this dead.
169        if (BI->isUnconditional() &&
170            BB != &BB->getParent()->getEntryBlock()) {
171          BasicBlock::iterator BBI = BB->getFirstNonPHI();
172          // Ignore dbg intrinsics.
173          while (isa<DbgInfoIntrinsic>(BBI))
174            ++BBI;
175          // If the terminator is the only non-phi instruction, try to nuke it.
176          if (BBI->isTerminator()) {
177            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
178            // block, we have to make sure it isn't in the LoopHeaders set.  We
179            // reinsert afterward if needed.
180            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
181            BasicBlock *Succ = BI->getSuccessor(0);
182
183            // FIXME: It is always conservatively correct to drop the info
184            // for a block even if it doesn't get erased.  This isn't totally
185            // awesome, but it allows us to use AssertingVH to prevent nasty
186            // dangling pointer issues within LazyValueInfo.
187            LVI->eraseBlock(BB);
188            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
189              Changed = true;
190              // If we deleted BB and BB was the header of a loop, then the
191              // successor is now the header of the loop.
192              BB = Succ;
193            }
194
195            if (ErasedFromLoopHeaders)
196              LoopHeaders.insert(BB);
197          }
198        }
199      }
200    }
201    EverChanged |= Changed;
202  } while (Changed);
203
204  LoopHeaders.clear();
205  return EverChanged;
206}
207
208/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
209/// thread across it.
210static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
211  /// Ignore PHI nodes, these will be flattened when duplication happens.
212  BasicBlock::const_iterator I = BB->getFirstNonPHI();
213
214  // FIXME: THREADING will delete values that are just used to compute the
215  // branch, so they shouldn't count against the duplication cost.
216
217
218  // Sum up the cost of each instruction until we get to the terminator.  Don't
219  // include the terminator because the copy won't include it.
220  unsigned Size = 0;
221  for (; !isa<TerminatorInst>(I); ++I) {
222    // Debugger intrinsics don't incur code size.
223    if (isa<DbgInfoIntrinsic>(I)) continue;
224
225    // If this is a pointer->pointer bitcast, it is free.
226    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
227      continue;
228
229    // All other instructions count for at least one unit.
230    ++Size;
231
232    // Calls are more expensive.  If they are non-intrinsic calls, we model them
233    // as having cost of 4.  If they are a non-vector intrinsic, we model them
234    // as having cost of 2 total, and if they are a vector intrinsic, we model
235    // them as having cost 1.
236    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
237      if (!isa<IntrinsicInst>(CI))
238        Size += 3;
239      else if (!CI->getType()->isVectorTy())
240        Size += 1;
241    }
242  }
243
244  // Threading through a switch statement is particularly profitable.  If this
245  // block ends in a switch, decrease its cost to make it more likely to happen.
246  if (isa<SwitchInst>(I))
247    Size = Size > 6 ? Size-6 : 0;
248
249  return Size;
250}
251
252/// FindLoopHeaders - We do not want jump threading to turn proper loop
253/// structures into irreducible loops.  Doing this breaks up the loop nesting
254/// hierarchy and pessimizes later transformations.  To prevent this from
255/// happening, we first have to find the loop headers.  Here we approximate this
256/// by finding targets of backedges in the CFG.
257///
258/// Note that there definitely are cases when we want to allow threading of
259/// edges across a loop header.  For example, threading a jump from outside the
260/// loop (the preheader) to an exit block of the loop is definitely profitable.
261/// It is also almost always profitable to thread backedges from within the loop
262/// to exit blocks, and is often profitable to thread backedges to other blocks
263/// within the loop (forming a nested loop).  This simple analysis is not rich
264/// enough to track all of these properties and keep it up-to-date as the CFG
265/// mutates, so we don't allow any of these transformations.
266///
267void JumpThreading::FindLoopHeaders(Function &F) {
268  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
269  FindFunctionBackedges(F, Edges);
270
271  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
272    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
273}
274
275// Helper method for ComputeValueKnownInPredecessors.  If Value is a
276// ConstantInt, push it.  If it's an undef, push 0.  Otherwise, do nothing.
277static void PushConstantIntOrUndef(SmallVectorImpl<std::pair<ConstantInt*,
278                                                        BasicBlock*> > &Result,
279                              Constant *Value, BasicBlock* BB){
280  if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Value))
281    Result.push_back(std::make_pair(FoldedCInt, BB));
282  else if (isa<UndefValue>(Value))
283    Result.push_back(std::make_pair((ConstantInt*)0, BB));
284}
285
286/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
287/// if we can infer that the value is a known ConstantInt in any of our
288/// predecessors.  If so, return the known list of value and pred BB in the
289/// result vector.  If a value is known to be undef, it is returned as null.
290///
291/// This returns true if there were any known values.
292///
293bool JumpThreading::
294ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
295  // This method walks up use-def chains recursively.  Because of this, we could
296  // get into an infinite loop going around loops in the use-def chain.  To
297  // prevent this, keep track of what (value, block) pairs we've already visited
298  // and terminate the search if we loop back to them
299  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
300    return false;
301
302  // An RAII help to remove this pair from the recursion set once the recursion
303  // stack pops back out again.
304  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
305
306  // If V is a constantint, then it is known in all predecessors.
307  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
308    ConstantInt *CI = dyn_cast<ConstantInt>(V);
309
310    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
311      Result.push_back(std::make_pair(CI, *PI));
312
313    return true;
314  }
315
316  // If V is a non-instruction value, or an instruction in a different block,
317  // then it can't be derived from a PHI.
318  Instruction *I = dyn_cast<Instruction>(V);
319  if (I == 0 || I->getParent() != BB) {
320
321    // Okay, if this is a live-in value, see if it has a known value at the end
322    // of any of our predecessors.
323    //
324    // FIXME: This should be an edge property, not a block end property.
325    /// TODO: Per PR2563, we could infer value range information about a
326    /// predecessor based on its terminator.
327    //
328    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
329    // "I" is a non-local compare-with-a-constant instruction.  This would be
330    // able to handle value inequalities better, for example if the compare is
331    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
332    // Perhaps getConstantOnEdge should be smart enough to do this?
333
334    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
335      BasicBlock *P = *PI;
336      // If the value is known by LazyValueInfo to be a constant in a
337      // predecessor, use that information to try to thread this block.
338      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
339      if (PredCst == 0 ||
340          (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
341        continue;
342
343      Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
344    }
345
346    return !Result.empty();
347  }
348
349  /// If I is a PHI node, then we know the incoming values for any constants.
350  if (PHINode *PN = dyn_cast<PHINode>(I)) {
351    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
352      Value *InVal = PN->getIncomingValue(i);
353      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
354        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
355        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
356      } else {
357        Constant *CI = LVI->getConstantOnEdge(InVal,
358                                              PN->getIncomingBlock(i), BB);
359        // LVI returns null is no value could be determined.
360        if (!CI) continue;
361        PushConstantIntOrUndef(Result, CI, PN->getIncomingBlock(i));
362      }
363    }
364
365    return !Result.empty();
366  }
367
368  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
369
370  // Handle some boolean conditions.
371  if (I->getType()->getPrimitiveSizeInBits() == 1) {
372    // X | true -> true
373    // X & false -> false
374    if (I->getOpcode() == Instruction::Or ||
375        I->getOpcode() == Instruction::And) {
376      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
377      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
378
379      if (LHSVals.empty() && RHSVals.empty())
380        return false;
381
382      ConstantInt *InterestingVal;
383      if (I->getOpcode() == Instruction::Or)
384        InterestingVal = ConstantInt::getTrue(I->getContext());
385      else
386        InterestingVal = ConstantInt::getFalse(I->getContext());
387
388      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
389
390      // Scan for the sentinel.  If we find an undef, force it to the
391      // interesting value: x|undef -> true and x&undef -> false.
392      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
393        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
394          Result.push_back(LHSVals[i]);
395          Result.back().first = InterestingVal;
396          LHSKnownBBs.insert(LHSVals[i].second);
397        }
398      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
399        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
400          // If we already inferred a value for this block on the LHS, don't
401          // re-add it.
402          if (!LHSKnownBBs.count(RHSVals[i].second)) {
403            Result.push_back(RHSVals[i]);
404            Result.back().first = InterestingVal;
405          }
406        }
407
408      return !Result.empty();
409    }
410
411    // Handle the NOT form of XOR.
412    if (I->getOpcode() == Instruction::Xor &&
413        isa<ConstantInt>(I->getOperand(1)) &&
414        cast<ConstantInt>(I->getOperand(1))->isOne()) {
415      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
416      if (Result.empty())
417        return false;
418
419      // Invert the known values.
420      for (unsigned i = 0, e = Result.size(); i != e; ++i)
421        if (Result[i].first)
422          Result[i].first =
423            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
424
425      return true;
426    }
427
428  // Try to simplify some other binary operator values.
429  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
430    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
431      SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
432      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
433
434      // Try to use constant folding to simplify the binary operator.
435      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
436        Constant *V = LHSVals[i].first;
437        if (V == 0) V = UndefValue::get(BO->getType());
438        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
439
440        PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
441      }
442    }
443
444    return !Result.empty();
445  }
446
447  // Handle compare with phi operand, where the PHI is defined in this block.
448  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
449    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
450    if (PN && PN->getParent() == BB) {
451      // We can do this simplification if any comparisons fold to true or false.
452      // See if any do.
453      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
454        BasicBlock *PredBB = PN->getIncomingBlock(i);
455        Value *LHS = PN->getIncomingValue(i);
456        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
457
458        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
459        if (Res == 0) {
460          if (!isa<Constant>(RHS))
461            continue;
462
463          LazyValueInfo::Tristate
464            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
465                                           cast<Constant>(RHS), PredBB, BB);
466          if (ResT == LazyValueInfo::Unknown)
467            continue;
468          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
469        }
470
471        if (Constant *ConstRes = dyn_cast<Constant>(Res))
472          PushConstantIntOrUndef(Result, ConstRes, PredBB);
473      }
474
475      return !Result.empty();
476    }
477
478
479    // If comparing a live-in value against a constant, see if we know the
480    // live-in value on any predecessors.
481    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
482      if (!isa<Instruction>(Cmp->getOperand(0)) ||
483          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
484        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
485
486        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
487          BasicBlock *P = *PI;
488          // If the value is known by LazyValueInfo to be a constant in a
489          // predecessor, use that information to try to thread this block.
490          LazyValueInfo::Tristate Res =
491            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
492                                    RHSCst, P, BB);
493          if (Res == LazyValueInfo::Unknown)
494            continue;
495
496          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
497          Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
498        }
499
500        return !Result.empty();
501      }
502
503      // Try to find a constant value for the LHS of a comparison,
504      // and evaluate it statically if we can.
505      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
506        SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
507        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
508
509        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
510          Constant *V = LHSVals[i].first;
511          if (V == 0) V = UndefValue::get(CmpConst->getType());
512          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
513                                                      V, CmpConst);
514          PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
515        }
516
517        return !Result.empty();
518      }
519    }
520  }
521
522  // If all else fails, see if LVI can figure out a constant value for us.
523  Constant *CI = LVI->getConstant(V, BB);
524  ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
525  if (CInt) {
526    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
527      Result.push_back(std::make_pair(CInt, *PI));
528  }
529
530  return !Result.empty();
531}
532
533
534
535/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
536/// in an undefined jump, decide which block is best to revector to.
537///
538/// Since we can pick an arbitrary destination, we pick the successor with the
539/// fewest predecessors.  This should reduce the in-degree of the others.
540///
541static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
542  TerminatorInst *BBTerm = BB->getTerminator();
543  unsigned MinSucc = 0;
544  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
545  // Compute the successor with the minimum number of predecessors.
546  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
547  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
548    TestBB = BBTerm->getSuccessor(i);
549    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
550    if (NumPreds < MinNumPreds)
551      MinSucc = i;
552  }
553
554  return MinSucc;
555}
556
557/// ProcessBlock - If there are any predecessors whose control can be threaded
558/// through to a successor, transform them now.
559bool JumpThreading::ProcessBlock(BasicBlock *BB) {
560  // If the block is trivially dead, just return and let the caller nuke it.
561  // This simplifies other transformations.
562  if (pred_begin(BB) == pred_end(BB) &&
563      BB != &BB->getParent()->getEntryBlock())
564    return false;
565
566  // If this block has a single predecessor, and if that pred has a single
567  // successor, merge the blocks.  This encourages recursive jump threading
568  // because now the condition in this block can be threaded through
569  // predecessors of our predecessor block.
570  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
571    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
572        SinglePred != BB) {
573      // If SinglePred was a loop header, BB becomes one.
574      if (LoopHeaders.erase(SinglePred))
575        LoopHeaders.insert(BB);
576
577      // Remember if SinglePred was the entry block of the function.  If so, we
578      // will need to move BB back to the entry position.
579      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
580      LVI->eraseBlock(SinglePred);
581      MergeBasicBlockIntoOnlyPred(BB);
582
583      if (isEntry && BB != &BB->getParent()->getEntryBlock())
584        BB->moveBefore(&BB->getParent()->getEntryBlock());
585      return true;
586    }
587  }
588
589  // Look to see if the terminator is a branch of switch, if not we can't thread
590  // it.
591  Value *Condition;
592  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
593    // Can't thread an unconditional jump.
594    if (BI->isUnconditional()) return false;
595    Condition = BI->getCondition();
596  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
597    Condition = SI->getCondition();
598  else
599    return false; // Must be an invoke.
600
601  // If the terminator of this block is branching on a constant, simplify the
602  // terminator to an unconditional branch.  This can occur due to threading in
603  // other blocks.
604  if (isa<ConstantInt>(Condition)) {
605    DEBUG(dbgs() << "  In block '" << BB->getName()
606          << "' folding terminator: " << *BB->getTerminator() << '\n');
607    ++NumFolds;
608    ConstantFoldTerminator(BB);
609    return true;
610  }
611
612  // If the terminator is branching on an undef, we can pick any of the
613  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
614  if (isa<UndefValue>(Condition)) {
615    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
616
617    // Fold the branch/switch.
618    TerminatorInst *BBTerm = BB->getTerminator();
619    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
620      if (i == BestSucc) continue;
621      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
622    }
623
624    DEBUG(dbgs() << "  In block '" << BB->getName()
625          << "' folding undef terminator: " << *BBTerm << '\n');
626    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
627    BBTerm->eraseFromParent();
628    return true;
629  }
630
631  Instruction *CondInst = dyn_cast<Instruction>(Condition);
632
633  // All the rest of our checks depend on the condition being an instruction.
634  if (CondInst == 0) {
635    // FIXME: Unify this with code below.
636    if (ProcessThreadableEdges(Condition, BB))
637      return true;
638    return false;
639  }
640
641
642  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
643    // For a comparison where the LHS is outside this block, it's possible
644    // that we've branched on it before.  Used LVI to see if we can simplify
645    // the branch based on that.
646    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
647    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
648    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
649    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
650        (!isa<Instruction>(CondCmp->getOperand(0)) ||
651         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
652      // For predecessor edge, determine if the comparison is true or false
653      // on that edge.  If they're all true or all false, we can simplify the
654      // branch.
655      // FIXME: We could handle mixed true/false by duplicating code.
656      LazyValueInfo::Tristate Baseline =
657        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
658                                CondConst, *PI, BB);
659      if (Baseline != LazyValueInfo::Unknown) {
660        // Check that all remaining incoming values match the first one.
661        while (++PI != PE) {
662          LazyValueInfo::Tristate Ret =
663            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
664                                    CondCmp->getOperand(0), CondConst, *PI, BB);
665          if (Ret != Baseline) break;
666        }
667
668        // If we terminated early, then one of the values didn't match.
669        if (PI == PE) {
670          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
671          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
672          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
673          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
674          CondBr->eraseFromParent();
675          return true;
676        }
677      }
678    }
679  }
680
681  // Check for some cases that are worth simplifying.  Right now we want to look
682  // for loads that are used by a switch or by the condition for the branch.  If
683  // we see one, check to see if it's partially redundant.  If so, insert a PHI
684  // which can then be used to thread the values.
685  //
686  Value *SimplifyValue = CondInst;
687  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
688    if (isa<Constant>(CondCmp->getOperand(1)))
689      SimplifyValue = CondCmp->getOperand(0);
690
691  // TODO: There are other places where load PRE would be profitable, such as
692  // more complex comparisons.
693  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
694    if (SimplifyPartiallyRedundantLoad(LI))
695      return true;
696
697
698  // Handle a variety of cases where we are branching on something derived from
699  // a PHI node in the current block.  If we can prove that any predecessors
700  // compute a predictable value based on a PHI node, thread those predecessors.
701  //
702  if (ProcessThreadableEdges(CondInst, BB))
703    return true;
704
705  // If this is an otherwise-unfoldable branch on a phi node in the current
706  // block, see if we can simplify.
707  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
708    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
709      return ProcessBranchOnPHI(PN);
710
711
712  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
713  if (CondInst->getOpcode() == Instruction::Xor &&
714      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
715    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
716
717
718  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
719  // "(X == 4)", thread through this block.
720
721  return false;
722}
723
724/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
725/// block that jump on exactly the same condition.  This means that we almost
726/// always know the direction of the edge in the DESTBB:
727///  PREDBB:
728///     br COND, DESTBB, BBY
729///  DESTBB:
730///     br COND, BBZ, BBW
731///
732/// If DESTBB has multiple predecessors, we can't just constant fold the branch
733/// in DESTBB, we have to thread over it.
734bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
735                                                 BasicBlock *BB) {
736  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
737
738  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
739  // fold the branch to an unconditional one, which allows other recursive
740  // simplifications.
741  bool BranchDir;
742  if (PredBI->getSuccessor(1) != BB)
743    BranchDir = true;
744  else if (PredBI->getSuccessor(0) != BB)
745    BranchDir = false;
746  else {
747    DEBUG(dbgs() << "  In block '" << PredBB->getName()
748          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
749    ++NumFolds;
750    ConstantFoldTerminator(PredBB);
751    return true;
752  }
753
754  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
755
756  // If the dest block has one predecessor, just fix the branch condition to a
757  // constant and fold it.
758  if (BB->getSinglePredecessor()) {
759    DEBUG(dbgs() << "  In block '" << BB->getName()
760          << "' folding condition to '" << BranchDir << "': "
761          << *BB->getTerminator() << '\n');
762    ++NumFolds;
763    Value *OldCond = DestBI->getCondition();
764    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
765                                          BranchDir));
766    // Delete dead instructions before we fold the branch.  Folding the branch
767    // can eliminate edges from the CFG which can end up deleting OldCond.
768    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
769    ConstantFoldTerminator(BB);
770    return true;
771  }
772
773
774  // Next, figure out which successor we are threading to.
775  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
776
777  SmallVector<BasicBlock*, 2> Preds;
778  Preds.push_back(PredBB);
779
780  // Ok, try to thread it!
781  return ThreadEdge(BB, Preds, SuccBB);
782}
783
784/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
785/// block that switch on exactly the same condition.  This means that we almost
786/// always know the direction of the edge in the DESTBB:
787///  PREDBB:
788///     switch COND [... DESTBB, BBY ... ]
789///  DESTBB:
790///     switch COND [... BBZ, BBW ]
791///
792/// Optimizing switches like this is very important, because simplifycfg builds
793/// switches out of repeated 'if' conditions.
794bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
795                                                 BasicBlock *DestBB) {
796  // Can't thread edge to self.
797  if (PredBB == DestBB)
798    return false;
799
800  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
801  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
802
803  // There are a variety of optimizations that we can potentially do on these
804  // blocks: we order them from most to least preferable.
805
806  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
807  // directly to their destination.  This does not introduce *any* code size
808  // growth.  Skip debug info first.
809  BasicBlock::iterator BBI = DestBB->begin();
810  while (isa<DbgInfoIntrinsic>(BBI))
811    BBI++;
812
813  // FIXME: Thread if it just contains a PHI.
814  if (isa<SwitchInst>(BBI)) {
815    bool MadeChange = false;
816    // Ignore the default edge for now.
817    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
818      ConstantInt *DestVal = DestSI->getCaseValue(i);
819      BasicBlock *DestSucc = DestSI->getSuccessor(i);
820
821      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
822      // PredSI has an explicit case for it.  If so, forward.  If it is covered
823      // by the default case, we can't update PredSI.
824      unsigned PredCase = PredSI->findCaseValue(DestVal);
825      if (PredCase == 0) continue;
826
827      // If PredSI doesn't go to DestBB on this value, then it won't reach the
828      // case on this condition.
829      if (PredSI->getSuccessor(PredCase) != DestBB &&
830          DestSI->getSuccessor(i) != DestBB)
831        continue;
832
833      // Do not forward this if it already goes to this destination, this would
834      // be an infinite loop.
835      if (PredSI->getSuccessor(PredCase) == DestSucc)
836        continue;
837
838      // Otherwise, we're safe to make the change.  Make sure that the edge from
839      // DestSI to DestSucc is not critical and has no PHI nodes.
840      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
841      DEBUG(dbgs() << "THROUGH: " << *DestSI);
842
843      // If the destination has PHI nodes, just split the edge for updating
844      // simplicity.
845      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
846        SplitCriticalEdge(DestSI, i, this);
847        DestSucc = DestSI->getSuccessor(i);
848      }
849      FoldSingleEntryPHINodes(DestSucc);
850      PredSI->setSuccessor(PredCase, DestSucc);
851      MadeChange = true;
852    }
853
854    if (MadeChange)
855      return true;
856  }
857
858  return false;
859}
860
861
862/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
863/// load instruction, eliminate it by replacing it with a PHI node.  This is an
864/// important optimization that encourages jump threading, and needs to be run
865/// interlaced with other jump threading tasks.
866bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
867  // Don't hack volatile loads.
868  if (LI->isVolatile()) return false;
869
870  // If the load is defined in a block with exactly one predecessor, it can't be
871  // partially redundant.
872  BasicBlock *LoadBB = LI->getParent();
873  if (LoadBB->getSinglePredecessor())
874    return false;
875
876  Value *LoadedPtr = LI->getOperand(0);
877
878  // If the loaded operand is defined in the LoadBB, it can't be available.
879  // TODO: Could do simple PHI translation, that would be fun :)
880  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
881    if (PtrOp->getParent() == LoadBB)
882      return false;
883
884  // Scan a few instructions up from the load, to see if it is obviously live at
885  // the entry to its block.
886  BasicBlock::iterator BBIt = LI;
887
888  if (Value *AvailableVal =
889        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
890    // If the value if the load is locally available within the block, just use
891    // it.  This frequently occurs for reg2mem'd allocas.
892    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
893
894    // If the returned value is the load itself, replace with an undef. This can
895    // only happen in dead loops.
896    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
897    LI->replaceAllUsesWith(AvailableVal);
898    LI->eraseFromParent();
899    return true;
900  }
901
902  // Otherwise, if we scanned the whole block and got to the top of the block,
903  // we know the block is locally transparent to the load.  If not, something
904  // might clobber its value.
905  if (BBIt != LoadBB->begin())
906    return false;
907
908
909  SmallPtrSet<BasicBlock*, 8> PredsScanned;
910  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
911  AvailablePredsTy AvailablePreds;
912  BasicBlock *OneUnavailablePred = 0;
913
914  // If we got here, the loaded value is transparent through to the start of the
915  // block.  Check to see if it is available in any of the predecessor blocks.
916  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
917       PI != PE; ++PI) {
918    BasicBlock *PredBB = *PI;
919
920    // If we already scanned this predecessor, skip it.
921    if (!PredsScanned.insert(PredBB))
922      continue;
923
924    // Scan the predecessor to see if the value is available in the pred.
925    BBIt = PredBB->end();
926    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
927    if (!PredAvailable) {
928      OneUnavailablePred = PredBB;
929      continue;
930    }
931
932    // If so, this load is partially redundant.  Remember this info so that we
933    // can create a PHI node.
934    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
935  }
936
937  // If the loaded value isn't available in any predecessor, it isn't partially
938  // redundant.
939  if (AvailablePreds.empty()) return false;
940
941  // Okay, the loaded value is available in at least one (and maybe all!)
942  // predecessors.  If the value is unavailable in more than one unique
943  // predecessor, we want to insert a merge block for those common predecessors.
944  // This ensures that we only have to insert one reload, thus not increasing
945  // code size.
946  BasicBlock *UnavailablePred = 0;
947
948  // If there is exactly one predecessor where the value is unavailable, the
949  // already computed 'OneUnavailablePred' block is it.  If it ends in an
950  // unconditional branch, we know that it isn't a critical edge.
951  if (PredsScanned.size() == AvailablePreds.size()+1 &&
952      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
953    UnavailablePred = OneUnavailablePred;
954  } else if (PredsScanned.size() != AvailablePreds.size()) {
955    // Otherwise, we had multiple unavailable predecessors or we had a critical
956    // edge from the one.
957    SmallVector<BasicBlock*, 8> PredsToSplit;
958    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
959
960    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
961      AvailablePredSet.insert(AvailablePreds[i].first);
962
963    // Add all the unavailable predecessors to the PredsToSplit list.
964    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
965         PI != PE; ++PI) {
966      BasicBlock *P = *PI;
967      // If the predecessor is an indirect goto, we can't split the edge.
968      if (isa<IndirectBrInst>(P->getTerminator()))
969        return false;
970
971      if (!AvailablePredSet.count(P))
972        PredsToSplit.push_back(P);
973    }
974
975    // Split them out to their own block.
976    UnavailablePred =
977      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
978                             "thread-pre-split", this);
979  }
980
981  // If the value isn't available in all predecessors, then there will be
982  // exactly one where it isn't available.  Insert a load on that edge and add
983  // it to the AvailablePreds list.
984  if (UnavailablePred) {
985    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
986           "Can't handle critical edge here!");
987    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
988                                 LI->getAlignment(),
989                                 UnavailablePred->getTerminator());
990    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
991  }
992
993  // Now we know that each predecessor of this block has a value in
994  // AvailablePreds, sort them for efficient access as we're walking the preds.
995  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
996
997  // Create a PHI node at the start of the block for the PRE'd load value.
998  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
999  PN->takeName(LI);
1000
1001  // Insert new entries into the PHI for each predecessor.  A single block may
1002  // have multiple entries here.
1003  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
1004       ++PI) {
1005    BasicBlock *P = *PI;
1006    AvailablePredsTy::iterator I =
1007      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1008                       std::make_pair(P, (Value*)0));
1009
1010    assert(I != AvailablePreds.end() && I->first == P &&
1011           "Didn't find entry for predecessor!");
1012
1013    PN->addIncoming(I->second, I->first);
1014  }
1015
1016  //cerr << "PRE: " << *LI << *PN << "\n";
1017
1018  LI->replaceAllUsesWith(PN);
1019  LI->eraseFromParent();
1020
1021  return true;
1022}
1023
1024/// FindMostPopularDest - The specified list contains multiple possible
1025/// threadable destinations.  Pick the one that occurs the most frequently in
1026/// the list.
1027static BasicBlock *
1028FindMostPopularDest(BasicBlock *BB,
1029                    const SmallVectorImpl<std::pair<BasicBlock*,
1030                                  BasicBlock*> > &PredToDestList) {
1031  assert(!PredToDestList.empty());
1032
1033  // Determine popularity.  If there are multiple possible destinations, we
1034  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1035  // blocks with known and real destinations to threading undef.  We'll handle
1036  // them later if interesting.
1037  DenseMap<BasicBlock*, unsigned> DestPopularity;
1038  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1039    if (PredToDestList[i].second)
1040      DestPopularity[PredToDestList[i].second]++;
1041
1042  // Find the most popular dest.
1043  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1044  BasicBlock *MostPopularDest = DPI->first;
1045  unsigned Popularity = DPI->second;
1046  SmallVector<BasicBlock*, 4> SamePopularity;
1047
1048  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1049    // If the popularity of this entry isn't higher than the popularity we've
1050    // seen so far, ignore it.
1051    if (DPI->second < Popularity)
1052      ; // ignore.
1053    else if (DPI->second == Popularity) {
1054      // If it is the same as what we've seen so far, keep track of it.
1055      SamePopularity.push_back(DPI->first);
1056    } else {
1057      // If it is more popular, remember it.
1058      SamePopularity.clear();
1059      MostPopularDest = DPI->first;
1060      Popularity = DPI->second;
1061    }
1062  }
1063
1064  // Okay, now we know the most popular destination.  If there is more than
1065  // destination, we need to determine one.  This is arbitrary, but we need
1066  // to make a deterministic decision.  Pick the first one that appears in the
1067  // successor list.
1068  if (!SamePopularity.empty()) {
1069    SamePopularity.push_back(MostPopularDest);
1070    TerminatorInst *TI = BB->getTerminator();
1071    for (unsigned i = 0; ; ++i) {
1072      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1073
1074      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1075                    TI->getSuccessor(i)) == SamePopularity.end())
1076        continue;
1077
1078      MostPopularDest = TI->getSuccessor(i);
1079      break;
1080    }
1081  }
1082
1083  // Okay, we have finally picked the most popular destination.
1084  return MostPopularDest;
1085}
1086
1087bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1088  // If threading this would thread across a loop header, don't even try to
1089  // thread the edge.
1090  if (LoopHeaders.count(BB))
1091    return false;
1092
1093  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1094  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1095    return false;
1096
1097  assert(!PredValues.empty() &&
1098         "ComputeValueKnownInPredecessors returned true with no values");
1099
1100  DEBUG(dbgs() << "IN BB: " << *BB;
1101        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1102          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1103          if (PredValues[i].first)
1104            dbgs() << *PredValues[i].first;
1105          else
1106            dbgs() << "UNDEF";
1107          dbgs() << " for pred '" << PredValues[i].second->getName()
1108          << "'.\n";
1109        });
1110
1111  // Decide what we want to thread through.  Convert our list of known values to
1112  // a list of known destinations for each pred.  This also discards duplicate
1113  // predecessors and keeps track of the undefined inputs (which are represented
1114  // as a null dest in the PredToDestList).
1115  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1116  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1117
1118  BasicBlock *OnlyDest = 0;
1119  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1120
1121  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1122    BasicBlock *Pred = PredValues[i].second;
1123    if (!SeenPreds.insert(Pred))
1124      continue;  // Duplicate predecessor entry.
1125
1126    // If the predecessor ends with an indirect goto, we can't change its
1127    // destination.
1128    if (isa<IndirectBrInst>(Pred->getTerminator()))
1129      continue;
1130
1131    ConstantInt *Val = PredValues[i].first;
1132
1133    BasicBlock *DestBB;
1134    if (Val == 0)      // Undef.
1135      DestBB = 0;
1136    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1137      DestBB = BI->getSuccessor(Val->isZero());
1138    else {
1139      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1140      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1141    }
1142
1143    // If we have exactly one destination, remember it for efficiency below.
1144    if (i == 0)
1145      OnlyDest = DestBB;
1146    else if (OnlyDest != DestBB)
1147      OnlyDest = MultipleDestSentinel;
1148
1149    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1150  }
1151
1152  // If all edges were unthreadable, we fail.
1153  if (PredToDestList.empty())
1154    return false;
1155
1156  // Determine which is the most common successor.  If we have many inputs and
1157  // this block is a switch, we want to start by threading the batch that goes
1158  // to the most popular destination first.  If we only know about one
1159  // threadable destination (the common case) we can avoid this.
1160  BasicBlock *MostPopularDest = OnlyDest;
1161
1162  if (MostPopularDest == MultipleDestSentinel)
1163    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1164
1165  // Now that we know what the most popular destination is, factor all
1166  // predecessors that will jump to it into a single predecessor.
1167  SmallVector<BasicBlock*, 16> PredsToFactor;
1168  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1169    if (PredToDestList[i].second == MostPopularDest) {
1170      BasicBlock *Pred = PredToDestList[i].first;
1171
1172      // This predecessor may be a switch or something else that has multiple
1173      // edges to the block.  Factor each of these edges by listing them
1174      // according to # occurrences in PredsToFactor.
1175      TerminatorInst *PredTI = Pred->getTerminator();
1176      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1177        if (PredTI->getSuccessor(i) == BB)
1178          PredsToFactor.push_back(Pred);
1179    }
1180
1181  // If the threadable edges are branching on an undefined value, we get to pick
1182  // the destination that these predecessors should get to.
1183  if (MostPopularDest == 0)
1184    MostPopularDest = BB->getTerminator()->
1185                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1186
1187  // Ok, try to thread it!
1188  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1189}
1190
1191/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1192/// a PHI node in the current block.  See if there are any simplifications we
1193/// can do based on inputs to the phi node.
1194///
1195bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1196  BasicBlock *BB = PN->getParent();
1197
1198  // TODO: We could make use of this to do it once for blocks with common PHI
1199  // values.
1200  SmallVector<BasicBlock*, 1> PredBBs;
1201  PredBBs.resize(1);
1202
1203  // If any of the predecessor blocks end in an unconditional branch, we can
1204  // *duplicate* the conditional branch into that block in order to further
1205  // encourage jump threading and to eliminate cases where we have branch on a
1206  // phi of an icmp (branch on icmp is much better).
1207  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1208    BasicBlock *PredBB = PN->getIncomingBlock(i);
1209    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1210      if (PredBr->isUnconditional()) {
1211        PredBBs[0] = PredBB;
1212        // Try to duplicate BB into PredBB.
1213        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1214          return true;
1215      }
1216  }
1217
1218  return false;
1219}
1220
1221/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1222/// a xor instruction in the current block.  See if there are any
1223/// simplifications we can do based on inputs to the xor.
1224///
1225bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1226  BasicBlock *BB = BO->getParent();
1227
1228  // If either the LHS or RHS of the xor is a constant, don't do this
1229  // optimization.
1230  if (isa<ConstantInt>(BO->getOperand(0)) ||
1231      isa<ConstantInt>(BO->getOperand(1)))
1232    return false;
1233
1234  // If the first instruction in BB isn't a phi, we won't be able to infer
1235  // anything special about any particular predecessor.
1236  if (!isa<PHINode>(BB->front()))
1237    return false;
1238
1239  // If we have a xor as the branch input to this block, and we know that the
1240  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1241  // the condition into the predecessor and fix that value to true, saving some
1242  // logical ops on that path and encouraging other paths to simplify.
1243  //
1244  // This copies something like this:
1245  //
1246  //  BB:
1247  //    %X = phi i1 [1],  [%X']
1248  //    %Y = icmp eq i32 %A, %B
1249  //    %Z = xor i1 %X, %Y
1250  //    br i1 %Z, ...
1251  //
1252  // Into:
1253  //  BB':
1254  //    %Y = icmp ne i32 %A, %B
1255  //    br i1 %Z, ...
1256
1257  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1258  bool isLHS = true;
1259  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1260    assert(XorOpValues.empty());
1261    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1262      return false;
1263    isLHS = false;
1264  }
1265
1266  assert(!XorOpValues.empty() &&
1267         "ComputeValueKnownInPredecessors returned true with no values");
1268
1269  // Scan the information to see which is most popular: true or false.  The
1270  // predecessors can be of the set true, false, or undef.
1271  unsigned NumTrue = 0, NumFalse = 0;
1272  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1273    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1274    if (XorOpValues[i].first->isZero())
1275      ++NumFalse;
1276    else
1277      ++NumTrue;
1278  }
1279
1280  // Determine which value to split on, true, false, or undef if neither.
1281  ConstantInt *SplitVal = 0;
1282  if (NumTrue > NumFalse)
1283    SplitVal = ConstantInt::getTrue(BB->getContext());
1284  else if (NumTrue != 0 || NumFalse != 0)
1285    SplitVal = ConstantInt::getFalse(BB->getContext());
1286
1287  // Collect all of the blocks that this can be folded into so that we can
1288  // factor this once and clone it once.
1289  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1290  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1291    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1292
1293    BlocksToFoldInto.push_back(XorOpValues[i].second);
1294  }
1295
1296  // If we inferred a value for all of the predecessors, then duplication won't
1297  // help us.  However, we can just replace the LHS or RHS with the constant.
1298  if (BlocksToFoldInto.size() ==
1299      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1300    if (SplitVal == 0) {
1301      // If all preds provide undef, just nuke the xor, because it is undef too.
1302      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1303      BO->eraseFromParent();
1304    } else if (SplitVal->isZero()) {
1305      // If all preds provide 0, replace the xor with the other input.
1306      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1307      BO->eraseFromParent();
1308    } else {
1309      // If all preds provide 1, set the computed value to 1.
1310      BO->setOperand(!isLHS, SplitVal);
1311    }
1312
1313    return true;
1314  }
1315
1316  // Try to duplicate BB into PredBB.
1317  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1318}
1319
1320
1321/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1322/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1323/// NewPred using the entries from OldPred (suitably mapped).
1324static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1325                                            BasicBlock *OldPred,
1326                                            BasicBlock *NewPred,
1327                                     DenseMap<Instruction*, Value*> &ValueMap) {
1328  for (BasicBlock::iterator PNI = PHIBB->begin();
1329       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1330    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1331    // DestBlock.
1332    Value *IV = PN->getIncomingValueForBlock(OldPred);
1333
1334    // Remap the value if necessary.
1335    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1336      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1337      if (I != ValueMap.end())
1338        IV = I->second;
1339    }
1340
1341    PN->addIncoming(IV, NewPred);
1342  }
1343}
1344
1345/// ThreadEdge - We have decided that it is safe and profitable to factor the
1346/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1347/// across BB.  Transform the IR to reflect this change.
1348bool JumpThreading::ThreadEdge(BasicBlock *BB,
1349                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1350                               BasicBlock *SuccBB) {
1351  // If threading to the same block as we come from, we would infinite loop.
1352  if (SuccBB == BB) {
1353    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1354          << "' - would thread to self!\n");
1355    return false;
1356  }
1357
1358  // If threading this would thread across a loop header, don't thread the edge.
1359  // See the comments above FindLoopHeaders for justifications and caveats.
1360  if (LoopHeaders.count(BB)) {
1361    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1362          << "' to dest BB '" << SuccBB->getName()
1363          << "' - it might create an irreducible loop!\n");
1364    return false;
1365  }
1366
1367  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1368  if (JumpThreadCost > Threshold) {
1369    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1370          << "' - Cost is too high: " << JumpThreadCost << "\n");
1371    return false;
1372  }
1373
1374  // And finally, do it!  Start by factoring the predecessors is needed.
1375  BasicBlock *PredBB;
1376  if (PredBBs.size() == 1)
1377    PredBB = PredBBs[0];
1378  else {
1379    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1380          << " common predecessors.\n");
1381    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1382                                    ".thr_comm", this);
1383  }
1384
1385  // And finally, do it!
1386  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1387        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1388        << ", across block:\n    "
1389        << *BB << "\n");
1390
1391  LVI->threadEdge(PredBB, BB, SuccBB);
1392
1393  // We are going to have to map operands from the original BB block to the new
1394  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1395  // account for entry from PredBB.
1396  DenseMap<Instruction*, Value*> ValueMapping;
1397
1398  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1399                                         BB->getName()+".thread",
1400                                         BB->getParent(), BB);
1401  NewBB->moveAfter(PredBB);
1402
1403  BasicBlock::iterator BI = BB->begin();
1404  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1405    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1406
1407  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1408  // mapping and using it to remap operands in the cloned instructions.
1409  for (; !isa<TerminatorInst>(BI); ++BI) {
1410    Instruction *New = BI->clone();
1411    New->setName(BI->getName());
1412    NewBB->getInstList().push_back(New);
1413    ValueMapping[BI] = New;
1414
1415    // Remap operands to patch up intra-block references.
1416    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1417      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1418        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1419        if (I != ValueMapping.end())
1420          New->setOperand(i, I->second);
1421      }
1422  }
1423
1424  // We didn't copy the terminator from BB over to NewBB, because there is now
1425  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1426  BranchInst::Create(SuccBB, NewBB);
1427
1428  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1429  // PHI nodes for NewBB now.
1430  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1431
1432  // If there were values defined in BB that are used outside the block, then we
1433  // now have to update all uses of the value to use either the original value,
1434  // the cloned value, or some PHI derived value.  This can require arbitrary
1435  // PHI insertion, of which we are prepared to do, clean these up now.
1436  SSAUpdater SSAUpdate;
1437  SmallVector<Use*, 16> UsesToRename;
1438  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1439    // Scan all uses of this instruction to see if it is used outside of its
1440    // block, and if so, record them in UsesToRename.
1441    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1442         ++UI) {
1443      Instruction *User = cast<Instruction>(*UI);
1444      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1445        if (UserPN->getIncomingBlock(UI) == BB)
1446          continue;
1447      } else if (User->getParent() == BB)
1448        continue;
1449
1450      UsesToRename.push_back(&UI.getUse());
1451    }
1452
1453    // If there are no uses outside the block, we're done with this instruction.
1454    if (UsesToRename.empty())
1455      continue;
1456
1457    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1458
1459    // We found a use of I outside of BB.  Rename all uses of I that are outside
1460    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1461    // with the two values we know.
1462    SSAUpdate.Initialize(I->getType(), I->getName());
1463    SSAUpdate.AddAvailableValue(BB, I);
1464    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1465
1466    while (!UsesToRename.empty())
1467      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1468    DEBUG(dbgs() << "\n");
1469  }
1470
1471
1472  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1473  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1474  // us to simplify any PHI nodes in BB.
1475  TerminatorInst *PredTerm = PredBB->getTerminator();
1476  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1477    if (PredTerm->getSuccessor(i) == BB) {
1478      BB->removePredecessor(PredBB, true);
1479      PredTerm->setSuccessor(i, NewBB);
1480    }
1481
1482  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1483  // over the new instructions and zap any that are constants or dead.  This
1484  // frequently happens because of phi translation.
1485  SimplifyInstructionsInBlock(NewBB, TD);
1486
1487  // Threaded an edge!
1488  ++NumThreads;
1489  return true;
1490}
1491
1492/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1493/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1494/// If we can duplicate the contents of BB up into PredBB do so now, this
1495/// improves the odds that the branch will be on an analyzable instruction like
1496/// a compare.
1497bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1498                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1499  assert(!PredBBs.empty() && "Can't handle an empty set");
1500
1501  // If BB is a loop header, then duplicating this block outside the loop would
1502  // cause us to transform this into an irreducible loop, don't do this.
1503  // See the comments above FindLoopHeaders for justifications and caveats.
1504  if (LoopHeaders.count(BB)) {
1505    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1506          << "' into predecessor block '" << PredBBs[0]->getName()
1507          << "' - it might create an irreducible loop!\n");
1508    return false;
1509  }
1510
1511  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1512  if (DuplicationCost > Threshold) {
1513    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1514          << "' - Cost is too high: " << DuplicationCost << "\n");
1515    return false;
1516  }
1517
1518  // And finally, do it!  Start by factoring the predecessors is needed.
1519  BasicBlock *PredBB;
1520  if (PredBBs.size() == 1)
1521    PredBB = PredBBs[0];
1522  else {
1523    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1524          << " common predecessors.\n");
1525    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1526                                    ".thr_comm", this);
1527  }
1528
1529  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1530  // of PredBB.
1531  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1532        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1533        << DuplicationCost << " block is:" << *BB << "\n");
1534
1535  // Unless PredBB ends with an unconditional branch, split the edge so that we
1536  // can just clone the bits from BB into the end of the new PredBB.
1537  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1538
1539  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1540    PredBB = SplitEdge(PredBB, BB, this);
1541    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1542  }
1543
1544  // We are going to have to map operands from the original BB block into the
1545  // PredBB block.  Evaluate PHI nodes in BB.
1546  DenseMap<Instruction*, Value*> ValueMapping;
1547
1548  BasicBlock::iterator BI = BB->begin();
1549  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1550    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1551
1552  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1553  // mapping and using it to remap operands in the cloned instructions.
1554  for (; BI != BB->end(); ++BI) {
1555    Instruction *New = BI->clone();
1556
1557    // Remap operands to patch up intra-block references.
1558    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1559      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1560        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1561        if (I != ValueMapping.end())
1562          New->setOperand(i, I->second);
1563      }
1564
1565    // If this instruction can be simplified after the operands are updated,
1566    // just use the simplified value instead.  This frequently happens due to
1567    // phi translation.
1568    if (Value *IV = SimplifyInstruction(New, TD)) {
1569      delete New;
1570      ValueMapping[BI] = IV;
1571    } else {
1572      // Otherwise, insert the new instruction into the block.
1573      New->setName(BI->getName());
1574      PredBB->getInstList().insert(OldPredBranch, New);
1575      ValueMapping[BI] = New;
1576    }
1577  }
1578
1579  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1580  // add entries to the PHI nodes for branch from PredBB now.
1581  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1582  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1583                                  ValueMapping);
1584  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1585                                  ValueMapping);
1586
1587  // If there were values defined in BB that are used outside the block, then we
1588  // now have to update all uses of the value to use either the original value,
1589  // the cloned value, or some PHI derived value.  This can require arbitrary
1590  // PHI insertion, of which we are prepared to do, clean these up now.
1591  SSAUpdater SSAUpdate;
1592  SmallVector<Use*, 16> UsesToRename;
1593  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1594    // Scan all uses of this instruction to see if it is used outside of its
1595    // block, and if so, record them in UsesToRename.
1596    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1597         ++UI) {
1598      Instruction *User = cast<Instruction>(*UI);
1599      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1600        if (UserPN->getIncomingBlock(UI) == BB)
1601          continue;
1602      } else if (User->getParent() == BB)
1603        continue;
1604
1605      UsesToRename.push_back(&UI.getUse());
1606    }
1607
1608    // If there are no uses outside the block, we're done with this instruction.
1609    if (UsesToRename.empty())
1610      continue;
1611
1612    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1613
1614    // We found a use of I outside of BB.  Rename all uses of I that are outside
1615    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1616    // with the two values we know.
1617    SSAUpdate.Initialize(I->getType(), I->getName());
1618    SSAUpdate.AddAvailableValue(BB, I);
1619    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1620
1621    while (!UsesToRename.empty())
1622      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1623    DEBUG(dbgs() << "\n");
1624  }
1625
1626  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1627  // that we nuked.
1628  BB->removePredecessor(PredBB, true);
1629
1630  // Remove the unconditional branch at the end of the PredBB block.
1631  OldPredBranch->eraseFromParent();
1632
1633  ++NumDupes;
1634  return true;
1635}
1636
1637
1638