JumpThreading.cpp revision 69e067fdd86d34cb81ccdffb82415b4f89144218
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Pass.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/ADT/SmallPtrSet.h"
26using namespace llvm;
27
28STATISTIC(NumThreads, "Number of jumps threaded");
29STATISTIC(NumFolds,   "Number of terminators folded");
30
31static cl::opt<unsigned>
32Threshold("jump-threading-threshold",
33          cl::desc("Max block size to duplicate for jump threading"),
34          cl::init(6), cl::Hidden);
35
36namespace {
37  /// This pass performs 'jump threading', which looks at blocks that have
38  /// multiple predecessors and multiple successors.  If one or more of the
39  /// predecessors of the block can be proven to always jump to one of the
40  /// successors, we forward the edge from the predecessor to the successor by
41  /// duplicating the contents of this block.
42  ///
43  /// An example of when this can occur is code like this:
44  ///
45  ///   if () { ...
46  ///     X = 4;
47  ///   }
48  ///   if (X < 3) {
49  ///
50  /// In this case, the unconditional branch at the end of the first if can be
51  /// revectored to the false side of the second if.
52  ///
53  class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
54  public:
55    static char ID; // Pass identification
56    JumpThreading() : FunctionPass(&ID) {}
57
58    bool runOnFunction(Function &F);
59    bool ThreadBlock(BasicBlock *BB);
60    void ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
61    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Constant *CstVal);
62
63    bool ProcessJumpOnPHI(PHINode *PN);
64    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
65    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
66
67    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
68  };
69}
70
71char JumpThreading::ID = 0;
72static RegisterPass<JumpThreading>
73X("jump-threading", "Jump Threading");
74
75// Public interface to the Jump Threading pass
76FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
77
78/// runOnFunction - Top level algorithm.
79///
80bool JumpThreading::runOnFunction(Function &F) {
81  DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
82
83  bool AnotherIteration = true, EverChanged = false;
84  while (AnotherIteration) {
85    AnotherIteration = false;
86    bool Changed = false;
87    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
88      while (ThreadBlock(I))
89        Changed = true;
90    AnotherIteration = Changed;
91    EverChanged |= Changed;
92  }
93  return EverChanged;
94}
95
96/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
97/// value for the PHI, factor them together so we get one block to thread for
98/// the whole group.
99/// This is important for things like "phi i1 [true, true, false, true, x]"
100/// where we only need to clone the block for the true blocks once.
101///
102BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Constant *CstVal) {
103  SmallVector<BasicBlock*, 16> CommonPreds;
104  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
105    if (PN->getIncomingValue(i) == CstVal)
106      CommonPreds.push_back(PN->getIncomingBlock(i));
107
108  if (CommonPreds.size() == 1)
109    return CommonPreds[0];
110
111  DOUT << "  Factoring out " << CommonPreds.size()
112       << " common predecessors.\n";
113  return SplitBlockPredecessors(PN->getParent(),
114                                &CommonPreds[0], CommonPreds.size(),
115                                ".thr_comm", this);
116}
117
118
119/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
120/// thread across it.
121static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
122  /// Ignore PHI nodes, these will be flattened when duplication happens.
123  BasicBlock::const_iterator I = BB->getFirstNonPHI();
124
125  // Sum up the cost of each instruction until we get to the terminator.  Don't
126  // include the terminator because the copy won't include it.
127  unsigned Size = 0;
128  for (; !isa<TerminatorInst>(I); ++I) {
129    // Debugger intrinsics don't incur code size.
130    if (isa<DbgInfoIntrinsic>(I)) continue;
131
132    // If this is a pointer->pointer bitcast, it is free.
133    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
134      continue;
135
136    // All other instructions count for at least one unit.
137    ++Size;
138
139    // Calls are more expensive.  If they are non-intrinsic calls, we model them
140    // as having cost of 4.  If they are a non-vector intrinsic, we model them
141    // as having cost of 2 total, and if they are a vector intrinsic, we model
142    // them as having cost 1.
143    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
144      if (!isa<IntrinsicInst>(CI))
145        Size += 3;
146      else if (isa<VectorType>(CI->getType()))
147        Size += 1;
148    }
149  }
150
151  // Threading through a switch statement is particularly profitable.  If this
152  // block ends in a switch, decrease its cost to make it more likely to happen.
153  if (isa<SwitchInst>(I))
154    Size = Size > 6 ? Size-6 : 0;
155
156  return Size;
157}
158
159/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
160/// predecessor is known to have one successor (DestBB!).  Eliminate the edge
161/// between them, moving the instructions in the predecessor into DestBB and
162/// deleting the predecessor block.
163///
164/// FIXME: Move to TransformUtils to share with simplifycfg and codegenprepare.
165static void MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB) {
166  // If BB has single-entry PHI nodes, fold them.
167  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
168    Value *NewVal = PN->getIncomingValue(0);
169    // Replace self referencing PHI with undef, it must be dead.
170    if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
171    PN->replaceAllUsesWith(NewVal);
172    PN->eraseFromParent();
173  }
174
175  BasicBlock *PredBB = DestBB->getSinglePredecessor();
176  assert(PredBB && "Block doesn't have a single predecessor!");
177
178  // Splice all the instructions from PredBB to DestBB.
179  PredBB->getTerminator()->eraseFromParent();
180  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
181
182  // Anything that branched to PredBB now branches to DestBB.
183  PredBB->replaceAllUsesWith(DestBB);
184
185  // Nuke BB.
186  PredBB->eraseFromParent();
187}
188
189
190/// ThreadBlock - If there are any predecessors whose control can be threaded
191/// through to a successor, transform them now.
192bool JumpThreading::ThreadBlock(BasicBlock *BB) {
193  // If this block has a single predecessor, and if that pred has a single
194  // successor, merge the blocks.  This encourages recursive jump threading
195  // because now the condition in this block can be threaded through
196  // predecessors of our predecessor block.
197  if (BasicBlock *SinglePred = BB->getSinglePredecessor())
198    if (SinglePred->getTerminator()->getNumSuccessors() == 1) {
199      MergeBasicBlockIntoOnlyPred(BB);
200      return true;
201    }
202
203  // See if this block ends with a branch or switch.  If so, see if the
204  // condition is a phi node.  If so, and if an entry of the phi node is a
205  // constant, we can thread the block.
206  Value *Condition;
207  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
208    // Can't thread an unconditional jump.
209    if (BI->isUnconditional()) return false;
210    Condition = BI->getCondition();
211  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
212    Condition = SI->getCondition();
213  else
214    return false; // Must be an invoke.
215
216  // If the terminator of this block is branching on a constant, simplify the
217  // terminator to an unconditional branch.  This can occur due to threading in
218  // other blocks.
219  if (isa<ConstantInt>(Condition)) {
220    DOUT << "  In block '" << BB->getNameStart()
221         << "' folding terminator: " << *BB->getTerminator();
222    ++NumFolds;
223    ConstantFoldTerminator(BB);
224    return true;
225  }
226
227  // If there is only a single predecessor of this block, nothing to fold.
228  if (BB->getSinglePredecessor())
229    return false;
230
231  // See if this is a phi node in the current block.
232  PHINode *PN = dyn_cast<PHINode>(Condition);
233  if (PN && PN->getParent() == BB)
234    return ProcessJumpOnPHI(PN);
235
236  // If this is a conditional branch whose condition is and/or of a phi, try to
237  // simplify it.
238  if (BinaryOperator *CondI = dyn_cast<BinaryOperator>(Condition)) {
239    if ((CondI->getOpcode() == Instruction::And ||
240         CondI->getOpcode() == Instruction::Or) &&
241        isa<BranchInst>(BB->getTerminator()) &&
242        ProcessBranchOnLogical(CondI, BB,
243                               CondI->getOpcode() == Instruction::And))
244      return true;
245  }
246
247  // If we have "br (phi != 42)" and the phi node has any constant values as
248  // operands, we can thread through this block.
249  if (CmpInst *CondCmp = dyn_cast<CmpInst>(Condition))
250    if (isa<PHINode>(CondCmp->getOperand(0)) &&
251        isa<Constant>(CondCmp->getOperand(1)) &&
252        ProcessBranchOnCompare(CondCmp, BB))
253      return true;
254
255  // Check for some cases that are worth simplifying.  Right now we want to look
256  // for loads that are used by a switch or by the condition for the branch.  If
257  // we see one, check to see if it's partially redundant.  If so, insert a PHI
258  // which can then be used to thread the values.
259  //
260  // This is particularly important because reg2mem inserts loads and stores all
261  // over the place, and this blocks jump threading if we don't zap them.
262  Value *SimplifyValue = Condition;
263  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
264    if (isa<Constant>(CondCmp->getOperand(1)))
265      SimplifyValue = CondCmp->getOperand(0);
266
267  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
268    if (SimplifyPartiallyRedundantLoad(LI))
269      return true;
270
271  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
272  // "(X == 4)" thread through this block.
273
274  return false;
275}
276
277
278/// FindAvailableLoadedValue - Scan backwards from ScanFrom checking to see if
279/// we have the value at the memory address *Ptr locally available within a
280/// small number of instructions.  If the value is available, return it.
281///
282/// If not, return the iterator for the last validated instruction that the
283/// value would be live through.  If we scanned the entire block, ScanFrom would
284/// be left at begin().
285///
286/// FIXME: Move this to transform utils and use from
287/// InstCombiner::visitLoadInst.  It would also be nice to optionally take AA so
288/// that GVN could do this.
289static Value *FindAvailableLoadedValue(Value *Ptr,
290                                       BasicBlock *ScanBB,
291                                       BasicBlock::iterator &ScanFrom) {
292
293  unsigned NumToScan = 6;
294  while (ScanFrom != ScanBB->begin()) {
295    // Don't scan huge blocks.
296    if (--NumToScan == 0) return 0;
297
298    Instruction *Inst = --ScanFrom;
299
300    // If this is a load of Ptr, the loaded value is available.
301    if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
302      if (LI->getOperand(0) == Ptr)
303        return LI;
304
305    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
306      // If this is a store through Ptr, the value is available!
307      if (SI->getOperand(1) == Ptr)
308        return SI->getOperand(0);
309
310      // If Ptr is an alloca and this is a store to a different alloca, ignore
311      // the store.  This is a trivial form of alias analysis that is important
312      // for reg2mem'd code.
313      if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
314          (isa<AllocaInst>(SI->getOperand(1)) ||
315           isa<GlobalVariable>(SI->getOperand(1))))
316        continue;
317
318      // Otherwise the store that may or may not alias the pointer, bail out.
319      ++ScanFrom;
320      return 0;
321    }
322
323
324    // If this is some other instruction that may clobber Ptr, bail out.
325    if (Inst->mayWriteToMemory()) {
326      // May modify the pointer, bail out.
327      ++ScanFrom;
328      return 0;
329    }
330  }
331
332  // Got to the start of the block, we didn't find it, but are done for this
333  // block.
334  return 0;
335}
336
337
338/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
339/// load instruction, eliminate it by replacing it with a PHI node.  This is an
340/// important optimization that encourages jump threading, and needs to be run
341/// interlaced with other jump threading tasks.
342bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
343  // Don't hack volatile loads.
344  if (LI->isVolatile()) return false;
345
346  // If the load is defined in a block with exactly one predecessor, it can't be
347  // partially redundant.
348  BasicBlock *LoadBB = LI->getParent();
349  if (LoadBB->getSinglePredecessor())
350    return false;
351
352  Value *LoadedPtr = LI->getOperand(0);
353
354  // If the loaded operand is defined in the LoadBB, it can't be available.
355  // FIXME: Could do PHI translation, that would be fun :)
356  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
357    if (PtrOp->getParent() == LoadBB)
358      return false;
359
360  // Scan a few instructions up from the load, to see if it is obviously live at
361  // the entry to its block.
362  BasicBlock::iterator BBIt = LI;
363
364  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt)) {
365    // If the value if the load is locally available within the block, just use
366    // it.  This frequently occurs for reg2mem'd allocas.
367    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
368    LI->replaceAllUsesWith(AvailableVal);
369    LI->eraseFromParent();
370    return true;
371  }
372
373  // Otherwise, if we scanned the whole block and got to the top of the block,
374  // we know the block is locally transparent to the load.  If not, something
375  // might clobber its value.
376  if (BBIt != LoadBB->begin())
377    return false;
378
379
380  SmallPtrSet<BasicBlock*, 8> PredsScanned;
381  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
382  AvailablePredsTy AvailablePreds;
383  BasicBlock *OneUnavailablePred = 0;
384
385  // If we got here, the loaded value is transparent through to the start of the
386  // block.  Check to see if it is available in any of the predecessor blocks.
387  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
388       PI != PE; ++PI) {
389    BasicBlock *PredBB = *PI;
390
391    // If we already scanned this predecessor, skip it.
392    if (!PredsScanned.insert(PredBB))
393      continue;
394
395    // Scan the predecessor to see if the value is available in the pred.
396    BBIt = PredBB->end();
397    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt);
398    if (!PredAvailable) {
399      OneUnavailablePred = PredBB;
400      continue;
401    }
402
403    // If so, this load is partially redundant.  Remember this info so that we
404    // can create a PHI node.
405    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
406  }
407
408  // If the loaded value isn't available in any predecessor, it isn't partially
409  // redundant.
410  if (AvailablePreds.empty()) return false;
411
412  // Okay, the loaded value is available in at least one (and maybe all!)
413  // predecessors.  If the value is unavailable in more than one unique
414  // predecessor, we want to insert a merge block for those common predecessors.
415  // This ensures that we only have to insert one reload, thus not increasing
416  // code size.
417  BasicBlock *UnavailablePred = 0;
418
419  // If there is exactly one predecessor where the value is unavailable, the
420  // already computed 'OneUnavailablePred' block is it.  If it ends in an
421  // unconditional branch, we know that it isn't a critical edge.
422  if (PredsScanned.size() == AvailablePreds.size()+1 &&
423      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
424    UnavailablePred = OneUnavailablePred;
425  } else if (PredsScanned.size() != AvailablePreds.size()) {
426    // Otherwise, we had multiple unavailable predecessors or we had a critical
427    // edge from the one.
428    SmallVector<BasicBlock*, 8> PredsToSplit;
429    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
430
431    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
432      AvailablePredSet.insert(AvailablePreds[i].first);
433
434    // Add all the unavailable predecessors to the PredsToSplit list.
435    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
436         PI != PE; ++PI)
437      if (!AvailablePredSet.count(*PI))
438        PredsToSplit.push_back(*PI);
439
440    // Split them out to their own block.
441    UnavailablePred =
442      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
443                             "thread-split", this);
444  }
445
446  // If the value isn't available in all predecessors, then there will be
447  // exactly one where it isn't available.  Insert a load on that edge and add
448  // it to the AvailablePreds list.
449  if (UnavailablePred) {
450    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
451           "Can't handle critical edge here!");
452    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
453                                 UnavailablePred->getTerminator());
454    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
455  }
456
457  // Now we know that each predecessor of this block has a value in
458  // AvailablePreds, sort them for efficient access as we're walking the preds.
459  std::sort(AvailablePreds.begin(), AvailablePreds.end());
460
461  // Create a PHI node at the start of the block for the PRE'd load value.
462  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
463  PN->takeName(LI);
464
465  // Insert new entries into the PHI for each predecessor.  A single block may
466  // have multiple entries here.
467  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
468       ++PI) {
469    AvailablePredsTy::iterator I =
470      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
471                       std::make_pair(*PI, (Value*)0));
472
473    assert(I != AvailablePreds.end() && I->first == *PI &&
474           "Didn't find entry for predecessor!");
475
476    PN->addIncoming(I->second, I->first);
477  }
478
479  //cerr << "PRE: " << *LI << *PN << "\n";
480
481  LI->replaceAllUsesWith(PN);
482  LI->eraseFromParent();
483
484  return true;
485}
486
487
488/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
489/// the current block.  See if there are any simplifications we can do based on
490/// inputs to the phi node.
491///
492bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
493  // See if the phi node has any constant values.  If so, we can determine where
494  // the corresponding predecessor will branch.
495  ConstantInt *PredCst = 0;
496  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
497    if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
498      break;
499
500  // If no incoming value has a constant, we don't know the destination of any
501  // predecessors.
502  if (PredCst == 0)
503    return false;
504
505  // See if the cost of duplicating this block is low enough.
506  BasicBlock *BB = PN->getParent();
507  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
508  if (JumpThreadCost > Threshold) {
509    DOUT << "  Not threading BB '" << BB->getNameStart()
510         << "' - Cost is too high: " << JumpThreadCost << "\n";
511    return false;
512  }
513
514  // If so, we can actually do this threading.  Merge any common predecessors
515  // that will act the same.
516  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
517
518  // Next, figure out which successor we are threading to.
519  BasicBlock *SuccBB;
520  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
521    SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
522  else {
523    SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
524    SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
525  }
526
527  // If threading to the same block as we come from, we would infinite loop.
528  if (SuccBB == BB) {
529    DOUT << "  Not threading BB '" << BB->getNameStart()
530         << "' - would thread to self!\n";
531    return false;
532  }
533
534  // And finally, do it!
535  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
536       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
537       << ", across block:\n    "
538       << *BB << "\n";
539
540  ThreadEdge(BB, PredBB, SuccBB);
541  ++NumThreads;
542  return true;
543}
544
545/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
546/// whose condition is an AND/OR where one side is PN.  If PN has constant
547/// operands that permit us to evaluate the condition for some operand, thread
548/// through the block.  For example with:
549///   br (and X, phi(Y, Z, false))
550/// the predecessor corresponding to the 'false' will always jump to the false
551/// destination of the branch.
552///
553bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
554                                           bool isAnd) {
555  // If this is a binary operator tree of the same AND/OR opcode, check the
556  // LHS/RHS.
557  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
558    if ((isAnd && BO->getOpcode() == Instruction::And) ||
559        (!isAnd && BO->getOpcode() == Instruction::Or)) {
560      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
561        return true;
562      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
563        return true;
564    }
565
566  // If this isn't a PHI node, we can't handle it.
567  PHINode *PN = dyn_cast<PHINode>(V);
568  if (!PN || PN->getParent() != BB) return false;
569
570  // We can only do the simplification for phi nodes of 'false' with AND or
571  // 'true' with OR.  See if we have any entries in the phi for this.
572  unsigned PredNo = ~0U;
573  ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
574  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
575    if (PN->getIncomingValue(i) == PredCst) {
576      PredNo = i;
577      break;
578    }
579  }
580
581  // If no match, bail out.
582  if (PredNo == ~0U)
583    return false;
584
585  // See if the cost of duplicating this block is low enough.
586  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
587  if (JumpThreadCost > Threshold) {
588    DOUT << "  Not threading BB '" << BB->getNameStart()
589         << "' - Cost is too high: " << JumpThreadCost << "\n";
590    return false;
591  }
592
593  // If so, we can actually do this threading.  Merge any common predecessors
594  // that will act the same.
595  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
596
597  // Next, figure out which successor we are threading to.  If this was an AND,
598  // the constant must be FALSE, and we must be targeting the 'false' block.
599  // If this is an OR, the constant must be TRUE, and we must be targeting the
600  // 'true' block.
601  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
602
603  // If threading to the same block as we come from, we would infinite loop.
604  if (SuccBB == BB) {
605    DOUT << "  Not threading BB '" << BB->getNameStart()
606    << "' - would thread to self!\n";
607    return false;
608  }
609
610  // And finally, do it!
611  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
612       << "' to '" << SuccBB->getNameStart() << "' with cost: "
613       << JumpThreadCost << ", across block:\n    "
614       << *BB << "\n";
615
616  ThreadEdge(BB, PredBB, SuccBB);
617  ++NumThreads;
618  return true;
619}
620
621/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
622/// node and a constant.  If the PHI node contains any constants as inputs, we
623/// can fold the compare for that edge and thread through it.
624bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
625  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
626  Constant *RHS = cast<Constant>(Cmp->getOperand(1));
627
628  // If the phi isn't in the current block, an incoming edge to this block
629  // doesn't control the destination.
630  if (PN->getParent() != BB)
631    return false;
632
633  // We can do this simplification if any comparisons fold to true or false.
634  // See if any do.
635  Constant *PredCst = 0;
636  bool TrueDirection = false;
637  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
638    PredCst = dyn_cast<Constant>(PN->getIncomingValue(i));
639    if (PredCst == 0) continue;
640
641    Constant *Res;
642    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cmp))
643      Res = ConstantExpr::getICmp(ICI->getPredicate(), PredCst, RHS);
644    else
645      Res = ConstantExpr::getFCmp(cast<FCmpInst>(Cmp)->getPredicate(),
646                                  PredCst, RHS);
647    // If this folded to a constant expr, we can't do anything.
648    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
649      TrueDirection = ResC->getZExtValue();
650      break;
651    }
652    // If this folded to undef, just go the false way.
653    if (isa<UndefValue>(Res)) {
654      TrueDirection = false;
655      break;
656    }
657
658    // Otherwise, we can't fold this input.
659    PredCst = 0;
660  }
661
662  // If no match, bail out.
663  if (PredCst == 0)
664    return false;
665
666  // See if the cost of duplicating this block is low enough.
667  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
668  if (JumpThreadCost > Threshold) {
669    DOUT << "  Not threading BB '" << BB->getNameStart()
670         << "' - Cost is too high: " << JumpThreadCost << "\n";
671    return false;
672  }
673
674  // If so, we can actually do this threading.  Merge any common predecessors
675  // that will act the same.
676  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
677
678  // Next, get our successor.
679  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
680
681  // If threading to the same block as we come from, we would infinite loop.
682  if (SuccBB == BB) {
683    DOUT << "  Not threading BB '" << BB->getNameStart()
684    << "' - would thread to self!\n";
685    return false;
686  }
687
688
689  // And finally, do it!
690  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
691       << "' to '" << SuccBB->getNameStart() << "' with cost: "
692       << JumpThreadCost << ", across block:\n    "
693       << *BB << "\n";
694
695  ThreadEdge(BB, PredBB, SuccBB);
696  ++NumThreads;
697  return true;
698}
699
700
701/// ThreadEdge - We have decided that it is safe and profitable to thread an
702/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
703/// change.
704void JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
705                               BasicBlock *SuccBB) {
706
707  // Jump Threading can not update SSA properties correctly if the values
708  // defined in the duplicated block are used outside of the block itself.  For
709  // this reason, we spill all values that are used outside of BB to the stack.
710  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
711    if (!I->isUsedOutsideOfBlock(BB))
712      continue;
713
714    // We found a use of I outside of BB.  Create a new stack slot to
715    // break this inter-block usage pattern.
716    DemoteRegToStack(*I);
717  }
718
719  // We are going to have to map operands from the original BB block to the new
720  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
721  // account for entry from PredBB.
722  DenseMap<Instruction*, Value*> ValueMapping;
723
724  BasicBlock *NewBB =
725    BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
726  NewBB->moveAfter(PredBB);
727
728  BasicBlock::iterator BI = BB->begin();
729  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
730    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
731
732  // Clone the non-phi instructions of BB into NewBB, keeping track of the
733  // mapping and using it to remap operands in the cloned instructions.
734  for (; !isa<TerminatorInst>(BI); ++BI) {
735    Instruction *New = BI->clone();
736    New->setName(BI->getNameStart());
737    NewBB->getInstList().push_back(New);
738    ValueMapping[BI] = New;
739
740    // Remap operands to patch up intra-block references.
741    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
742      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
743        if (Value *Remapped = ValueMapping[Inst])
744          New->setOperand(i, Remapped);
745  }
746
747  // We didn't copy the terminator from BB over to NewBB, because there is now
748  // an unconditional jump to SuccBB.  Insert the unconditional jump.
749  BranchInst::Create(SuccBB, NewBB);
750
751  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
752  // PHI nodes for NewBB now.
753  for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
754    PHINode *PN = cast<PHINode>(PNI);
755    // Ok, we have a PHI node.  Figure out what the incoming value was for the
756    // DestBlock.
757    Value *IV = PN->getIncomingValueForBlock(BB);
758
759    // Remap the value if necessary.
760    if (Instruction *Inst = dyn_cast<Instruction>(IV))
761      if (Value *MappedIV = ValueMapping[Inst])
762        IV = MappedIV;
763    PN->addIncoming(IV, NewBB);
764  }
765
766  // Finally, NewBB is good to go.  Update the terminator of PredBB to jump to
767  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
768  // us to simplify any PHI nodes in BB.
769  TerminatorInst *PredTerm = PredBB->getTerminator();
770  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
771    if (PredTerm->getSuccessor(i) == BB) {
772      BB->removePredecessor(PredBB);
773      PredTerm->setSuccessor(i, NewBB);
774    }
775}
776