JumpThreading.cpp revision 660cab32fe5105bcaa17daa4704c24065ac0a7e6
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ValueHandle.h"
34#include "llvm/Support/raw_ostream.h"
35using namespace llvm;
36
37STATISTIC(NumThreads, "Number of jumps threaded");
38STATISTIC(NumFolds,   "Number of terminators folded");
39STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
40
41static cl::opt<unsigned>
42Threshold("jump-threading-threshold",
43          cl::desc("Max block size to duplicate for jump threading"),
44          cl::init(6), cl::Hidden);
45
46// Turn on use of LazyValueInfo.
47static cl::opt<bool>
48EnableLVI("enable-jump-threading-lvi",
49          cl::desc("Use LVI for jump threading"),
50          cl::init(true),
51          cl::ReallyHidden);
52
53
54
55namespace {
56  /// This pass performs 'jump threading', which looks at blocks that have
57  /// multiple predecessors and multiple successors.  If one or more of the
58  /// predecessors of the block can be proven to always jump to one of the
59  /// successors, we forward the edge from the predecessor to the successor by
60  /// duplicating the contents of this block.
61  ///
62  /// An example of when this can occur is code like this:
63  ///
64  ///   if () { ...
65  ///     X = 4;
66  ///   }
67  ///   if (X < 3) {
68  ///
69  /// In this case, the unconditional branch at the end of the first if can be
70  /// revectored to the false side of the second if.
71  ///
72  class JumpThreading : public FunctionPass {
73    TargetData *TD;
74    LazyValueInfo *LVI;
75#ifdef NDEBUG
76    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
77#else
78    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
79#endif
80  public:
81    static char ID; // Pass identification
82    JumpThreading() : FunctionPass(ID) {}
83
84    bool runOnFunction(Function &F);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      if (EnableLVI)
88        AU.addRequired<LazyValueInfo>();
89    }
90
91    void FindLoopHeaders(Function &F);
92    bool ProcessBlock(BasicBlock *BB);
93    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
94                    BasicBlock *SuccBB);
95    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
96                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
97
98    typedef SmallVectorImpl<std::pair<ConstantInt*,
99                                      BasicBlock*> > PredValueInfo;
100
101    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
102                                         PredValueInfo &Result);
103    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
104
105
106    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
107    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
108
109    bool ProcessBranchOnPHI(PHINode *PN);
110    bool ProcessBranchOnXOR(BinaryOperator *BO);
111
112    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
113  };
114}
115
116char JumpThreading::ID = 0;
117INITIALIZE_PASS(JumpThreading, "jump-threading",
118                "Jump Threading", false, false);
119
120// Public interface to the Jump Threading pass
121FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
122
123/// runOnFunction - Top level algorithm.
124///
125bool JumpThreading::runOnFunction(Function &F) {
126  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
127  TD = getAnalysisIfAvailable<TargetData>();
128  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
129
130  FindLoopHeaders(F);
131
132  bool Changed, EverChanged = false;
133  do {
134    Changed = false;
135    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
136      BasicBlock *BB = I;
137      // Thread all of the branches we can over this block.
138      while (ProcessBlock(BB))
139        Changed = true;
140
141      ++I;
142
143      // If the block is trivially dead, zap it.  This eliminates the successor
144      // edges which simplifies the CFG.
145      if (pred_begin(BB) == pred_end(BB) &&
146          BB != &BB->getParent()->getEntryBlock()) {
147        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
148              << "' with terminator: " << *BB->getTerminator() << '\n');
149        LoopHeaders.erase(BB);
150        if (LVI) LVI->eraseBlock(BB);
151        DeleteDeadBlock(BB);
152        Changed = true;
153      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
154        // Can't thread an unconditional jump, but if the block is "almost
155        // empty", we can replace uses of it with uses of the successor and make
156        // this dead.
157        if (BI->isUnconditional() &&
158            BB != &BB->getParent()->getEntryBlock()) {
159          BasicBlock::iterator BBI = BB->getFirstNonPHI();
160          // Ignore dbg intrinsics.
161          while (isa<DbgInfoIntrinsic>(BBI))
162            ++BBI;
163          // If the terminator is the only non-phi instruction, try to nuke it.
164          if (BBI->isTerminator()) {
165            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
166            // block, we have to make sure it isn't in the LoopHeaders set.  We
167            // reinsert afterward if needed.
168            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
169            BasicBlock *Succ = BI->getSuccessor(0);
170
171            // FIXME: It is always conservatively correct to drop the info
172            // for a block even if it doesn't get erased.  This isn't totally
173            // awesome, but it allows us to use AssertingVH to prevent nasty
174            // dangling pointer issues within LazyValueInfo.
175            if (LVI) LVI->eraseBlock(BB);
176            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
177              Changed = true;
178              // If we deleted BB and BB was the header of a loop, then the
179              // successor is now the header of the loop.
180              BB = Succ;
181            }
182
183            if (ErasedFromLoopHeaders)
184              LoopHeaders.insert(BB);
185          }
186        }
187      }
188    }
189    EverChanged |= Changed;
190  } while (Changed);
191
192  LoopHeaders.clear();
193  return EverChanged;
194}
195
196/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
197/// thread across it.
198static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
199  /// Ignore PHI nodes, these will be flattened when duplication happens.
200  BasicBlock::const_iterator I = BB->getFirstNonPHI();
201
202  // FIXME: THREADING will delete values that are just used to compute the
203  // branch, so they shouldn't count against the duplication cost.
204
205
206  // Sum up the cost of each instruction until we get to the terminator.  Don't
207  // include the terminator because the copy won't include it.
208  unsigned Size = 0;
209  for (; !isa<TerminatorInst>(I); ++I) {
210    // Debugger intrinsics don't incur code size.
211    if (isa<DbgInfoIntrinsic>(I)) continue;
212
213    // If this is a pointer->pointer bitcast, it is free.
214    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
215      continue;
216
217    // All other instructions count for at least one unit.
218    ++Size;
219
220    // Calls are more expensive.  If they are non-intrinsic calls, we model them
221    // as having cost of 4.  If they are a non-vector intrinsic, we model them
222    // as having cost of 2 total, and if they are a vector intrinsic, we model
223    // them as having cost 1.
224    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
225      if (!isa<IntrinsicInst>(CI))
226        Size += 3;
227      else if (!CI->getType()->isVectorTy())
228        Size += 1;
229    }
230  }
231
232  // Threading through a switch statement is particularly profitable.  If this
233  // block ends in a switch, decrease its cost to make it more likely to happen.
234  if (isa<SwitchInst>(I))
235    Size = Size > 6 ? Size-6 : 0;
236
237  return Size;
238}
239
240/// FindLoopHeaders - We do not want jump threading to turn proper loop
241/// structures into irreducible loops.  Doing this breaks up the loop nesting
242/// hierarchy and pessimizes later transformations.  To prevent this from
243/// happening, we first have to find the loop headers.  Here we approximate this
244/// by finding targets of backedges in the CFG.
245///
246/// Note that there definitely are cases when we want to allow threading of
247/// edges across a loop header.  For example, threading a jump from outside the
248/// loop (the preheader) to an exit block of the loop is definitely profitable.
249/// It is also almost always profitable to thread backedges from within the loop
250/// to exit blocks, and is often profitable to thread backedges to other blocks
251/// within the loop (forming a nested loop).  This simple analysis is not rich
252/// enough to track all of these properties and keep it up-to-date as the CFG
253/// mutates, so we don't allow any of these transformations.
254///
255void JumpThreading::FindLoopHeaders(Function &F) {
256  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
257  FindFunctionBackedges(F, Edges);
258
259  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
260    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
261}
262
263/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
264/// if we can infer that the value is a known ConstantInt in any of our
265/// predecessors.  If so, return the known list of value and pred BB in the
266/// result vector.  If a value is known to be undef, it is returned as null.
267///
268/// This returns true if there were any known values.
269///
270bool JumpThreading::
271ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
272  // If V is a constantint, then it is known in all predecessors.
273  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
274    ConstantInt *CI = dyn_cast<ConstantInt>(V);
275
276    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
277      Result.push_back(std::make_pair(CI, *PI));
278    return true;
279  }
280
281  // If V is a non-instruction value, or an instruction in a different block,
282  // then it can't be derived from a PHI.
283  Instruction *I = dyn_cast<Instruction>(V);
284  if (I == 0 || I->getParent() != BB) {
285
286    // Okay, if this is a live-in value, see if it has a known value at the end
287    // of any of our predecessors.
288    //
289    // FIXME: This should be an edge property, not a block end property.
290    /// TODO: Per PR2563, we could infer value range information about a
291    /// predecessor based on its terminator.
292    //
293    if (LVI) {
294      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
295      // "I" is a non-local compare-with-a-constant instruction.  This would be
296      // able to handle value inequalities better, for example if the compare is
297      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
298      // Perhaps getConstantOnEdge should be smart enough to do this?
299
300      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
301        BasicBlock *P = *PI;
302        // If the value is known by LazyValueInfo to be a constant in a
303        // predecessor, use that information to try to thread this block.
304        Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
305        if (PredCst == 0 ||
306            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
307          continue;
308
309        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
310      }
311
312      return !Result.empty();
313    }
314
315    return false;
316  }
317
318  /// If I is a PHI node, then we know the incoming values for any constants.
319  if (PHINode *PN = dyn_cast<PHINode>(I)) {
320    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
321      Value *InVal = PN->getIncomingValue(i);
322      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
323        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
324        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
325      } else if (LVI) {
326        Constant *CI = LVI->getConstantOnEdge(InVal,
327                                              PN->getIncomingBlock(i), BB);
328        ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
329        if (CInt)
330          Result.push_back(std::make_pair(CInt, PN->getIncomingBlock(i)));
331      }
332    }
333    return !Result.empty();
334  }
335
336  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
337
338  // Handle some boolean conditions.
339  if (I->getType()->getPrimitiveSizeInBits() == 1) {
340    // X | true -> true
341    // X & false -> false
342    if (I->getOpcode() == Instruction::Or ||
343        I->getOpcode() == Instruction::And) {
344      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
345      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
346
347      if (LHSVals.empty() && RHSVals.empty())
348        return false;
349
350      ConstantInt *InterestingVal;
351      if (I->getOpcode() == Instruction::Or)
352        InterestingVal = ConstantInt::getTrue(I->getContext());
353      else
354        InterestingVal = ConstantInt::getFalse(I->getContext());
355
356      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
357
358      // Scan for the sentinel.  If we find an undef, force it to the
359      // interesting value: x|undef -> true and x&undef -> false.
360      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
361        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
362          Result.push_back(LHSVals[i]);
363          Result.back().first = InterestingVal;
364          LHSKnownBBs.insert(LHSVals[i].second);
365        }
366      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
367        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
368          // If we already inferred a value for this block on the LHS, don't
369          // re-add it.
370          if (!LHSKnownBBs.count(RHSVals[i].second)) {
371            Result.push_back(RHSVals[i]);
372            Result.back().first = InterestingVal;
373          }
374        }
375      return !Result.empty();
376
377    // Try to process a few other binary operator patterns.
378    } else if (isa<BinaryOperator>(I)) {
379
380    }
381
382    // Handle the NOT form of XOR.
383    if (I->getOpcode() == Instruction::Xor &&
384        isa<ConstantInt>(I->getOperand(1)) &&
385        cast<ConstantInt>(I->getOperand(1))->isOne()) {
386      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
387      if (Result.empty())
388        return false;
389
390      // Invert the known values.
391      for (unsigned i = 0, e = Result.size(); i != e; ++i)
392        if (Result[i].first)
393          Result[i].first =
394            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
395      return true;
396    }
397
398  // Try to simplify some other binary operator values.
399  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
400    // AND or OR of a value with itself is that value.
401    ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1));
402    if (CI && (BO->getOpcode() == Instruction::And ||
403         BO->getOpcode() == Instruction::Or)) {
404      SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
405      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
406      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
407        if (LHSVals[i].first == CI)
408        Result.push_back(std::make_pair(CI, LHSVals[i].second));
409
410      return !Result.empty();
411    }
412  }
413
414  // Handle compare with phi operand, where the PHI is defined in this block.
415  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
416    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
417    if (PN && PN->getParent() == BB) {
418      // We can do this simplification if any comparisons fold to true or false.
419      // See if any do.
420      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
421        BasicBlock *PredBB = PN->getIncomingBlock(i);
422        Value *LHS = PN->getIncomingValue(i);
423        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
424
425        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
426        if (Res == 0) {
427          if (!LVI || !isa<Constant>(RHS))
428            continue;
429
430          LazyValueInfo::Tristate
431            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
432                                           cast<Constant>(RHS), PredBB, BB);
433          if (ResT == LazyValueInfo::Unknown)
434            continue;
435          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
436        }
437
438        if (isa<UndefValue>(Res))
439          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
440        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
441          Result.push_back(std::make_pair(CI, PredBB));
442      }
443
444      return !Result.empty();
445    }
446
447
448    // If comparing a live-in value against a constant, see if we know the
449    // live-in value on any predecessors.
450    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
451        Cmp->getType()->isIntegerTy()) {
452      if (!isa<Instruction>(Cmp->getOperand(0)) ||
453           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
454        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
455
456        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
457          BasicBlock *P = *PI;
458          // If the value is known by LazyValueInfo to be a constant in a
459          // predecessor, use that information to try to thread this block.
460          LazyValueInfo::Tristate Res =
461            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
462                                    RHSCst, P, BB);
463          if (Res == LazyValueInfo::Unknown)
464            continue;
465
466          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
467          Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
468        }
469
470        return !Result.empty();
471      }
472
473      // Try to find a constant value for the LHS of an equality comparison,
474      // and evaluate it statically if we can.
475      if (Cmp->getPredicate() == CmpInst::ICMP_EQ ||
476          Cmp->getPredicate() == CmpInst::ICMP_NE) {
477        SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
478        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
479
480        ConstantInt *True = ConstantInt::getTrue(I->getContext());
481        ConstantInt *False = ConstantInt::getFalse(I->getContext());
482        if (Cmp->getPredicate() == CmpInst::ICMP_NE) std::swap(True, False);
483
484        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
485          if (LHSVals[i].first == Cmp->getOperand(1))
486            Result.push_back(std::make_pair(True, LHSVals[i].second));
487          else
488            Result.push_back(std::make_pair(False, LHSVals[i].second));
489        }
490
491        return !Result.empty();
492      }
493    }
494  }
495
496  if (LVI) {
497    // If all else fails, see if LVI can figure out a constant value for us.
498    Constant *CI = LVI->getConstant(V, BB);
499    ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
500    if (CInt) {
501      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
502        Result.push_back(std::make_pair(CInt, *PI));
503    }
504
505    return !Result.empty();
506  }
507
508  return false;
509}
510
511
512
513/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
514/// in an undefined jump, decide which block is best to revector to.
515///
516/// Since we can pick an arbitrary destination, we pick the successor with the
517/// fewest predecessors.  This should reduce the in-degree of the others.
518///
519static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
520  TerminatorInst *BBTerm = BB->getTerminator();
521  unsigned MinSucc = 0;
522  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
523  // Compute the successor with the minimum number of predecessors.
524  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
525  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
526    TestBB = BBTerm->getSuccessor(i);
527    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
528    if (NumPreds < MinNumPreds)
529      MinSucc = i;
530  }
531
532  return MinSucc;
533}
534
535/// ProcessBlock - If there are any predecessors whose control can be threaded
536/// through to a successor, transform them now.
537bool JumpThreading::ProcessBlock(BasicBlock *BB) {
538  // If the block is trivially dead, just return and let the caller nuke it.
539  // This simplifies other transformations.
540  if (pred_begin(BB) == pred_end(BB) &&
541      BB != &BB->getParent()->getEntryBlock())
542    return false;
543
544  // If this block has a single predecessor, and if that pred has a single
545  // successor, merge the blocks.  This encourages recursive jump threading
546  // because now the condition in this block can be threaded through
547  // predecessors of our predecessor block.
548  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
549    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
550        SinglePred != BB) {
551      // If SinglePred was a loop header, BB becomes one.
552      if (LoopHeaders.erase(SinglePred))
553        LoopHeaders.insert(BB);
554
555      // Remember if SinglePred was the entry block of the function.  If so, we
556      // will need to move BB back to the entry position.
557      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
558      if (LVI) LVI->eraseBlock(SinglePred);
559      MergeBasicBlockIntoOnlyPred(BB);
560
561      if (isEntry && BB != &BB->getParent()->getEntryBlock())
562        BB->moveBefore(&BB->getParent()->getEntryBlock());
563      return true;
564    }
565  }
566
567  // Look to see if the terminator is a branch of switch, if not we can't thread
568  // it.
569  Value *Condition;
570  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
571    // Can't thread an unconditional jump.
572    if (BI->isUnconditional()) return false;
573    Condition = BI->getCondition();
574  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
575    Condition = SI->getCondition();
576  else
577    return false; // Must be an invoke.
578
579  // If the terminator of this block is branching on a constant, simplify the
580  // terminator to an unconditional branch.  This can occur due to threading in
581  // other blocks.
582  if (isa<ConstantInt>(Condition)) {
583    DEBUG(dbgs() << "  In block '" << BB->getName()
584          << "' folding terminator: " << *BB->getTerminator() << '\n');
585    ++NumFolds;
586    ConstantFoldTerminator(BB);
587    return true;
588  }
589
590  // If the terminator is branching on an undef, we can pick any of the
591  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
592  if (isa<UndefValue>(Condition)) {
593    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
594
595    // Fold the branch/switch.
596    TerminatorInst *BBTerm = BB->getTerminator();
597    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
598      if (i == BestSucc) continue;
599      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
600    }
601
602    DEBUG(dbgs() << "  In block '" << BB->getName()
603          << "' folding undef terminator: " << *BBTerm << '\n');
604    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
605    BBTerm->eraseFromParent();
606    return true;
607  }
608
609  Instruction *CondInst = dyn_cast<Instruction>(Condition);
610
611  // If the condition is an instruction defined in another block, see if a
612  // predecessor has the same condition:
613  //     br COND, BBX, BBY
614  //  BBX:
615  //     br COND, BBZ, BBW
616  if (!LVI &&
617      !Condition->hasOneUse() && // Multiple uses.
618      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
619    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
620    if (isa<BranchInst>(BB->getTerminator())) {
621      for (; PI != E; ++PI) {
622        BasicBlock *P = *PI;
623        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
624          if (PBI->isConditional() && PBI->getCondition() == Condition &&
625              ProcessBranchOnDuplicateCond(P, BB))
626            return true;
627      }
628    } else {
629      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
630      for (; PI != E; ++PI) {
631        BasicBlock *P = *PI;
632        if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
633          if (PSI->getCondition() == Condition &&
634              ProcessSwitchOnDuplicateCond(P, BB))
635            return true;
636      }
637    }
638  }
639
640  // All the rest of our checks depend on the condition being an instruction.
641  if (CondInst == 0) {
642    // FIXME: Unify this with code below.
643    if (LVI && ProcessThreadableEdges(Condition, BB))
644      return true;
645    return false;
646  }
647
648
649  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
650    if (!LVI &&
651        (!isa<PHINode>(CondCmp->getOperand(0)) ||
652         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
653      // If we have a comparison, loop over the predecessors to see if there is
654      // a condition with a lexically identical value.
655      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
656      for (; PI != E; ++PI) {
657        BasicBlock *P = *PI;
658        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
659          if (PBI->isConditional() && P != BB) {
660            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
661              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
662                  CI->getOperand(1) == CondCmp->getOperand(1) &&
663                  CI->getPredicate() == CondCmp->getPredicate()) {
664                // TODO: Could handle things like (x != 4) --> (x == 17)
665                if (ProcessBranchOnDuplicateCond(P, BB))
666                  return true;
667              }
668            }
669          }
670      }
671    }
672
673    // For a comparison where the LHS is outside this block, it's possible
674    // that we've branch on it before.  Used LVI to see if we can simplify
675    // the branch based on that.
676    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
677    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
678    if (LVI && CondBr && CondConst && CondBr->isConditional() &&
679        (!isa<Instruction>(CondCmp->getOperand(0)) ||
680         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
681      // For predecessor edge, determine if the comparison is true or false
682      // on that edge.  If they're all true or all false, we can simplify the
683      // branch.
684      // FIXME: We could handle mixed true/false by duplicating code.
685      unsigned Trues = 0, Falses = 0, predcount = 0;
686      for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);PI != PE; ++PI){
687        ++predcount;
688        LazyValueInfo::Tristate Ret =
689          LVI->getPredicateOnEdge(CondCmp->getPredicate(),
690                                  CondCmp->getOperand(0), CondConst, *PI, BB);
691        if (Ret == LazyValueInfo::True)
692          ++Trues;
693        else if (Ret == LazyValueInfo::False)
694          ++Falses;
695      }
696
697      // If we can determine the branch direction statically, converted
698      // the conditional branch to an unconditional one.
699      if (Trues && Trues == predcount) {
700        RemovePredecessorAndSimplify(CondBr->getSuccessor(1), BB, TD);
701        BranchInst::Create(CondBr->getSuccessor(0), CondBr);
702        CondBr->eraseFromParent();
703        return true;
704      } else if (Falses && Falses == predcount) {
705        RemovePredecessorAndSimplify(CondBr->getSuccessor(0), BB, TD);
706        BranchInst::Create(CondBr->getSuccessor(1), CondBr);
707        CondBr->eraseFromParent();
708        return true;
709      }
710    }
711  }
712
713  // Check for some cases that are worth simplifying.  Right now we want to look
714  // for loads that are used by a switch or by the condition for the branch.  If
715  // we see one, check to see if it's partially redundant.  If so, insert a PHI
716  // which can then be used to thread the values.
717  //
718  Value *SimplifyValue = CondInst;
719  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
720    if (isa<Constant>(CondCmp->getOperand(1)))
721      SimplifyValue = CondCmp->getOperand(0);
722
723  // TODO: There are other places where load PRE would be profitable, such as
724  // more complex comparisons.
725  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
726    if (SimplifyPartiallyRedundantLoad(LI))
727      return true;
728
729
730  // Handle a variety of cases where we are branching on something derived from
731  // a PHI node in the current block.  If we can prove that any predecessors
732  // compute a predictable value based on a PHI node, thread those predecessors.
733  //
734  if (ProcessThreadableEdges(CondInst, BB))
735    return true;
736
737  // If this is an otherwise-unfoldable branch on a phi node in the current
738  // block, see if we can simplify.
739  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
740    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
741      return ProcessBranchOnPHI(PN);
742
743
744  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
745  if (CondInst->getOpcode() == Instruction::Xor &&
746      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
747    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
748
749
750  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
751  // "(X == 4)", thread through this block.
752
753  return false;
754}
755
756/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
757/// block that jump on exactly the same condition.  This means that we almost
758/// always know the direction of the edge in the DESTBB:
759///  PREDBB:
760///     br COND, DESTBB, BBY
761///  DESTBB:
762///     br COND, BBZ, BBW
763///
764/// If DESTBB has multiple predecessors, we can't just constant fold the branch
765/// in DESTBB, we have to thread over it.
766bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
767                                                 BasicBlock *BB) {
768  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
769
770  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
771  // fold the branch to an unconditional one, which allows other recursive
772  // simplifications.
773  bool BranchDir;
774  if (PredBI->getSuccessor(1) != BB)
775    BranchDir = true;
776  else if (PredBI->getSuccessor(0) != BB)
777    BranchDir = false;
778  else {
779    DEBUG(dbgs() << "  In block '" << PredBB->getName()
780          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
781    ++NumFolds;
782    ConstantFoldTerminator(PredBB);
783    return true;
784  }
785
786  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
787
788  // If the dest block has one predecessor, just fix the branch condition to a
789  // constant and fold it.
790  if (BB->getSinglePredecessor()) {
791    DEBUG(dbgs() << "  In block '" << BB->getName()
792          << "' folding condition to '" << BranchDir << "': "
793          << *BB->getTerminator() << '\n');
794    ++NumFolds;
795    Value *OldCond = DestBI->getCondition();
796    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
797                                          BranchDir));
798    // Delete dead instructions before we fold the branch.  Folding the branch
799    // can eliminate edges from the CFG which can end up deleting OldCond.
800    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
801    ConstantFoldTerminator(BB);
802    return true;
803  }
804
805
806  // Next, figure out which successor we are threading to.
807  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
808
809  SmallVector<BasicBlock*, 2> Preds;
810  Preds.push_back(PredBB);
811
812  // Ok, try to thread it!
813  return ThreadEdge(BB, Preds, SuccBB);
814}
815
816/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
817/// block that switch on exactly the same condition.  This means that we almost
818/// always know the direction of the edge in the DESTBB:
819///  PREDBB:
820///     switch COND [... DESTBB, BBY ... ]
821///  DESTBB:
822///     switch COND [... BBZ, BBW ]
823///
824/// Optimizing switches like this is very important, because simplifycfg builds
825/// switches out of repeated 'if' conditions.
826bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
827                                                 BasicBlock *DestBB) {
828  // Can't thread edge to self.
829  if (PredBB == DestBB)
830    return false;
831
832  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
833  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
834
835  // There are a variety of optimizations that we can potentially do on these
836  // blocks: we order them from most to least preferable.
837
838  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
839  // directly to their destination.  This does not introduce *any* code size
840  // growth.  Skip debug info first.
841  BasicBlock::iterator BBI = DestBB->begin();
842  while (isa<DbgInfoIntrinsic>(BBI))
843    BBI++;
844
845  // FIXME: Thread if it just contains a PHI.
846  if (isa<SwitchInst>(BBI)) {
847    bool MadeChange = false;
848    // Ignore the default edge for now.
849    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
850      ConstantInt *DestVal = DestSI->getCaseValue(i);
851      BasicBlock *DestSucc = DestSI->getSuccessor(i);
852
853      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
854      // PredSI has an explicit case for it.  If so, forward.  If it is covered
855      // by the default case, we can't update PredSI.
856      unsigned PredCase = PredSI->findCaseValue(DestVal);
857      if (PredCase == 0) continue;
858
859      // If PredSI doesn't go to DestBB on this value, then it won't reach the
860      // case on this condition.
861      if (PredSI->getSuccessor(PredCase) != DestBB &&
862          DestSI->getSuccessor(i) != DestBB)
863        continue;
864
865      // Do not forward this if it already goes to this destination, this would
866      // be an infinite loop.
867      if (PredSI->getSuccessor(PredCase) == DestSucc)
868        continue;
869
870      // Otherwise, we're safe to make the change.  Make sure that the edge from
871      // DestSI to DestSucc is not critical and has no PHI nodes.
872      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
873      DEBUG(dbgs() << "THROUGH: " << *DestSI);
874
875      // If the destination has PHI nodes, just split the edge for updating
876      // simplicity.
877      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
878        SplitCriticalEdge(DestSI, i, this);
879        DestSucc = DestSI->getSuccessor(i);
880      }
881      FoldSingleEntryPHINodes(DestSucc);
882      PredSI->setSuccessor(PredCase, DestSucc);
883      MadeChange = true;
884    }
885
886    if (MadeChange)
887      return true;
888  }
889
890  return false;
891}
892
893
894/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
895/// load instruction, eliminate it by replacing it with a PHI node.  This is an
896/// important optimization that encourages jump threading, and needs to be run
897/// interlaced with other jump threading tasks.
898bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
899  // Don't hack volatile loads.
900  if (LI->isVolatile()) return false;
901
902  // If the load is defined in a block with exactly one predecessor, it can't be
903  // partially redundant.
904  BasicBlock *LoadBB = LI->getParent();
905  if (LoadBB->getSinglePredecessor())
906    return false;
907
908  Value *LoadedPtr = LI->getOperand(0);
909
910  // If the loaded operand is defined in the LoadBB, it can't be available.
911  // TODO: Could do simple PHI translation, that would be fun :)
912  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
913    if (PtrOp->getParent() == LoadBB)
914      return false;
915
916  // Scan a few instructions up from the load, to see if it is obviously live at
917  // the entry to its block.
918  BasicBlock::iterator BBIt = LI;
919
920  if (Value *AvailableVal =
921        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
922    // If the value if the load is locally available within the block, just use
923    // it.  This frequently occurs for reg2mem'd allocas.
924    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
925
926    // If the returned value is the load itself, replace with an undef. This can
927    // only happen in dead loops.
928    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
929    LI->replaceAllUsesWith(AvailableVal);
930    LI->eraseFromParent();
931    return true;
932  }
933
934  // Otherwise, if we scanned the whole block and got to the top of the block,
935  // we know the block is locally transparent to the load.  If not, something
936  // might clobber its value.
937  if (BBIt != LoadBB->begin())
938    return false;
939
940
941  SmallPtrSet<BasicBlock*, 8> PredsScanned;
942  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
943  AvailablePredsTy AvailablePreds;
944  BasicBlock *OneUnavailablePred = 0;
945
946  // If we got here, the loaded value is transparent through to the start of the
947  // block.  Check to see if it is available in any of the predecessor blocks.
948  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
949       PI != PE; ++PI) {
950    BasicBlock *PredBB = *PI;
951
952    // If we already scanned this predecessor, skip it.
953    if (!PredsScanned.insert(PredBB))
954      continue;
955
956    // Scan the predecessor to see if the value is available in the pred.
957    BBIt = PredBB->end();
958    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
959    if (!PredAvailable) {
960      OneUnavailablePred = PredBB;
961      continue;
962    }
963
964    // If so, this load is partially redundant.  Remember this info so that we
965    // can create a PHI node.
966    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
967  }
968
969  // If the loaded value isn't available in any predecessor, it isn't partially
970  // redundant.
971  if (AvailablePreds.empty()) return false;
972
973  // Okay, the loaded value is available in at least one (and maybe all!)
974  // predecessors.  If the value is unavailable in more than one unique
975  // predecessor, we want to insert a merge block for those common predecessors.
976  // This ensures that we only have to insert one reload, thus not increasing
977  // code size.
978  BasicBlock *UnavailablePred = 0;
979
980  // If there is exactly one predecessor where the value is unavailable, the
981  // already computed 'OneUnavailablePred' block is it.  If it ends in an
982  // unconditional branch, we know that it isn't a critical edge.
983  if (PredsScanned.size() == AvailablePreds.size()+1 &&
984      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
985    UnavailablePred = OneUnavailablePred;
986  } else if (PredsScanned.size() != AvailablePreds.size()) {
987    // Otherwise, we had multiple unavailable predecessors or we had a critical
988    // edge from the one.
989    SmallVector<BasicBlock*, 8> PredsToSplit;
990    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
991
992    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
993      AvailablePredSet.insert(AvailablePreds[i].first);
994
995    // Add all the unavailable predecessors to the PredsToSplit list.
996    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
997         PI != PE; ++PI) {
998      BasicBlock *P = *PI;
999      // If the predecessor is an indirect goto, we can't split the edge.
1000      if (isa<IndirectBrInst>(P->getTerminator()))
1001        return false;
1002
1003      if (!AvailablePredSet.count(P))
1004        PredsToSplit.push_back(P);
1005    }
1006
1007    // Split them out to their own block.
1008    UnavailablePred =
1009      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
1010                             "thread-pre-split", this);
1011  }
1012
1013  // If the value isn't available in all predecessors, then there will be
1014  // exactly one where it isn't available.  Insert a load on that edge and add
1015  // it to the AvailablePreds list.
1016  if (UnavailablePred) {
1017    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1018           "Can't handle critical edge here!");
1019    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
1020                                 LI->getAlignment(),
1021                                 UnavailablePred->getTerminator());
1022    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1023  }
1024
1025  // Now we know that each predecessor of this block has a value in
1026  // AvailablePreds, sort them for efficient access as we're walking the preds.
1027  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1028
1029  // Create a PHI node at the start of the block for the PRE'd load value.
1030  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
1031  PN->takeName(LI);
1032
1033  // Insert new entries into the PHI for each predecessor.  A single block may
1034  // have multiple entries here.
1035  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
1036       ++PI) {
1037    BasicBlock *P = *PI;
1038    AvailablePredsTy::iterator I =
1039      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1040                       std::make_pair(P, (Value*)0));
1041
1042    assert(I != AvailablePreds.end() && I->first == P &&
1043           "Didn't find entry for predecessor!");
1044
1045    PN->addIncoming(I->second, I->first);
1046  }
1047
1048  //cerr << "PRE: " << *LI << *PN << "\n";
1049
1050  LI->replaceAllUsesWith(PN);
1051  LI->eraseFromParent();
1052
1053  return true;
1054}
1055
1056/// FindMostPopularDest - The specified list contains multiple possible
1057/// threadable destinations.  Pick the one that occurs the most frequently in
1058/// the list.
1059static BasicBlock *
1060FindMostPopularDest(BasicBlock *BB,
1061                    const SmallVectorImpl<std::pair<BasicBlock*,
1062                                  BasicBlock*> > &PredToDestList) {
1063  assert(!PredToDestList.empty());
1064
1065  // Determine popularity.  If there are multiple possible destinations, we
1066  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1067  // blocks with known and real destinations to threading undef.  We'll handle
1068  // them later if interesting.
1069  DenseMap<BasicBlock*, unsigned> DestPopularity;
1070  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1071    if (PredToDestList[i].second)
1072      DestPopularity[PredToDestList[i].second]++;
1073
1074  // Find the most popular dest.
1075  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1076  BasicBlock *MostPopularDest = DPI->first;
1077  unsigned Popularity = DPI->second;
1078  SmallVector<BasicBlock*, 4> SamePopularity;
1079
1080  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1081    // If the popularity of this entry isn't higher than the popularity we've
1082    // seen so far, ignore it.
1083    if (DPI->second < Popularity)
1084      ; // ignore.
1085    else if (DPI->second == Popularity) {
1086      // If it is the same as what we've seen so far, keep track of it.
1087      SamePopularity.push_back(DPI->first);
1088    } else {
1089      // If it is more popular, remember it.
1090      SamePopularity.clear();
1091      MostPopularDest = DPI->first;
1092      Popularity = DPI->second;
1093    }
1094  }
1095
1096  // Okay, now we know the most popular destination.  If there is more than
1097  // destination, we need to determine one.  This is arbitrary, but we need
1098  // to make a deterministic decision.  Pick the first one that appears in the
1099  // successor list.
1100  if (!SamePopularity.empty()) {
1101    SamePopularity.push_back(MostPopularDest);
1102    TerminatorInst *TI = BB->getTerminator();
1103    for (unsigned i = 0; ; ++i) {
1104      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1105
1106      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1107                    TI->getSuccessor(i)) == SamePopularity.end())
1108        continue;
1109
1110      MostPopularDest = TI->getSuccessor(i);
1111      break;
1112    }
1113  }
1114
1115  // Okay, we have finally picked the most popular destination.
1116  return MostPopularDest;
1117}
1118
1119bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1120  // If threading this would thread across a loop header, don't even try to
1121  // thread the edge.
1122  if (LoopHeaders.count(BB))
1123    return false;
1124
1125  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1126  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1127    return false;
1128  assert(!PredValues.empty() &&
1129         "ComputeValueKnownInPredecessors returned true with no values");
1130
1131  DEBUG(dbgs() << "IN BB: " << *BB;
1132        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1133          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1134          if (PredValues[i].first)
1135            dbgs() << *PredValues[i].first;
1136          else
1137            dbgs() << "UNDEF";
1138          dbgs() << " for pred '" << PredValues[i].second->getName()
1139          << "'.\n";
1140        });
1141
1142  // Decide what we want to thread through.  Convert our list of known values to
1143  // a list of known destinations for each pred.  This also discards duplicate
1144  // predecessors and keeps track of the undefined inputs (which are represented
1145  // as a null dest in the PredToDestList).
1146  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1147  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1148
1149  BasicBlock *OnlyDest = 0;
1150  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1151
1152  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1153    BasicBlock *Pred = PredValues[i].second;
1154    if (!SeenPreds.insert(Pred))
1155      continue;  // Duplicate predecessor entry.
1156
1157    // If the predecessor ends with an indirect goto, we can't change its
1158    // destination.
1159    if (isa<IndirectBrInst>(Pred->getTerminator()))
1160      continue;
1161
1162    ConstantInt *Val = PredValues[i].first;
1163
1164    BasicBlock *DestBB;
1165    if (Val == 0)      // Undef.
1166      DestBB = 0;
1167    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1168      DestBB = BI->getSuccessor(Val->isZero());
1169    else {
1170      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1171      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1172    }
1173
1174    // If we have exactly one destination, remember it for efficiency below.
1175    if (i == 0)
1176      OnlyDest = DestBB;
1177    else if (OnlyDest != DestBB)
1178      OnlyDest = MultipleDestSentinel;
1179
1180    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1181  }
1182
1183  // If all edges were unthreadable, we fail.
1184  if (PredToDestList.empty())
1185    return false;
1186
1187  // Determine which is the most common successor.  If we have many inputs and
1188  // this block is a switch, we want to start by threading the batch that goes
1189  // to the most popular destination first.  If we only know about one
1190  // threadable destination (the common case) we can avoid this.
1191  BasicBlock *MostPopularDest = OnlyDest;
1192
1193  if (MostPopularDest == MultipleDestSentinel)
1194    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1195
1196  // Now that we know what the most popular destination is, factor all
1197  // predecessors that will jump to it into a single predecessor.
1198  SmallVector<BasicBlock*, 16> PredsToFactor;
1199  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1200    if (PredToDestList[i].second == MostPopularDest) {
1201      BasicBlock *Pred = PredToDestList[i].first;
1202
1203      // This predecessor may be a switch or something else that has multiple
1204      // edges to the block.  Factor each of these edges by listing them
1205      // according to # occurrences in PredsToFactor.
1206      TerminatorInst *PredTI = Pred->getTerminator();
1207      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1208        if (PredTI->getSuccessor(i) == BB)
1209          PredsToFactor.push_back(Pred);
1210    }
1211
1212  // If the threadable edges are branching on an undefined value, we get to pick
1213  // the destination that these predecessors should get to.
1214  if (MostPopularDest == 0)
1215    MostPopularDest = BB->getTerminator()->
1216                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1217
1218  // Ok, try to thread it!
1219  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1220}
1221
1222/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1223/// a PHI node in the current block.  See if there are any simplifications we
1224/// can do based on inputs to the phi node.
1225///
1226bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1227  BasicBlock *BB = PN->getParent();
1228
1229  // TODO: We could make use of this to do it once for blocks with common PHI
1230  // values.
1231  SmallVector<BasicBlock*, 1> PredBBs;
1232  PredBBs.resize(1);
1233
1234  // If any of the predecessor blocks end in an unconditional branch, we can
1235  // *duplicate* the conditional branch into that block in order to further
1236  // encourage jump threading and to eliminate cases where we have branch on a
1237  // phi of an icmp (branch on icmp is much better).
1238  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1239    BasicBlock *PredBB = PN->getIncomingBlock(i);
1240    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1241      if (PredBr->isUnconditional()) {
1242        PredBBs[0] = PredBB;
1243        // Try to duplicate BB into PredBB.
1244        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1245          return true;
1246      }
1247  }
1248
1249  return false;
1250}
1251
1252/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1253/// a xor instruction in the current block.  See if there are any
1254/// simplifications we can do based on inputs to the xor.
1255///
1256bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1257  BasicBlock *BB = BO->getParent();
1258
1259  // If either the LHS or RHS of the xor is a constant, don't do this
1260  // optimization.
1261  if (isa<ConstantInt>(BO->getOperand(0)) ||
1262      isa<ConstantInt>(BO->getOperand(1)))
1263    return false;
1264
1265  // If the first instruction in BB isn't a phi, we won't be able to infer
1266  // anything special about any particular predecessor.
1267  if (!isa<PHINode>(BB->front()))
1268    return false;
1269
1270  // If we have a xor as the branch input to this block, and we know that the
1271  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1272  // the condition into the predecessor and fix that value to true, saving some
1273  // logical ops on that path and encouraging other paths to simplify.
1274  //
1275  // This copies something like this:
1276  //
1277  //  BB:
1278  //    %X = phi i1 [1],  [%X']
1279  //    %Y = icmp eq i32 %A, %B
1280  //    %Z = xor i1 %X, %Y
1281  //    br i1 %Z, ...
1282  //
1283  // Into:
1284  //  BB':
1285  //    %Y = icmp ne i32 %A, %B
1286  //    br i1 %Z, ...
1287
1288  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1289  bool isLHS = true;
1290  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1291    assert(XorOpValues.empty());
1292    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1293      return false;
1294    isLHS = false;
1295  }
1296
1297  assert(!XorOpValues.empty() &&
1298         "ComputeValueKnownInPredecessors returned true with no values");
1299
1300  // Scan the information to see which is most popular: true or false.  The
1301  // predecessors can be of the set true, false, or undef.
1302  unsigned NumTrue = 0, NumFalse = 0;
1303  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1304    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1305    if (XorOpValues[i].first->isZero())
1306      ++NumFalse;
1307    else
1308      ++NumTrue;
1309  }
1310
1311  // Determine which value to split on, true, false, or undef if neither.
1312  ConstantInt *SplitVal = 0;
1313  if (NumTrue > NumFalse)
1314    SplitVal = ConstantInt::getTrue(BB->getContext());
1315  else if (NumTrue != 0 || NumFalse != 0)
1316    SplitVal = ConstantInt::getFalse(BB->getContext());
1317
1318  // Collect all of the blocks that this can be folded into so that we can
1319  // factor this once and clone it once.
1320  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1321  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1322    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1323
1324    BlocksToFoldInto.push_back(XorOpValues[i].second);
1325  }
1326
1327  // If we inferred a value for all of the predecessors, then duplication won't
1328  // help us.  However, we can just replace the LHS or RHS with the constant.
1329  if (BlocksToFoldInto.size() ==
1330      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1331    if (SplitVal == 0) {
1332      // If all preds provide undef, just nuke the xor, because it is undef too.
1333      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1334      BO->eraseFromParent();
1335    } else if (SplitVal->isZero()) {
1336      // If all preds provide 0, replace the xor with the other input.
1337      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1338      BO->eraseFromParent();
1339    } else {
1340      // If all preds provide 1, set the computed value to 1.
1341      BO->setOperand(!isLHS, SplitVal);
1342    }
1343
1344    return true;
1345  }
1346
1347  // Try to duplicate BB into PredBB.
1348  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1349}
1350
1351
1352/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1353/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1354/// NewPred using the entries from OldPred (suitably mapped).
1355static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1356                                            BasicBlock *OldPred,
1357                                            BasicBlock *NewPred,
1358                                     DenseMap<Instruction*, Value*> &ValueMap) {
1359  for (BasicBlock::iterator PNI = PHIBB->begin();
1360       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1361    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1362    // DestBlock.
1363    Value *IV = PN->getIncomingValueForBlock(OldPred);
1364
1365    // Remap the value if necessary.
1366    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1367      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1368      if (I != ValueMap.end())
1369        IV = I->second;
1370    }
1371
1372    PN->addIncoming(IV, NewPred);
1373  }
1374}
1375
1376/// ThreadEdge - We have decided that it is safe and profitable to factor the
1377/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1378/// across BB.  Transform the IR to reflect this change.
1379bool JumpThreading::ThreadEdge(BasicBlock *BB,
1380                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1381                               BasicBlock *SuccBB) {
1382  // If threading to the same block as we come from, we would infinite loop.
1383  if (SuccBB == BB) {
1384    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1385          << "' - would thread to self!\n");
1386    return false;
1387  }
1388
1389  // If threading this would thread across a loop header, don't thread the edge.
1390  // See the comments above FindLoopHeaders for justifications and caveats.
1391  if (LoopHeaders.count(BB)) {
1392    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1393          << "' to dest BB '" << SuccBB->getName()
1394          << "' - it might create an irreducible loop!\n");
1395    return false;
1396  }
1397
1398  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1399  if (JumpThreadCost > Threshold) {
1400    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1401          << "' - Cost is too high: " << JumpThreadCost << "\n");
1402    return false;
1403  }
1404
1405  // And finally, do it!  Start by factoring the predecessors is needed.
1406  BasicBlock *PredBB;
1407  if (PredBBs.size() == 1)
1408    PredBB = PredBBs[0];
1409  else {
1410    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1411          << " common predecessors.\n");
1412    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1413                                    ".thr_comm", this);
1414  }
1415
1416  // And finally, do it!
1417  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1418        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1419        << ", across block:\n    "
1420        << *BB << "\n");
1421
1422  if (LVI)
1423    LVI->threadEdge(PredBB, BB, SuccBB);
1424
1425  // We are going to have to map operands from the original BB block to the new
1426  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1427  // account for entry from PredBB.
1428  DenseMap<Instruction*, Value*> ValueMapping;
1429
1430  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1431                                         BB->getName()+".thread",
1432                                         BB->getParent(), BB);
1433  NewBB->moveAfter(PredBB);
1434
1435  BasicBlock::iterator BI = BB->begin();
1436  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1437    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1438
1439  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1440  // mapping and using it to remap operands in the cloned instructions.
1441  for (; !isa<TerminatorInst>(BI); ++BI) {
1442    Instruction *New = BI->clone();
1443    New->setName(BI->getName());
1444    NewBB->getInstList().push_back(New);
1445    ValueMapping[BI] = New;
1446
1447    // Remap operands to patch up intra-block references.
1448    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1449      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1450        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1451        if (I != ValueMapping.end())
1452          New->setOperand(i, I->second);
1453      }
1454  }
1455
1456  // We didn't copy the terminator from BB over to NewBB, because there is now
1457  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1458  BranchInst::Create(SuccBB, NewBB);
1459
1460  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1461  // PHI nodes for NewBB now.
1462  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1463
1464  // If there were values defined in BB that are used outside the block, then we
1465  // now have to update all uses of the value to use either the original value,
1466  // the cloned value, or some PHI derived value.  This can require arbitrary
1467  // PHI insertion, of which we are prepared to do, clean these up now.
1468  SSAUpdater SSAUpdate;
1469  SmallVector<Use*, 16> UsesToRename;
1470  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1471    // Scan all uses of this instruction to see if it is used outside of its
1472    // block, and if so, record them in UsesToRename.
1473    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1474         ++UI) {
1475      Instruction *User = cast<Instruction>(*UI);
1476      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1477        if (UserPN->getIncomingBlock(UI) == BB)
1478          continue;
1479      } else if (User->getParent() == BB)
1480        continue;
1481
1482      UsesToRename.push_back(&UI.getUse());
1483    }
1484
1485    // If there are no uses outside the block, we're done with this instruction.
1486    if (UsesToRename.empty())
1487      continue;
1488
1489    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1490
1491    // We found a use of I outside of BB.  Rename all uses of I that are outside
1492    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1493    // with the two values we know.
1494    SSAUpdate.Initialize(I);
1495    SSAUpdate.AddAvailableValue(BB, I);
1496    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1497
1498    while (!UsesToRename.empty())
1499      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1500    DEBUG(dbgs() << "\n");
1501  }
1502
1503
1504  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1505  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1506  // us to simplify any PHI nodes in BB.
1507  TerminatorInst *PredTerm = PredBB->getTerminator();
1508  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1509    if (PredTerm->getSuccessor(i) == BB) {
1510      RemovePredecessorAndSimplify(BB, PredBB, TD);
1511      PredTerm->setSuccessor(i, NewBB);
1512    }
1513
1514  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1515  // over the new instructions and zap any that are constants or dead.  This
1516  // frequently happens because of phi translation.
1517  SimplifyInstructionsInBlock(NewBB, TD);
1518
1519  // Threaded an edge!
1520  ++NumThreads;
1521  return true;
1522}
1523
1524/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1525/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1526/// If we can duplicate the contents of BB up into PredBB do so now, this
1527/// improves the odds that the branch will be on an analyzable instruction like
1528/// a compare.
1529bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1530                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1531  assert(!PredBBs.empty() && "Can't handle an empty set");
1532
1533  // If BB is a loop header, then duplicating this block outside the loop would
1534  // cause us to transform this into an irreducible loop, don't do this.
1535  // See the comments above FindLoopHeaders for justifications and caveats.
1536  if (LoopHeaders.count(BB)) {
1537    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1538          << "' into predecessor block '" << PredBBs[0]->getName()
1539          << "' - it might create an irreducible loop!\n");
1540    return false;
1541  }
1542
1543  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1544  if (DuplicationCost > Threshold) {
1545    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1546          << "' - Cost is too high: " << DuplicationCost << "\n");
1547    return false;
1548  }
1549
1550  // And finally, do it!  Start by factoring the predecessors is needed.
1551  BasicBlock *PredBB;
1552  if (PredBBs.size() == 1)
1553    PredBB = PredBBs[0];
1554  else {
1555    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1556          << " common predecessors.\n");
1557    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1558                                    ".thr_comm", this);
1559  }
1560
1561  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1562  // of PredBB.
1563  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1564        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1565        << DuplicationCost << " block is:" << *BB << "\n");
1566
1567  // Unless PredBB ends with an unconditional branch, split the edge so that we
1568  // can just clone the bits from BB into the end of the new PredBB.
1569  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1570
1571  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1572    PredBB = SplitEdge(PredBB, BB, this);
1573    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1574  }
1575
1576  // We are going to have to map operands from the original BB block into the
1577  // PredBB block.  Evaluate PHI nodes in BB.
1578  DenseMap<Instruction*, Value*> ValueMapping;
1579
1580  BasicBlock::iterator BI = BB->begin();
1581  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1582    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1583
1584  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1585  // mapping and using it to remap operands in the cloned instructions.
1586  for (; BI != BB->end(); ++BI) {
1587    Instruction *New = BI->clone();
1588
1589    // Remap operands to patch up intra-block references.
1590    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1591      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1592        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1593        if (I != ValueMapping.end())
1594          New->setOperand(i, I->second);
1595      }
1596
1597    // If this instruction can be simplified after the operands are updated,
1598    // just use the simplified value instead.  This frequently happens due to
1599    // phi translation.
1600    if (Value *IV = SimplifyInstruction(New, TD)) {
1601      delete New;
1602      ValueMapping[BI] = IV;
1603    } else {
1604      // Otherwise, insert the new instruction into the block.
1605      New->setName(BI->getName());
1606      PredBB->getInstList().insert(OldPredBranch, New);
1607      ValueMapping[BI] = New;
1608    }
1609  }
1610
1611  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1612  // add entries to the PHI nodes for branch from PredBB now.
1613  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1614  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1615                                  ValueMapping);
1616  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1617                                  ValueMapping);
1618
1619  // If there were values defined in BB that are used outside the block, then we
1620  // now have to update all uses of the value to use either the original value,
1621  // the cloned value, or some PHI derived value.  This can require arbitrary
1622  // PHI insertion, of which we are prepared to do, clean these up now.
1623  SSAUpdater SSAUpdate;
1624  SmallVector<Use*, 16> UsesToRename;
1625  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1626    // Scan all uses of this instruction to see if it is used outside of its
1627    // block, and if so, record them in UsesToRename.
1628    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1629         ++UI) {
1630      Instruction *User = cast<Instruction>(*UI);
1631      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1632        if (UserPN->getIncomingBlock(UI) == BB)
1633          continue;
1634      } else if (User->getParent() == BB)
1635        continue;
1636
1637      UsesToRename.push_back(&UI.getUse());
1638    }
1639
1640    // If there are no uses outside the block, we're done with this instruction.
1641    if (UsesToRename.empty())
1642      continue;
1643
1644    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1645
1646    // We found a use of I outside of BB.  Rename all uses of I that are outside
1647    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1648    // with the two values we know.
1649    SSAUpdate.Initialize(I);
1650    SSAUpdate.AddAvailableValue(BB, I);
1651    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1652
1653    while (!UsesToRename.empty())
1654      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1655    DEBUG(dbgs() << "\n");
1656  }
1657
1658  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1659  // that we nuked.
1660  RemovePredecessorAndSimplify(BB, PredBB, TD);
1661
1662  // Remove the unconditional branch at the end of the PredBB block.
1663  OldPredBranch->eraseFromParent();
1664
1665  ++NumDupes;
1666  return true;
1667}
1668
1669
1670