JumpThreading.cpp revision 6b233395025069f63156ea2b524cdb708a14731f
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Pass.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/ADT/SmallPtrSet.h"
29using namespace llvm;
30
31STATISTIC(NumThreads, "Number of jumps threaded");
32STATISTIC(NumFolds,   "Number of terminators folded");
33
34static cl::opt<unsigned>
35Threshold("jump-threading-threshold",
36          cl::desc("Max block size to duplicate for jump threading"),
37          cl::init(6), cl::Hidden);
38
39namespace {
40  /// This pass performs 'jump threading', which looks at blocks that have
41  /// multiple predecessors and multiple successors.  If one or more of the
42  /// predecessors of the block can be proven to always jump to one of the
43  /// successors, we forward the edge from the predecessor to the successor by
44  /// duplicating the contents of this block.
45  ///
46  /// An example of when this can occur is code like this:
47  ///
48  ///   if () { ...
49  ///     X = 4;
50  ///   }
51  ///   if (X < 3) {
52  ///
53  /// In this case, the unconditional branch at the end of the first if can be
54  /// revectored to the false side of the second if.
55  ///
56  class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
57    TargetData *TD;
58  public:
59    static char ID; // Pass identification
60    JumpThreading() : FunctionPass(&ID) {}
61
62    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63      AU.addRequired<TargetData>();
64    }
65
66    bool runOnFunction(Function &F);
67    bool ProcessBlock(BasicBlock *BB);
68    void ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
69    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Constant *CstVal);
70    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
71    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
72
73    bool ProcessJumpOnPHI(PHINode *PN);
74    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
75    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
76
77    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
78  };
79}
80
81char JumpThreading::ID = 0;
82static RegisterPass<JumpThreading>
83X("jump-threading", "Jump Threading");
84
85// Public interface to the Jump Threading pass
86FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
87
88/// runOnFunction - Top level algorithm.
89///
90bool JumpThreading::runOnFunction(Function &F) {
91  DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
92  TD = &getAnalysis<TargetData>();
93
94  bool AnotherIteration = true, EverChanged = false;
95  while (AnotherIteration) {
96    AnotherIteration = false;
97    bool Changed = false;
98    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
99      BasicBlock *BB = I;
100      while (ProcessBlock(BB))
101        Changed = true;
102
103      ++I;
104
105      // If the block is trivially dead, zap it.  This eliminates the successor
106      // edges which simplifies the CFG.
107      if (pred_begin(BB) == pred_end(BB) &&
108          BB != &BB->getParent()->getEntryBlock()) {
109        DOUT << "  JT: Deleting dead block '" << BB->getNameStart()
110             << "' with terminator: " << *BB->getTerminator();
111        DeleteDeadBlock(BB);
112        Changed = true;
113      }
114    }
115    AnotherIteration = Changed;
116    EverChanged |= Changed;
117  }
118  return EverChanged;
119}
120
121/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
122/// value for the PHI, factor them together so we get one block to thread for
123/// the whole group.
124/// This is important for things like "phi i1 [true, true, false, true, x]"
125/// where we only need to clone the block for the true blocks once.
126///
127BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Constant *CstVal) {
128  SmallVector<BasicBlock*, 16> CommonPreds;
129  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
130    if (PN->getIncomingValue(i) == CstVal)
131      CommonPreds.push_back(PN->getIncomingBlock(i));
132
133  if (CommonPreds.size() == 1)
134    return CommonPreds[0];
135
136  DOUT << "  Factoring out " << CommonPreds.size()
137       << " common predecessors.\n";
138  return SplitBlockPredecessors(PN->getParent(),
139                                &CommonPreds[0], CommonPreds.size(),
140                                ".thr_comm", this);
141}
142
143
144/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
145/// thread across it.
146static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
147  /// Ignore PHI nodes, these will be flattened when duplication happens.
148  BasicBlock::const_iterator I = BB->getFirstNonPHI();
149
150  // Sum up the cost of each instruction until we get to the terminator.  Don't
151  // include the terminator because the copy won't include it.
152  unsigned Size = 0;
153  for (; !isa<TerminatorInst>(I); ++I) {
154    // Debugger intrinsics don't incur code size.
155    if (isa<DbgInfoIntrinsic>(I)) continue;
156
157    // If this is a pointer->pointer bitcast, it is free.
158    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
159      continue;
160
161    // All other instructions count for at least one unit.
162    ++Size;
163
164    // Calls are more expensive.  If they are non-intrinsic calls, we model them
165    // as having cost of 4.  If they are a non-vector intrinsic, we model them
166    // as having cost of 2 total, and if they are a vector intrinsic, we model
167    // them as having cost 1.
168    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
169      if (!isa<IntrinsicInst>(CI))
170        Size += 3;
171      else if (isa<VectorType>(CI->getType()))
172        Size += 1;
173    }
174  }
175
176  // Threading through a switch statement is particularly profitable.  If this
177  // block ends in a switch, decrease its cost to make it more likely to happen.
178  if (isa<SwitchInst>(I))
179    Size = Size > 6 ? Size-6 : 0;
180
181  return Size;
182}
183
184/// ProcessBlock - If there are any predecessors whose control can be threaded
185/// through to a successor, transform them now.
186bool JumpThreading::ProcessBlock(BasicBlock *BB) {
187  // If this block has a single predecessor, and if that pred has a single
188  // successor, merge the blocks.  This encourages recursive jump threading
189  // because now the condition in this block can be threaded through
190  // predecessors of our predecessor block.
191  if (BasicBlock *SinglePred = BB->getSinglePredecessor())
192    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
193        SinglePred != BB) {
194      // Remember if SinglePred was the entry block of the function.  If so, we
195      // will need to move BB back to the entry position.
196      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
197      MergeBasicBlockIntoOnlyPred(BB);
198
199      if (isEntry && BB != &BB->getParent()->getEntryBlock())
200        BB->moveBefore(&BB->getParent()->getEntryBlock());
201      return true;
202    }
203
204  // See if this block ends with a branch or switch.  If so, see if the
205  // condition is a phi node.  If so, and if an entry of the phi node is a
206  // constant, we can thread the block.
207  Value *Condition;
208  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
209    // Can't thread an unconditional jump.
210    if (BI->isUnconditional()) return false;
211    Condition = BI->getCondition();
212  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
213    Condition = SI->getCondition();
214  else
215    return false; // Must be an invoke.
216
217  // If the terminator of this block is branching on a constant, simplify the
218  // terminator to an unconditional branch.  This can occur due to threading in
219  // other blocks.
220  if (isa<ConstantInt>(Condition)) {
221    DOUT << "  In block '" << BB->getNameStart()
222         << "' folding terminator: " << *BB->getTerminator();
223    ++NumFolds;
224    ConstantFoldTerminator(BB);
225    return true;
226  }
227
228  // If the terminator is branching on an undef, we can pick any of the
229  // successors to branch to.  Since this is arbitrary, we pick the successor
230  // with the fewest predecessors.  This should reduce the in-degree of the
231  // others.
232  if (isa<UndefValue>(Condition)) {
233    TerminatorInst *BBTerm = BB->getTerminator();
234    unsigned MinSucc = 0;
235    BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
236    // Compute the successor with the minimum number of predecessors.
237    unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
238    for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
239      TestBB = BBTerm->getSuccessor(i);
240      unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
241      if (NumPreds < MinNumPreds)
242        MinSucc = i;
243    }
244
245    // Fold the branch/switch.
246    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
247      if (i == MinSucc) continue;
248      BBTerm->getSuccessor(i)->removePredecessor(BB);
249    }
250
251    DOUT << "  In block '" << BB->getNameStart()
252         << "' folding undef terminator: " << *BBTerm;
253    BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm);
254    BBTerm->eraseFromParent();
255    return true;
256  }
257
258  Instruction *CondInst = dyn_cast<Instruction>(Condition);
259
260  // If the condition is an instruction defined in another block, see if a
261  // predecessor has the same condition:
262  //     br COND, BBX, BBY
263  //  BBX:
264  //     br COND, BBZ, BBW
265  if (!Condition->hasOneUse() && // Multiple uses.
266      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
267    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
268    if (isa<BranchInst>(BB->getTerminator())) {
269      for (; PI != E; ++PI)
270        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
271          if (PBI->isConditional() && PBI->getCondition() == Condition &&
272              ProcessBranchOnDuplicateCond(*PI, BB))
273            return true;
274    } else {
275      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
276      for (; PI != E; ++PI)
277        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
278          if (PSI->getCondition() == Condition &&
279              ProcessSwitchOnDuplicateCond(*PI, BB))
280            return true;
281    }
282  }
283
284  // If there is only a single predecessor of this block, nothing to fold.
285  if (BB->getSinglePredecessor())
286    return false;
287
288  // All the rest of our checks depend on the condition being an instruction.
289  if (CondInst == 0)
290    return false;
291
292  // See if this is a phi node in the current block.
293  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
294    if (PN->getParent() == BB)
295      return ProcessJumpOnPHI(PN);
296
297  // If this is a conditional branch whose condition is and/or of a phi, try to
298  // simplify it.
299  if ((CondInst->getOpcode() == Instruction::And ||
300       CondInst->getOpcode() == Instruction::Or) &&
301      isa<BranchInst>(BB->getTerminator()) &&
302      ProcessBranchOnLogical(CondInst, BB,
303                             CondInst->getOpcode() == Instruction::And))
304    return true;
305
306  // If we have "br (phi != 42)" and the phi node has any constant values as
307  // operands, we can thread through this block.
308  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst))
309    if (isa<PHINode>(CondCmp->getOperand(0)) &&
310        isa<Constant>(CondCmp->getOperand(1)) &&
311        ProcessBranchOnCompare(CondCmp, BB))
312      return true;
313
314  // Check for some cases that are worth simplifying.  Right now we want to look
315  // for loads that are used by a switch or by the condition for the branch.  If
316  // we see one, check to see if it's partially redundant.  If so, insert a PHI
317  // which can then be used to thread the values.
318  //
319  // This is particularly important because reg2mem inserts loads and stores all
320  // over the place, and this blocks jump threading if we don't zap them.
321  Value *SimplifyValue = CondInst;
322  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
323    if (isa<Constant>(CondCmp->getOperand(1)))
324      SimplifyValue = CondCmp->getOperand(0);
325
326  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
327    if (SimplifyPartiallyRedundantLoad(LI))
328      return true;
329
330  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
331  // "(X == 4)" thread through this block.
332
333  return false;
334}
335
336/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
337/// block that jump on exactly the same condition.  This means that we almost
338/// always know the direction of the edge in the DESTBB:
339///  PREDBB:
340///     br COND, DESTBB, BBY
341///  DESTBB:
342///     br COND, BBZ, BBW
343///
344/// If DESTBB has multiple predecessors, we can't just constant fold the branch
345/// in DESTBB, we have to thread over it.
346bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
347                                                 BasicBlock *BB) {
348  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
349
350  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
351  // fold the branch to an unconditional one, which allows other recursive
352  // simplifications.
353  bool BranchDir;
354  if (PredBI->getSuccessor(1) != BB)
355    BranchDir = true;
356  else if (PredBI->getSuccessor(0) != BB)
357    BranchDir = false;
358  else {
359    DOUT << "  In block '" << PredBB->getNameStart()
360         << "' folding terminator: " << *PredBB->getTerminator();
361    ++NumFolds;
362    ConstantFoldTerminator(PredBB);
363    return true;
364  }
365
366  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
367
368  // If the dest block has one predecessor, just fix the branch condition to a
369  // constant and fold it.
370  if (BB->getSinglePredecessor()) {
371    DOUT << "  In block '" << BB->getNameStart()
372         << "' folding condition to '" << BranchDir << "': "
373         << *BB->getTerminator();
374    ++NumFolds;
375    DestBI->setCondition(ConstantInt::get(Type::Int1Ty, BranchDir));
376    ConstantFoldTerminator(BB);
377    return true;
378  }
379
380  // Otherwise we need to thread from PredBB to DestBB's successor which
381  // involves code duplication.  Check to see if it is worth it.
382  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
383  if (JumpThreadCost > Threshold) {
384    DOUT << "  Not threading BB '" << BB->getNameStart()
385         << "' - Cost is too high: " << JumpThreadCost << "\n";
386    return false;
387  }
388
389  // Next, figure out which successor we are threading to.
390  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
391
392  // If threading to the same block as we come from, we would infinite loop.
393  if (SuccBB == BB) {
394    DOUT << "  Not threading BB '" << BB->getNameStart()
395         << "' - would thread to self!\n";
396    return false;
397  }
398
399  // And finally, do it!
400  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
401       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
402       << ", across block:\n    "
403       << *BB << "\n";
404
405  ThreadEdge(BB, PredBB, SuccBB);
406  ++NumThreads;
407  return true;
408}
409
410/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
411/// block that switch on exactly the same condition.  This means that we almost
412/// always know the direction of the edge in the DESTBB:
413///  PREDBB:
414///     switch COND [... DESTBB, BBY ... ]
415///  DESTBB:
416///     switch COND [... BBZ, BBW ]
417///
418/// Optimizing switches like this is very important, because simplifycfg builds
419/// switches out of repeated 'if' conditions.
420bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
421                                                 BasicBlock *DestBB) {
422  // Can't thread edge to self.
423  if (PredBB == DestBB)
424    return false;
425
426
427  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
428  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
429
430  // There are a variety of optimizations that we can potentially do on these
431  // blocks: we order them from most to least preferable.
432
433  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
434  // directly to their destination.  This does not introduce *any* code size
435  // growth.  Skip debug info first.
436  BasicBlock::iterator BBI = DestBB->begin();
437  while (isa<DbgInfoIntrinsic>(BBI))
438    BBI++;
439
440  // FIXME: Thread if it just contains a PHI.
441  if (isa<SwitchInst>(BBI)) {
442    bool MadeChange = false;
443    // Ignore the default edge for now.
444    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
445      ConstantInt *DestVal = DestSI->getCaseValue(i);
446      BasicBlock *DestSucc = DestSI->getSuccessor(i);
447
448      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
449      // PredSI has an explicit case for it.  If so, forward.  If it is covered
450      // by the default case, we can't update PredSI.
451      unsigned PredCase = PredSI->findCaseValue(DestVal);
452      if (PredCase == 0) continue;
453
454      // If PredSI doesn't go to DestBB on this value, then it won't reach the
455      // case on this condition.
456      if (PredSI->getSuccessor(PredCase) != DestBB &&
457          DestSI->getSuccessor(i) != DestBB)
458        continue;
459
460      // Otherwise, we're safe to make the change.  Make sure that the edge from
461      // DestSI to DestSucc is not critical and has no PHI nodes.
462      DOUT << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI;
463      DOUT << "THROUGH: " << *DestSI;
464
465      // If the destination has PHI nodes, just split the edge for updating
466      // simplicity.
467      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
468        SplitCriticalEdge(DestSI, i, this);
469        DestSucc = DestSI->getSuccessor(i);
470      }
471      FoldSingleEntryPHINodes(DestSucc);
472      PredSI->setSuccessor(PredCase, DestSucc);
473      MadeChange = true;
474    }
475
476    if (MadeChange)
477      return true;
478  }
479
480  return false;
481}
482
483
484/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
485/// load instruction, eliminate it by replacing it with a PHI node.  This is an
486/// important optimization that encourages jump threading, and needs to be run
487/// interlaced with other jump threading tasks.
488bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
489  // Don't hack volatile loads.
490  if (LI->isVolatile()) return false;
491
492  // If the load is defined in a block with exactly one predecessor, it can't be
493  // partially redundant.
494  BasicBlock *LoadBB = LI->getParent();
495  if (LoadBB->getSinglePredecessor())
496    return false;
497
498  Value *LoadedPtr = LI->getOperand(0);
499
500  // If the loaded operand is defined in the LoadBB, it can't be available.
501  // FIXME: Could do PHI translation, that would be fun :)
502  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
503    if (PtrOp->getParent() == LoadBB)
504      return false;
505
506  // Scan a few instructions up from the load, to see if it is obviously live at
507  // the entry to its block.
508  BasicBlock::iterator BBIt = LI;
509
510  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
511                                                     BBIt, 6)) {
512    // If the value if the load is locally available within the block, just use
513    // it.  This frequently occurs for reg2mem'd allocas.
514    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
515
516    // If the returned value is the load itself, replace with an undef. This can
517    // only happen in dead loops.
518    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
519    LI->replaceAllUsesWith(AvailableVal);
520    LI->eraseFromParent();
521    return true;
522  }
523
524  // Otherwise, if we scanned the whole block and got to the top of the block,
525  // we know the block is locally transparent to the load.  If not, something
526  // might clobber its value.
527  if (BBIt != LoadBB->begin())
528    return false;
529
530
531  SmallPtrSet<BasicBlock*, 8> PredsScanned;
532  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
533  AvailablePredsTy AvailablePreds;
534  BasicBlock *OneUnavailablePred = 0;
535
536  // If we got here, the loaded value is transparent through to the start of the
537  // block.  Check to see if it is available in any of the predecessor blocks.
538  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
539       PI != PE; ++PI) {
540    BasicBlock *PredBB = *PI;
541
542    // If we already scanned this predecessor, skip it.
543    if (!PredsScanned.insert(PredBB))
544      continue;
545
546    // Scan the predecessor to see if the value is available in the pred.
547    BBIt = PredBB->end();
548    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
549    if (!PredAvailable) {
550      OneUnavailablePred = PredBB;
551      continue;
552    }
553
554    // If so, this load is partially redundant.  Remember this info so that we
555    // can create a PHI node.
556    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
557  }
558
559  // If the loaded value isn't available in any predecessor, it isn't partially
560  // redundant.
561  if (AvailablePreds.empty()) return false;
562
563  // Okay, the loaded value is available in at least one (and maybe all!)
564  // predecessors.  If the value is unavailable in more than one unique
565  // predecessor, we want to insert a merge block for those common predecessors.
566  // This ensures that we only have to insert one reload, thus not increasing
567  // code size.
568  BasicBlock *UnavailablePred = 0;
569
570  // If there is exactly one predecessor where the value is unavailable, the
571  // already computed 'OneUnavailablePred' block is it.  If it ends in an
572  // unconditional branch, we know that it isn't a critical edge.
573  if (PredsScanned.size() == AvailablePreds.size()+1 &&
574      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
575    UnavailablePred = OneUnavailablePred;
576  } else if (PredsScanned.size() != AvailablePreds.size()) {
577    // Otherwise, we had multiple unavailable predecessors or we had a critical
578    // edge from the one.
579    SmallVector<BasicBlock*, 8> PredsToSplit;
580    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
581
582    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
583      AvailablePredSet.insert(AvailablePreds[i].first);
584
585    // Add all the unavailable predecessors to the PredsToSplit list.
586    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
587         PI != PE; ++PI)
588      if (!AvailablePredSet.count(*PI))
589        PredsToSplit.push_back(*PI);
590
591    // Split them out to their own block.
592    UnavailablePred =
593      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
594                             "thread-split", this);
595  }
596
597  // If the value isn't available in all predecessors, then there will be
598  // exactly one where it isn't available.  Insert a load on that edge and add
599  // it to the AvailablePreds list.
600  if (UnavailablePred) {
601    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
602           "Can't handle critical edge here!");
603    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
604                                 UnavailablePred->getTerminator());
605    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
606  }
607
608  // Now we know that each predecessor of this block has a value in
609  // AvailablePreds, sort them for efficient access as we're walking the preds.
610  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
611
612  // Create a PHI node at the start of the block for the PRE'd load value.
613  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
614  PN->takeName(LI);
615
616  // Insert new entries into the PHI for each predecessor.  A single block may
617  // have multiple entries here.
618  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
619       ++PI) {
620    AvailablePredsTy::iterator I =
621      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
622                       std::make_pair(*PI, (Value*)0));
623
624    assert(I != AvailablePreds.end() && I->first == *PI &&
625           "Didn't find entry for predecessor!");
626
627    PN->addIncoming(I->second, I->first);
628  }
629
630  //cerr << "PRE: " << *LI << *PN << "\n";
631
632  LI->replaceAllUsesWith(PN);
633  LI->eraseFromParent();
634
635  return true;
636}
637
638
639/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
640/// the current block.  See if there are any simplifications we can do based on
641/// inputs to the phi node.
642///
643bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
644  // See if the phi node has any constant values.  If so, we can determine where
645  // the corresponding predecessor will branch.
646  ConstantInt *PredCst = 0;
647  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
648    if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
649      break;
650
651  // If no incoming value has a constant, we don't know the destination of any
652  // predecessors.
653  if (PredCst == 0)
654    return false;
655
656  // See if the cost of duplicating this block is low enough.
657  BasicBlock *BB = PN->getParent();
658  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
659  if (JumpThreadCost > Threshold) {
660    DOUT << "  Not threading BB '" << BB->getNameStart()
661         << "' - Cost is too high: " << JumpThreadCost << "\n";
662    return false;
663  }
664
665  // If so, we can actually do this threading.  Merge any common predecessors
666  // that will act the same.
667  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
668
669  // Next, figure out which successor we are threading to.
670  BasicBlock *SuccBB;
671  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
672    SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
673  else {
674    SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
675    SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
676  }
677
678  // If threading to the same block as we come from, we would infinite loop.
679  if (SuccBB == BB) {
680    DOUT << "  Not threading BB '" << BB->getNameStart()
681         << "' - would thread to self!\n";
682    return false;
683  }
684
685  // And finally, do it!
686  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
687       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
688       << ", across block:\n    "
689       << *BB << "\n";
690
691  ThreadEdge(BB, PredBB, SuccBB);
692  ++NumThreads;
693  return true;
694}
695
696/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
697/// whose condition is an AND/OR where one side is PN.  If PN has constant
698/// operands that permit us to evaluate the condition for some operand, thread
699/// through the block.  For example with:
700///   br (and X, phi(Y, Z, false))
701/// the predecessor corresponding to the 'false' will always jump to the false
702/// destination of the branch.
703///
704bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
705                                           bool isAnd) {
706  // If this is a binary operator tree of the same AND/OR opcode, check the
707  // LHS/RHS.
708  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
709    if ((isAnd && BO->getOpcode() == Instruction::And) ||
710        (!isAnd && BO->getOpcode() == Instruction::Or)) {
711      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
712        return true;
713      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
714        return true;
715    }
716
717  // If this isn't a PHI node, we can't handle it.
718  PHINode *PN = dyn_cast<PHINode>(V);
719  if (!PN || PN->getParent() != BB) return false;
720
721  // We can only do the simplification for phi nodes of 'false' with AND or
722  // 'true' with OR.  See if we have any entries in the phi for this.
723  unsigned PredNo = ~0U;
724  ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
725  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
726    if (PN->getIncomingValue(i) == PredCst) {
727      PredNo = i;
728      break;
729    }
730  }
731
732  // If no match, bail out.
733  if (PredNo == ~0U)
734    return false;
735
736  // See if the cost of duplicating this block is low enough.
737  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
738  if (JumpThreadCost > Threshold) {
739    DOUT << "  Not threading BB '" << BB->getNameStart()
740         << "' - Cost is too high: " << JumpThreadCost << "\n";
741    return false;
742  }
743
744  // If so, we can actually do this threading.  Merge any common predecessors
745  // that will act the same.
746  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
747
748  // Next, figure out which successor we are threading to.  If this was an AND,
749  // the constant must be FALSE, and we must be targeting the 'false' block.
750  // If this is an OR, the constant must be TRUE, and we must be targeting the
751  // 'true' block.
752  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
753
754  // If threading to the same block as we come from, we would infinite loop.
755  if (SuccBB == BB) {
756    DOUT << "  Not threading BB '" << BB->getNameStart()
757    << "' - would thread to self!\n";
758    return false;
759  }
760
761  // And finally, do it!
762  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
763       << "' to '" << SuccBB->getNameStart() << "' with cost: "
764       << JumpThreadCost << ", across block:\n    "
765       << *BB << "\n";
766
767  ThreadEdge(BB, PredBB, SuccBB);
768  ++NumThreads;
769  return true;
770}
771
772/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
773/// node and a constant.  If the PHI node contains any constants as inputs, we
774/// can fold the compare for that edge and thread through it.
775bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
776  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
777  Constant *RHS = cast<Constant>(Cmp->getOperand(1));
778
779  // If the phi isn't in the current block, an incoming edge to this block
780  // doesn't control the destination.
781  if (PN->getParent() != BB)
782    return false;
783
784  // We can do this simplification if any comparisons fold to true or false.
785  // See if any do.
786  Constant *PredCst = 0;
787  bool TrueDirection = false;
788  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
789    PredCst = dyn_cast<Constant>(PN->getIncomingValue(i));
790    if (PredCst == 0) continue;
791
792    Constant *Res;
793    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cmp))
794      Res = ConstantExpr::getICmp(ICI->getPredicate(), PredCst, RHS);
795    else
796      Res = ConstantExpr::getFCmp(cast<FCmpInst>(Cmp)->getPredicate(),
797                                  PredCst, RHS);
798    // If this folded to a constant expr, we can't do anything.
799    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
800      TrueDirection = ResC->getZExtValue();
801      break;
802    }
803    // If this folded to undef, just go the false way.
804    if (isa<UndefValue>(Res)) {
805      TrueDirection = false;
806      break;
807    }
808
809    // Otherwise, we can't fold this input.
810    PredCst = 0;
811  }
812
813  // If no match, bail out.
814  if (PredCst == 0)
815    return false;
816
817  // See if the cost of duplicating this block is low enough.
818  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
819  if (JumpThreadCost > Threshold) {
820    DOUT << "  Not threading BB '" << BB->getNameStart()
821         << "' - Cost is too high: " << JumpThreadCost << "\n";
822    return false;
823  }
824
825  // If so, we can actually do this threading.  Merge any common predecessors
826  // that will act the same.
827  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
828
829  // Next, get our successor.
830  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
831
832  // If threading to the same block as we come from, we would infinite loop.
833  if (SuccBB == BB) {
834    DOUT << "  Not threading BB '" << BB->getNameStart()
835    << "' - would thread to self!\n";
836    return false;
837  }
838
839
840  // And finally, do it!
841  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
842       << "' to '" << SuccBB->getNameStart() << "' with cost: "
843       << JumpThreadCost << ", across block:\n    "
844       << *BB << "\n";
845
846  ThreadEdge(BB, PredBB, SuccBB);
847  ++NumThreads;
848  return true;
849}
850
851
852/// ThreadEdge - We have decided that it is safe and profitable to thread an
853/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
854/// change.
855void JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
856                               BasicBlock *SuccBB) {
857
858  // Jump Threading can not update SSA properties correctly if the values
859  // defined in the duplicated block are used outside of the block itself.  For
860  // this reason, we spill all values that are used outside of BB to the stack.
861  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
862    if (!I->isUsedOutsideOfBlock(BB))
863      continue;
864
865    // We found a use of I outside of BB.  Create a new stack slot to
866    // break this inter-block usage pattern.
867    DemoteRegToStack(*I);
868  }
869
870  // We are going to have to map operands from the original BB block to the new
871  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
872  // account for entry from PredBB.
873  DenseMap<Instruction*, Value*> ValueMapping;
874
875  BasicBlock *NewBB =
876    BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
877  NewBB->moveAfter(PredBB);
878
879  BasicBlock::iterator BI = BB->begin();
880  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
881    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
882
883  // Clone the non-phi instructions of BB into NewBB, keeping track of the
884  // mapping and using it to remap operands in the cloned instructions.
885  for (; !isa<TerminatorInst>(BI); ++BI) {
886    Instruction *New = BI->clone();
887    New->setName(BI->getNameStart());
888    NewBB->getInstList().push_back(New);
889    ValueMapping[BI] = New;
890
891    // Remap operands to patch up intra-block references.
892    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
893      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
894        if (Value *Remapped = ValueMapping[Inst])
895          New->setOperand(i, Remapped);
896  }
897
898  // We didn't copy the terminator from BB over to NewBB, because there is now
899  // an unconditional jump to SuccBB.  Insert the unconditional jump.
900  BranchInst::Create(SuccBB, NewBB);
901
902  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
903  // PHI nodes for NewBB now.
904  for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
905    PHINode *PN = cast<PHINode>(PNI);
906    // Ok, we have a PHI node.  Figure out what the incoming value was for the
907    // DestBlock.
908    Value *IV = PN->getIncomingValueForBlock(BB);
909
910    // Remap the value if necessary.
911    if (Instruction *Inst = dyn_cast<Instruction>(IV))
912      if (Value *MappedIV = ValueMapping[Inst])
913        IV = MappedIV;
914    PN->addIncoming(IV, NewBB);
915  }
916
917  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
918  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
919  // us to simplify any PHI nodes in BB.
920  TerminatorInst *PredTerm = PredBB->getTerminator();
921  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
922    if (PredTerm->getSuccessor(i) == BB) {
923      BB->removePredecessor(PredBB);
924      PredTerm->setSuccessor(i, NewBB);
925    }
926
927  // At this point, the IR is fully up to date and consistent.  Do a quick scan
928  // over the new instructions and zap any that are constants or dead.  This
929  // frequently happens because of phi translation.
930  BI = NewBB->begin();
931  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
932    Instruction *Inst = BI++;
933    if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
934      Inst->replaceAllUsesWith(C);
935      Inst->eraseFromParent();
936      continue;
937    }
938
939    RecursivelyDeleteTriviallyDeadInstructions(Inst);
940  }
941}
942