JumpThreading.cpp revision 50591ab1ea2e8d483fca5c6984f47edd6e726f10
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37
38static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40          cl::desc("Max block size to duplicate for jump threading"),
41          cl::init(6), cl::Hidden);
42
43namespace {
44  /// This pass performs 'jump threading', which looks at blocks that have
45  /// multiple predecessors and multiple successors.  If one or more of the
46  /// predecessors of the block can be proven to always jump to one of the
47  /// successors, we forward the edge from the predecessor to the successor by
48  /// duplicating the contents of this block.
49  ///
50  /// An example of when this can occur is code like this:
51  ///
52  ///   if () { ...
53  ///     X = 4;
54  ///   }
55  ///   if (X < 3) {
56  ///
57  /// In this case, the unconditional branch at the end of the first if can be
58  /// revectored to the false side of the second if.
59  ///
60  class JumpThreading : public FunctionPass {
61    TargetData *TD;
62#ifdef NDEBUG
63    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
67  public:
68    static char ID; // Pass identification
69    JumpThreading() : FunctionPass(&ID) {}
70
71    bool runOnFunction(Function &F);
72    void FindLoopHeaders(Function &F);
73
74    bool ProcessBlock(BasicBlock *BB);
75    bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
76    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
77                                          BasicBlock *PredBB);
78
79    typedef SmallVectorImpl<std::pair<ConstantInt*,
80                                      BasicBlock*> > PredValueInfo;
81
82    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
83                                         PredValueInfo &Result);
84    bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
85
86
87    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
88    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89
90    bool ProcessJumpOnPHI(PHINode *PN);
91
92    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
93  };
94}
95
96char JumpThreading::ID = 0;
97static RegisterPass<JumpThreading>
98X("jump-threading", "Jump Threading");
99
100// Public interface to the Jump Threading pass
101FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
102
103/// runOnFunction - Top level algorithm.
104///
105bool JumpThreading::runOnFunction(Function &F) {
106  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
107  TD = getAnalysisIfAvailable<TargetData>();
108
109  FindLoopHeaders(F);
110
111  bool AnotherIteration = true, EverChanged = false;
112  while (AnotherIteration) {
113    AnotherIteration = false;
114    bool Changed = false;
115    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
116      BasicBlock *BB = I;
117      while (ProcessBlock(BB))
118        Changed = true;
119
120      ++I;
121
122      // If the block is trivially dead, zap it.  This eliminates the successor
123      // edges which simplifies the CFG.
124      if (pred_begin(BB) == pred_end(BB) &&
125          BB != &BB->getParent()->getEntryBlock()) {
126        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
127              << "' with terminator: " << *BB->getTerminator() << '\n');
128        LoopHeaders.erase(BB);
129        DeleteDeadBlock(BB);
130        Changed = true;
131      }
132    }
133    AnotherIteration = Changed;
134    EverChanged |= Changed;
135  }
136
137  LoopHeaders.clear();
138  return EverChanged;
139}
140
141/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
142/// thread across it.
143static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
144  /// Ignore PHI nodes, these will be flattened when duplication happens.
145  BasicBlock::const_iterator I = BB->getFirstNonPHI();
146
147  // Sum up the cost of each instruction until we get to the terminator.  Don't
148  // include the terminator because the copy won't include it.
149  unsigned Size = 0;
150  for (; !isa<TerminatorInst>(I); ++I) {
151    // Debugger intrinsics don't incur code size.
152    if (isa<DbgInfoIntrinsic>(I)) continue;
153
154    // If this is a pointer->pointer bitcast, it is free.
155    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
156      continue;
157
158    // All other instructions count for at least one unit.
159    ++Size;
160
161    // Calls are more expensive.  If they are non-intrinsic calls, we model them
162    // as having cost of 4.  If they are a non-vector intrinsic, we model them
163    // as having cost of 2 total, and if they are a vector intrinsic, we model
164    // them as having cost 1.
165    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
166      if (!isa<IntrinsicInst>(CI))
167        Size += 3;
168      else if (!isa<VectorType>(CI->getType()))
169        Size += 1;
170    }
171  }
172
173  // Threading through a switch statement is particularly profitable.  If this
174  // block ends in a switch, decrease its cost to make it more likely to happen.
175  if (isa<SwitchInst>(I))
176    Size = Size > 6 ? Size-6 : 0;
177
178  return Size;
179}
180
181
182
183/// FindLoopHeaders - We do not want jump threading to turn proper loop
184/// structures into irreducible loops.  Doing this breaks up the loop nesting
185/// hierarchy and pessimizes later transformations.  To prevent this from
186/// happening, we first have to find the loop headers.  Here we approximate this
187/// by finding targets of backedges in the CFG.
188///
189/// Note that there definitely are cases when we want to allow threading of
190/// edges across a loop header.  For example, threading a jump from outside the
191/// loop (the preheader) to an exit block of the loop is definitely profitable.
192/// It is also almost always profitable to thread backedges from within the loop
193/// to exit blocks, and is often profitable to thread backedges to other blocks
194/// within the loop (forming a nested loop).  This simple analysis is not rich
195/// enough to track all of these properties and keep it up-to-date as the CFG
196/// mutates, so we don't allow any of these transformations.
197///
198void JumpThreading::FindLoopHeaders(Function &F) {
199  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
200  FindFunctionBackedges(F, Edges);
201
202  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
203    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
204}
205
206/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
207/// hand sides of the compare instruction, try to determine the result. If the
208/// result can not be determined, a null pointer is returned.
209static Constant *GetResultOfComparison(CmpInst::Predicate pred,
210                                       Value *LHS, Value *RHS) {
211  if (Constant *CLHS = dyn_cast<Constant>(LHS))
212    if (Constant *CRHS = dyn_cast<Constant>(RHS))
213      return ConstantExpr::getCompare(pred, CLHS, CRHS);
214
215  if (LHS == RHS)
216    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
217      if (ICmpInst::isTrueWhenEqual(pred))
218        return ConstantInt::getTrue(LHS->getContext());
219      else
220        return ConstantInt::getFalse(LHS->getContext());
221  return 0;
222}
223
224
225/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
226/// if we can infer that the value is a known ConstantInt in any of our
227/// predecessors.  If so, return the known the list of value and pred BB in the
228/// result vector.  If a value is known to be undef, it is returned as null.
229///
230/// The BB basic block is known to start with a PHI node.
231///
232/// This returns true if there were any known values.
233///
234///
235/// TODO: Per PR2563, we could infer value range information about a predecessor
236/// based on its terminator.
237bool JumpThreading::
238ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
239  PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
240
241  // If V is a constantint, then it is known in all predecessors.
242  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
243    ConstantInt *CI = dyn_cast<ConstantInt>(V);
244    Result.resize(TheFirstPHI->getNumIncomingValues());
245    for (unsigned i = 0, e = Result.size(); i != e; ++i)
246      Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
247    return true;
248  }
249
250  // If V is a non-instruction value, or an instruction in a different block,
251  // then it can't be derived from a PHI.
252  Instruction *I = dyn_cast<Instruction>(V);
253  if (I == 0 || I->getParent() != BB)
254    return false;
255
256  /// If I is a PHI node, then we know the incoming values for any constants.
257  if (PHINode *PN = dyn_cast<PHINode>(I)) {
258    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
259      Value *InVal = PN->getIncomingValue(i);
260      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
261        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
262        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
263      }
264    }
265    return !Result.empty();
266  }
267
268  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
269
270  // Handle some boolean conditions.
271  if (I->getType()->getPrimitiveSizeInBits() == 1) {
272    // X | true -> true
273    // X & false -> false
274    if (I->getOpcode() == Instruction::Or ||
275        I->getOpcode() == Instruction::And) {
276      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
277      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
278
279      if (LHSVals.empty() && RHSVals.empty())
280        return false;
281
282      ConstantInt *InterestingVal;
283      if (I->getOpcode() == Instruction::Or)
284        InterestingVal = ConstantInt::getTrue(I->getContext());
285      else
286        InterestingVal = ConstantInt::getFalse(I->getContext());
287
288      // Scan for the sentinel.
289      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
290        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
291          Result.push_back(LHSVals[i]);
292      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
293        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
294          Result.push_back(RHSVals[i]);
295      return !Result.empty();
296    }
297
298    // TODO: Should handle the NOT form of XOR.
299
300  }
301
302  // Handle compare with phi operand, where the PHI is defined in this block.
303  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
304    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
305    if (PN && PN->getParent() == BB) {
306      // We can do this simplification if any comparisons fold to true or false.
307      // See if any do.
308      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
309        BasicBlock *PredBB = PN->getIncomingBlock(i);
310        Value *LHS = PN->getIncomingValue(i);
311        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
312
313        Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
314        if (Res == 0) continue;
315
316        if (isa<UndefValue>(Res))
317          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
318        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
319          Result.push_back(std::make_pair(CI, PredBB));
320      }
321
322      return !Result.empty();
323    }
324
325    // TODO: We could also recurse to see if we can determine constants another
326    // way.
327  }
328  return false;
329}
330
331
332
333/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
334/// in an undefined jump, decide which block is best to revector to.
335///
336/// Since we can pick an arbitrary destination, we pick the successor with the
337/// fewest predecessors.  This should reduce the in-degree of the others.
338///
339static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
340  TerminatorInst *BBTerm = BB->getTerminator();
341  unsigned MinSucc = 0;
342  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
343  // Compute the successor with the minimum number of predecessors.
344  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
345  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
346    TestBB = BBTerm->getSuccessor(i);
347    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
348    if (NumPreds < MinNumPreds)
349      MinSucc = i;
350  }
351
352  return MinSucc;
353}
354
355/// ProcessBlock - If there are any predecessors whose control can be threaded
356/// through to a successor, transform them now.
357bool JumpThreading::ProcessBlock(BasicBlock *BB) {
358  // If this block has a single predecessor, and if that pred has a single
359  // successor, merge the blocks.  This encourages recursive jump threading
360  // because now the condition in this block can be threaded through
361  // predecessors of our predecessor block.
362  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
363    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
364        SinglePred != BB) {
365      // If SinglePred was a loop header, BB becomes one.
366      if (LoopHeaders.erase(SinglePred))
367        LoopHeaders.insert(BB);
368
369      // Remember if SinglePred was the entry block of the function.  If so, we
370      // will need to move BB back to the entry position.
371      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
372      MergeBasicBlockIntoOnlyPred(BB);
373
374      if (isEntry && BB != &BB->getParent()->getEntryBlock())
375        BB->moveBefore(&BB->getParent()->getEntryBlock());
376      return true;
377    }
378  }
379
380  // Look to see if the terminator is a branch of switch, if not we can't thread
381  // it.
382  Value *Condition;
383  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
384    // Can't thread an unconditional jump.
385    if (BI->isUnconditional()) return false;
386    Condition = BI->getCondition();
387  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
388    Condition = SI->getCondition();
389  else
390    return false; // Must be an invoke.
391
392  // If the terminator of this block is branching on a constant, simplify the
393  // terminator to an unconditional branch.  This can occur due to threading in
394  // other blocks.
395  if (isa<ConstantInt>(Condition)) {
396    DEBUG(errs() << "  In block '" << BB->getName()
397          << "' folding terminator: " << *BB->getTerminator() << '\n');
398    ++NumFolds;
399    ConstantFoldTerminator(BB);
400    return true;
401  }
402
403  // If the terminator is branching on an undef, we can pick any of the
404  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
405  if (isa<UndefValue>(Condition)) {
406    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
407
408    // Fold the branch/switch.
409    TerminatorInst *BBTerm = BB->getTerminator();
410    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
411      if (i == BestSucc) continue;
412      BBTerm->getSuccessor(i)->removePredecessor(BB);
413    }
414
415    DEBUG(errs() << "  In block '" << BB->getName()
416          << "' folding undef terminator: " << *BBTerm << '\n');
417    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
418    BBTerm->eraseFromParent();
419    return true;
420  }
421
422  Instruction *CondInst = dyn_cast<Instruction>(Condition);
423
424  // If the condition is an instruction defined in another block, see if a
425  // predecessor has the same condition:
426  //     br COND, BBX, BBY
427  //  BBX:
428  //     br COND, BBZ, BBW
429  if (!Condition->hasOneUse() && // Multiple uses.
430      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
431    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
432    if (isa<BranchInst>(BB->getTerminator())) {
433      for (; PI != E; ++PI)
434        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
435          if (PBI->isConditional() && PBI->getCondition() == Condition &&
436              ProcessBranchOnDuplicateCond(*PI, BB))
437            return true;
438    } else {
439      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
440      for (; PI != E; ++PI)
441        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
442          if (PSI->getCondition() == Condition &&
443              ProcessSwitchOnDuplicateCond(*PI, BB))
444            return true;
445    }
446  }
447
448  // All the rest of our checks depend on the condition being an instruction.
449  if (CondInst == 0)
450    return false;
451
452  // See if this is a phi node in the current block.
453  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
454    if (PN->getParent() == BB)
455      return ProcessJumpOnPHI(PN);
456
457  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
458    if (!isa<PHINode>(CondCmp->getOperand(0)) ||
459        cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
460      // If we have a comparison, loop over the predecessors to see if there is
461      // a condition with a lexically identical value.
462      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
463      for (; PI != E; ++PI)
464        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
465          if (PBI->isConditional() && *PI != BB) {
466            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
467              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
468                  CI->getOperand(1) == CondCmp->getOperand(1) &&
469                  CI->getPredicate() == CondCmp->getPredicate()) {
470                // TODO: Could handle things like (x != 4) --> (x == 17)
471                if (ProcessBranchOnDuplicateCond(*PI, BB))
472                  return true;
473              }
474            }
475          }
476    }
477  }
478
479  // Check for some cases that are worth simplifying.  Right now we want to look
480  // for loads that are used by a switch or by the condition for the branch.  If
481  // we see one, check to see if it's partially redundant.  If so, insert a PHI
482  // which can then be used to thread the values.
483  //
484  // This is particularly important because reg2mem inserts loads and stores all
485  // over the place, and this blocks jump threading if we don't zap them.
486  Value *SimplifyValue = CondInst;
487  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
488    if (isa<Constant>(CondCmp->getOperand(1)))
489      SimplifyValue = CondCmp->getOperand(0);
490
491  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
492    if (SimplifyPartiallyRedundantLoad(LI))
493      return true;
494
495
496  // Handle a variety of cases where we are branching on something derived from
497  // a PHI node in the current block.  If we can prove that any predecessors
498  // compute a predictable value based on a PHI node, thread those predecessors.
499  //
500  // We only bother doing this if the current block has a PHI node and if the
501  // conditional instruction lives in the current block.  If either condition
502  // fail, this won't be a computable value anyway.
503  if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
504    if (ProcessThreadableEdges(CondInst, BB))
505      return true;
506
507
508  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
509  // "(X == 4)" thread through this block.
510
511  return false;
512}
513
514/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
515/// block that jump on exactly the same condition.  This means that we almost
516/// always know the direction of the edge in the DESTBB:
517///  PREDBB:
518///     br COND, DESTBB, BBY
519///  DESTBB:
520///     br COND, BBZ, BBW
521///
522/// If DESTBB has multiple predecessors, we can't just constant fold the branch
523/// in DESTBB, we have to thread over it.
524bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
525                                                 BasicBlock *BB) {
526  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
527
528  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
529  // fold the branch to an unconditional one, which allows other recursive
530  // simplifications.
531  bool BranchDir;
532  if (PredBI->getSuccessor(1) != BB)
533    BranchDir = true;
534  else if (PredBI->getSuccessor(0) != BB)
535    BranchDir = false;
536  else {
537    DEBUG(errs() << "  In block '" << PredBB->getName()
538          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
539    ++NumFolds;
540    ConstantFoldTerminator(PredBB);
541    return true;
542  }
543
544  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
545
546  // If the dest block has one predecessor, just fix the branch condition to a
547  // constant and fold it.
548  if (BB->getSinglePredecessor()) {
549    DEBUG(errs() << "  In block '" << BB->getName()
550          << "' folding condition to '" << BranchDir << "': "
551          << *BB->getTerminator() << '\n');
552    ++NumFolds;
553    Value *OldCond = DestBI->getCondition();
554    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
555                                          BranchDir));
556    ConstantFoldTerminator(BB);
557    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
558    return true;
559  }
560
561
562  // Next, figure out which successor we are threading to.
563  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
564
565  // Ok, try to thread it!
566  return ThreadEdge(BB, PredBB, SuccBB);
567}
568
569/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
570/// block that switch on exactly the same condition.  This means that we almost
571/// always know the direction of the edge in the DESTBB:
572///  PREDBB:
573///     switch COND [... DESTBB, BBY ... ]
574///  DESTBB:
575///     switch COND [... BBZ, BBW ]
576///
577/// Optimizing switches like this is very important, because simplifycfg builds
578/// switches out of repeated 'if' conditions.
579bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
580                                                 BasicBlock *DestBB) {
581  // Can't thread edge to self.
582  if (PredBB == DestBB)
583    return false;
584
585  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
586  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
587
588  // There are a variety of optimizations that we can potentially do on these
589  // blocks: we order them from most to least preferable.
590
591  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
592  // directly to their destination.  This does not introduce *any* code size
593  // growth.  Skip debug info first.
594  BasicBlock::iterator BBI = DestBB->begin();
595  while (isa<DbgInfoIntrinsic>(BBI))
596    BBI++;
597
598  // FIXME: Thread if it just contains a PHI.
599  if (isa<SwitchInst>(BBI)) {
600    bool MadeChange = false;
601    // Ignore the default edge for now.
602    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
603      ConstantInt *DestVal = DestSI->getCaseValue(i);
604      BasicBlock *DestSucc = DestSI->getSuccessor(i);
605
606      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
607      // PredSI has an explicit case for it.  If so, forward.  If it is covered
608      // by the default case, we can't update PredSI.
609      unsigned PredCase = PredSI->findCaseValue(DestVal);
610      if (PredCase == 0) continue;
611
612      // If PredSI doesn't go to DestBB on this value, then it won't reach the
613      // case on this condition.
614      if (PredSI->getSuccessor(PredCase) != DestBB &&
615          DestSI->getSuccessor(i) != DestBB)
616        continue;
617
618      // Otherwise, we're safe to make the change.  Make sure that the edge from
619      // DestSI to DestSucc is not critical and has no PHI nodes.
620      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
621      DEBUG(errs() << "THROUGH: " << *DestSI);
622
623      // If the destination has PHI nodes, just split the edge for updating
624      // simplicity.
625      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
626        SplitCriticalEdge(DestSI, i, this);
627        DestSucc = DestSI->getSuccessor(i);
628      }
629      FoldSingleEntryPHINodes(DestSucc);
630      PredSI->setSuccessor(PredCase, DestSucc);
631      MadeChange = true;
632    }
633
634    if (MadeChange)
635      return true;
636  }
637
638  return false;
639}
640
641
642/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
643/// load instruction, eliminate it by replacing it with a PHI node.  This is an
644/// important optimization that encourages jump threading, and needs to be run
645/// interlaced with other jump threading tasks.
646bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
647  // Don't hack volatile loads.
648  if (LI->isVolatile()) return false;
649
650  // If the load is defined in a block with exactly one predecessor, it can't be
651  // partially redundant.
652  BasicBlock *LoadBB = LI->getParent();
653  if (LoadBB->getSinglePredecessor())
654    return false;
655
656  Value *LoadedPtr = LI->getOperand(0);
657
658  // If the loaded operand is defined in the LoadBB, it can't be available.
659  // FIXME: Could do PHI translation, that would be fun :)
660  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
661    if (PtrOp->getParent() == LoadBB)
662      return false;
663
664  // Scan a few instructions up from the load, to see if it is obviously live at
665  // the entry to its block.
666  BasicBlock::iterator BBIt = LI;
667
668  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
669                                                     BBIt, 6)) {
670    // If the value if the load is locally available within the block, just use
671    // it.  This frequently occurs for reg2mem'd allocas.
672    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
673
674    // If the returned value is the load itself, replace with an undef. This can
675    // only happen in dead loops.
676    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
677    LI->replaceAllUsesWith(AvailableVal);
678    LI->eraseFromParent();
679    return true;
680  }
681
682  // Otherwise, if we scanned the whole block and got to the top of the block,
683  // we know the block is locally transparent to the load.  If not, something
684  // might clobber its value.
685  if (BBIt != LoadBB->begin())
686    return false;
687
688
689  SmallPtrSet<BasicBlock*, 8> PredsScanned;
690  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
691  AvailablePredsTy AvailablePreds;
692  BasicBlock *OneUnavailablePred = 0;
693
694  // If we got here, the loaded value is transparent through to the start of the
695  // block.  Check to see if it is available in any of the predecessor blocks.
696  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
697       PI != PE; ++PI) {
698    BasicBlock *PredBB = *PI;
699
700    // If we already scanned this predecessor, skip it.
701    if (!PredsScanned.insert(PredBB))
702      continue;
703
704    // Scan the predecessor to see if the value is available in the pred.
705    BBIt = PredBB->end();
706    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
707    if (!PredAvailable) {
708      OneUnavailablePred = PredBB;
709      continue;
710    }
711
712    // If so, this load is partially redundant.  Remember this info so that we
713    // can create a PHI node.
714    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
715  }
716
717  // If the loaded value isn't available in any predecessor, it isn't partially
718  // redundant.
719  if (AvailablePreds.empty()) return false;
720
721  // Okay, the loaded value is available in at least one (and maybe all!)
722  // predecessors.  If the value is unavailable in more than one unique
723  // predecessor, we want to insert a merge block for those common predecessors.
724  // This ensures that we only have to insert one reload, thus not increasing
725  // code size.
726  BasicBlock *UnavailablePred = 0;
727
728  // If there is exactly one predecessor where the value is unavailable, the
729  // already computed 'OneUnavailablePred' block is it.  If it ends in an
730  // unconditional branch, we know that it isn't a critical edge.
731  if (PredsScanned.size() == AvailablePreds.size()+1 &&
732      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
733    UnavailablePred = OneUnavailablePred;
734  } else if (PredsScanned.size() != AvailablePreds.size()) {
735    // Otherwise, we had multiple unavailable predecessors or we had a critical
736    // edge from the one.
737    SmallVector<BasicBlock*, 8> PredsToSplit;
738    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
739
740    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
741      AvailablePredSet.insert(AvailablePreds[i].first);
742
743    // Add all the unavailable predecessors to the PredsToSplit list.
744    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
745         PI != PE; ++PI)
746      if (!AvailablePredSet.count(*PI))
747        PredsToSplit.push_back(*PI);
748
749    // Split them out to their own block.
750    UnavailablePred =
751      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
752                             "thread-split", this);
753  }
754
755  // If the value isn't available in all predecessors, then there will be
756  // exactly one where it isn't available.  Insert a load on that edge and add
757  // it to the AvailablePreds list.
758  if (UnavailablePred) {
759    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
760           "Can't handle critical edge here!");
761    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
762                                 UnavailablePred->getTerminator());
763    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
764  }
765
766  // Now we know that each predecessor of this block has a value in
767  // AvailablePreds, sort them for efficient access as we're walking the preds.
768  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
769
770  // Create a PHI node at the start of the block for the PRE'd load value.
771  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
772  PN->takeName(LI);
773
774  // Insert new entries into the PHI for each predecessor.  A single block may
775  // have multiple entries here.
776  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
777       ++PI) {
778    AvailablePredsTy::iterator I =
779      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
780                       std::make_pair(*PI, (Value*)0));
781
782    assert(I != AvailablePreds.end() && I->first == *PI &&
783           "Didn't find entry for predecessor!");
784
785    PN->addIncoming(I->second, I->first);
786  }
787
788  //cerr << "PRE: " << *LI << *PN << "\n";
789
790  LI->replaceAllUsesWith(PN);
791  LI->eraseFromParent();
792
793  return true;
794}
795
796/// FindMostPopularDest - The specified list contains multiple possible
797/// threadable destinations.  Pick the one that occurs the most frequently in
798/// the list.
799static BasicBlock *
800FindMostPopularDest(BasicBlock *BB,
801                    const SmallVectorImpl<std::pair<BasicBlock*,
802                                  BasicBlock*> > &PredToDestList) {
803  assert(!PredToDestList.empty());
804
805  // Determine popularity.  If there are multiple possible destinations, we
806  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
807  // blocks with known and real destinations to threading undef.  We'll handle
808  // them later if interesting.
809  DenseMap<BasicBlock*, unsigned> DestPopularity;
810  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
811    if (PredToDestList[i].second)
812      DestPopularity[PredToDestList[i].second]++;
813
814  // Find the most popular dest.
815  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
816  BasicBlock *MostPopularDest = DPI->first;
817  unsigned Popularity = DPI->second;
818  SmallVector<BasicBlock*, 4> SamePopularity;
819
820  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
821    // If the popularity of this entry isn't higher than the popularity we've
822    // seen so far, ignore it.
823    if (DPI->second < Popularity)
824      ; // ignore.
825    else if (DPI->second == Popularity) {
826      // If it is the same as what we've seen so far, keep track of it.
827      SamePopularity.push_back(DPI->first);
828    } else {
829      // If it is more popular, remember it.
830      SamePopularity.clear();
831      MostPopularDest = DPI->first;
832      Popularity = DPI->second;
833    }
834  }
835
836  // Okay, now we know the most popular destination.  If there is more than
837  // destination, we need to determine one.  This is arbitrary, but we need
838  // to make a deterministic decision.  Pick the first one that appears in the
839  // successor list.
840  if (!SamePopularity.empty()) {
841    SamePopularity.push_back(MostPopularDest);
842    TerminatorInst *TI = BB->getTerminator();
843    for (unsigned i = 0; ; ++i) {
844      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
845
846      if (std::find(SamePopularity.begin(), SamePopularity.end(),
847                    TI->getSuccessor(i)) == SamePopularity.end())
848        continue;
849
850      MostPopularDest = TI->getSuccessor(i);
851      break;
852    }
853  }
854
855  // Okay, we have finally picked the most popular destination.
856  return MostPopularDest;
857}
858
859bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
860                                           BasicBlock *BB) {
861  // If threading this would thread across a loop header, don't even try to
862  // thread the edge.
863  if (LoopHeaders.count(BB))
864    return false;
865
866
867
868  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
869  if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
870    return false;
871  assert(!PredValues.empty() &&
872         "ComputeValueKnownInPredecessors returned true with no values");
873
874  DEBUG(errs() << "IN BB: " << *BB;
875        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
876          errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
877          if (PredValues[i].first)
878            errs() << *PredValues[i].first;
879          else
880            errs() << "UNDEF";
881          errs() << " for pred '" << PredValues[i].second->getName()
882          << "'.\n";
883        });
884
885  // Decide what we want to thread through.  Convert our list of known values to
886  // a list of known destinations for each pred.  This also discards duplicate
887  // predecessors and keeps track of the undefined inputs (which are represented
888  // as a null dest in the PredToDestList.
889  SmallPtrSet<BasicBlock*, 16> SeenPreds;
890  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
891
892  BasicBlock *OnlyDest = 0;
893  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
894
895  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
896    BasicBlock *Pred = PredValues[i].second;
897    if (!SeenPreds.insert(Pred))
898      continue;  // Duplicate predecessor entry.
899
900    // If the predecessor ends with an indirect goto, we can't change its
901    // destination.
902    if (isa<IndirectBrInst>(Pred->getTerminator()))
903      continue;
904
905    ConstantInt *Val = PredValues[i].first;
906
907    BasicBlock *DestBB;
908    if (Val == 0)      // Undef.
909      DestBB = 0;
910    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
911      DestBB = BI->getSuccessor(Val->isZero());
912    else {
913      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
914      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
915    }
916
917    // If we have exactly one destination, remember it for efficiency below.
918    if (i == 0)
919      OnlyDest = DestBB;
920    else if (OnlyDest != DestBB)
921      OnlyDest = MultipleDestSentinel;
922
923    PredToDestList.push_back(std::make_pair(Pred, DestBB));
924  }
925
926  // If all edges were unthreadable, we fail.
927  if (PredToDestList.empty())
928    return false;
929
930  // Determine which is the most common successor.  If we have many inputs and
931  // this block is a switch, we want to start by threading the batch that goes
932  // to the most popular destination first.  If we only know about one
933  // threadable destination (the common case) we can avoid this.
934  BasicBlock *MostPopularDest = OnlyDest;
935
936  if (MostPopularDest == MultipleDestSentinel)
937    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
938
939  // Now that we know what the most popular destination is, factor all
940  // predecessors that will jump to it into a single predecessor.
941  SmallVector<BasicBlock*, 16> PredsToFactor;
942  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
943    if (PredToDestList[i].second == MostPopularDest)
944      PredsToFactor.push_back(PredToDestList[i].first);
945
946  BasicBlock *PredToThread;
947  if (PredsToFactor.size() == 1)
948    PredToThread = PredsToFactor[0];
949  else {
950    DEBUG(errs() << "  Factoring out " << PredsToFactor.size()
951                 << " common predecessors.\n");
952    PredToThread = SplitBlockPredecessors(BB, &PredsToFactor[0],
953                                          PredsToFactor.size(),
954                                          ".thr_comm", this);
955  }
956
957  // If the threadable edges are branching on an undefined value, we get to pick
958  // the destination that these predecessors should get to.
959  if (MostPopularDest == 0)
960    MostPopularDest = BB->getTerminator()->
961                            getSuccessor(GetBestDestForJumpOnUndef(BB));
962
963  // Ok, try to thread it!
964  return ThreadEdge(BB, PredToThread, MostPopularDest);
965}
966
967/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
968/// the current block.  See if there are any simplifications we can do based on
969/// inputs to the phi node.
970///
971bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
972  BasicBlock *BB = PN->getParent();
973
974  // If any of the predecessor blocks end in an unconditional branch, we can
975  // *duplicate* the jump into that block in order to further encourage jump
976  // threading and to eliminate cases where we have branch on a phi of an icmp
977  // (branch on icmp is much better).
978
979  // We don't want to do this tranformation for switches, because we don't
980  // really want to duplicate a switch.
981  if (isa<SwitchInst>(BB->getTerminator()))
982    return false;
983
984  // Look for unconditional branch predecessors.
985  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
986    BasicBlock *PredBB = PN->getIncomingBlock(i);
987    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
988      if (PredBr->isUnconditional() &&
989          // Try to duplicate BB into PredBB.
990          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
991        return true;
992  }
993
994  return false;
995}
996
997
998/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
999/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1000/// NewPred using the entries from OldPred (suitably mapped).
1001static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1002                                            BasicBlock *OldPred,
1003                                            BasicBlock *NewPred,
1004                                     DenseMap<Instruction*, Value*> &ValueMap) {
1005  for (BasicBlock::iterator PNI = PHIBB->begin();
1006       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1007    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1008    // DestBlock.
1009    Value *IV = PN->getIncomingValueForBlock(OldPred);
1010
1011    // Remap the value if necessary.
1012    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1013      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1014      if (I != ValueMap.end())
1015        IV = I->second;
1016    }
1017
1018    PN->addIncoming(IV, NewPred);
1019  }
1020}
1021
1022/// ThreadEdge - We have decided that it is safe and profitable to thread an
1023/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
1024/// change.
1025bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
1026                               BasicBlock *SuccBB) {
1027  // If threading to the same block as we come from, we would infinite loop.
1028  if (SuccBB == BB) {
1029    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1030          << "' - would thread to self!\n");
1031    return false;
1032  }
1033
1034  // If threading this would thread across a loop header, don't thread the edge.
1035  // See the comments above FindLoopHeaders for justifications and caveats.
1036  if (LoopHeaders.count(BB)) {
1037    DEBUG(errs() << "  Not threading from '" << PredBB->getName()
1038          << "' across loop header BB '" << BB->getName()
1039          << "' to dest BB '" << SuccBB->getName()
1040          << "' - it might create an irreducible loop!\n");
1041    return false;
1042  }
1043
1044  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1045  if (JumpThreadCost > Threshold) {
1046    DEBUG(errs() << "  Not threading BB '" << BB->getName()
1047          << "' - Cost is too high: " << JumpThreadCost << "\n");
1048    return false;
1049  }
1050
1051  // And finally, do it!
1052  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1053        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1054        << ", across block:\n    "
1055        << *BB << "\n");
1056
1057  // We are going to have to map operands from the original BB block to the new
1058  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1059  // account for entry from PredBB.
1060  DenseMap<Instruction*, Value*> ValueMapping;
1061
1062  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1063                                         BB->getName()+".thread",
1064                                         BB->getParent(), BB);
1065  NewBB->moveAfter(PredBB);
1066
1067  BasicBlock::iterator BI = BB->begin();
1068  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1069    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1070
1071  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1072  // mapping and using it to remap operands in the cloned instructions.
1073  for (; !isa<TerminatorInst>(BI); ++BI) {
1074    Instruction *New = BI->clone();
1075    New->setName(BI->getName());
1076    NewBB->getInstList().push_back(New);
1077    ValueMapping[BI] = New;
1078
1079    // Remap operands to patch up intra-block references.
1080    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1081      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1082        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1083        if (I != ValueMapping.end())
1084          New->setOperand(i, I->second);
1085      }
1086  }
1087
1088  // We didn't copy the terminator from BB over to NewBB, because there is now
1089  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1090  BranchInst::Create(SuccBB, NewBB);
1091
1092  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1093  // PHI nodes for NewBB now.
1094  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1095
1096  // If there were values defined in BB that are used outside the block, then we
1097  // now have to update all uses of the value to use either the original value,
1098  // the cloned value, or some PHI derived value.  This can require arbitrary
1099  // PHI insertion, of which we are prepared to do, clean these up now.
1100  SSAUpdater SSAUpdate;
1101  SmallVector<Use*, 16> UsesToRename;
1102  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1103    // Scan all uses of this instruction to see if it is used outside of its
1104    // block, and if so, record them in UsesToRename.
1105    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1106         ++UI) {
1107      Instruction *User = cast<Instruction>(*UI);
1108      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1109        if (UserPN->getIncomingBlock(UI) == BB)
1110          continue;
1111      } else if (User->getParent() == BB)
1112        continue;
1113
1114      UsesToRename.push_back(&UI.getUse());
1115    }
1116
1117    // If there are no uses outside the block, we're done with this instruction.
1118    if (UsesToRename.empty())
1119      continue;
1120
1121    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1122
1123    // We found a use of I outside of BB.  Rename all uses of I that are outside
1124    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1125    // with the two values we know.
1126    SSAUpdate.Initialize(I);
1127    SSAUpdate.AddAvailableValue(BB, I);
1128    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1129
1130    while (!UsesToRename.empty())
1131      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1132    DEBUG(errs() << "\n");
1133  }
1134
1135
1136  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1137  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1138  // us to simplify any PHI nodes in BB.
1139  TerminatorInst *PredTerm = PredBB->getTerminator();
1140  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1141    if (PredTerm->getSuccessor(i) == BB) {
1142      BB->removePredecessor(PredBB);
1143      PredTerm->setSuccessor(i, NewBB);
1144    }
1145
1146  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1147  // over the new instructions and zap any that are constants or dead.  This
1148  // frequently happens because of phi translation.
1149  BI = NewBB->begin();
1150  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1151    Instruction *Inst = BI++;
1152    if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
1153      Inst->replaceAllUsesWith(C);
1154      Inst->eraseFromParent();
1155      continue;
1156    }
1157
1158    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1159  }
1160
1161  // Threaded an edge!
1162  ++NumThreads;
1163  return true;
1164}
1165
1166/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1167/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1168/// If we can duplicate the contents of BB up into PredBB do so now, this
1169/// improves the odds that the branch will be on an analyzable instruction like
1170/// a compare.
1171bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1172                                                     BasicBlock *PredBB) {
1173  // If BB is a loop header, then duplicating this block outside the loop would
1174  // cause us to transform this into an irreducible loop, don't do this.
1175  // See the comments above FindLoopHeaders for justifications and caveats.
1176  if (LoopHeaders.count(BB)) {
1177    DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1178          << "' into predecessor block '" << PredBB->getName()
1179          << "' - it might create an irreducible loop!\n");
1180    return false;
1181  }
1182
1183  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1184  if (DuplicationCost > Threshold) {
1185    DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1186          << "' - Cost is too high: " << DuplicationCost << "\n");
1187    return false;
1188  }
1189
1190  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1191  // of PredBB.
1192  DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1193        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1194        << DuplicationCost << " block is:" << *BB << "\n");
1195
1196  // We are going to have to map operands from the original BB block into the
1197  // PredBB block.  Evaluate PHI nodes in BB.
1198  DenseMap<Instruction*, Value*> ValueMapping;
1199
1200  BasicBlock::iterator BI = BB->begin();
1201  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1202    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1203
1204  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1205
1206  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1207  // mapping and using it to remap operands in the cloned instructions.
1208  for (; BI != BB->end(); ++BI) {
1209    Instruction *New = BI->clone();
1210    New->setName(BI->getName());
1211    PredBB->getInstList().insert(OldPredBranch, New);
1212    ValueMapping[BI] = New;
1213
1214    // Remap operands to patch up intra-block references.
1215    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1216      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1217        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1218        if (I != ValueMapping.end())
1219          New->setOperand(i, I->second);
1220      }
1221  }
1222
1223  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1224  // add entries to the PHI nodes for branch from PredBB now.
1225  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1226  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1227                                  ValueMapping);
1228  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1229                                  ValueMapping);
1230
1231  // If there were values defined in BB that are used outside the block, then we
1232  // now have to update all uses of the value to use either the original value,
1233  // the cloned value, or some PHI derived value.  This can require arbitrary
1234  // PHI insertion, of which we are prepared to do, clean these up now.
1235  SSAUpdater SSAUpdate;
1236  SmallVector<Use*, 16> UsesToRename;
1237  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1238    // Scan all uses of this instruction to see if it is used outside of its
1239    // block, and if so, record them in UsesToRename.
1240    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1241         ++UI) {
1242      Instruction *User = cast<Instruction>(*UI);
1243      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1244        if (UserPN->getIncomingBlock(UI) == BB)
1245          continue;
1246      } else if (User->getParent() == BB)
1247        continue;
1248
1249      UsesToRename.push_back(&UI.getUse());
1250    }
1251
1252    // If there are no uses outside the block, we're done with this instruction.
1253    if (UsesToRename.empty())
1254      continue;
1255
1256    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1257
1258    // We found a use of I outside of BB.  Rename all uses of I that are outside
1259    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1260    // with the two values we know.
1261    SSAUpdate.Initialize(I);
1262    SSAUpdate.AddAvailableValue(BB, I);
1263    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1264
1265    while (!UsesToRename.empty())
1266      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1267    DEBUG(errs() << "\n");
1268  }
1269
1270  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1271  // that we nuked.
1272  BB->removePredecessor(PredBB);
1273
1274  // Remove the unconditional branch at the end of the PredBB block.
1275  OldPredBranch->eraseFromParent();
1276
1277  ++NumDupes;
1278  return true;
1279}
1280
1281
1282