JumpThreading.cpp revision 2ab36d350293c77fc8941ce1023e4899df7e3a82
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36using namespace llvm;
37
38STATISTIC(NumThreads, "Number of jumps threaded");
39STATISTIC(NumFolds,   "Number of terminators folded");
40STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
41
42static cl::opt<unsigned>
43Threshold("jump-threading-threshold",
44          cl::desc("Max block size to duplicate for jump threading"),
45          cl::init(6), cl::Hidden);
46
47namespace {
48  /// This pass performs 'jump threading', which looks at blocks that have
49  /// multiple predecessors and multiple successors.  If one or more of the
50  /// predecessors of the block can be proven to always jump to one of the
51  /// successors, we forward the edge from the predecessor to the successor by
52  /// duplicating the contents of this block.
53  ///
54  /// An example of when this can occur is code like this:
55  ///
56  ///   if () { ...
57  ///     X = 4;
58  ///   }
59  ///   if (X < 3) {
60  ///
61  /// In this case, the unconditional branch at the end of the first if can be
62  /// revectored to the false side of the second if.
63  ///
64  class JumpThreading : public FunctionPass {
65    TargetData *TD;
66    LazyValueInfo *LVI;
67#ifdef NDEBUG
68    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
69#else
70    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
71#endif
72    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
73
74    // RAII helper for updating the recursion stack.
75    struct RecursionSetRemover {
76      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
77      std::pair<Value*, BasicBlock*> ThePair;
78
79      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
80                          std::pair<Value*, BasicBlock*> P)
81        : TheSet(S), ThePair(P) { }
82
83      ~RecursionSetRemover() {
84        TheSet.erase(ThePair);
85      }
86    };
87  public:
88    static char ID; // Pass identification
89    JumpThreading() : FunctionPass(ID) {}
90
91    bool runOnFunction(Function &F);
92
93    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
94      AU.addRequired<LazyValueInfo>();
95      AU.addPreserved<LazyValueInfo>();
96    }
97
98    void FindLoopHeaders(Function &F);
99    bool ProcessBlock(BasicBlock *BB);
100    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
101                    BasicBlock *SuccBB);
102    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
103                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
104
105    typedef SmallVectorImpl<std::pair<ConstantInt*,
106                                      BasicBlock*> > PredValueInfo;
107
108    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
109                                         PredValueInfo &Result);
110    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
111
112
113    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
114    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
115
116    bool ProcessBranchOnPHI(PHINode *PN);
117    bool ProcessBranchOnXOR(BinaryOperator *BO);
118
119    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
120  };
121}
122
123char JumpThreading::ID = 0;
124INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
125                "Jump Threading", false, false)
126INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
127INITIALIZE_PASS_END(JumpThreading, "jump-threading",
128                "Jump Threading", false, false)
129
130// Public interface to the Jump Threading pass
131FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
132
133/// runOnFunction - Top level algorithm.
134///
135bool JumpThreading::runOnFunction(Function &F) {
136  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
137  TD = getAnalysisIfAvailable<TargetData>();
138  LVI = &getAnalysis<LazyValueInfo>();
139
140  FindLoopHeaders(F);
141
142  bool Changed, EverChanged = false;
143  do {
144    Changed = false;
145    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
146      BasicBlock *BB = I;
147      // Thread all of the branches we can over this block.
148      while (ProcessBlock(BB))
149        Changed = true;
150
151      ++I;
152
153      // If the block is trivially dead, zap it.  This eliminates the successor
154      // edges which simplifies the CFG.
155      if (pred_begin(BB) == pred_end(BB) &&
156          BB != &BB->getParent()->getEntryBlock()) {
157        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
158              << "' with terminator: " << *BB->getTerminator() << '\n');
159        LoopHeaders.erase(BB);
160        LVI->eraseBlock(BB);
161        DeleteDeadBlock(BB);
162        Changed = true;
163      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
164        // Can't thread an unconditional jump, but if the block is "almost
165        // empty", we can replace uses of it with uses of the successor and make
166        // this dead.
167        if (BI->isUnconditional() &&
168            BB != &BB->getParent()->getEntryBlock()) {
169          BasicBlock::iterator BBI = BB->getFirstNonPHI();
170          // Ignore dbg intrinsics.
171          while (isa<DbgInfoIntrinsic>(BBI))
172            ++BBI;
173          // If the terminator is the only non-phi instruction, try to nuke it.
174          if (BBI->isTerminator()) {
175            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
176            // block, we have to make sure it isn't in the LoopHeaders set.  We
177            // reinsert afterward if needed.
178            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
179            BasicBlock *Succ = BI->getSuccessor(0);
180
181            // FIXME: It is always conservatively correct to drop the info
182            // for a block even if it doesn't get erased.  This isn't totally
183            // awesome, but it allows us to use AssertingVH to prevent nasty
184            // dangling pointer issues within LazyValueInfo.
185            LVI->eraseBlock(BB);
186            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
187              Changed = true;
188              // If we deleted BB and BB was the header of a loop, then the
189              // successor is now the header of the loop.
190              BB = Succ;
191            }
192
193            if (ErasedFromLoopHeaders)
194              LoopHeaders.insert(BB);
195          }
196        }
197      }
198    }
199    EverChanged |= Changed;
200  } while (Changed);
201
202  LoopHeaders.clear();
203  return EverChanged;
204}
205
206/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
207/// thread across it.
208static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
209  /// Ignore PHI nodes, these will be flattened when duplication happens.
210  BasicBlock::const_iterator I = BB->getFirstNonPHI();
211
212  // FIXME: THREADING will delete values that are just used to compute the
213  // branch, so they shouldn't count against the duplication cost.
214
215
216  // Sum up the cost of each instruction until we get to the terminator.  Don't
217  // include the terminator because the copy won't include it.
218  unsigned Size = 0;
219  for (; !isa<TerminatorInst>(I); ++I) {
220    // Debugger intrinsics don't incur code size.
221    if (isa<DbgInfoIntrinsic>(I)) continue;
222
223    // If this is a pointer->pointer bitcast, it is free.
224    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
225      continue;
226
227    // All other instructions count for at least one unit.
228    ++Size;
229
230    // Calls are more expensive.  If they are non-intrinsic calls, we model them
231    // as having cost of 4.  If they are a non-vector intrinsic, we model them
232    // as having cost of 2 total, and if they are a vector intrinsic, we model
233    // them as having cost 1.
234    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
235      if (!isa<IntrinsicInst>(CI))
236        Size += 3;
237      else if (!CI->getType()->isVectorTy())
238        Size += 1;
239    }
240  }
241
242  // Threading through a switch statement is particularly profitable.  If this
243  // block ends in a switch, decrease its cost to make it more likely to happen.
244  if (isa<SwitchInst>(I))
245    Size = Size > 6 ? Size-6 : 0;
246
247  return Size;
248}
249
250/// FindLoopHeaders - We do not want jump threading to turn proper loop
251/// structures into irreducible loops.  Doing this breaks up the loop nesting
252/// hierarchy and pessimizes later transformations.  To prevent this from
253/// happening, we first have to find the loop headers.  Here we approximate this
254/// by finding targets of backedges in the CFG.
255///
256/// Note that there definitely are cases when we want to allow threading of
257/// edges across a loop header.  For example, threading a jump from outside the
258/// loop (the preheader) to an exit block of the loop is definitely profitable.
259/// It is also almost always profitable to thread backedges from within the loop
260/// to exit blocks, and is often profitable to thread backedges to other blocks
261/// within the loop (forming a nested loop).  This simple analysis is not rich
262/// enough to track all of these properties and keep it up-to-date as the CFG
263/// mutates, so we don't allow any of these transformations.
264///
265void JumpThreading::FindLoopHeaders(Function &F) {
266  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
267  FindFunctionBackedges(F, Edges);
268
269  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
270    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
271}
272
273// Helper method for ComputeValueKnownInPredecessors.  If Value is a
274// ConstantInt, push it.  If it's an undef, push 0.  Otherwise, do nothing.
275static void PushConstantIntOrUndef(SmallVectorImpl<std::pair<ConstantInt*,
276                                                        BasicBlock*> > &Result,
277                              Constant *Value, BasicBlock* BB){
278  if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Value))
279    Result.push_back(std::make_pair(FoldedCInt, BB));
280  else if (isa<UndefValue>(Value))
281    Result.push_back(std::make_pair((ConstantInt*)0, BB));
282}
283
284/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
285/// if we can infer that the value is a known ConstantInt in any of our
286/// predecessors.  If so, return the known list of value and pred BB in the
287/// result vector.  If a value is known to be undef, it is returned as null.
288///
289/// This returns true if there were any known values.
290///
291bool JumpThreading::
292ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
293  // This method walks up use-def chains recursively.  Because of this, we could
294  // get into an infinite loop going around loops in the use-def chain.  To
295  // prevent this, keep track of what (value, block) pairs we've already visited
296  // and terminate the search if we loop back to them
297  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
298    return false;
299
300  // An RAII help to remove this pair from the recursion set once the recursion
301  // stack pops back out again.
302  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
303
304  // If V is a constantint, then it is known in all predecessors.
305  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
306    ConstantInt *CI = dyn_cast<ConstantInt>(V);
307
308    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
309      Result.push_back(std::make_pair(CI, *PI));
310
311    return true;
312  }
313
314  // If V is a non-instruction value, or an instruction in a different block,
315  // then it can't be derived from a PHI.
316  Instruction *I = dyn_cast<Instruction>(V);
317  if (I == 0 || I->getParent() != BB) {
318
319    // Okay, if this is a live-in value, see if it has a known value at the end
320    // of any of our predecessors.
321    //
322    // FIXME: This should be an edge property, not a block end property.
323    /// TODO: Per PR2563, we could infer value range information about a
324    /// predecessor based on its terminator.
325    //
326    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
327    // "I" is a non-local compare-with-a-constant instruction.  This would be
328    // able to handle value inequalities better, for example if the compare is
329    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
330    // Perhaps getConstantOnEdge should be smart enough to do this?
331
332    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
333      BasicBlock *P = *PI;
334      // If the value is known by LazyValueInfo to be a constant in a
335      // predecessor, use that information to try to thread this block.
336      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
337      if (PredCst == 0 ||
338          (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
339        continue;
340
341      Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
342    }
343
344    return !Result.empty();
345  }
346
347  /// If I is a PHI node, then we know the incoming values for any constants.
348  if (PHINode *PN = dyn_cast<PHINode>(I)) {
349    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
350      Value *InVal = PN->getIncomingValue(i);
351      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
352        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
353        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
354      } else {
355        Constant *CI = LVI->getConstantOnEdge(InVal,
356                                              PN->getIncomingBlock(i), BB);
357        // LVI returns null is no value could be determined.
358        if (!CI) continue;
359        PushConstantIntOrUndef(Result, CI, PN->getIncomingBlock(i));
360      }
361    }
362
363    return !Result.empty();
364  }
365
366  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
367
368  // Handle some boolean conditions.
369  if (I->getType()->getPrimitiveSizeInBits() == 1) {
370    // X | true -> true
371    // X & false -> false
372    if (I->getOpcode() == Instruction::Or ||
373        I->getOpcode() == Instruction::And) {
374      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
375      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
376
377      if (LHSVals.empty() && RHSVals.empty())
378        return false;
379
380      ConstantInt *InterestingVal;
381      if (I->getOpcode() == Instruction::Or)
382        InterestingVal = ConstantInt::getTrue(I->getContext());
383      else
384        InterestingVal = ConstantInt::getFalse(I->getContext());
385
386      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
387
388      // Scan for the sentinel.  If we find an undef, force it to the
389      // interesting value: x|undef -> true and x&undef -> false.
390      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
391        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
392          Result.push_back(LHSVals[i]);
393          Result.back().first = InterestingVal;
394          LHSKnownBBs.insert(LHSVals[i].second);
395        }
396      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
397        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
398          // If we already inferred a value for this block on the LHS, don't
399          // re-add it.
400          if (!LHSKnownBBs.count(RHSVals[i].second)) {
401            Result.push_back(RHSVals[i]);
402            Result.back().first = InterestingVal;
403          }
404        }
405
406      return !Result.empty();
407    }
408
409    // Handle the NOT form of XOR.
410    if (I->getOpcode() == Instruction::Xor &&
411        isa<ConstantInt>(I->getOperand(1)) &&
412        cast<ConstantInt>(I->getOperand(1))->isOne()) {
413      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
414      if (Result.empty())
415        return false;
416
417      // Invert the known values.
418      for (unsigned i = 0, e = Result.size(); i != e; ++i)
419        if (Result[i].first)
420          Result[i].first =
421            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
422
423      return true;
424    }
425
426  // Try to simplify some other binary operator values.
427  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
428    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
429      SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
430      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
431
432      // Try to use constant folding to simplify the binary operator.
433      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
434        Constant *V = LHSVals[i].first;
435        if (V == 0) V = UndefValue::get(BO->getType());
436        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
437
438        PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
439      }
440    }
441
442    return !Result.empty();
443  }
444
445  // Handle compare with phi operand, where the PHI is defined in this block.
446  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
447    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
448    if (PN && PN->getParent() == BB) {
449      // We can do this simplification if any comparisons fold to true or false.
450      // See if any do.
451      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
452        BasicBlock *PredBB = PN->getIncomingBlock(i);
453        Value *LHS = PN->getIncomingValue(i);
454        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
455
456        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
457        if (Res == 0) {
458          if (!isa<Constant>(RHS))
459            continue;
460
461          LazyValueInfo::Tristate
462            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
463                                           cast<Constant>(RHS), PredBB, BB);
464          if (ResT == LazyValueInfo::Unknown)
465            continue;
466          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
467        }
468
469        if (Constant *ConstRes = dyn_cast<Constant>(Res))
470          PushConstantIntOrUndef(Result, ConstRes, PredBB);
471      }
472
473      return !Result.empty();
474    }
475
476
477    // If comparing a live-in value against a constant, see if we know the
478    // live-in value on any predecessors.
479    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
480      if (!isa<Instruction>(Cmp->getOperand(0)) ||
481          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
482        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
483
484        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
485          BasicBlock *P = *PI;
486          // If the value is known by LazyValueInfo to be a constant in a
487          // predecessor, use that information to try to thread this block.
488          LazyValueInfo::Tristate Res =
489            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
490                                    RHSCst, P, BB);
491          if (Res == LazyValueInfo::Unknown)
492            continue;
493
494          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
495          Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
496        }
497
498        return !Result.empty();
499      }
500
501      // Try to find a constant value for the LHS of a comparison,
502      // and evaluate it statically if we can.
503      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
504        SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
505        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
506
507        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
508          Constant *V = LHSVals[i].first;
509          if (V == 0) V = UndefValue::get(CmpConst->getType());
510          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
511                                                      V, CmpConst);
512          PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
513        }
514
515        return !Result.empty();
516      }
517    }
518  }
519
520  // If all else fails, see if LVI can figure out a constant value for us.
521  Constant *CI = LVI->getConstant(V, BB);
522  ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
523  if (CInt) {
524    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
525      Result.push_back(std::make_pair(CInt, *PI));
526  }
527
528  return !Result.empty();
529}
530
531
532
533/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
534/// in an undefined jump, decide which block is best to revector to.
535///
536/// Since we can pick an arbitrary destination, we pick the successor with the
537/// fewest predecessors.  This should reduce the in-degree of the others.
538///
539static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
540  TerminatorInst *BBTerm = BB->getTerminator();
541  unsigned MinSucc = 0;
542  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
543  // Compute the successor with the minimum number of predecessors.
544  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
545  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
546    TestBB = BBTerm->getSuccessor(i);
547    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
548    if (NumPreds < MinNumPreds)
549      MinSucc = i;
550  }
551
552  return MinSucc;
553}
554
555/// ProcessBlock - If there are any predecessors whose control can be threaded
556/// through to a successor, transform them now.
557bool JumpThreading::ProcessBlock(BasicBlock *BB) {
558  // If the block is trivially dead, just return and let the caller nuke it.
559  // This simplifies other transformations.
560  if (pred_begin(BB) == pred_end(BB) &&
561      BB != &BB->getParent()->getEntryBlock())
562    return false;
563
564  // If this block has a single predecessor, and if that pred has a single
565  // successor, merge the blocks.  This encourages recursive jump threading
566  // because now the condition in this block can be threaded through
567  // predecessors of our predecessor block.
568  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
569    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
570        SinglePred != BB) {
571      // If SinglePred was a loop header, BB becomes one.
572      if (LoopHeaders.erase(SinglePred))
573        LoopHeaders.insert(BB);
574
575      // Remember if SinglePred was the entry block of the function.  If so, we
576      // will need to move BB back to the entry position.
577      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
578      LVI->eraseBlock(SinglePred);
579      MergeBasicBlockIntoOnlyPred(BB);
580
581      if (isEntry && BB != &BB->getParent()->getEntryBlock())
582        BB->moveBefore(&BB->getParent()->getEntryBlock());
583      return true;
584    }
585  }
586
587  // Look to see if the terminator is a branch of switch, if not we can't thread
588  // it.
589  Value *Condition;
590  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
591    // Can't thread an unconditional jump.
592    if (BI->isUnconditional()) return false;
593    Condition = BI->getCondition();
594  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
595    Condition = SI->getCondition();
596  else
597    return false; // Must be an invoke.
598
599  // If the terminator of this block is branching on a constant, simplify the
600  // terminator to an unconditional branch.  This can occur due to threading in
601  // other blocks.
602  if (isa<ConstantInt>(Condition)) {
603    DEBUG(dbgs() << "  In block '" << BB->getName()
604          << "' folding terminator: " << *BB->getTerminator() << '\n');
605    ++NumFolds;
606    ConstantFoldTerminator(BB);
607    return true;
608  }
609
610  // If the terminator is branching on an undef, we can pick any of the
611  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
612  if (isa<UndefValue>(Condition)) {
613    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
614
615    // Fold the branch/switch.
616    TerminatorInst *BBTerm = BB->getTerminator();
617    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
618      if (i == BestSucc) continue;
619      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
620    }
621
622    DEBUG(dbgs() << "  In block '" << BB->getName()
623          << "' folding undef terminator: " << *BBTerm << '\n');
624    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
625    BBTerm->eraseFromParent();
626    return true;
627  }
628
629  Instruction *CondInst = dyn_cast<Instruction>(Condition);
630
631  // All the rest of our checks depend on the condition being an instruction.
632  if (CondInst == 0) {
633    // FIXME: Unify this with code below.
634    if (ProcessThreadableEdges(Condition, BB))
635      return true;
636    return false;
637  }
638
639
640  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
641    // For a comparison where the LHS is outside this block, it's possible
642    // that we've branched on it before.  Used LVI to see if we can simplify
643    // the branch based on that.
644    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
645    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
646    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
647    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
648        (!isa<Instruction>(CondCmp->getOperand(0)) ||
649         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
650      // For predecessor edge, determine if the comparison is true or false
651      // on that edge.  If they're all true or all false, we can simplify the
652      // branch.
653      // FIXME: We could handle mixed true/false by duplicating code.
654      LazyValueInfo::Tristate Baseline =
655        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
656                                CondConst, *PI, BB);
657      if (Baseline != LazyValueInfo::Unknown) {
658        // Check that all remaining incoming values match the first one.
659        while (++PI != PE) {
660          LazyValueInfo::Tristate Ret =
661            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
662                                    CondCmp->getOperand(0), CondConst, *PI, BB);
663          if (Ret != Baseline) break;
664        }
665
666        // If we terminated early, then one of the values didn't match.
667        if (PI == PE) {
668          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
669          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
670          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
671          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
672          CondBr->eraseFromParent();
673          return true;
674        }
675      }
676    }
677  }
678
679  // Check for some cases that are worth simplifying.  Right now we want to look
680  // for loads that are used by a switch or by the condition for the branch.  If
681  // we see one, check to see if it's partially redundant.  If so, insert a PHI
682  // which can then be used to thread the values.
683  //
684  Value *SimplifyValue = CondInst;
685  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
686    if (isa<Constant>(CondCmp->getOperand(1)))
687      SimplifyValue = CondCmp->getOperand(0);
688
689  // TODO: There are other places where load PRE would be profitable, such as
690  // more complex comparisons.
691  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
692    if (SimplifyPartiallyRedundantLoad(LI))
693      return true;
694
695
696  // Handle a variety of cases where we are branching on something derived from
697  // a PHI node in the current block.  If we can prove that any predecessors
698  // compute a predictable value based on a PHI node, thread those predecessors.
699  //
700  if (ProcessThreadableEdges(CondInst, BB))
701    return true;
702
703  // If this is an otherwise-unfoldable branch on a phi node in the current
704  // block, see if we can simplify.
705  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
706    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
707      return ProcessBranchOnPHI(PN);
708
709
710  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
711  if (CondInst->getOpcode() == Instruction::Xor &&
712      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
713    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
714
715
716  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
717  // "(X == 4)", thread through this block.
718
719  return false;
720}
721
722/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
723/// block that jump on exactly the same condition.  This means that we almost
724/// always know the direction of the edge in the DESTBB:
725///  PREDBB:
726///     br COND, DESTBB, BBY
727///  DESTBB:
728///     br COND, BBZ, BBW
729///
730/// If DESTBB has multiple predecessors, we can't just constant fold the branch
731/// in DESTBB, we have to thread over it.
732bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
733                                                 BasicBlock *BB) {
734  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
735
736  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
737  // fold the branch to an unconditional one, which allows other recursive
738  // simplifications.
739  bool BranchDir;
740  if (PredBI->getSuccessor(1) != BB)
741    BranchDir = true;
742  else if (PredBI->getSuccessor(0) != BB)
743    BranchDir = false;
744  else {
745    DEBUG(dbgs() << "  In block '" << PredBB->getName()
746          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
747    ++NumFolds;
748    ConstantFoldTerminator(PredBB);
749    return true;
750  }
751
752  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
753
754  // If the dest block has one predecessor, just fix the branch condition to a
755  // constant and fold it.
756  if (BB->getSinglePredecessor()) {
757    DEBUG(dbgs() << "  In block '" << BB->getName()
758          << "' folding condition to '" << BranchDir << "': "
759          << *BB->getTerminator() << '\n');
760    ++NumFolds;
761    Value *OldCond = DestBI->getCondition();
762    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
763                                          BranchDir));
764    // Delete dead instructions before we fold the branch.  Folding the branch
765    // can eliminate edges from the CFG which can end up deleting OldCond.
766    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
767    ConstantFoldTerminator(BB);
768    return true;
769  }
770
771
772  // Next, figure out which successor we are threading to.
773  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
774
775  SmallVector<BasicBlock*, 2> Preds;
776  Preds.push_back(PredBB);
777
778  // Ok, try to thread it!
779  return ThreadEdge(BB, Preds, SuccBB);
780}
781
782/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
783/// block that switch on exactly the same condition.  This means that we almost
784/// always know the direction of the edge in the DESTBB:
785///  PREDBB:
786///     switch COND [... DESTBB, BBY ... ]
787///  DESTBB:
788///     switch COND [... BBZ, BBW ]
789///
790/// Optimizing switches like this is very important, because simplifycfg builds
791/// switches out of repeated 'if' conditions.
792bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
793                                                 BasicBlock *DestBB) {
794  // Can't thread edge to self.
795  if (PredBB == DestBB)
796    return false;
797
798  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
799  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
800
801  // There are a variety of optimizations that we can potentially do on these
802  // blocks: we order them from most to least preferable.
803
804  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
805  // directly to their destination.  This does not introduce *any* code size
806  // growth.  Skip debug info first.
807  BasicBlock::iterator BBI = DestBB->begin();
808  while (isa<DbgInfoIntrinsic>(BBI))
809    BBI++;
810
811  // FIXME: Thread if it just contains a PHI.
812  if (isa<SwitchInst>(BBI)) {
813    bool MadeChange = false;
814    // Ignore the default edge for now.
815    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
816      ConstantInt *DestVal = DestSI->getCaseValue(i);
817      BasicBlock *DestSucc = DestSI->getSuccessor(i);
818
819      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
820      // PredSI has an explicit case for it.  If so, forward.  If it is covered
821      // by the default case, we can't update PredSI.
822      unsigned PredCase = PredSI->findCaseValue(DestVal);
823      if (PredCase == 0) continue;
824
825      // If PredSI doesn't go to DestBB on this value, then it won't reach the
826      // case on this condition.
827      if (PredSI->getSuccessor(PredCase) != DestBB &&
828          DestSI->getSuccessor(i) != DestBB)
829        continue;
830
831      // Do not forward this if it already goes to this destination, this would
832      // be an infinite loop.
833      if (PredSI->getSuccessor(PredCase) == DestSucc)
834        continue;
835
836      // Otherwise, we're safe to make the change.  Make sure that the edge from
837      // DestSI to DestSucc is not critical and has no PHI nodes.
838      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
839      DEBUG(dbgs() << "THROUGH: " << *DestSI);
840
841      // If the destination has PHI nodes, just split the edge for updating
842      // simplicity.
843      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
844        SplitCriticalEdge(DestSI, i, this);
845        DestSucc = DestSI->getSuccessor(i);
846      }
847      FoldSingleEntryPHINodes(DestSucc);
848      PredSI->setSuccessor(PredCase, DestSucc);
849      MadeChange = true;
850    }
851
852    if (MadeChange)
853      return true;
854  }
855
856  return false;
857}
858
859
860/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
861/// load instruction, eliminate it by replacing it with a PHI node.  This is an
862/// important optimization that encourages jump threading, and needs to be run
863/// interlaced with other jump threading tasks.
864bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
865  // Don't hack volatile loads.
866  if (LI->isVolatile()) return false;
867
868  // If the load is defined in a block with exactly one predecessor, it can't be
869  // partially redundant.
870  BasicBlock *LoadBB = LI->getParent();
871  if (LoadBB->getSinglePredecessor())
872    return false;
873
874  Value *LoadedPtr = LI->getOperand(0);
875
876  // If the loaded operand is defined in the LoadBB, it can't be available.
877  // TODO: Could do simple PHI translation, that would be fun :)
878  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
879    if (PtrOp->getParent() == LoadBB)
880      return false;
881
882  // Scan a few instructions up from the load, to see if it is obviously live at
883  // the entry to its block.
884  BasicBlock::iterator BBIt = LI;
885
886  if (Value *AvailableVal =
887        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
888    // If the value if the load is locally available within the block, just use
889    // it.  This frequently occurs for reg2mem'd allocas.
890    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
891
892    // If the returned value is the load itself, replace with an undef. This can
893    // only happen in dead loops.
894    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
895    LI->replaceAllUsesWith(AvailableVal);
896    LI->eraseFromParent();
897    return true;
898  }
899
900  // Otherwise, if we scanned the whole block and got to the top of the block,
901  // we know the block is locally transparent to the load.  If not, something
902  // might clobber its value.
903  if (BBIt != LoadBB->begin())
904    return false;
905
906
907  SmallPtrSet<BasicBlock*, 8> PredsScanned;
908  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
909  AvailablePredsTy AvailablePreds;
910  BasicBlock *OneUnavailablePred = 0;
911
912  // If we got here, the loaded value is transparent through to the start of the
913  // block.  Check to see if it is available in any of the predecessor blocks.
914  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
915       PI != PE; ++PI) {
916    BasicBlock *PredBB = *PI;
917
918    // If we already scanned this predecessor, skip it.
919    if (!PredsScanned.insert(PredBB))
920      continue;
921
922    // Scan the predecessor to see if the value is available in the pred.
923    BBIt = PredBB->end();
924    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
925    if (!PredAvailable) {
926      OneUnavailablePred = PredBB;
927      continue;
928    }
929
930    // If so, this load is partially redundant.  Remember this info so that we
931    // can create a PHI node.
932    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
933  }
934
935  // If the loaded value isn't available in any predecessor, it isn't partially
936  // redundant.
937  if (AvailablePreds.empty()) return false;
938
939  // Okay, the loaded value is available in at least one (and maybe all!)
940  // predecessors.  If the value is unavailable in more than one unique
941  // predecessor, we want to insert a merge block for those common predecessors.
942  // This ensures that we only have to insert one reload, thus not increasing
943  // code size.
944  BasicBlock *UnavailablePred = 0;
945
946  // If there is exactly one predecessor where the value is unavailable, the
947  // already computed 'OneUnavailablePred' block is it.  If it ends in an
948  // unconditional branch, we know that it isn't a critical edge.
949  if (PredsScanned.size() == AvailablePreds.size()+1 &&
950      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
951    UnavailablePred = OneUnavailablePred;
952  } else if (PredsScanned.size() != AvailablePreds.size()) {
953    // Otherwise, we had multiple unavailable predecessors or we had a critical
954    // edge from the one.
955    SmallVector<BasicBlock*, 8> PredsToSplit;
956    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
957
958    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
959      AvailablePredSet.insert(AvailablePreds[i].first);
960
961    // Add all the unavailable predecessors to the PredsToSplit list.
962    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
963         PI != PE; ++PI) {
964      BasicBlock *P = *PI;
965      // If the predecessor is an indirect goto, we can't split the edge.
966      if (isa<IndirectBrInst>(P->getTerminator()))
967        return false;
968
969      if (!AvailablePredSet.count(P))
970        PredsToSplit.push_back(P);
971    }
972
973    // Split them out to their own block.
974    UnavailablePred =
975      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
976                             "thread-pre-split", this);
977  }
978
979  // If the value isn't available in all predecessors, then there will be
980  // exactly one where it isn't available.  Insert a load on that edge and add
981  // it to the AvailablePreds list.
982  if (UnavailablePred) {
983    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
984           "Can't handle critical edge here!");
985    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
986                                 LI->getAlignment(),
987                                 UnavailablePred->getTerminator());
988    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
989  }
990
991  // Now we know that each predecessor of this block has a value in
992  // AvailablePreds, sort them for efficient access as we're walking the preds.
993  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
994
995  // Create a PHI node at the start of the block for the PRE'd load value.
996  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
997  PN->takeName(LI);
998
999  // Insert new entries into the PHI for each predecessor.  A single block may
1000  // have multiple entries here.
1001  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
1002       ++PI) {
1003    BasicBlock *P = *PI;
1004    AvailablePredsTy::iterator I =
1005      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1006                       std::make_pair(P, (Value*)0));
1007
1008    assert(I != AvailablePreds.end() && I->first == P &&
1009           "Didn't find entry for predecessor!");
1010
1011    PN->addIncoming(I->second, I->first);
1012  }
1013
1014  //cerr << "PRE: " << *LI << *PN << "\n";
1015
1016  LI->replaceAllUsesWith(PN);
1017  LI->eraseFromParent();
1018
1019  return true;
1020}
1021
1022/// FindMostPopularDest - The specified list contains multiple possible
1023/// threadable destinations.  Pick the one that occurs the most frequently in
1024/// the list.
1025static BasicBlock *
1026FindMostPopularDest(BasicBlock *BB,
1027                    const SmallVectorImpl<std::pair<BasicBlock*,
1028                                  BasicBlock*> > &PredToDestList) {
1029  assert(!PredToDestList.empty());
1030
1031  // Determine popularity.  If there are multiple possible destinations, we
1032  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1033  // blocks with known and real destinations to threading undef.  We'll handle
1034  // them later if interesting.
1035  DenseMap<BasicBlock*, unsigned> DestPopularity;
1036  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1037    if (PredToDestList[i].second)
1038      DestPopularity[PredToDestList[i].second]++;
1039
1040  // Find the most popular dest.
1041  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1042  BasicBlock *MostPopularDest = DPI->first;
1043  unsigned Popularity = DPI->second;
1044  SmallVector<BasicBlock*, 4> SamePopularity;
1045
1046  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1047    // If the popularity of this entry isn't higher than the popularity we've
1048    // seen so far, ignore it.
1049    if (DPI->second < Popularity)
1050      ; // ignore.
1051    else if (DPI->second == Popularity) {
1052      // If it is the same as what we've seen so far, keep track of it.
1053      SamePopularity.push_back(DPI->first);
1054    } else {
1055      // If it is more popular, remember it.
1056      SamePopularity.clear();
1057      MostPopularDest = DPI->first;
1058      Popularity = DPI->second;
1059    }
1060  }
1061
1062  // Okay, now we know the most popular destination.  If there is more than
1063  // destination, we need to determine one.  This is arbitrary, but we need
1064  // to make a deterministic decision.  Pick the first one that appears in the
1065  // successor list.
1066  if (!SamePopularity.empty()) {
1067    SamePopularity.push_back(MostPopularDest);
1068    TerminatorInst *TI = BB->getTerminator();
1069    for (unsigned i = 0; ; ++i) {
1070      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1071
1072      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1073                    TI->getSuccessor(i)) == SamePopularity.end())
1074        continue;
1075
1076      MostPopularDest = TI->getSuccessor(i);
1077      break;
1078    }
1079  }
1080
1081  // Okay, we have finally picked the most popular destination.
1082  return MostPopularDest;
1083}
1084
1085bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1086  // If threading this would thread across a loop header, don't even try to
1087  // thread the edge.
1088  if (LoopHeaders.count(BB))
1089    return false;
1090
1091  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1092  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1093    return false;
1094
1095  assert(!PredValues.empty() &&
1096         "ComputeValueKnownInPredecessors returned true with no values");
1097
1098  DEBUG(dbgs() << "IN BB: " << *BB;
1099        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1100          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1101          if (PredValues[i].first)
1102            dbgs() << *PredValues[i].first;
1103          else
1104            dbgs() << "UNDEF";
1105          dbgs() << " for pred '" << PredValues[i].second->getName()
1106          << "'.\n";
1107        });
1108
1109  // Decide what we want to thread through.  Convert our list of known values to
1110  // a list of known destinations for each pred.  This also discards duplicate
1111  // predecessors and keeps track of the undefined inputs (which are represented
1112  // as a null dest in the PredToDestList).
1113  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1114  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1115
1116  BasicBlock *OnlyDest = 0;
1117  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1118
1119  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1120    BasicBlock *Pred = PredValues[i].second;
1121    if (!SeenPreds.insert(Pred))
1122      continue;  // Duplicate predecessor entry.
1123
1124    // If the predecessor ends with an indirect goto, we can't change its
1125    // destination.
1126    if (isa<IndirectBrInst>(Pred->getTerminator()))
1127      continue;
1128
1129    ConstantInt *Val = PredValues[i].first;
1130
1131    BasicBlock *DestBB;
1132    if (Val == 0)      // Undef.
1133      DestBB = 0;
1134    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1135      DestBB = BI->getSuccessor(Val->isZero());
1136    else {
1137      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1138      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1139    }
1140
1141    // If we have exactly one destination, remember it for efficiency below.
1142    if (i == 0)
1143      OnlyDest = DestBB;
1144    else if (OnlyDest != DestBB)
1145      OnlyDest = MultipleDestSentinel;
1146
1147    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1148  }
1149
1150  // If all edges were unthreadable, we fail.
1151  if (PredToDestList.empty())
1152    return false;
1153
1154  // Determine which is the most common successor.  If we have many inputs and
1155  // this block is a switch, we want to start by threading the batch that goes
1156  // to the most popular destination first.  If we only know about one
1157  // threadable destination (the common case) we can avoid this.
1158  BasicBlock *MostPopularDest = OnlyDest;
1159
1160  if (MostPopularDest == MultipleDestSentinel)
1161    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1162
1163  // Now that we know what the most popular destination is, factor all
1164  // predecessors that will jump to it into a single predecessor.
1165  SmallVector<BasicBlock*, 16> PredsToFactor;
1166  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1167    if (PredToDestList[i].second == MostPopularDest) {
1168      BasicBlock *Pred = PredToDestList[i].first;
1169
1170      // This predecessor may be a switch or something else that has multiple
1171      // edges to the block.  Factor each of these edges by listing them
1172      // according to # occurrences in PredsToFactor.
1173      TerminatorInst *PredTI = Pred->getTerminator();
1174      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1175        if (PredTI->getSuccessor(i) == BB)
1176          PredsToFactor.push_back(Pred);
1177    }
1178
1179  // If the threadable edges are branching on an undefined value, we get to pick
1180  // the destination that these predecessors should get to.
1181  if (MostPopularDest == 0)
1182    MostPopularDest = BB->getTerminator()->
1183                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1184
1185  // Ok, try to thread it!
1186  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1187}
1188
1189/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1190/// a PHI node in the current block.  See if there are any simplifications we
1191/// can do based on inputs to the phi node.
1192///
1193bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1194  BasicBlock *BB = PN->getParent();
1195
1196  // TODO: We could make use of this to do it once for blocks with common PHI
1197  // values.
1198  SmallVector<BasicBlock*, 1> PredBBs;
1199  PredBBs.resize(1);
1200
1201  // If any of the predecessor blocks end in an unconditional branch, we can
1202  // *duplicate* the conditional branch into that block in order to further
1203  // encourage jump threading and to eliminate cases where we have branch on a
1204  // phi of an icmp (branch on icmp is much better).
1205  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1206    BasicBlock *PredBB = PN->getIncomingBlock(i);
1207    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1208      if (PredBr->isUnconditional()) {
1209        PredBBs[0] = PredBB;
1210        // Try to duplicate BB into PredBB.
1211        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1212          return true;
1213      }
1214  }
1215
1216  return false;
1217}
1218
1219/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1220/// a xor instruction in the current block.  See if there are any
1221/// simplifications we can do based on inputs to the xor.
1222///
1223bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1224  BasicBlock *BB = BO->getParent();
1225
1226  // If either the LHS or RHS of the xor is a constant, don't do this
1227  // optimization.
1228  if (isa<ConstantInt>(BO->getOperand(0)) ||
1229      isa<ConstantInt>(BO->getOperand(1)))
1230    return false;
1231
1232  // If the first instruction in BB isn't a phi, we won't be able to infer
1233  // anything special about any particular predecessor.
1234  if (!isa<PHINode>(BB->front()))
1235    return false;
1236
1237  // If we have a xor as the branch input to this block, and we know that the
1238  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1239  // the condition into the predecessor and fix that value to true, saving some
1240  // logical ops on that path and encouraging other paths to simplify.
1241  //
1242  // This copies something like this:
1243  //
1244  //  BB:
1245  //    %X = phi i1 [1],  [%X']
1246  //    %Y = icmp eq i32 %A, %B
1247  //    %Z = xor i1 %X, %Y
1248  //    br i1 %Z, ...
1249  //
1250  // Into:
1251  //  BB':
1252  //    %Y = icmp ne i32 %A, %B
1253  //    br i1 %Z, ...
1254
1255  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1256  bool isLHS = true;
1257  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1258    assert(XorOpValues.empty());
1259    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1260      return false;
1261    isLHS = false;
1262  }
1263
1264  assert(!XorOpValues.empty() &&
1265         "ComputeValueKnownInPredecessors returned true with no values");
1266
1267  // Scan the information to see which is most popular: true or false.  The
1268  // predecessors can be of the set true, false, or undef.
1269  unsigned NumTrue = 0, NumFalse = 0;
1270  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1271    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1272    if (XorOpValues[i].first->isZero())
1273      ++NumFalse;
1274    else
1275      ++NumTrue;
1276  }
1277
1278  // Determine which value to split on, true, false, or undef if neither.
1279  ConstantInt *SplitVal = 0;
1280  if (NumTrue > NumFalse)
1281    SplitVal = ConstantInt::getTrue(BB->getContext());
1282  else if (NumTrue != 0 || NumFalse != 0)
1283    SplitVal = ConstantInt::getFalse(BB->getContext());
1284
1285  // Collect all of the blocks that this can be folded into so that we can
1286  // factor this once and clone it once.
1287  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1288  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1289    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1290
1291    BlocksToFoldInto.push_back(XorOpValues[i].second);
1292  }
1293
1294  // If we inferred a value for all of the predecessors, then duplication won't
1295  // help us.  However, we can just replace the LHS or RHS with the constant.
1296  if (BlocksToFoldInto.size() ==
1297      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1298    if (SplitVal == 0) {
1299      // If all preds provide undef, just nuke the xor, because it is undef too.
1300      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1301      BO->eraseFromParent();
1302    } else if (SplitVal->isZero()) {
1303      // If all preds provide 0, replace the xor with the other input.
1304      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1305      BO->eraseFromParent();
1306    } else {
1307      // If all preds provide 1, set the computed value to 1.
1308      BO->setOperand(!isLHS, SplitVal);
1309    }
1310
1311    return true;
1312  }
1313
1314  // Try to duplicate BB into PredBB.
1315  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1316}
1317
1318
1319/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1320/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1321/// NewPred using the entries from OldPred (suitably mapped).
1322static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1323                                            BasicBlock *OldPred,
1324                                            BasicBlock *NewPred,
1325                                     DenseMap<Instruction*, Value*> &ValueMap) {
1326  for (BasicBlock::iterator PNI = PHIBB->begin();
1327       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1328    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1329    // DestBlock.
1330    Value *IV = PN->getIncomingValueForBlock(OldPred);
1331
1332    // Remap the value if necessary.
1333    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1334      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1335      if (I != ValueMap.end())
1336        IV = I->second;
1337    }
1338
1339    PN->addIncoming(IV, NewPred);
1340  }
1341}
1342
1343/// ThreadEdge - We have decided that it is safe and profitable to factor the
1344/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1345/// across BB.  Transform the IR to reflect this change.
1346bool JumpThreading::ThreadEdge(BasicBlock *BB,
1347                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1348                               BasicBlock *SuccBB) {
1349  // If threading to the same block as we come from, we would infinite loop.
1350  if (SuccBB == BB) {
1351    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1352          << "' - would thread to self!\n");
1353    return false;
1354  }
1355
1356  // If threading this would thread across a loop header, don't thread the edge.
1357  // See the comments above FindLoopHeaders for justifications and caveats.
1358  if (LoopHeaders.count(BB)) {
1359    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1360          << "' to dest BB '" << SuccBB->getName()
1361          << "' - it might create an irreducible loop!\n");
1362    return false;
1363  }
1364
1365  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1366  if (JumpThreadCost > Threshold) {
1367    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1368          << "' - Cost is too high: " << JumpThreadCost << "\n");
1369    return false;
1370  }
1371
1372  // And finally, do it!  Start by factoring the predecessors is needed.
1373  BasicBlock *PredBB;
1374  if (PredBBs.size() == 1)
1375    PredBB = PredBBs[0];
1376  else {
1377    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1378          << " common predecessors.\n");
1379    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1380                                    ".thr_comm", this);
1381  }
1382
1383  // And finally, do it!
1384  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1385        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1386        << ", across block:\n    "
1387        << *BB << "\n");
1388
1389  LVI->threadEdge(PredBB, BB, SuccBB);
1390
1391  // We are going to have to map operands from the original BB block to the new
1392  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1393  // account for entry from PredBB.
1394  DenseMap<Instruction*, Value*> ValueMapping;
1395
1396  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1397                                         BB->getName()+".thread",
1398                                         BB->getParent(), BB);
1399  NewBB->moveAfter(PredBB);
1400
1401  BasicBlock::iterator BI = BB->begin();
1402  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1403    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1404
1405  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1406  // mapping and using it to remap operands in the cloned instructions.
1407  for (; !isa<TerminatorInst>(BI); ++BI) {
1408    Instruction *New = BI->clone();
1409    New->setName(BI->getName());
1410    NewBB->getInstList().push_back(New);
1411    ValueMapping[BI] = New;
1412
1413    // Remap operands to patch up intra-block references.
1414    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1415      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1416        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1417        if (I != ValueMapping.end())
1418          New->setOperand(i, I->second);
1419      }
1420  }
1421
1422  // We didn't copy the terminator from BB over to NewBB, because there is now
1423  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1424  BranchInst::Create(SuccBB, NewBB);
1425
1426  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1427  // PHI nodes for NewBB now.
1428  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1429
1430  // If there were values defined in BB that are used outside the block, then we
1431  // now have to update all uses of the value to use either the original value,
1432  // the cloned value, or some PHI derived value.  This can require arbitrary
1433  // PHI insertion, of which we are prepared to do, clean these up now.
1434  SSAUpdater SSAUpdate;
1435  SmallVector<Use*, 16> UsesToRename;
1436  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1437    // Scan all uses of this instruction to see if it is used outside of its
1438    // block, and if so, record them in UsesToRename.
1439    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1440         ++UI) {
1441      Instruction *User = cast<Instruction>(*UI);
1442      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1443        if (UserPN->getIncomingBlock(UI) == BB)
1444          continue;
1445      } else if (User->getParent() == BB)
1446        continue;
1447
1448      UsesToRename.push_back(&UI.getUse());
1449    }
1450
1451    // If there are no uses outside the block, we're done with this instruction.
1452    if (UsesToRename.empty())
1453      continue;
1454
1455    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1456
1457    // We found a use of I outside of BB.  Rename all uses of I that are outside
1458    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1459    // with the two values we know.
1460    SSAUpdate.Initialize(I->getType(), I->getName());
1461    SSAUpdate.AddAvailableValue(BB, I);
1462    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1463
1464    while (!UsesToRename.empty())
1465      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1466    DEBUG(dbgs() << "\n");
1467  }
1468
1469
1470  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1471  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1472  // us to simplify any PHI nodes in BB.
1473  TerminatorInst *PredTerm = PredBB->getTerminator();
1474  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1475    if (PredTerm->getSuccessor(i) == BB) {
1476      BB->removePredecessor(PredBB, true);
1477      PredTerm->setSuccessor(i, NewBB);
1478    }
1479
1480  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1481  // over the new instructions and zap any that are constants or dead.  This
1482  // frequently happens because of phi translation.
1483  SimplifyInstructionsInBlock(NewBB, TD);
1484
1485  // Threaded an edge!
1486  ++NumThreads;
1487  return true;
1488}
1489
1490/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1491/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1492/// If we can duplicate the contents of BB up into PredBB do so now, this
1493/// improves the odds that the branch will be on an analyzable instruction like
1494/// a compare.
1495bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1496                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1497  assert(!PredBBs.empty() && "Can't handle an empty set");
1498
1499  // If BB is a loop header, then duplicating this block outside the loop would
1500  // cause us to transform this into an irreducible loop, don't do this.
1501  // See the comments above FindLoopHeaders for justifications and caveats.
1502  if (LoopHeaders.count(BB)) {
1503    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1504          << "' into predecessor block '" << PredBBs[0]->getName()
1505          << "' - it might create an irreducible loop!\n");
1506    return false;
1507  }
1508
1509  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1510  if (DuplicationCost > Threshold) {
1511    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1512          << "' - Cost is too high: " << DuplicationCost << "\n");
1513    return false;
1514  }
1515
1516  // And finally, do it!  Start by factoring the predecessors is needed.
1517  BasicBlock *PredBB;
1518  if (PredBBs.size() == 1)
1519    PredBB = PredBBs[0];
1520  else {
1521    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1522          << " common predecessors.\n");
1523    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1524                                    ".thr_comm", this);
1525  }
1526
1527  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1528  // of PredBB.
1529  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1530        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1531        << DuplicationCost << " block is:" << *BB << "\n");
1532
1533  // Unless PredBB ends with an unconditional branch, split the edge so that we
1534  // can just clone the bits from BB into the end of the new PredBB.
1535  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1536
1537  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1538    PredBB = SplitEdge(PredBB, BB, this);
1539    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1540  }
1541
1542  // We are going to have to map operands from the original BB block into the
1543  // PredBB block.  Evaluate PHI nodes in BB.
1544  DenseMap<Instruction*, Value*> ValueMapping;
1545
1546  BasicBlock::iterator BI = BB->begin();
1547  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1548    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1549
1550  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1551  // mapping and using it to remap operands in the cloned instructions.
1552  for (; BI != BB->end(); ++BI) {
1553    Instruction *New = BI->clone();
1554
1555    // Remap operands to patch up intra-block references.
1556    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1557      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1558        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1559        if (I != ValueMapping.end())
1560          New->setOperand(i, I->second);
1561      }
1562
1563    // If this instruction can be simplified after the operands are updated,
1564    // just use the simplified value instead.  This frequently happens due to
1565    // phi translation.
1566    if (Value *IV = SimplifyInstruction(New, TD)) {
1567      delete New;
1568      ValueMapping[BI] = IV;
1569    } else {
1570      // Otherwise, insert the new instruction into the block.
1571      New->setName(BI->getName());
1572      PredBB->getInstList().insert(OldPredBranch, New);
1573      ValueMapping[BI] = New;
1574    }
1575  }
1576
1577  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1578  // add entries to the PHI nodes for branch from PredBB now.
1579  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1580  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1581                                  ValueMapping);
1582  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1583                                  ValueMapping);
1584
1585  // If there were values defined in BB that are used outside the block, then we
1586  // now have to update all uses of the value to use either the original value,
1587  // the cloned value, or some PHI derived value.  This can require arbitrary
1588  // PHI insertion, of which we are prepared to do, clean these up now.
1589  SSAUpdater SSAUpdate;
1590  SmallVector<Use*, 16> UsesToRename;
1591  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1592    // Scan all uses of this instruction to see if it is used outside of its
1593    // block, and if so, record them in UsesToRename.
1594    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1595         ++UI) {
1596      Instruction *User = cast<Instruction>(*UI);
1597      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1598        if (UserPN->getIncomingBlock(UI) == BB)
1599          continue;
1600      } else if (User->getParent() == BB)
1601        continue;
1602
1603      UsesToRename.push_back(&UI.getUse());
1604    }
1605
1606    // If there are no uses outside the block, we're done with this instruction.
1607    if (UsesToRename.empty())
1608      continue;
1609
1610    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1611
1612    // We found a use of I outside of BB.  Rename all uses of I that are outside
1613    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1614    // with the two values we know.
1615    SSAUpdate.Initialize(I->getType(), I->getName());
1616    SSAUpdate.AddAvailableValue(BB, I);
1617    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1618
1619    while (!UsesToRename.empty())
1620      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1621    DEBUG(dbgs() << "\n");
1622  }
1623
1624  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1625  // that we nuked.
1626  BB->removePredecessor(PredBB, true);
1627
1628  // Remove the unconditional branch at the end of the PredBB block.
1629  OldPredBranch->eraseFromParent();
1630
1631  ++NumDupes;
1632  return true;
1633}
1634
1635
1636