JumpThreading.cpp revision 5660846f15847e540066ae320a4adef7357d597d
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include "llvm/Transforms/Utils/Local.h"
23#include "llvm/Transforms/Utils/SSAUpdater.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33#include "llvm/Support/raw_ostream.h"
34using namespace llvm;
35
36STATISTIC(NumThreads, "Number of jumps threaded");
37STATISTIC(NumFolds,   "Number of terminators folded");
38STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
39
40static cl::opt<unsigned>
41Threshold("jump-threading-threshold",
42          cl::desc("Max block size to duplicate for jump threading"),
43          cl::init(6), cl::Hidden);
44
45// Turn on use of LazyValueInfo.
46static cl::opt<bool>
47EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
48
49
50
51namespace {
52  /// This pass performs 'jump threading', which looks at blocks that have
53  /// multiple predecessors and multiple successors.  If one or more of the
54  /// predecessors of the block can be proven to always jump to one of the
55  /// successors, we forward the edge from the predecessor to the successor by
56  /// duplicating the contents of this block.
57  ///
58  /// An example of when this can occur is code like this:
59  ///
60  ///   if () { ...
61  ///     X = 4;
62  ///   }
63  ///   if (X < 3) {
64  ///
65  /// In this case, the unconditional branch at the end of the first if can be
66  /// revectored to the false side of the second if.
67  ///
68  class JumpThreading : public FunctionPass {
69    TargetData *TD;
70    LazyValueInfo *LVI;
71#ifdef NDEBUG
72    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
73#else
74    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
75#endif
76  public:
77    static char ID; // Pass identification
78    JumpThreading() : FunctionPass(&ID) {}
79
80    bool runOnFunction(Function &F);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      if (EnableLVI)
84        AU.addRequired<LazyValueInfo>();
85    }
86
87    void FindLoopHeaders(Function &F);
88    bool ProcessBlock(BasicBlock *BB);
89    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
90                    BasicBlock *SuccBB);
91    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
92                                          BasicBlock *PredBB);
93
94    typedef SmallVectorImpl<std::pair<ConstantInt*,
95                                      BasicBlock*> > PredValueInfo;
96
97    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
98                                         PredValueInfo &Result);
99    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
100
101
102    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
104
105    bool ProcessJumpOnPHI(PHINode *PN);
106
107    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
108  };
109}
110
111char JumpThreading::ID = 0;
112static RegisterPass<JumpThreading>
113X("jump-threading", "Jump Threading");
114
115// Public interface to the Jump Threading pass
116FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
117
118/// runOnFunction - Top level algorithm.
119///
120bool JumpThreading::runOnFunction(Function &F) {
121  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
122  TD = getAnalysisIfAvailable<TargetData>();
123  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
124
125  FindLoopHeaders(F);
126
127  bool AnotherIteration = true, EverChanged = false;
128  while (AnotherIteration) {
129    AnotherIteration = false;
130    bool Changed = false;
131    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
132      BasicBlock *BB = I;
133      // Thread all of the branches we can over this block.
134      while (ProcessBlock(BB))
135        Changed = true;
136
137      ++I;
138
139      // If the block is trivially dead, zap it.  This eliminates the successor
140      // edges which simplifies the CFG.
141      if (pred_begin(BB) == pred_end(BB) &&
142          BB != &BB->getParent()->getEntryBlock()) {
143        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
144              << "' with terminator: " << *BB->getTerminator() << '\n');
145        LoopHeaders.erase(BB);
146        DeleteDeadBlock(BB);
147        Changed = true;
148      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
149        // Can't thread an unconditional jump, but if the block is "almost
150        // empty", we can replace uses of it with uses of the successor and make
151        // this dead.
152        if (BI->isUnconditional() &&
153            BB != &BB->getParent()->getEntryBlock()) {
154          BasicBlock::iterator BBI = BB->getFirstNonPHI();
155          // Ignore dbg intrinsics.
156          while (isa<DbgInfoIntrinsic>(BBI))
157            ++BBI;
158          // If the terminator is the only non-phi instruction, try to nuke it.
159          if (BBI->isTerminator()) {
160            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
161            // block, we have to make sure it isn't in the LoopHeaders set.  We
162            // reinsert afterward if needed.
163            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
164            BasicBlock *Succ = BI->getSuccessor(0);
165
166            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
167              Changed = true;
168              // If we deleted BB and BB was the header of a loop, then the
169              // successor is now the header of the loop.
170              BB = Succ;
171            }
172
173            if (ErasedFromLoopHeaders)
174              LoopHeaders.insert(BB);
175          }
176        }
177      }
178    }
179    AnotherIteration = Changed;
180    EverChanged |= Changed;
181  }
182
183  LoopHeaders.clear();
184  return EverChanged;
185}
186
187/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
188/// thread across it.
189static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
190  /// Ignore PHI nodes, these will be flattened when duplication happens.
191  BasicBlock::const_iterator I = BB->getFirstNonPHI();
192
193  // FIXME: THREADING will delete values that are just used to compute the
194  // branch, so they shouldn't count against the duplication cost.
195
196
197  // Sum up the cost of each instruction until we get to the terminator.  Don't
198  // include the terminator because the copy won't include it.
199  unsigned Size = 0;
200  for (; !isa<TerminatorInst>(I); ++I) {
201    // Debugger intrinsics don't incur code size.
202    if (isa<DbgInfoIntrinsic>(I)) continue;
203
204    // If this is a pointer->pointer bitcast, it is free.
205    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
206      continue;
207
208    // All other instructions count for at least one unit.
209    ++Size;
210
211    // Calls are more expensive.  If they are non-intrinsic calls, we model them
212    // as having cost of 4.  If they are a non-vector intrinsic, we model them
213    // as having cost of 2 total, and if they are a vector intrinsic, we model
214    // them as having cost 1.
215    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
216      if (!isa<IntrinsicInst>(CI))
217        Size += 3;
218      else if (!isa<VectorType>(CI->getType()))
219        Size += 1;
220    }
221  }
222
223  // Threading through a switch statement is particularly profitable.  If this
224  // block ends in a switch, decrease its cost to make it more likely to happen.
225  if (isa<SwitchInst>(I))
226    Size = Size > 6 ? Size-6 : 0;
227
228  return Size;
229}
230
231/// FindLoopHeaders - We do not want jump threading to turn proper loop
232/// structures into irreducible loops.  Doing this breaks up the loop nesting
233/// hierarchy and pessimizes later transformations.  To prevent this from
234/// happening, we first have to find the loop headers.  Here we approximate this
235/// by finding targets of backedges in the CFG.
236///
237/// Note that there definitely are cases when we want to allow threading of
238/// edges across a loop header.  For example, threading a jump from outside the
239/// loop (the preheader) to an exit block of the loop is definitely profitable.
240/// It is also almost always profitable to thread backedges from within the loop
241/// to exit blocks, and is often profitable to thread backedges to other blocks
242/// within the loop (forming a nested loop).  This simple analysis is not rich
243/// enough to track all of these properties and keep it up-to-date as the CFG
244/// mutates, so we don't allow any of these transformations.
245///
246void JumpThreading::FindLoopHeaders(Function &F) {
247  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
248  FindFunctionBackedges(F, Edges);
249
250  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
251    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
252}
253
254/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
255/// if we can infer that the value is a known ConstantInt in any of our
256/// predecessors.  If so, return the known list of value and pred BB in the
257/// result vector.  If a value is known to be undef, it is returned as null.
258///
259/// This returns true if there were any known values.
260///
261bool JumpThreading::
262ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
263  // If V is a constantint, then it is known in all predecessors.
264  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
265    ConstantInt *CI = dyn_cast<ConstantInt>(V);
266
267    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
268      Result.push_back(std::make_pair(CI, *PI));
269    return true;
270  }
271
272  // If V is a non-instruction value, or an instruction in a different block,
273  // then it can't be derived from a PHI.
274  Instruction *I = dyn_cast<Instruction>(V);
275  if (I == 0 || I->getParent() != BB) {
276
277    // Okay, if this is a live-in value, see if it has a known value at the end
278    // of any of our predecessors.
279    //
280    // FIXME: This should be an edge property, not a block end property.
281    /// TODO: Per PR2563, we could infer value range information about a
282    /// predecessor based on its terminator.
283    //
284    if (LVI) {
285      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
286      // "I" is a non-local compare-with-a-constant instruction.  This would be
287      // able to handle value inequalities better, for example if the compare is
288      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
289      // Perhaps getConstantOnEdge should be smart enough to do this?
290
291      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
292        // If the value is known by LazyValueInfo to be a constant in a
293        // predecessor, use that information to try to thread this block.
294        Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
295        if (PredCst == 0 ||
296            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
297          continue;
298
299        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
300      }
301
302      return !Result.empty();
303    }
304
305    return false;
306  }
307
308  /// If I is a PHI node, then we know the incoming values for any constants.
309  if (PHINode *PN = dyn_cast<PHINode>(I)) {
310    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
311      Value *InVal = PN->getIncomingValue(i);
312      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
313        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
314        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
315      }
316    }
317    return !Result.empty();
318  }
319
320  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
321
322  // Handle some boolean conditions.
323  if (I->getType()->getPrimitiveSizeInBits() == 1) {
324    // X | true -> true
325    // X & false -> false
326    if (I->getOpcode() == Instruction::Or ||
327        I->getOpcode() == Instruction::And) {
328      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
329      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
330
331      if (LHSVals.empty() && RHSVals.empty())
332        return false;
333
334      ConstantInt *InterestingVal;
335      if (I->getOpcode() == Instruction::Or)
336        InterestingVal = ConstantInt::getTrue(I->getContext());
337      else
338        InterestingVal = ConstantInt::getFalse(I->getContext());
339
340      // Scan for the sentinel.
341      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
342        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
343          Result.push_back(LHSVals[i]);
344      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
345        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
346          Result.push_back(RHSVals[i]);
347      return !Result.empty();
348    }
349
350    // Handle the NOT form of XOR.
351    if (I->getOpcode() == Instruction::Xor &&
352        isa<ConstantInt>(I->getOperand(1)) &&
353        cast<ConstantInt>(I->getOperand(1))->isOne()) {
354      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
355      if (Result.empty())
356        return false;
357
358      // Invert the known values.
359      for (unsigned i = 0, e = Result.size(); i != e; ++i)
360        if (Result[i].first)
361          Result[i].first =
362            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
363      return true;
364    }
365  }
366
367  // Handle compare with phi operand, where the PHI is defined in this block.
368  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
369    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
370    if (PN && PN->getParent() == BB) {
371      // We can do this simplification if any comparisons fold to true or false.
372      // See if any do.
373      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
374        BasicBlock *PredBB = PN->getIncomingBlock(i);
375        Value *LHS = PN->getIncomingValue(i);
376        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
377
378        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
379        if (Res == 0) {
380          if (!LVI || !isa<Constant>(RHS))
381            continue;
382
383          LazyValueInfo::Tristate
384            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
385                                           cast<Constant>(RHS), PredBB, BB);
386          if (ResT == LazyValueInfo::Unknown)
387            continue;
388          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
389        }
390
391        if (isa<UndefValue>(Res))
392          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
393        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
394          Result.push_back(std::make_pair(CI, PredBB));
395      }
396
397      return !Result.empty();
398    }
399
400
401    // If comparing a live-in value against a constant, see if we know the
402    // live-in value on any predecessors.
403    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
404        Cmp->getType()->isInteger() && // Not vector compare.
405        (!isa<Instruction>(Cmp->getOperand(0)) ||
406         cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
407      Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
408
409      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
410        // If the value is known by LazyValueInfo to be a constant in a
411        // predecessor, use that information to try to thread this block.
412        LazyValueInfo::Tristate
413          Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
414                                        RHSCst, *PI, BB);
415        if (Res == LazyValueInfo::Unknown)
416          continue;
417
418        Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
419        Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
420      }
421
422      return !Result.empty();
423    }
424  }
425  return false;
426}
427
428
429
430/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
431/// in an undefined jump, decide which block is best to revector to.
432///
433/// Since we can pick an arbitrary destination, we pick the successor with the
434/// fewest predecessors.  This should reduce the in-degree of the others.
435///
436static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
437  TerminatorInst *BBTerm = BB->getTerminator();
438  unsigned MinSucc = 0;
439  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
440  // Compute the successor with the minimum number of predecessors.
441  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
442  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
443    TestBB = BBTerm->getSuccessor(i);
444    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
445    if (NumPreds < MinNumPreds)
446      MinSucc = i;
447  }
448
449  return MinSucc;
450}
451
452/// ProcessBlock - If there are any predecessors whose control can be threaded
453/// through to a successor, transform them now.
454bool JumpThreading::ProcessBlock(BasicBlock *BB) {
455  // If this block has a single predecessor, and if that pred has a single
456  // successor, merge the blocks.  This encourages recursive jump threading
457  // because now the condition in this block can be threaded through
458  // predecessors of our predecessor block.
459  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
460    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
461        SinglePred != BB) {
462      // If SinglePred was a loop header, BB becomes one.
463      if (LoopHeaders.erase(SinglePred))
464        LoopHeaders.insert(BB);
465
466      // Remember if SinglePred was the entry block of the function.  If so, we
467      // will need to move BB back to the entry position.
468      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
469      MergeBasicBlockIntoOnlyPred(BB);
470
471      if (isEntry && BB != &BB->getParent()->getEntryBlock())
472        BB->moveBefore(&BB->getParent()->getEntryBlock());
473      return true;
474    }
475  }
476
477  // Look to see if the terminator is a branch of switch, if not we can't thread
478  // it.
479  Value *Condition;
480  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
481    // Can't thread an unconditional jump.
482    if (BI->isUnconditional()) return false;
483    Condition = BI->getCondition();
484  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
485    Condition = SI->getCondition();
486  else
487    return false; // Must be an invoke.
488
489  // If the terminator of this block is branching on a constant, simplify the
490  // terminator to an unconditional branch.  This can occur due to threading in
491  // other blocks.
492  if (isa<ConstantInt>(Condition)) {
493    DEBUG(errs() << "  In block '" << BB->getName()
494          << "' folding terminator: " << *BB->getTerminator() << '\n');
495    ++NumFolds;
496    ConstantFoldTerminator(BB);
497    return true;
498  }
499
500  // If the terminator is branching on an undef, we can pick any of the
501  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
502  if (isa<UndefValue>(Condition)) {
503    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
504
505    // Fold the branch/switch.
506    TerminatorInst *BBTerm = BB->getTerminator();
507    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
508      if (i == BestSucc) continue;
509      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
510    }
511
512    DEBUG(errs() << "  In block '" << BB->getName()
513          << "' folding undef terminator: " << *BBTerm << '\n');
514    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
515    BBTerm->eraseFromParent();
516    return true;
517  }
518
519  Instruction *CondInst = dyn_cast<Instruction>(Condition);
520
521  // If the condition is an instruction defined in another block, see if a
522  // predecessor has the same condition:
523  //     br COND, BBX, BBY
524  //  BBX:
525  //     br COND, BBZ, BBW
526  if (!LVI &&
527      !Condition->hasOneUse() && // Multiple uses.
528      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
529    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
530    if (isa<BranchInst>(BB->getTerminator())) {
531      for (; PI != E; ++PI)
532        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
533          if (PBI->isConditional() && PBI->getCondition() == Condition &&
534              ProcessBranchOnDuplicateCond(*PI, BB))
535            return true;
536    } else {
537      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
538      for (; PI != E; ++PI)
539        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
540          if (PSI->getCondition() == Condition &&
541              ProcessSwitchOnDuplicateCond(*PI, BB))
542            return true;
543    }
544  }
545
546  // All the rest of our checks depend on the condition being an instruction.
547  if (CondInst == 0) {
548    // FIXME: Unify this with code below.
549    if (LVI && ProcessThreadableEdges(Condition, BB))
550      return true;
551    return false;
552  }
553
554
555  // See if this is a phi node in the current block.
556  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
557    if (PN->getParent() == BB)
558      return ProcessJumpOnPHI(PN);
559
560  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
561    if (!LVI &&
562        (!isa<PHINode>(CondCmp->getOperand(0)) ||
563         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
564      // If we have a comparison, loop over the predecessors to see if there is
565      // a condition with a lexically identical value.
566      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
567      for (; PI != E; ++PI)
568        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
569          if (PBI->isConditional() && *PI != BB) {
570            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
571              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
572                  CI->getOperand(1) == CondCmp->getOperand(1) &&
573                  CI->getPredicate() == CondCmp->getPredicate()) {
574                // TODO: Could handle things like (x != 4) --> (x == 17)
575                if (ProcessBranchOnDuplicateCond(*PI, BB))
576                  return true;
577              }
578            }
579          }
580    }
581  }
582
583  // Check for some cases that are worth simplifying.  Right now we want to look
584  // for loads that are used by a switch or by the condition for the branch.  If
585  // we see one, check to see if it's partially redundant.  If so, insert a PHI
586  // which can then be used to thread the values.
587  //
588  // This is particularly important because reg2mem inserts loads and stores all
589  // over the place, and this blocks jump threading if we don't zap them.
590  Value *SimplifyValue = CondInst;
591  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
592    if (isa<Constant>(CondCmp->getOperand(1)))
593      SimplifyValue = CondCmp->getOperand(0);
594
595  // TODO: There are other places where load PRE would be profitable, such as
596  // more complex comparisons.
597  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
598    if (SimplifyPartiallyRedundantLoad(LI))
599      return true;
600
601
602  // Handle a variety of cases where we are branching on something derived from
603  // a PHI node in the current block.  If we can prove that any predecessors
604  // compute a predictable value based on a PHI node, thread those predecessors.
605  //
606  if (ProcessThreadableEdges(CondInst, BB))
607    return true;
608
609
610  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
611  // "(X == 4)" thread through this block.
612
613  return false;
614}
615
616/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
617/// block that jump on exactly the same condition.  This means that we almost
618/// always know the direction of the edge in the DESTBB:
619///  PREDBB:
620///     br COND, DESTBB, BBY
621///  DESTBB:
622///     br COND, BBZ, BBW
623///
624/// If DESTBB has multiple predecessors, we can't just constant fold the branch
625/// in DESTBB, we have to thread over it.
626bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
627                                                 BasicBlock *BB) {
628  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
629
630  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
631  // fold the branch to an unconditional one, which allows other recursive
632  // simplifications.
633  bool BranchDir;
634  if (PredBI->getSuccessor(1) != BB)
635    BranchDir = true;
636  else if (PredBI->getSuccessor(0) != BB)
637    BranchDir = false;
638  else {
639    DEBUG(errs() << "  In block '" << PredBB->getName()
640          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
641    ++NumFolds;
642    ConstantFoldTerminator(PredBB);
643    return true;
644  }
645
646  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
647
648  // If the dest block has one predecessor, just fix the branch condition to a
649  // constant and fold it.
650  if (BB->getSinglePredecessor()) {
651    DEBUG(errs() << "  In block '" << BB->getName()
652          << "' folding condition to '" << BranchDir << "': "
653          << *BB->getTerminator() << '\n');
654    ++NumFolds;
655    Value *OldCond = DestBI->getCondition();
656    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
657                                          BranchDir));
658    ConstantFoldTerminator(BB);
659    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
660    return true;
661  }
662
663
664  // Next, figure out which successor we are threading to.
665  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
666
667  SmallVector<BasicBlock*, 2> Preds;
668  Preds.push_back(PredBB);
669
670  // Ok, try to thread it!
671  return ThreadEdge(BB, Preds, SuccBB);
672}
673
674/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
675/// block that switch on exactly the same condition.  This means that we almost
676/// always know the direction of the edge in the DESTBB:
677///  PREDBB:
678///     switch COND [... DESTBB, BBY ... ]
679///  DESTBB:
680///     switch COND [... BBZ, BBW ]
681///
682/// Optimizing switches like this is very important, because simplifycfg builds
683/// switches out of repeated 'if' conditions.
684bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
685                                                 BasicBlock *DestBB) {
686  // Can't thread edge to self.
687  if (PredBB == DestBB)
688    return false;
689
690  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
691  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
692
693  // There are a variety of optimizations that we can potentially do on these
694  // blocks: we order them from most to least preferable.
695
696  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
697  // directly to their destination.  This does not introduce *any* code size
698  // growth.  Skip debug info first.
699  BasicBlock::iterator BBI = DestBB->begin();
700  while (isa<DbgInfoIntrinsic>(BBI))
701    BBI++;
702
703  // FIXME: Thread if it just contains a PHI.
704  if (isa<SwitchInst>(BBI)) {
705    bool MadeChange = false;
706    // Ignore the default edge for now.
707    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
708      ConstantInt *DestVal = DestSI->getCaseValue(i);
709      BasicBlock *DestSucc = DestSI->getSuccessor(i);
710
711      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
712      // PredSI has an explicit case for it.  If so, forward.  If it is covered
713      // by the default case, we can't update PredSI.
714      unsigned PredCase = PredSI->findCaseValue(DestVal);
715      if (PredCase == 0) continue;
716
717      // If PredSI doesn't go to DestBB on this value, then it won't reach the
718      // case on this condition.
719      if (PredSI->getSuccessor(PredCase) != DestBB &&
720          DestSI->getSuccessor(i) != DestBB)
721        continue;
722
723      // Do not forward this if it already goes to this destination, this would
724      // be an infinite loop.
725      if (PredSI->getSuccessor(PredCase) == DestSucc)
726        continue;
727
728      // Otherwise, we're safe to make the change.  Make sure that the edge from
729      // DestSI to DestSucc is not critical and has no PHI nodes.
730      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
731      DEBUG(errs() << "THROUGH: " << *DestSI);
732
733      // If the destination has PHI nodes, just split the edge for updating
734      // simplicity.
735      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
736        SplitCriticalEdge(DestSI, i, this);
737        DestSucc = DestSI->getSuccessor(i);
738      }
739      FoldSingleEntryPHINodes(DestSucc);
740      PredSI->setSuccessor(PredCase, DestSucc);
741      MadeChange = true;
742    }
743
744    if (MadeChange)
745      return true;
746  }
747
748  return false;
749}
750
751
752/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
753/// load instruction, eliminate it by replacing it with a PHI node.  This is an
754/// important optimization that encourages jump threading, and needs to be run
755/// interlaced with other jump threading tasks.
756bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
757  // Don't hack volatile loads.
758  if (LI->isVolatile()) return false;
759
760  // If the load is defined in a block with exactly one predecessor, it can't be
761  // partially redundant.
762  BasicBlock *LoadBB = LI->getParent();
763  if (LoadBB->getSinglePredecessor())
764    return false;
765
766  Value *LoadedPtr = LI->getOperand(0);
767
768  // If the loaded operand is defined in the LoadBB, it can't be available.
769  // TODO: Could do simple PHI translation, that would be fun :)
770  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
771    if (PtrOp->getParent() == LoadBB)
772      return false;
773
774  // Scan a few instructions up from the load, to see if it is obviously live at
775  // the entry to its block.
776  BasicBlock::iterator BBIt = LI;
777
778  if (Value *AvailableVal =
779        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
780    // If the value if the load is locally available within the block, just use
781    // it.  This frequently occurs for reg2mem'd allocas.
782    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
783
784    // If the returned value is the load itself, replace with an undef. This can
785    // only happen in dead loops.
786    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
787    LI->replaceAllUsesWith(AvailableVal);
788    LI->eraseFromParent();
789    return true;
790  }
791
792  // Otherwise, if we scanned the whole block and got to the top of the block,
793  // we know the block is locally transparent to the load.  If not, something
794  // might clobber its value.
795  if (BBIt != LoadBB->begin())
796    return false;
797
798
799  SmallPtrSet<BasicBlock*, 8> PredsScanned;
800  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
801  AvailablePredsTy AvailablePreds;
802  BasicBlock *OneUnavailablePred = 0;
803
804  // If we got here, the loaded value is transparent through to the start of the
805  // block.  Check to see if it is available in any of the predecessor blocks.
806  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
807       PI != PE; ++PI) {
808    BasicBlock *PredBB = *PI;
809
810    // If we already scanned this predecessor, skip it.
811    if (!PredsScanned.insert(PredBB))
812      continue;
813
814    // Scan the predecessor to see if the value is available in the pred.
815    BBIt = PredBB->end();
816    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
817    if (!PredAvailable) {
818      OneUnavailablePred = PredBB;
819      continue;
820    }
821
822    // If so, this load is partially redundant.  Remember this info so that we
823    // can create a PHI node.
824    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
825  }
826
827  // If the loaded value isn't available in any predecessor, it isn't partially
828  // redundant.
829  if (AvailablePreds.empty()) return false;
830
831  // Okay, the loaded value is available in at least one (and maybe all!)
832  // predecessors.  If the value is unavailable in more than one unique
833  // predecessor, we want to insert a merge block for those common predecessors.
834  // This ensures that we only have to insert one reload, thus not increasing
835  // code size.
836  BasicBlock *UnavailablePred = 0;
837
838  // If there is exactly one predecessor where the value is unavailable, the
839  // already computed 'OneUnavailablePred' block is it.  If it ends in an
840  // unconditional branch, we know that it isn't a critical edge.
841  if (PredsScanned.size() == AvailablePreds.size()+1 &&
842      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
843    UnavailablePred = OneUnavailablePred;
844  } else if (PredsScanned.size() != AvailablePreds.size()) {
845    // Otherwise, we had multiple unavailable predecessors or we had a critical
846    // edge from the one.
847    SmallVector<BasicBlock*, 8> PredsToSplit;
848    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
849
850    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
851      AvailablePredSet.insert(AvailablePreds[i].first);
852
853    // Add all the unavailable predecessors to the PredsToSplit list.
854    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
855         PI != PE; ++PI)
856      if (!AvailablePredSet.count(*PI))
857        PredsToSplit.push_back(*PI);
858
859    // Split them out to their own block.
860    UnavailablePred =
861      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
862                             "thread-pre-split", this);
863  }
864
865  // If the value isn't available in all predecessors, then there will be
866  // exactly one where it isn't available.  Insert a load on that edge and add
867  // it to the AvailablePreds list.
868  if (UnavailablePred) {
869    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
870           "Can't handle critical edge here!");
871    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
872                                 LI->getAlignment(),
873                                 UnavailablePred->getTerminator());
874    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
875  }
876
877  // Now we know that each predecessor of this block has a value in
878  // AvailablePreds, sort them for efficient access as we're walking the preds.
879  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
880
881  // Create a PHI node at the start of the block for the PRE'd load value.
882  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
883  PN->takeName(LI);
884
885  // Insert new entries into the PHI for each predecessor.  A single block may
886  // have multiple entries here.
887  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
888       ++PI) {
889    AvailablePredsTy::iterator I =
890      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
891                       std::make_pair(*PI, (Value*)0));
892
893    assert(I != AvailablePreds.end() && I->first == *PI &&
894           "Didn't find entry for predecessor!");
895
896    PN->addIncoming(I->second, I->first);
897  }
898
899  //cerr << "PRE: " << *LI << *PN << "\n";
900
901  LI->replaceAllUsesWith(PN);
902  LI->eraseFromParent();
903
904  return true;
905}
906
907/// FindMostPopularDest - The specified list contains multiple possible
908/// threadable destinations.  Pick the one that occurs the most frequently in
909/// the list.
910static BasicBlock *
911FindMostPopularDest(BasicBlock *BB,
912                    const SmallVectorImpl<std::pair<BasicBlock*,
913                                  BasicBlock*> > &PredToDestList) {
914  assert(!PredToDestList.empty());
915
916  // Determine popularity.  If there are multiple possible destinations, we
917  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
918  // blocks with known and real destinations to threading undef.  We'll handle
919  // them later if interesting.
920  DenseMap<BasicBlock*, unsigned> DestPopularity;
921  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
922    if (PredToDestList[i].second)
923      DestPopularity[PredToDestList[i].second]++;
924
925  // Find the most popular dest.
926  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
927  BasicBlock *MostPopularDest = DPI->first;
928  unsigned Popularity = DPI->second;
929  SmallVector<BasicBlock*, 4> SamePopularity;
930
931  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
932    // If the popularity of this entry isn't higher than the popularity we've
933    // seen so far, ignore it.
934    if (DPI->second < Popularity)
935      ; // ignore.
936    else if (DPI->second == Popularity) {
937      // If it is the same as what we've seen so far, keep track of it.
938      SamePopularity.push_back(DPI->first);
939    } else {
940      // If it is more popular, remember it.
941      SamePopularity.clear();
942      MostPopularDest = DPI->first;
943      Popularity = DPI->second;
944    }
945  }
946
947  // Okay, now we know the most popular destination.  If there is more than
948  // destination, we need to determine one.  This is arbitrary, but we need
949  // to make a deterministic decision.  Pick the first one that appears in the
950  // successor list.
951  if (!SamePopularity.empty()) {
952    SamePopularity.push_back(MostPopularDest);
953    TerminatorInst *TI = BB->getTerminator();
954    for (unsigned i = 0; ; ++i) {
955      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
956
957      if (std::find(SamePopularity.begin(), SamePopularity.end(),
958                    TI->getSuccessor(i)) == SamePopularity.end())
959        continue;
960
961      MostPopularDest = TI->getSuccessor(i);
962      break;
963    }
964  }
965
966  // Okay, we have finally picked the most popular destination.
967  return MostPopularDest;
968}
969
970bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
971  // If threading this would thread across a loop header, don't even try to
972  // thread the edge.
973  if (LoopHeaders.count(BB))
974    return false;
975
976  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
977  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
978    return false;
979  assert(!PredValues.empty() &&
980         "ComputeValueKnownInPredecessors returned true with no values");
981
982  DEBUG(errs() << "IN BB: " << *BB;
983        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
984          errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
985          if (PredValues[i].first)
986            errs() << *PredValues[i].first;
987          else
988            errs() << "UNDEF";
989          errs() << " for pred '" << PredValues[i].second->getName()
990          << "'.\n";
991        });
992
993  // Decide what we want to thread through.  Convert our list of known values to
994  // a list of known destinations for each pred.  This also discards duplicate
995  // predecessors and keeps track of the undefined inputs (which are represented
996  // as a null dest in the PredToDestList).
997  SmallPtrSet<BasicBlock*, 16> SeenPreds;
998  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
999
1000  BasicBlock *OnlyDest = 0;
1001  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1002
1003  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1004    BasicBlock *Pred = PredValues[i].second;
1005    if (!SeenPreds.insert(Pred))
1006      continue;  // Duplicate predecessor entry.
1007
1008    // If the predecessor ends with an indirect goto, we can't change its
1009    // destination.
1010    if (isa<IndirectBrInst>(Pred->getTerminator()))
1011      continue;
1012
1013    ConstantInt *Val = PredValues[i].first;
1014
1015    BasicBlock *DestBB;
1016    if (Val == 0)      // Undef.
1017      DestBB = 0;
1018    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1019      DestBB = BI->getSuccessor(Val->isZero());
1020    else {
1021      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1022      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1023    }
1024
1025    // If we have exactly one destination, remember it for efficiency below.
1026    if (i == 0)
1027      OnlyDest = DestBB;
1028    else if (OnlyDest != DestBB)
1029      OnlyDest = MultipleDestSentinel;
1030
1031    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1032  }
1033
1034  // If all edges were unthreadable, we fail.
1035  if (PredToDestList.empty())
1036    return false;
1037
1038  // Determine which is the most common successor.  If we have many inputs and
1039  // this block is a switch, we want to start by threading the batch that goes
1040  // to the most popular destination first.  If we only know about one
1041  // threadable destination (the common case) we can avoid this.
1042  BasicBlock *MostPopularDest = OnlyDest;
1043
1044  if (MostPopularDest == MultipleDestSentinel)
1045    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1046
1047  // Now that we know what the most popular destination is, factor all
1048  // predecessors that will jump to it into a single predecessor.
1049  SmallVector<BasicBlock*, 16> PredsToFactor;
1050  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1051    if (PredToDestList[i].second == MostPopularDest) {
1052      BasicBlock *Pred = PredToDestList[i].first;
1053
1054      // This predecessor may be a switch or something else that has multiple
1055      // edges to the block.  Factor each of these edges by listing them
1056      // according to # occurrences in PredsToFactor.
1057      TerminatorInst *PredTI = Pred->getTerminator();
1058      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1059        if (PredTI->getSuccessor(i) == BB)
1060          PredsToFactor.push_back(Pred);
1061    }
1062
1063  // If the threadable edges are branching on an undefined value, we get to pick
1064  // the destination that these predecessors should get to.
1065  if (MostPopularDest == 0)
1066    MostPopularDest = BB->getTerminator()->
1067                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1068
1069  // Ok, try to thread it!
1070  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1071}
1072
1073/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1074/// the current block.  See if there are any simplifications we can do based on
1075/// inputs to the phi node.
1076///
1077bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1078  BasicBlock *BB = PN->getParent();
1079
1080  // If any of the predecessor blocks end in an unconditional branch, we can
1081  // *duplicate* the jump into that block in order to further encourage jump
1082  // threading and to eliminate cases where we have branch on a phi of an icmp
1083  // (branch on icmp is much better).
1084
1085  // We don't want to do this tranformation for switches, because we don't
1086  // really want to duplicate a switch.
1087  if (isa<SwitchInst>(BB->getTerminator()))
1088    return false;
1089
1090  // Look for unconditional branch predecessors.
1091  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1092    BasicBlock *PredBB = PN->getIncomingBlock(i);
1093    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1094      if (PredBr->isUnconditional() &&
1095          // Try to duplicate BB into PredBB.
1096          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1097        return true;
1098  }
1099
1100  return false;
1101}
1102
1103
1104/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1105/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1106/// NewPred using the entries from OldPred (suitably mapped).
1107static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1108                                            BasicBlock *OldPred,
1109                                            BasicBlock *NewPred,
1110                                     DenseMap<Instruction*, Value*> &ValueMap) {
1111  for (BasicBlock::iterator PNI = PHIBB->begin();
1112       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1113    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1114    // DestBlock.
1115    Value *IV = PN->getIncomingValueForBlock(OldPred);
1116
1117    // Remap the value if necessary.
1118    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1119      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1120      if (I != ValueMap.end())
1121        IV = I->second;
1122    }
1123
1124    PN->addIncoming(IV, NewPred);
1125  }
1126}
1127
1128/// ThreadEdge - We have decided that it is safe and profitable to factor the
1129/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1130/// across BB.  Transform the IR to reflect this change.
1131bool JumpThreading::ThreadEdge(BasicBlock *BB,
1132                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1133                               BasicBlock *SuccBB) {
1134  // If threading to the same block as we come from, we would infinite loop.
1135  if (SuccBB == BB) {
1136    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1137          << "' - would thread to self!\n");
1138    return false;
1139  }
1140
1141  // If threading this would thread across a loop header, don't thread the edge.
1142  // See the comments above FindLoopHeaders for justifications and caveats.
1143  if (LoopHeaders.count(BB)) {
1144    DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1145          << "' to dest BB '" << SuccBB->getName()
1146          << "' - it might create an irreducible loop!\n");
1147    return false;
1148  }
1149
1150  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1151  if (JumpThreadCost > Threshold) {
1152    DEBUG(errs() << "  Not threading BB '" << BB->getName()
1153          << "' - Cost is too high: " << JumpThreadCost << "\n");
1154    return false;
1155  }
1156
1157  // And finally, do it!  Start by factoring the predecessors is needed.
1158  BasicBlock *PredBB;
1159  if (PredBBs.size() == 1)
1160    PredBB = PredBBs[0];
1161  else {
1162    DEBUG(errs() << "  Factoring out " << PredBBs.size()
1163          << " common predecessors.\n");
1164    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1165                                    ".thr_comm", this);
1166  }
1167
1168  // And finally, do it!
1169  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1170        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1171        << ", across block:\n    "
1172        << *BB << "\n");
1173
1174  // We are going to have to map operands from the original BB block to the new
1175  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1176  // account for entry from PredBB.
1177  DenseMap<Instruction*, Value*> ValueMapping;
1178
1179  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1180                                         BB->getName()+".thread",
1181                                         BB->getParent(), BB);
1182  NewBB->moveAfter(PredBB);
1183
1184  BasicBlock::iterator BI = BB->begin();
1185  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1186    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1187
1188  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1189  // mapping and using it to remap operands in the cloned instructions.
1190  for (; !isa<TerminatorInst>(BI); ++BI) {
1191    Instruction *New = BI->clone();
1192    New->setName(BI->getName());
1193    NewBB->getInstList().push_back(New);
1194    ValueMapping[BI] = New;
1195
1196    // Remap operands to patch up intra-block references.
1197    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1198      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1199        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1200        if (I != ValueMapping.end())
1201          New->setOperand(i, I->second);
1202      }
1203  }
1204
1205  // We didn't copy the terminator from BB over to NewBB, because there is now
1206  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1207  BranchInst::Create(SuccBB, NewBB);
1208
1209  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1210  // PHI nodes for NewBB now.
1211  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1212
1213  // If there were values defined in BB that are used outside the block, then we
1214  // now have to update all uses of the value to use either the original value,
1215  // the cloned value, or some PHI derived value.  This can require arbitrary
1216  // PHI insertion, of which we are prepared to do, clean these up now.
1217  SSAUpdater SSAUpdate;
1218  SmallVector<Use*, 16> UsesToRename;
1219  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1220    // Scan all uses of this instruction to see if it is used outside of its
1221    // block, and if so, record them in UsesToRename.
1222    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1223         ++UI) {
1224      Instruction *User = cast<Instruction>(*UI);
1225      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1226        if (UserPN->getIncomingBlock(UI) == BB)
1227          continue;
1228      } else if (User->getParent() == BB)
1229        continue;
1230
1231      UsesToRename.push_back(&UI.getUse());
1232    }
1233
1234    // If there are no uses outside the block, we're done with this instruction.
1235    if (UsesToRename.empty())
1236      continue;
1237
1238    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1239
1240    // We found a use of I outside of BB.  Rename all uses of I that are outside
1241    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1242    // with the two values we know.
1243    SSAUpdate.Initialize(I);
1244    SSAUpdate.AddAvailableValue(BB, I);
1245    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1246
1247    while (!UsesToRename.empty())
1248      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1249    DEBUG(errs() << "\n");
1250  }
1251
1252
1253  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1254  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1255  // us to simplify any PHI nodes in BB.
1256  TerminatorInst *PredTerm = PredBB->getTerminator();
1257  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1258    if (PredTerm->getSuccessor(i) == BB) {
1259      RemovePredecessorAndSimplify(BB, PredBB, TD);
1260      PredTerm->setSuccessor(i, NewBB);
1261    }
1262
1263  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1264  // over the new instructions and zap any that are constants or dead.  This
1265  // frequently happens because of phi translation.
1266  BI = NewBB->begin();
1267  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1268    Instruction *Inst = BI++;
1269
1270    if (Value *V = SimplifyInstruction(Inst, TD)) {
1271      WeakVH BIHandle(BI);
1272      ReplaceAndSimplifyAllUses(Inst, V, TD);
1273      if (BIHandle == 0)
1274        BI = NewBB->begin();
1275      continue;
1276    }
1277
1278    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1279  }
1280
1281  // Threaded an edge!
1282  ++NumThreads;
1283  return true;
1284}
1285
1286/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1287/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1288/// If we can duplicate the contents of BB up into PredBB do so now, this
1289/// improves the odds that the branch will be on an analyzable instruction like
1290/// a compare.
1291bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1292                                                     BasicBlock *PredBB) {
1293  // If BB is a loop header, then duplicating this block outside the loop would
1294  // cause us to transform this into an irreducible loop, don't do this.
1295  // See the comments above FindLoopHeaders for justifications and caveats.
1296  if (LoopHeaders.count(BB)) {
1297    DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1298          << "' into predecessor block '" << PredBB->getName()
1299          << "' - it might create an irreducible loop!\n");
1300    return false;
1301  }
1302
1303  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1304  if (DuplicationCost > Threshold) {
1305    DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1306          << "' - Cost is too high: " << DuplicationCost << "\n");
1307    return false;
1308  }
1309
1310  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1311  // of PredBB.
1312  DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1313        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1314        << DuplicationCost << " block is:" << *BB << "\n");
1315
1316  // We are going to have to map operands from the original BB block into the
1317  // PredBB block.  Evaluate PHI nodes in BB.
1318  DenseMap<Instruction*, Value*> ValueMapping;
1319
1320  BasicBlock::iterator BI = BB->begin();
1321  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1322    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1323
1324  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1325
1326  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1327  // mapping and using it to remap operands in the cloned instructions.
1328  for (; BI != BB->end(); ++BI) {
1329    Instruction *New = BI->clone();
1330    New->setName(BI->getName());
1331    PredBB->getInstList().insert(OldPredBranch, New);
1332    ValueMapping[BI] = New;
1333
1334    // Remap operands to patch up intra-block references.
1335    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1336      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1337        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1338        if (I != ValueMapping.end())
1339          New->setOperand(i, I->second);
1340      }
1341  }
1342
1343  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1344  // add entries to the PHI nodes for branch from PredBB now.
1345  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1346  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1347                                  ValueMapping);
1348  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1349                                  ValueMapping);
1350
1351  // If there were values defined in BB that are used outside the block, then we
1352  // now have to update all uses of the value to use either the original value,
1353  // the cloned value, or some PHI derived value.  This can require arbitrary
1354  // PHI insertion, of which we are prepared to do, clean these up now.
1355  SSAUpdater SSAUpdate;
1356  SmallVector<Use*, 16> UsesToRename;
1357  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1358    // Scan all uses of this instruction to see if it is used outside of its
1359    // block, and if so, record them in UsesToRename.
1360    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1361         ++UI) {
1362      Instruction *User = cast<Instruction>(*UI);
1363      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1364        if (UserPN->getIncomingBlock(UI) == BB)
1365          continue;
1366      } else if (User->getParent() == BB)
1367        continue;
1368
1369      UsesToRename.push_back(&UI.getUse());
1370    }
1371
1372    // If there are no uses outside the block, we're done with this instruction.
1373    if (UsesToRename.empty())
1374      continue;
1375
1376    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1377
1378    // We found a use of I outside of BB.  Rename all uses of I that are outside
1379    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1380    // with the two values we know.
1381    SSAUpdate.Initialize(I);
1382    SSAUpdate.AddAvailableValue(BB, I);
1383    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1384
1385    while (!UsesToRename.empty())
1386      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1387    DEBUG(errs() << "\n");
1388  }
1389
1390  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1391  // that we nuked.
1392  RemovePredecessorAndSimplify(BB, PredBB, TD);
1393
1394  // Remove the unconditional branch at the end of the PredBB block.
1395  OldPredBranch->eraseFromParent();
1396
1397  ++NumDupes;
1398  return true;
1399}
1400
1401
1402