JumpThreading.cpp revision 6f285d21053552e5aff9aba74f0425505d6ab61a
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include "llvm/Transforms/Utils/Local.h"
23#include "llvm/Transforms/Utils/SSAUpdater.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33#include "llvm/Support/raw_ostream.h"
34using namespace llvm;
35
36STATISTIC(NumThreads, "Number of jumps threaded");
37STATISTIC(NumFolds,   "Number of terminators folded");
38STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
39
40static cl::opt<unsigned>
41Threshold("jump-threading-threshold",
42          cl::desc("Max block size to duplicate for jump threading"),
43          cl::init(6), cl::Hidden);
44
45// Turn on use of LazyValueInfo.
46static cl::opt<bool>
47EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
48
49
50
51namespace {
52  /// This pass performs 'jump threading', which looks at blocks that have
53  /// multiple predecessors and multiple successors.  If one or more of the
54  /// predecessors of the block can be proven to always jump to one of the
55  /// successors, we forward the edge from the predecessor to the successor by
56  /// duplicating the contents of this block.
57  ///
58  /// An example of when this can occur is code like this:
59  ///
60  ///   if () { ...
61  ///     X = 4;
62  ///   }
63  ///   if (X < 3) {
64  ///
65  /// In this case, the unconditional branch at the end of the first if can be
66  /// revectored to the false side of the second if.
67  ///
68  class JumpThreading : public FunctionPass {
69    TargetData *TD;
70    LazyValueInfo *LVI;
71#ifdef NDEBUG
72    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
73#else
74    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
75#endif
76  public:
77    static char ID; // Pass identification
78    JumpThreading() : FunctionPass(&ID) {}
79
80    bool runOnFunction(Function &F);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      if (EnableLVI)
84        AU.addRequired<LazyValueInfo>();
85    }
86
87    void FindLoopHeaders(Function &F);
88    bool ProcessBlock(BasicBlock *BB);
89    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
90                    BasicBlock *SuccBB);
91    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
92                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
93
94    typedef SmallVectorImpl<std::pair<ConstantInt*,
95                                      BasicBlock*> > PredValueInfo;
96
97    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
98                                         PredValueInfo &Result);
99    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
100
101
102    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
104
105    bool ProcessBranchOnPHI(PHINode *PN);
106    bool ProcessBranchOnXOR(BinaryOperator *BO);
107
108    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
109  };
110}
111
112char JumpThreading::ID = 0;
113static RegisterPass<JumpThreading>
114X("jump-threading", "Jump Threading");
115
116// Public interface to the Jump Threading pass
117FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
118
119/// runOnFunction - Top level algorithm.
120///
121bool JumpThreading::runOnFunction(Function &F) {
122  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
123  TD = getAnalysisIfAvailable<TargetData>();
124  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
125
126  FindLoopHeaders(F);
127
128  bool Changed, EverChanged = false;
129  do {
130    Changed = false;
131    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
132      BasicBlock *BB = I;
133      // Thread all of the branches we can over this block.
134      while (ProcessBlock(BB))
135        Changed = true;
136
137      ++I;
138
139      // If the block is trivially dead, zap it.  This eliminates the successor
140      // edges which simplifies the CFG.
141      if (pred_begin(BB) == pred_end(BB) &&
142          BB != &BB->getParent()->getEntryBlock()) {
143        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
144              << "' with terminator: " << *BB->getTerminator() << '\n');
145        LoopHeaders.erase(BB);
146        DeleteDeadBlock(BB);
147        Changed = true;
148      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
149        // Can't thread an unconditional jump, but if the block is "almost
150        // empty", we can replace uses of it with uses of the successor and make
151        // this dead.
152        if (BI->isUnconditional() &&
153            BB != &BB->getParent()->getEntryBlock()) {
154          BasicBlock::iterator BBI = BB->getFirstNonPHI();
155          // Ignore dbg intrinsics.
156          while (isa<DbgInfoIntrinsic>(BBI))
157            ++BBI;
158          // If the terminator is the only non-phi instruction, try to nuke it.
159          if (BBI->isTerminator()) {
160            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
161            // block, we have to make sure it isn't in the LoopHeaders set.  We
162            // reinsert afterward if needed.
163            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
164            BasicBlock *Succ = BI->getSuccessor(0);
165
166            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
167              Changed = true;
168              // If we deleted BB and BB was the header of a loop, then the
169              // successor is now the header of the loop.
170              BB = Succ;
171            }
172
173            if (ErasedFromLoopHeaders)
174              LoopHeaders.insert(BB);
175          }
176        }
177      }
178    }
179    EverChanged |= Changed;
180  } while (Changed);
181
182  LoopHeaders.clear();
183  return EverChanged;
184}
185
186/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
187/// thread across it.
188static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
189  /// Ignore PHI nodes, these will be flattened when duplication happens.
190  BasicBlock::const_iterator I = BB->getFirstNonPHI();
191
192  // FIXME: THREADING will delete values that are just used to compute the
193  // branch, so they shouldn't count against the duplication cost.
194
195
196  // Sum up the cost of each instruction until we get to the terminator.  Don't
197  // include the terminator because the copy won't include it.
198  unsigned Size = 0;
199  for (; !isa<TerminatorInst>(I); ++I) {
200    // Debugger intrinsics don't incur code size.
201    if (isa<DbgInfoIntrinsic>(I)) continue;
202
203    // If this is a pointer->pointer bitcast, it is free.
204    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
205      continue;
206
207    // All other instructions count for at least one unit.
208    ++Size;
209
210    // Calls are more expensive.  If they are non-intrinsic calls, we model them
211    // as having cost of 4.  If they are a non-vector intrinsic, we model them
212    // as having cost of 2 total, and if they are a vector intrinsic, we model
213    // them as having cost 1.
214    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
215      if (!isa<IntrinsicInst>(CI))
216        Size += 3;
217      else if (!CI->getType()->isVectorTy())
218        Size += 1;
219    }
220  }
221
222  // Threading through a switch statement is particularly profitable.  If this
223  // block ends in a switch, decrease its cost to make it more likely to happen.
224  if (isa<SwitchInst>(I))
225    Size = Size > 6 ? Size-6 : 0;
226
227  return Size;
228}
229
230/// FindLoopHeaders - We do not want jump threading to turn proper loop
231/// structures into irreducible loops.  Doing this breaks up the loop nesting
232/// hierarchy and pessimizes later transformations.  To prevent this from
233/// happening, we first have to find the loop headers.  Here we approximate this
234/// by finding targets of backedges in the CFG.
235///
236/// Note that there definitely are cases when we want to allow threading of
237/// edges across a loop header.  For example, threading a jump from outside the
238/// loop (the preheader) to an exit block of the loop is definitely profitable.
239/// It is also almost always profitable to thread backedges from within the loop
240/// to exit blocks, and is often profitable to thread backedges to other blocks
241/// within the loop (forming a nested loop).  This simple analysis is not rich
242/// enough to track all of these properties and keep it up-to-date as the CFG
243/// mutates, so we don't allow any of these transformations.
244///
245void JumpThreading::FindLoopHeaders(Function &F) {
246  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
247  FindFunctionBackedges(F, Edges);
248
249  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
250    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
251}
252
253/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
254/// if we can infer that the value is a known ConstantInt in any of our
255/// predecessors.  If so, return the known list of value and pred BB in the
256/// result vector.  If a value is known to be undef, it is returned as null.
257///
258/// This returns true if there were any known values.
259///
260bool JumpThreading::
261ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
262  // If V is a constantint, then it is known in all predecessors.
263  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
264    ConstantInt *CI = dyn_cast<ConstantInt>(V);
265
266    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
267      Result.push_back(std::make_pair(CI, *PI));
268    return true;
269  }
270
271  // If V is a non-instruction value, or an instruction in a different block,
272  // then it can't be derived from a PHI.
273  Instruction *I = dyn_cast<Instruction>(V);
274  if (I == 0 || I->getParent() != BB) {
275
276    // Okay, if this is a live-in value, see if it has a known value at the end
277    // of any of our predecessors.
278    //
279    // FIXME: This should be an edge property, not a block end property.
280    /// TODO: Per PR2563, we could infer value range information about a
281    /// predecessor based on its terminator.
282    //
283    if (LVI) {
284      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
285      // "I" is a non-local compare-with-a-constant instruction.  This would be
286      // able to handle value inequalities better, for example if the compare is
287      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
288      // Perhaps getConstantOnEdge should be smart enough to do this?
289
290      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
291        // If the value is known by LazyValueInfo to be a constant in a
292        // predecessor, use that information to try to thread this block.
293        Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
294        if (PredCst == 0 ||
295            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
296          continue;
297
298        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
299      }
300
301      return !Result.empty();
302    }
303
304    return false;
305  }
306
307  /// If I is a PHI node, then we know the incoming values for any constants.
308  if (PHINode *PN = dyn_cast<PHINode>(I)) {
309    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
310      Value *InVal = PN->getIncomingValue(i);
311      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
312        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
313        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
314      }
315    }
316    return !Result.empty();
317  }
318
319  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
320
321  // Handle some boolean conditions.
322  if (I->getType()->getPrimitiveSizeInBits() == 1) {
323    // X | true -> true
324    // X & false -> false
325    if (I->getOpcode() == Instruction::Or ||
326        I->getOpcode() == Instruction::And) {
327      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
328      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
329
330      if (LHSVals.empty() && RHSVals.empty())
331        return false;
332
333      ConstantInt *InterestingVal;
334      if (I->getOpcode() == Instruction::Or)
335        InterestingVal = ConstantInt::getTrue(I->getContext());
336      else
337        InterestingVal = ConstantInt::getFalse(I->getContext());
338
339      // Scan for the sentinel.  If we find an undef, force it to the
340      // interesting value: x|undef -> true and x&undef -> false.
341      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
342        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
343          Result.push_back(LHSVals[i]);
344          Result.back().first = InterestingVal;
345        }
346      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
347        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
348          Result.push_back(RHSVals[i]);
349          Result.back().first = InterestingVal;
350        }
351      return !Result.empty();
352    }
353
354    // Handle the NOT form of XOR.
355    if (I->getOpcode() == Instruction::Xor &&
356        isa<ConstantInt>(I->getOperand(1)) &&
357        cast<ConstantInt>(I->getOperand(1))->isOne()) {
358      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
359      if (Result.empty())
360        return false;
361
362      // Invert the known values.
363      for (unsigned i = 0, e = Result.size(); i != e; ++i)
364        if (Result[i].first)
365          Result[i].first =
366            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
367      return true;
368    }
369  }
370
371  // Handle compare with phi operand, where the PHI is defined in this block.
372  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
373    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
374    if (PN && PN->getParent() == BB) {
375      // We can do this simplification if any comparisons fold to true or false.
376      // See if any do.
377      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
378        BasicBlock *PredBB = PN->getIncomingBlock(i);
379        Value *LHS = PN->getIncomingValue(i);
380        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
381
382        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
383        if (Res == 0) {
384          if (!LVI || !isa<Constant>(RHS))
385            continue;
386
387          LazyValueInfo::Tristate
388            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
389                                           cast<Constant>(RHS), PredBB, BB);
390          if (ResT == LazyValueInfo::Unknown)
391            continue;
392          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
393        }
394
395        if (isa<UndefValue>(Res))
396          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
397        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
398          Result.push_back(std::make_pair(CI, PredBB));
399      }
400
401      return !Result.empty();
402    }
403
404
405    // If comparing a live-in value against a constant, see if we know the
406    // live-in value on any predecessors.
407    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
408        Cmp->getType()->isIntegerTy() && // Not vector compare.
409        (!isa<Instruction>(Cmp->getOperand(0)) ||
410         cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
411      Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
412
413      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
414        // If the value is known by LazyValueInfo to be a constant in a
415        // predecessor, use that information to try to thread this block.
416        LazyValueInfo::Tristate
417          Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
418                                        RHSCst, *PI, BB);
419        if (Res == LazyValueInfo::Unknown)
420          continue;
421
422        Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
423        Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
424      }
425
426      return !Result.empty();
427    }
428  }
429  return false;
430}
431
432
433
434/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
435/// in an undefined jump, decide which block is best to revector to.
436///
437/// Since we can pick an arbitrary destination, we pick the successor with the
438/// fewest predecessors.  This should reduce the in-degree of the others.
439///
440static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
441  TerminatorInst *BBTerm = BB->getTerminator();
442  unsigned MinSucc = 0;
443  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
444  // Compute the successor with the minimum number of predecessors.
445  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
446  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
447    TestBB = BBTerm->getSuccessor(i);
448    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
449    if (NumPreds < MinNumPreds)
450      MinSucc = i;
451  }
452
453  return MinSucc;
454}
455
456/// ProcessBlock - If there are any predecessors whose control can be threaded
457/// through to a successor, transform them now.
458bool JumpThreading::ProcessBlock(BasicBlock *BB) {
459  // If the block is trivially dead, just return and let the caller nuke it.
460  // This simplifies other transformations.
461  if (pred_begin(BB) == pred_end(BB) &&
462      BB != &BB->getParent()->getEntryBlock())
463    return false;
464
465  // If this block has a single predecessor, and if that pred has a single
466  // successor, merge the blocks.  This encourages recursive jump threading
467  // because now the condition in this block can be threaded through
468  // predecessors of our predecessor block.
469  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
470    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
471        SinglePred != BB) {
472      // If SinglePred was a loop header, BB becomes one.
473      if (LoopHeaders.erase(SinglePred))
474        LoopHeaders.insert(BB);
475
476      // Remember if SinglePred was the entry block of the function.  If so, we
477      // will need to move BB back to the entry position.
478      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
479      MergeBasicBlockIntoOnlyPred(BB);
480
481      if (isEntry && BB != &BB->getParent()->getEntryBlock())
482        BB->moveBefore(&BB->getParent()->getEntryBlock());
483      return true;
484    }
485  }
486
487  // Look to see if the terminator is a branch of switch, if not we can't thread
488  // it.
489  Value *Condition;
490  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
491    // Can't thread an unconditional jump.
492    if (BI->isUnconditional()) return false;
493    Condition = BI->getCondition();
494  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
495    Condition = SI->getCondition();
496  else
497    return false; // Must be an invoke.
498
499  // If the terminator of this block is branching on a constant, simplify the
500  // terminator to an unconditional branch.  This can occur due to threading in
501  // other blocks.
502  if (isa<ConstantInt>(Condition)) {
503    DEBUG(dbgs() << "  In block '" << BB->getName()
504          << "' folding terminator: " << *BB->getTerminator() << '\n');
505    ++NumFolds;
506    ConstantFoldTerminator(BB);
507    return true;
508  }
509
510  // If the terminator is branching on an undef, we can pick any of the
511  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
512  if (isa<UndefValue>(Condition)) {
513    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
514
515    // Fold the branch/switch.
516    TerminatorInst *BBTerm = BB->getTerminator();
517    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
518      if (i == BestSucc) continue;
519      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
520    }
521
522    DEBUG(dbgs() << "  In block '" << BB->getName()
523          << "' folding undef terminator: " << *BBTerm << '\n');
524    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
525    BBTerm->eraseFromParent();
526    return true;
527  }
528
529  Instruction *CondInst = dyn_cast<Instruction>(Condition);
530
531  // If the condition is an instruction defined in another block, see if a
532  // predecessor has the same condition:
533  //     br COND, BBX, BBY
534  //  BBX:
535  //     br COND, BBZ, BBW
536  if (!LVI &&
537      !Condition->hasOneUse() && // Multiple uses.
538      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
539    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
540    if (isa<BranchInst>(BB->getTerminator())) {
541      for (; PI != E; ++PI)
542        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
543          if (PBI->isConditional() && PBI->getCondition() == Condition &&
544              ProcessBranchOnDuplicateCond(*PI, BB))
545            return true;
546    } else {
547      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
548      for (; PI != E; ++PI)
549        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
550          if (PSI->getCondition() == Condition &&
551              ProcessSwitchOnDuplicateCond(*PI, BB))
552            return true;
553    }
554  }
555
556  // All the rest of our checks depend on the condition being an instruction.
557  if (CondInst == 0) {
558    // FIXME: Unify this with code below.
559    if (LVI && ProcessThreadableEdges(Condition, BB))
560      return true;
561    return false;
562  }
563
564
565  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
566    if (!LVI &&
567        (!isa<PHINode>(CondCmp->getOperand(0)) ||
568         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
569      // If we have a comparison, loop over the predecessors to see if there is
570      // a condition with a lexically identical value.
571      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
572      for (; PI != E; ++PI)
573        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
574          if (PBI->isConditional() && *PI != BB) {
575            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
576              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
577                  CI->getOperand(1) == CondCmp->getOperand(1) &&
578                  CI->getPredicate() == CondCmp->getPredicate()) {
579                // TODO: Could handle things like (x != 4) --> (x == 17)
580                if (ProcessBranchOnDuplicateCond(*PI, BB))
581                  return true;
582              }
583            }
584          }
585    }
586  }
587
588  // Check for some cases that are worth simplifying.  Right now we want to look
589  // for loads that are used by a switch or by the condition for the branch.  If
590  // we see one, check to see if it's partially redundant.  If so, insert a PHI
591  // which can then be used to thread the values.
592  //
593  Value *SimplifyValue = CondInst;
594  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
595    if (isa<Constant>(CondCmp->getOperand(1)))
596      SimplifyValue = CondCmp->getOperand(0);
597
598  // TODO: There are other places where load PRE would be profitable, such as
599  // more complex comparisons.
600  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
601    if (SimplifyPartiallyRedundantLoad(LI))
602      return true;
603
604
605  // Handle a variety of cases where we are branching on something derived from
606  // a PHI node in the current block.  If we can prove that any predecessors
607  // compute a predictable value based on a PHI node, thread those predecessors.
608  //
609  if (ProcessThreadableEdges(CondInst, BB))
610    return true;
611
612  // If this is an otherwise-unfoldable branch on a phi node in the current
613  // block, see if we can simplify.
614  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
615    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
616      return ProcessBranchOnPHI(PN);
617
618
619  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
620  if (CondInst->getOpcode() == Instruction::Xor &&
621      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
622    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
623
624
625  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
626  // "(X == 4)", thread through this block.
627
628  return false;
629}
630
631/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
632/// block that jump on exactly the same condition.  This means that we almost
633/// always know the direction of the edge in the DESTBB:
634///  PREDBB:
635///     br COND, DESTBB, BBY
636///  DESTBB:
637///     br COND, BBZ, BBW
638///
639/// If DESTBB has multiple predecessors, we can't just constant fold the branch
640/// in DESTBB, we have to thread over it.
641bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
642                                                 BasicBlock *BB) {
643  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
644
645  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
646  // fold the branch to an unconditional one, which allows other recursive
647  // simplifications.
648  bool BranchDir;
649  if (PredBI->getSuccessor(1) != BB)
650    BranchDir = true;
651  else if (PredBI->getSuccessor(0) != BB)
652    BranchDir = false;
653  else {
654    DEBUG(dbgs() << "  In block '" << PredBB->getName()
655          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
656    ++NumFolds;
657    ConstantFoldTerminator(PredBB);
658    return true;
659  }
660
661  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
662
663  // If the dest block has one predecessor, just fix the branch condition to a
664  // constant and fold it.
665  if (BB->getSinglePredecessor()) {
666    DEBUG(dbgs() << "  In block '" << BB->getName()
667          << "' folding condition to '" << BranchDir << "': "
668          << *BB->getTerminator() << '\n');
669    ++NumFolds;
670    Value *OldCond = DestBI->getCondition();
671    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
672                                          BranchDir));
673    // Delete dead instructions before we fold the branch.  Folding the branch
674    // can eliminate edges from the CFG which can end up deleting OldCond.
675    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
676    ConstantFoldTerminator(BB);
677    return true;
678  }
679
680
681  // Next, figure out which successor we are threading to.
682  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
683
684  SmallVector<BasicBlock*, 2> Preds;
685  Preds.push_back(PredBB);
686
687  // Ok, try to thread it!
688  return ThreadEdge(BB, Preds, SuccBB);
689}
690
691/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
692/// block that switch on exactly the same condition.  This means that we almost
693/// always know the direction of the edge in the DESTBB:
694///  PREDBB:
695///     switch COND [... DESTBB, BBY ... ]
696///  DESTBB:
697///     switch COND [... BBZ, BBW ]
698///
699/// Optimizing switches like this is very important, because simplifycfg builds
700/// switches out of repeated 'if' conditions.
701bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
702                                                 BasicBlock *DestBB) {
703  // Can't thread edge to self.
704  if (PredBB == DestBB)
705    return false;
706
707  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
708  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
709
710  // There are a variety of optimizations that we can potentially do on these
711  // blocks: we order them from most to least preferable.
712
713  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
714  // directly to their destination.  This does not introduce *any* code size
715  // growth.  Skip debug info first.
716  BasicBlock::iterator BBI = DestBB->begin();
717  while (isa<DbgInfoIntrinsic>(BBI))
718    BBI++;
719
720  // FIXME: Thread if it just contains a PHI.
721  if (isa<SwitchInst>(BBI)) {
722    bool MadeChange = false;
723    // Ignore the default edge for now.
724    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
725      ConstantInt *DestVal = DestSI->getCaseValue(i);
726      BasicBlock *DestSucc = DestSI->getSuccessor(i);
727
728      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
729      // PredSI has an explicit case for it.  If so, forward.  If it is covered
730      // by the default case, we can't update PredSI.
731      unsigned PredCase = PredSI->findCaseValue(DestVal);
732      if (PredCase == 0) continue;
733
734      // If PredSI doesn't go to DestBB on this value, then it won't reach the
735      // case on this condition.
736      if (PredSI->getSuccessor(PredCase) != DestBB &&
737          DestSI->getSuccessor(i) != DestBB)
738        continue;
739
740      // Do not forward this if it already goes to this destination, this would
741      // be an infinite loop.
742      if (PredSI->getSuccessor(PredCase) == DestSucc)
743        continue;
744
745      // Otherwise, we're safe to make the change.  Make sure that the edge from
746      // DestSI to DestSucc is not critical and has no PHI nodes.
747      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
748      DEBUG(dbgs() << "THROUGH: " << *DestSI);
749
750      // If the destination has PHI nodes, just split the edge for updating
751      // simplicity.
752      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
753        SplitCriticalEdge(DestSI, i, this);
754        DestSucc = DestSI->getSuccessor(i);
755      }
756      FoldSingleEntryPHINodes(DestSucc);
757      PredSI->setSuccessor(PredCase, DestSucc);
758      MadeChange = true;
759    }
760
761    if (MadeChange)
762      return true;
763  }
764
765  return false;
766}
767
768
769/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
770/// load instruction, eliminate it by replacing it with a PHI node.  This is an
771/// important optimization that encourages jump threading, and needs to be run
772/// interlaced with other jump threading tasks.
773bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
774  // Don't hack volatile loads.
775  if (LI->isVolatile()) return false;
776
777  // If the load is defined in a block with exactly one predecessor, it can't be
778  // partially redundant.
779  BasicBlock *LoadBB = LI->getParent();
780  if (LoadBB->getSinglePredecessor())
781    return false;
782
783  Value *LoadedPtr = LI->getOperand(0);
784
785  // If the loaded operand is defined in the LoadBB, it can't be available.
786  // TODO: Could do simple PHI translation, that would be fun :)
787  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
788    if (PtrOp->getParent() == LoadBB)
789      return false;
790
791  // Scan a few instructions up from the load, to see if it is obviously live at
792  // the entry to its block.
793  BasicBlock::iterator BBIt = LI;
794
795  if (Value *AvailableVal =
796        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
797    // If the value if the load is locally available within the block, just use
798    // it.  This frequently occurs for reg2mem'd allocas.
799    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
800
801    // If the returned value is the load itself, replace with an undef. This can
802    // only happen in dead loops.
803    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
804    LI->replaceAllUsesWith(AvailableVal);
805    LI->eraseFromParent();
806    return true;
807  }
808
809  // Otherwise, if we scanned the whole block and got to the top of the block,
810  // we know the block is locally transparent to the load.  If not, something
811  // might clobber its value.
812  if (BBIt != LoadBB->begin())
813    return false;
814
815
816  SmallPtrSet<BasicBlock*, 8> PredsScanned;
817  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
818  AvailablePredsTy AvailablePreds;
819  BasicBlock *OneUnavailablePred = 0;
820
821  // If we got here, the loaded value is transparent through to the start of the
822  // block.  Check to see if it is available in any of the predecessor blocks.
823  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
824       PI != PE; ++PI) {
825    BasicBlock *PredBB = *PI;
826
827    // If we already scanned this predecessor, skip it.
828    if (!PredsScanned.insert(PredBB))
829      continue;
830
831    // Scan the predecessor to see if the value is available in the pred.
832    BBIt = PredBB->end();
833    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
834    if (!PredAvailable) {
835      OneUnavailablePred = PredBB;
836      continue;
837    }
838
839    // If so, this load is partially redundant.  Remember this info so that we
840    // can create a PHI node.
841    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
842  }
843
844  // If the loaded value isn't available in any predecessor, it isn't partially
845  // redundant.
846  if (AvailablePreds.empty()) return false;
847
848  // Okay, the loaded value is available in at least one (and maybe all!)
849  // predecessors.  If the value is unavailable in more than one unique
850  // predecessor, we want to insert a merge block for those common predecessors.
851  // This ensures that we only have to insert one reload, thus not increasing
852  // code size.
853  BasicBlock *UnavailablePred = 0;
854
855  // If there is exactly one predecessor where the value is unavailable, the
856  // already computed 'OneUnavailablePred' block is it.  If it ends in an
857  // unconditional branch, we know that it isn't a critical edge.
858  if (PredsScanned.size() == AvailablePreds.size()+1 &&
859      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
860    UnavailablePred = OneUnavailablePred;
861  } else if (PredsScanned.size() != AvailablePreds.size()) {
862    // Otherwise, we had multiple unavailable predecessors or we had a critical
863    // edge from the one.
864    SmallVector<BasicBlock*, 8> PredsToSplit;
865    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
866
867    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
868      AvailablePredSet.insert(AvailablePreds[i].first);
869
870    // Add all the unavailable predecessors to the PredsToSplit list.
871    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
872         PI != PE; ++PI)
873      if (!AvailablePredSet.count(*PI))
874        PredsToSplit.push_back(*PI);
875
876    // Split them out to their own block.
877    UnavailablePred =
878      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
879                             "thread-pre-split", this);
880  }
881
882  // If the value isn't available in all predecessors, then there will be
883  // exactly one where it isn't available.  Insert a load on that edge and add
884  // it to the AvailablePreds list.
885  if (UnavailablePred) {
886    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
887           "Can't handle critical edge here!");
888    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
889                                 LI->getAlignment(),
890                                 UnavailablePred->getTerminator());
891    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
892  }
893
894  // Now we know that each predecessor of this block has a value in
895  // AvailablePreds, sort them for efficient access as we're walking the preds.
896  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
897
898  // Create a PHI node at the start of the block for the PRE'd load value.
899  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
900  PN->takeName(LI);
901
902  // Insert new entries into the PHI for each predecessor.  A single block may
903  // have multiple entries here.
904  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
905       ++PI) {
906    AvailablePredsTy::iterator I =
907      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
908                       std::make_pair(*PI, (Value*)0));
909
910    assert(I != AvailablePreds.end() && I->first == *PI &&
911           "Didn't find entry for predecessor!");
912
913    PN->addIncoming(I->second, I->first);
914  }
915
916  //cerr << "PRE: " << *LI << *PN << "\n";
917
918  LI->replaceAllUsesWith(PN);
919  LI->eraseFromParent();
920
921  return true;
922}
923
924/// FindMostPopularDest - The specified list contains multiple possible
925/// threadable destinations.  Pick the one that occurs the most frequently in
926/// the list.
927static BasicBlock *
928FindMostPopularDest(BasicBlock *BB,
929                    const SmallVectorImpl<std::pair<BasicBlock*,
930                                  BasicBlock*> > &PredToDestList) {
931  assert(!PredToDestList.empty());
932
933  // Determine popularity.  If there are multiple possible destinations, we
934  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
935  // blocks with known and real destinations to threading undef.  We'll handle
936  // them later if interesting.
937  DenseMap<BasicBlock*, unsigned> DestPopularity;
938  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
939    if (PredToDestList[i].second)
940      DestPopularity[PredToDestList[i].second]++;
941
942  // Find the most popular dest.
943  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
944  BasicBlock *MostPopularDest = DPI->first;
945  unsigned Popularity = DPI->second;
946  SmallVector<BasicBlock*, 4> SamePopularity;
947
948  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
949    // If the popularity of this entry isn't higher than the popularity we've
950    // seen so far, ignore it.
951    if (DPI->second < Popularity)
952      ; // ignore.
953    else if (DPI->second == Popularity) {
954      // If it is the same as what we've seen so far, keep track of it.
955      SamePopularity.push_back(DPI->first);
956    } else {
957      // If it is more popular, remember it.
958      SamePopularity.clear();
959      MostPopularDest = DPI->first;
960      Popularity = DPI->second;
961    }
962  }
963
964  // Okay, now we know the most popular destination.  If there is more than
965  // destination, we need to determine one.  This is arbitrary, but we need
966  // to make a deterministic decision.  Pick the first one that appears in the
967  // successor list.
968  if (!SamePopularity.empty()) {
969    SamePopularity.push_back(MostPopularDest);
970    TerminatorInst *TI = BB->getTerminator();
971    for (unsigned i = 0; ; ++i) {
972      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
973
974      if (std::find(SamePopularity.begin(), SamePopularity.end(),
975                    TI->getSuccessor(i)) == SamePopularity.end())
976        continue;
977
978      MostPopularDest = TI->getSuccessor(i);
979      break;
980    }
981  }
982
983  // Okay, we have finally picked the most popular destination.
984  return MostPopularDest;
985}
986
987bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
988  // If threading this would thread across a loop header, don't even try to
989  // thread the edge.
990  if (LoopHeaders.count(BB))
991    return false;
992
993  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
994  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
995    return false;
996  assert(!PredValues.empty() &&
997         "ComputeValueKnownInPredecessors returned true with no values");
998
999  DEBUG(dbgs() << "IN BB: " << *BB;
1000        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1001          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1002          if (PredValues[i].first)
1003            dbgs() << *PredValues[i].first;
1004          else
1005            dbgs() << "UNDEF";
1006          dbgs() << " for pred '" << PredValues[i].second->getName()
1007          << "'.\n";
1008        });
1009
1010  // Decide what we want to thread through.  Convert our list of known values to
1011  // a list of known destinations for each pred.  This also discards duplicate
1012  // predecessors and keeps track of the undefined inputs (which are represented
1013  // as a null dest in the PredToDestList).
1014  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1015  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1016
1017  BasicBlock *OnlyDest = 0;
1018  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1019
1020  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1021    BasicBlock *Pred = PredValues[i].second;
1022    if (!SeenPreds.insert(Pred))
1023      continue;  // Duplicate predecessor entry.
1024
1025    // If the predecessor ends with an indirect goto, we can't change its
1026    // destination.
1027    if (isa<IndirectBrInst>(Pred->getTerminator()))
1028      continue;
1029
1030    ConstantInt *Val = PredValues[i].first;
1031
1032    BasicBlock *DestBB;
1033    if (Val == 0)      // Undef.
1034      DestBB = 0;
1035    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1036      DestBB = BI->getSuccessor(Val->isZero());
1037    else {
1038      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1039      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1040    }
1041
1042    // If we have exactly one destination, remember it for efficiency below.
1043    if (i == 0)
1044      OnlyDest = DestBB;
1045    else if (OnlyDest != DestBB)
1046      OnlyDest = MultipleDestSentinel;
1047
1048    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1049  }
1050
1051  // If all edges were unthreadable, we fail.
1052  if (PredToDestList.empty())
1053    return false;
1054
1055  // Determine which is the most common successor.  If we have many inputs and
1056  // this block is a switch, we want to start by threading the batch that goes
1057  // to the most popular destination first.  If we only know about one
1058  // threadable destination (the common case) we can avoid this.
1059  BasicBlock *MostPopularDest = OnlyDest;
1060
1061  if (MostPopularDest == MultipleDestSentinel)
1062    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1063
1064  // Now that we know what the most popular destination is, factor all
1065  // predecessors that will jump to it into a single predecessor.
1066  SmallVector<BasicBlock*, 16> PredsToFactor;
1067  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1068    if (PredToDestList[i].second == MostPopularDest) {
1069      BasicBlock *Pred = PredToDestList[i].first;
1070
1071      // This predecessor may be a switch or something else that has multiple
1072      // edges to the block.  Factor each of these edges by listing them
1073      // according to # occurrences in PredsToFactor.
1074      TerminatorInst *PredTI = Pred->getTerminator();
1075      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1076        if (PredTI->getSuccessor(i) == BB)
1077          PredsToFactor.push_back(Pred);
1078    }
1079
1080  // If the threadable edges are branching on an undefined value, we get to pick
1081  // the destination that these predecessors should get to.
1082  if (MostPopularDest == 0)
1083    MostPopularDest = BB->getTerminator()->
1084                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1085
1086  // Ok, try to thread it!
1087  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1088}
1089
1090/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1091/// a PHI node in the current block.  See if there are any simplifications we
1092/// can do based on inputs to the phi node.
1093///
1094bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1095  BasicBlock *BB = PN->getParent();
1096
1097  // TODO: We could make use of this to do it once for blocks with common PHI
1098  // values.
1099  SmallVector<BasicBlock*, 1> PredBBs;
1100  PredBBs.resize(1);
1101
1102  // If any of the predecessor blocks end in an unconditional branch, we can
1103  // *duplicate* the conditional branch into that block in order to further
1104  // encourage jump threading and to eliminate cases where we have branch on a
1105  // phi of an icmp (branch on icmp is much better).
1106  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1107    BasicBlock *PredBB = PN->getIncomingBlock(i);
1108    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1109      if (PredBr->isUnconditional()) {
1110        PredBBs[0] = PredBB;
1111        // Try to duplicate BB into PredBB.
1112        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1113          return true;
1114      }
1115  }
1116
1117  return false;
1118}
1119
1120/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1121/// a xor instruction in the current block.  See if there are any
1122/// simplifications we can do based on inputs to the xor.
1123///
1124bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1125  BasicBlock *BB = BO->getParent();
1126
1127  // If either the LHS or RHS of the xor is a constant, don't do this
1128  // optimization.
1129  if (isa<ConstantInt>(BO->getOperand(0)) ||
1130      isa<ConstantInt>(BO->getOperand(1)))
1131    return false;
1132
1133  // If the first instruction in BB isn't a phi, we won't be able to infer
1134  // anything special about any particular predecessor.
1135  if (!isa<PHINode>(BB->front()))
1136    return false;
1137
1138  // If we have a xor as the branch input to this block, and we know that the
1139  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1140  // the condition into the predecessor and fix that value to true, saving some
1141  // logical ops on that path and encouraging other paths to simplify.
1142  //
1143  // This copies something like this:
1144  //
1145  //  BB:
1146  //    %X = phi i1 [1],  [%X']
1147  //    %Y = icmp eq i32 %A, %B
1148  //    %Z = xor i1 %X, %Y
1149  //    br i1 %Z, ...
1150  //
1151  // Into:
1152  //  BB':
1153  //    %Y = icmp ne i32 %A, %B
1154  //    br i1 %Z, ...
1155
1156  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1157  bool isLHS = true;
1158  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1159    assert(XorOpValues.empty());
1160    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1161      return false;
1162    isLHS = false;
1163  }
1164
1165  assert(!XorOpValues.empty() &&
1166         "ComputeValueKnownInPredecessors returned true with no values");
1167
1168  // Scan the information to see which is most popular: true or false.  The
1169  // predecessors can be of the set true, false, or undef.
1170  unsigned NumTrue = 0, NumFalse = 0;
1171  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1172    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1173    if (XorOpValues[i].first->isZero())
1174      ++NumFalse;
1175    else
1176      ++NumTrue;
1177  }
1178
1179  // Determine which value to split on, true, false, or undef if neither.
1180  ConstantInt *SplitVal = 0;
1181  if (NumTrue > NumFalse)
1182    SplitVal = ConstantInt::getTrue(BB->getContext());
1183  else if (NumTrue != 0 || NumFalse != 0)
1184    SplitVal = ConstantInt::getFalse(BB->getContext());
1185
1186  // Collect all of the blocks that this can be folded into so that we can
1187  // factor this once and clone it once.
1188  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1189  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1190    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1191
1192    BlocksToFoldInto.push_back(XorOpValues[i].second);
1193  }
1194
1195  // If we inferred a value for all of the predecessors, then duplication won't
1196  // help us.  However, we can just replace the LHS or RHS with the constant.
1197  if (BlocksToFoldInto.size() ==
1198      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1199    if (SplitVal == 0) {
1200      // If all preds provide undef, just nuke the xor, because it is undef too.
1201      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1202      BO->eraseFromParent();
1203    } else if (SplitVal->isZero()) {
1204      // If all preds provide 0, replace the xor with the other input.
1205      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1206      BO->eraseFromParent();
1207    } else {
1208      // If all preds provide 1, set the computed value to 1.
1209      BO->setOperand(!isLHS, SplitVal);
1210    }
1211
1212    return true;
1213  }
1214
1215  // Try to duplicate BB into PredBB.
1216  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1217}
1218
1219
1220/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1221/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1222/// NewPred using the entries from OldPred (suitably mapped).
1223static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1224                                            BasicBlock *OldPred,
1225                                            BasicBlock *NewPred,
1226                                     DenseMap<Instruction*, Value*> &ValueMap) {
1227  for (BasicBlock::iterator PNI = PHIBB->begin();
1228       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1229    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1230    // DestBlock.
1231    Value *IV = PN->getIncomingValueForBlock(OldPred);
1232
1233    // Remap the value if necessary.
1234    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1235      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1236      if (I != ValueMap.end())
1237        IV = I->second;
1238    }
1239
1240    PN->addIncoming(IV, NewPred);
1241  }
1242}
1243
1244/// ThreadEdge - We have decided that it is safe and profitable to factor the
1245/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1246/// across BB.  Transform the IR to reflect this change.
1247bool JumpThreading::ThreadEdge(BasicBlock *BB,
1248                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1249                               BasicBlock *SuccBB) {
1250  // If threading to the same block as we come from, we would infinite loop.
1251  if (SuccBB == BB) {
1252    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1253          << "' - would thread to self!\n");
1254    return false;
1255  }
1256
1257  // If threading this would thread across a loop header, don't thread the edge.
1258  // See the comments above FindLoopHeaders for justifications and caveats.
1259  if (LoopHeaders.count(BB)) {
1260    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1261          << "' to dest BB '" << SuccBB->getName()
1262          << "' - it might create an irreducible loop!\n");
1263    return false;
1264  }
1265
1266  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1267  if (JumpThreadCost > Threshold) {
1268    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1269          << "' - Cost is too high: " << JumpThreadCost << "\n");
1270    return false;
1271  }
1272
1273  // And finally, do it!  Start by factoring the predecessors is needed.
1274  BasicBlock *PredBB;
1275  if (PredBBs.size() == 1)
1276    PredBB = PredBBs[0];
1277  else {
1278    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1279          << " common predecessors.\n");
1280    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1281                                    ".thr_comm", this);
1282  }
1283
1284  // And finally, do it!
1285  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1286        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1287        << ", across block:\n    "
1288        << *BB << "\n");
1289
1290  // We are going to have to map operands from the original BB block to the new
1291  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1292  // account for entry from PredBB.
1293  DenseMap<Instruction*, Value*> ValueMapping;
1294
1295  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1296                                         BB->getName()+".thread",
1297                                         BB->getParent(), BB);
1298  NewBB->moveAfter(PredBB);
1299
1300  BasicBlock::iterator BI = BB->begin();
1301  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1302    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1303
1304  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1305  // mapping and using it to remap operands in the cloned instructions.
1306  for (; !isa<TerminatorInst>(BI); ++BI) {
1307    Instruction *New = BI->clone();
1308    New->setName(BI->getName());
1309    NewBB->getInstList().push_back(New);
1310    ValueMapping[BI] = New;
1311
1312    // Remap operands to patch up intra-block references.
1313    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1314      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1315        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1316        if (I != ValueMapping.end())
1317          New->setOperand(i, I->second);
1318      }
1319  }
1320
1321  // We didn't copy the terminator from BB over to NewBB, because there is now
1322  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1323  BranchInst::Create(SuccBB, NewBB);
1324
1325  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1326  // PHI nodes for NewBB now.
1327  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1328
1329  // If there were values defined in BB that are used outside the block, then we
1330  // now have to update all uses of the value to use either the original value,
1331  // the cloned value, or some PHI derived value.  This can require arbitrary
1332  // PHI insertion, of which we are prepared to do, clean these up now.
1333  SSAUpdater SSAUpdate;
1334  SmallVector<Use*, 16> UsesToRename;
1335  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1336    // Scan all uses of this instruction to see if it is used outside of its
1337    // block, and if so, record them in UsesToRename.
1338    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1339         ++UI) {
1340      Instruction *User = cast<Instruction>(*UI);
1341      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1342        if (UserPN->getIncomingBlock(UI) == BB)
1343          continue;
1344      } else if (User->getParent() == BB)
1345        continue;
1346
1347      UsesToRename.push_back(&UI.getUse());
1348    }
1349
1350    // If there are no uses outside the block, we're done with this instruction.
1351    if (UsesToRename.empty())
1352      continue;
1353
1354    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1355
1356    // We found a use of I outside of BB.  Rename all uses of I that are outside
1357    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1358    // with the two values we know.
1359    SSAUpdate.Initialize(I);
1360    SSAUpdate.AddAvailableValue(BB, I);
1361    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1362
1363    while (!UsesToRename.empty())
1364      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1365    DEBUG(dbgs() << "\n");
1366  }
1367
1368
1369  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1370  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1371  // us to simplify any PHI nodes in BB.
1372  TerminatorInst *PredTerm = PredBB->getTerminator();
1373  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1374    if (PredTerm->getSuccessor(i) == BB) {
1375      RemovePredecessorAndSimplify(BB, PredBB, TD);
1376      PredTerm->setSuccessor(i, NewBB);
1377    }
1378
1379  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1380  // over the new instructions and zap any that are constants or dead.  This
1381  // frequently happens because of phi translation.
1382  SimplifyInstructionsInBlock(NewBB, TD);
1383
1384  // Threaded an edge!
1385  ++NumThreads;
1386  return true;
1387}
1388
1389/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1390/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1391/// If we can duplicate the contents of BB up into PredBB do so now, this
1392/// improves the odds that the branch will be on an analyzable instruction like
1393/// a compare.
1394bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1395                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1396  assert(!PredBBs.empty() && "Can't handle an empty set");
1397
1398  // If BB is a loop header, then duplicating this block outside the loop would
1399  // cause us to transform this into an irreducible loop, don't do this.
1400  // See the comments above FindLoopHeaders for justifications and caveats.
1401  if (LoopHeaders.count(BB)) {
1402    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1403          << "' into predecessor block '" << PredBBs[0]->getName()
1404          << "' - it might create an irreducible loop!\n");
1405    return false;
1406  }
1407
1408  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1409  if (DuplicationCost > Threshold) {
1410    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1411          << "' - Cost is too high: " << DuplicationCost << "\n");
1412    return false;
1413  }
1414
1415  // And finally, do it!  Start by factoring the predecessors is needed.
1416  BasicBlock *PredBB;
1417  if (PredBBs.size() == 1)
1418    PredBB = PredBBs[0];
1419  else {
1420    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1421          << " common predecessors.\n");
1422    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1423                                    ".thr_comm", this);
1424  }
1425
1426  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1427  // of PredBB.
1428  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1429        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1430        << DuplicationCost << " block is:" << *BB << "\n");
1431
1432  // Unless PredBB ends with an unconditional branch, split the edge so that we
1433  // can just clone the bits from BB into the end of the new PredBB.
1434  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1435
1436  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1437    PredBB = SplitEdge(PredBB, BB, this);
1438    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1439  }
1440
1441  // We are going to have to map operands from the original BB block into the
1442  // PredBB block.  Evaluate PHI nodes in BB.
1443  DenseMap<Instruction*, Value*> ValueMapping;
1444
1445  BasicBlock::iterator BI = BB->begin();
1446  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1447    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1448
1449  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1450  // mapping and using it to remap operands in the cloned instructions.
1451  for (; BI != BB->end(); ++BI) {
1452    Instruction *New = BI->clone();
1453
1454    // Remap operands to patch up intra-block references.
1455    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1456      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1457        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1458        if (I != ValueMapping.end())
1459          New->setOperand(i, I->second);
1460      }
1461
1462    // If this instruction can be simplified after the operands are updated,
1463    // just use the simplified value instead.  This frequently happens due to
1464    // phi translation.
1465    if (Value *IV = SimplifyInstruction(New, TD)) {
1466      delete New;
1467      ValueMapping[BI] = IV;
1468    } else {
1469      // Otherwise, insert the new instruction into the block.
1470      New->setName(BI->getName());
1471      PredBB->getInstList().insert(OldPredBranch, New);
1472      ValueMapping[BI] = New;
1473    }
1474  }
1475
1476  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1477  // add entries to the PHI nodes for branch from PredBB now.
1478  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1479  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1480                                  ValueMapping);
1481  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1482                                  ValueMapping);
1483
1484  // If there were values defined in BB that are used outside the block, then we
1485  // now have to update all uses of the value to use either the original value,
1486  // the cloned value, or some PHI derived value.  This can require arbitrary
1487  // PHI insertion, of which we are prepared to do, clean these up now.
1488  SSAUpdater SSAUpdate;
1489  SmallVector<Use*, 16> UsesToRename;
1490  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1491    // Scan all uses of this instruction to see if it is used outside of its
1492    // block, and if so, record them in UsesToRename.
1493    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1494         ++UI) {
1495      Instruction *User = cast<Instruction>(*UI);
1496      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1497        if (UserPN->getIncomingBlock(UI) == BB)
1498          continue;
1499      } else if (User->getParent() == BB)
1500        continue;
1501
1502      UsesToRename.push_back(&UI.getUse());
1503    }
1504
1505    // If there are no uses outside the block, we're done with this instruction.
1506    if (UsesToRename.empty())
1507      continue;
1508
1509    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1510
1511    // We found a use of I outside of BB.  Rename all uses of I that are outside
1512    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1513    // with the two values we know.
1514    SSAUpdate.Initialize(I);
1515    SSAUpdate.AddAvailableValue(BB, I);
1516    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1517
1518    while (!UsesToRename.empty())
1519      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1520    DEBUG(dbgs() << "\n");
1521  }
1522
1523  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1524  // that we nuked.
1525  RemovePredecessorAndSimplify(BB, PredBB, TD);
1526
1527  // Remove the unconditional branch at the end of the PredBB block.
1528  OldPredBranch->eraseFromParent();
1529
1530  ++NumDupes;
1531  return true;
1532}
1533
1534
1535