JumpThreading.cpp revision 6f84a5feee5c7322a5145992bd4704225987909c
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37
38static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40          cl::desc("Max block size to duplicate for jump threading"),
41          cl::init(6), cl::Hidden);
42
43namespace {
44  /// This pass performs 'jump threading', which looks at blocks that have
45  /// multiple predecessors and multiple successors.  If one or more of the
46  /// predecessors of the block can be proven to always jump to one of the
47  /// successors, we forward the edge from the predecessor to the successor by
48  /// duplicating the contents of this block.
49  ///
50  /// An example of when this can occur is code like this:
51  ///
52  ///   if () { ...
53  ///     X = 4;
54  ///   }
55  ///   if (X < 3) {
56  ///
57  /// In this case, the unconditional branch at the end of the first if can be
58  /// revectored to the false side of the second if.
59  ///
60  class JumpThreading : public FunctionPass {
61    TargetData *TD;
62#ifdef NDEBUG
63    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
67  public:
68    static char ID; // Pass identification
69    JumpThreading() : FunctionPass(&ID) {}
70
71    bool runOnFunction(Function &F);
72    void FindLoopHeaders(Function &F);
73
74    bool ProcessBlock(BasicBlock *BB);
75    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76                    BasicBlock *SuccBB);
77    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78                                          BasicBlock *PredBB);
79
80    typedef SmallVectorImpl<std::pair<ConstantInt*,
81                                      BasicBlock*> > PredValueInfo;
82
83    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84                                         PredValueInfo &Result);
85    bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
88    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
90
91    bool ProcessJumpOnPHI(PHINode *PN);
92
93    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
94  };
95}
96
97char JumpThreading::ID = 0;
98static RegisterPass<JumpThreading>
99X("jump-threading", "Jump Threading");
100
101// Public interface to the Jump Threading pass
102FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103
104/// runOnFunction - Top level algorithm.
105///
106bool JumpThreading::runOnFunction(Function &F) {
107  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
108  TD = getAnalysisIfAvailable<TargetData>();
109
110  FindLoopHeaders(F);
111
112  bool AnotherIteration = true, EverChanged = false;
113  while (AnotherIteration) {
114    AnotherIteration = false;
115    bool Changed = false;
116    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117      BasicBlock *BB = I;
118      // Thread all of the branches we can over this block.
119      while (ProcessBlock(BB))
120        Changed = true;
121
122      ++I;
123
124      // If the block is trivially dead, zap it.  This eliminates the successor
125      // edges which simplifies the CFG.
126      if (pred_begin(BB) == pred_end(BB) &&
127          BB != &BB->getParent()->getEntryBlock()) {
128        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
129              << "' with terminator: " << *BB->getTerminator() << '\n');
130        LoopHeaders.erase(BB);
131        DeleteDeadBlock(BB);
132        Changed = true;
133      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
134        // Can't thread an unconditional jump, but if the block is "almost
135        // empty", we can replace uses of it with uses of the successor and make
136        // this dead.
137        if (BI->isUnconditional() &&
138            BB != &BB->getParent()->getEntryBlock()) {
139          BasicBlock::iterator BBI = BB->getFirstNonPHI();
140          // Ignore dbg intrinsics.
141          while (isa<DbgInfoIntrinsic>(BBI))
142            ++BBI;
143          // If the terminator is the only non-phi instruction, try to nuke it.
144          if (BBI->isTerminator()) {
145            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
146            // block, we have to make sure it isn't in the LoopHeaders set.  We
147            // reinsert afterward in the rare case when the block isn't deleted.
148            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
149
150            if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
151              Changed = true;
152            else if (ErasedFromLoopHeaders)
153              LoopHeaders.insert(BB);
154          }
155        }
156      }
157    }
158    AnotherIteration = Changed;
159    EverChanged |= Changed;
160  }
161
162  LoopHeaders.clear();
163  return EverChanged;
164}
165
166/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
167/// thread across it.
168static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
169  /// Ignore PHI nodes, these will be flattened when duplication happens.
170  BasicBlock::const_iterator I = BB->getFirstNonPHI();
171
172  // Sum up the cost of each instruction until we get to the terminator.  Don't
173  // include the terminator because the copy won't include it.
174  unsigned Size = 0;
175  for (; !isa<TerminatorInst>(I); ++I) {
176    // Debugger intrinsics don't incur code size.
177    if (isa<DbgInfoIntrinsic>(I)) continue;
178
179    // If this is a pointer->pointer bitcast, it is free.
180    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
181      continue;
182
183    // All other instructions count for at least one unit.
184    ++Size;
185
186    // Calls are more expensive.  If they are non-intrinsic calls, we model them
187    // as having cost of 4.  If they are a non-vector intrinsic, we model them
188    // as having cost of 2 total, and if they are a vector intrinsic, we model
189    // them as having cost 1.
190    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
191      if (!isa<IntrinsicInst>(CI))
192        Size += 3;
193      else if (!isa<VectorType>(CI->getType()))
194        Size += 1;
195    }
196  }
197
198  // Threading through a switch statement is particularly profitable.  If this
199  // block ends in a switch, decrease its cost to make it more likely to happen.
200  if (isa<SwitchInst>(I))
201    Size = Size > 6 ? Size-6 : 0;
202
203  return Size;
204}
205
206
207//===----------------------------------------------------------------------===//
208
209/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
210/// delete the From instruction.  In addition to a basic RAUW, this does a
211/// recursive simplification of the newly formed instructions.  This catches
212/// things where one simplification exposes other opportunities.  This only
213/// simplifies and deletes scalar operations, it does not change the CFG.
214///
215static void ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
216                                      const TargetData *TD) {
217  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
218
219  // FromHandle - This keeps a weakvh on the from value so that we can know if
220  // it gets deleted out from under us in a recursive simplification.
221  WeakVH FromHandle(From);
222
223  while (!From->use_empty()) {
224    // Update the instruction to use the new value.
225    Use &U = From->use_begin().getUse();
226    Instruction *User = cast<Instruction>(U.getUser());
227    U = To;
228
229    // See if we can simplify it.
230    if (Value *V = SimplifyInstruction(User, TD)) {
231      // Recursively simplify this.
232      ReplaceAndSimplifyAllUses(User, V, TD);
233
234      // If the recursive simplification ended up revisiting and deleting 'From'
235      // then we're done.
236      if (FromHandle == 0)
237        return;
238    }
239  }
240  From->eraseFromParent();
241}
242
243
244/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
245/// method is called when we're about to delete Pred as a predecessor of BB.  If
246/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
247///
248/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
249/// nodes that collapse into identity values.  For example, if we have:
250///   x = phi(1, 0, 0, 0)
251///   y = and x, z
252///
253/// .. and delete the predecessor corresponding to the '1', this will attempt to
254/// recursively fold the and to 0.
255static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
256                                         TargetData *TD) {
257  // This only adjusts blocks with PHI nodes.
258  if (!isa<PHINode>(BB->begin()))
259    return;
260
261  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
262  // them down.  This will leave us with single entry phi nodes and other phis
263  // that can be removed.
264  BB->removePredecessor(Pred, true);
265
266  WeakVH PhiIt = &BB->front();
267  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
268    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
269
270    Value *PNV = PN->hasConstantValue();
271    if (PNV == 0) continue;
272
273    // If we're able to simplify the phi to a single value, substitute the new
274    // value into all of its uses.
275    assert(PNV != PN && "hasConstantValue broken");
276
277    ReplaceAndSimplifyAllUses(PN, PNV, TD);
278
279    // If recursive simplification ended up deleting the next PHI node we would
280    // iterate to, then our iterator is invalid, restart scanning from the top
281    // of the block.
282    if (PhiIt == 0) PhiIt = &BB->front();
283  }
284}
285
286//===----------------------------------------------------------------------===//
287
288
289/// FindLoopHeaders - We do not want jump threading to turn proper loop
290/// structures into irreducible loops.  Doing this breaks up the loop nesting
291/// hierarchy and pessimizes later transformations.  To prevent this from
292/// happening, we first have to find the loop headers.  Here we approximate this
293/// by finding targets of backedges in the CFG.
294///
295/// Note that there definitely are cases when we want to allow threading of
296/// edges across a loop header.  For example, threading a jump from outside the
297/// loop (the preheader) to an exit block of the loop is definitely profitable.
298/// It is also almost always profitable to thread backedges from within the loop
299/// to exit blocks, and is often profitable to thread backedges to other blocks
300/// within the loop (forming a nested loop).  This simple analysis is not rich
301/// enough to track all of these properties and keep it up-to-date as the CFG
302/// mutates, so we don't allow any of these transformations.
303///
304void JumpThreading::FindLoopHeaders(Function &F) {
305  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
306  FindFunctionBackedges(F, Edges);
307
308  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
309    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
310}
311
312/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
313/// if we can infer that the value is a known ConstantInt in any of our
314/// predecessors.  If so, return the known list of value and pred BB in the
315/// result vector.  If a value is known to be undef, it is returned as null.
316///
317/// The BB basic block is known to start with a PHI node.
318///
319/// This returns true if there were any known values.
320///
321///
322/// TODO: Per PR2563, we could infer value range information about a predecessor
323/// based on its terminator.
324bool JumpThreading::
325ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
326  PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
327
328  // If V is a constantint, then it is known in all predecessors.
329  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
330    ConstantInt *CI = dyn_cast<ConstantInt>(V);
331    Result.resize(TheFirstPHI->getNumIncomingValues());
332    for (unsigned i = 0, e = Result.size(); i != e; ++i)
333      Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
334    return true;
335  }
336
337  // If V is a non-instruction value, or an instruction in a different block,
338  // then it can't be derived from a PHI.
339  Instruction *I = dyn_cast<Instruction>(V);
340  if (I == 0 || I->getParent() != BB)
341    return false;
342
343  /// If I is a PHI node, then we know the incoming values for any constants.
344  if (PHINode *PN = dyn_cast<PHINode>(I)) {
345    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
346      Value *InVal = PN->getIncomingValue(i);
347      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
348        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
349        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
350      }
351    }
352    return !Result.empty();
353  }
354
355  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
356
357  // Handle some boolean conditions.
358  if (I->getType()->getPrimitiveSizeInBits() == 1) {
359    // X | true -> true
360    // X & false -> false
361    if (I->getOpcode() == Instruction::Or ||
362        I->getOpcode() == Instruction::And) {
363      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
364      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
365
366      if (LHSVals.empty() && RHSVals.empty())
367        return false;
368
369      ConstantInt *InterestingVal;
370      if (I->getOpcode() == Instruction::Or)
371        InterestingVal = ConstantInt::getTrue(I->getContext());
372      else
373        InterestingVal = ConstantInt::getFalse(I->getContext());
374
375      // Scan for the sentinel.
376      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
377        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
378          Result.push_back(LHSVals[i]);
379      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
380        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
381          Result.push_back(RHSVals[i]);
382      return !Result.empty();
383    }
384
385    // TODO: Should handle the NOT form of XOR.
386
387  }
388
389  // Handle compare with phi operand, where the PHI is defined in this block.
390  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
391    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
392    if (PN && PN->getParent() == BB) {
393      // We can do this simplification if any comparisons fold to true or false.
394      // See if any do.
395      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
396        BasicBlock *PredBB = PN->getIncomingBlock(i);
397        Value *LHS = PN->getIncomingValue(i);
398        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
399
400        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
401        if (Res == 0) continue;
402
403        if (isa<UndefValue>(Res))
404          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
405        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
406          Result.push_back(std::make_pair(CI, PredBB));
407      }
408
409      return !Result.empty();
410    }
411
412    // TODO: We could also recurse to see if we can determine constants another
413    // way.
414  }
415  return false;
416}
417
418
419
420/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
421/// in an undefined jump, decide which block is best to revector to.
422///
423/// Since we can pick an arbitrary destination, we pick the successor with the
424/// fewest predecessors.  This should reduce the in-degree of the others.
425///
426static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
427  TerminatorInst *BBTerm = BB->getTerminator();
428  unsigned MinSucc = 0;
429  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
430  // Compute the successor with the minimum number of predecessors.
431  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
432  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
433    TestBB = BBTerm->getSuccessor(i);
434    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
435    if (NumPreds < MinNumPreds)
436      MinSucc = i;
437  }
438
439  return MinSucc;
440}
441
442/// ProcessBlock - If there are any predecessors whose control can be threaded
443/// through to a successor, transform them now.
444bool JumpThreading::ProcessBlock(BasicBlock *BB) {
445  // If this block has a single predecessor, and if that pred has a single
446  // successor, merge the blocks.  This encourages recursive jump threading
447  // because now the condition in this block can be threaded through
448  // predecessors of our predecessor block.
449  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
450    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
451        SinglePred != BB) {
452      // If SinglePred was a loop header, BB becomes one.
453      if (LoopHeaders.erase(SinglePred))
454        LoopHeaders.insert(BB);
455
456      // Remember if SinglePred was the entry block of the function.  If so, we
457      // will need to move BB back to the entry position.
458      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
459      MergeBasicBlockIntoOnlyPred(BB);
460
461      if (isEntry && BB != &BB->getParent()->getEntryBlock())
462        BB->moveBefore(&BB->getParent()->getEntryBlock());
463      return true;
464    }
465  }
466
467  // Look to see if the terminator is a branch of switch, if not we can't thread
468  // it.
469  Value *Condition;
470  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
471    // Can't thread an unconditional jump.
472    if (BI->isUnconditional()) return false;
473    Condition = BI->getCondition();
474  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
475    Condition = SI->getCondition();
476  else
477    return false; // Must be an invoke.
478
479  // If the terminator of this block is branching on a constant, simplify the
480  // terminator to an unconditional branch.  This can occur due to threading in
481  // other blocks.
482  if (isa<ConstantInt>(Condition)) {
483    DEBUG(errs() << "  In block '" << BB->getName()
484          << "' folding terminator: " << *BB->getTerminator() << '\n');
485    ++NumFolds;
486    ConstantFoldTerminator(BB);
487    return true;
488  }
489
490  // If the terminator is branching on an undef, we can pick any of the
491  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
492  if (isa<UndefValue>(Condition)) {
493    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
494
495    // Fold the branch/switch.
496    TerminatorInst *BBTerm = BB->getTerminator();
497    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
498      if (i == BestSucc) continue;
499      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
500    }
501
502    DEBUG(errs() << "  In block '" << BB->getName()
503          << "' folding undef terminator: " << *BBTerm << '\n');
504    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
505    BBTerm->eraseFromParent();
506    return true;
507  }
508
509  Instruction *CondInst = dyn_cast<Instruction>(Condition);
510
511  // If the condition is an instruction defined in another block, see if a
512  // predecessor has the same condition:
513  //     br COND, BBX, BBY
514  //  BBX:
515  //     br COND, BBZ, BBW
516  if (!Condition->hasOneUse() && // Multiple uses.
517      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
518    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
519    if (isa<BranchInst>(BB->getTerminator())) {
520      for (; PI != E; ++PI)
521        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
522          if (PBI->isConditional() && PBI->getCondition() == Condition &&
523              ProcessBranchOnDuplicateCond(*PI, BB))
524            return true;
525    } else {
526      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
527      for (; PI != E; ++PI)
528        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
529          if (PSI->getCondition() == Condition &&
530              ProcessSwitchOnDuplicateCond(*PI, BB))
531            return true;
532    }
533  }
534
535  // All the rest of our checks depend on the condition being an instruction.
536  if (CondInst == 0)
537    return false;
538
539  // See if this is a phi node in the current block.
540  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
541    if (PN->getParent() == BB)
542      return ProcessJumpOnPHI(PN);
543
544  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
545    if (!isa<PHINode>(CondCmp->getOperand(0)) ||
546        cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
547      // If we have a comparison, loop over the predecessors to see if there is
548      // a condition with a lexically identical value.
549      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
550      for (; PI != E; ++PI)
551        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
552          if (PBI->isConditional() && *PI != BB) {
553            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
554              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
555                  CI->getOperand(1) == CondCmp->getOperand(1) &&
556                  CI->getPredicate() == CondCmp->getPredicate()) {
557                // TODO: Could handle things like (x != 4) --> (x == 17)
558                if (ProcessBranchOnDuplicateCond(*PI, BB))
559                  return true;
560              }
561            }
562          }
563    }
564  }
565
566  // Check for some cases that are worth simplifying.  Right now we want to look
567  // for loads that are used by a switch or by the condition for the branch.  If
568  // we see one, check to see if it's partially redundant.  If so, insert a PHI
569  // which can then be used to thread the values.
570  //
571  // This is particularly important because reg2mem inserts loads and stores all
572  // over the place, and this blocks jump threading if we don't zap them.
573  Value *SimplifyValue = CondInst;
574  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
575    if (isa<Constant>(CondCmp->getOperand(1)))
576      SimplifyValue = CondCmp->getOperand(0);
577
578  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
579    if (SimplifyPartiallyRedundantLoad(LI))
580      return true;
581
582
583  // Handle a variety of cases where we are branching on something derived from
584  // a PHI node in the current block.  If we can prove that any predecessors
585  // compute a predictable value based on a PHI node, thread those predecessors.
586  //
587  // We only bother doing this if the current block has a PHI node and if the
588  // conditional instruction lives in the current block.  If either condition
589  // fails, this won't be a computable value anyway.
590  if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
591    if (ProcessThreadableEdges(CondInst, BB))
592      return true;
593
594
595  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
596  // "(X == 4)" thread through this block.
597
598  return false;
599}
600
601/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
602/// block that jump on exactly the same condition.  This means that we almost
603/// always know the direction of the edge in the DESTBB:
604///  PREDBB:
605///     br COND, DESTBB, BBY
606///  DESTBB:
607///     br COND, BBZ, BBW
608///
609/// If DESTBB has multiple predecessors, we can't just constant fold the branch
610/// in DESTBB, we have to thread over it.
611bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
612                                                 BasicBlock *BB) {
613  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
614
615  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
616  // fold the branch to an unconditional one, which allows other recursive
617  // simplifications.
618  bool BranchDir;
619  if (PredBI->getSuccessor(1) != BB)
620    BranchDir = true;
621  else if (PredBI->getSuccessor(0) != BB)
622    BranchDir = false;
623  else {
624    DEBUG(errs() << "  In block '" << PredBB->getName()
625          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
626    ++NumFolds;
627    ConstantFoldTerminator(PredBB);
628    return true;
629  }
630
631  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
632
633  // If the dest block has one predecessor, just fix the branch condition to a
634  // constant and fold it.
635  if (BB->getSinglePredecessor()) {
636    DEBUG(errs() << "  In block '" << BB->getName()
637          << "' folding condition to '" << BranchDir << "': "
638          << *BB->getTerminator() << '\n');
639    ++NumFolds;
640    Value *OldCond = DestBI->getCondition();
641    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
642                                          BranchDir));
643    ConstantFoldTerminator(BB);
644    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
645    return true;
646  }
647
648
649  // Next, figure out which successor we are threading to.
650  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
651
652  SmallVector<BasicBlock*, 2> Preds;
653  Preds.push_back(PredBB);
654
655  // Ok, try to thread it!
656  return ThreadEdge(BB, Preds, SuccBB);
657}
658
659/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
660/// block that switch on exactly the same condition.  This means that we almost
661/// always know the direction of the edge in the DESTBB:
662///  PREDBB:
663///     switch COND [... DESTBB, BBY ... ]
664///  DESTBB:
665///     switch COND [... BBZ, BBW ]
666///
667/// Optimizing switches like this is very important, because simplifycfg builds
668/// switches out of repeated 'if' conditions.
669bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
670                                                 BasicBlock *DestBB) {
671  // Can't thread edge to self.
672  if (PredBB == DestBB)
673    return false;
674
675  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
676  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
677
678  // There are a variety of optimizations that we can potentially do on these
679  // blocks: we order them from most to least preferable.
680
681  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
682  // directly to their destination.  This does not introduce *any* code size
683  // growth.  Skip debug info first.
684  BasicBlock::iterator BBI = DestBB->begin();
685  while (isa<DbgInfoIntrinsic>(BBI))
686    BBI++;
687
688  // FIXME: Thread if it just contains a PHI.
689  if (isa<SwitchInst>(BBI)) {
690    bool MadeChange = false;
691    // Ignore the default edge for now.
692    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
693      ConstantInt *DestVal = DestSI->getCaseValue(i);
694      BasicBlock *DestSucc = DestSI->getSuccessor(i);
695
696      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
697      // PredSI has an explicit case for it.  If so, forward.  If it is covered
698      // by the default case, we can't update PredSI.
699      unsigned PredCase = PredSI->findCaseValue(DestVal);
700      if (PredCase == 0) continue;
701
702      // If PredSI doesn't go to DestBB on this value, then it won't reach the
703      // case on this condition.
704      if (PredSI->getSuccessor(PredCase) != DestBB &&
705          DestSI->getSuccessor(i) != DestBB)
706        continue;
707
708      // Otherwise, we're safe to make the change.  Make sure that the edge from
709      // DestSI to DestSucc is not critical and has no PHI nodes.
710      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
711      DEBUG(errs() << "THROUGH: " << *DestSI);
712
713      // If the destination has PHI nodes, just split the edge for updating
714      // simplicity.
715      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
716        SplitCriticalEdge(DestSI, i, this);
717        DestSucc = DestSI->getSuccessor(i);
718      }
719      FoldSingleEntryPHINodes(DestSucc);
720      PredSI->setSuccessor(PredCase, DestSucc);
721      MadeChange = true;
722    }
723
724    if (MadeChange)
725      return true;
726  }
727
728  return false;
729}
730
731
732/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
733/// load instruction, eliminate it by replacing it with a PHI node.  This is an
734/// important optimization that encourages jump threading, and needs to be run
735/// interlaced with other jump threading tasks.
736bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
737  // Don't hack volatile loads.
738  if (LI->isVolatile()) return false;
739
740  // If the load is defined in a block with exactly one predecessor, it can't be
741  // partially redundant.
742  BasicBlock *LoadBB = LI->getParent();
743  if (LoadBB->getSinglePredecessor())
744    return false;
745
746  Value *LoadedPtr = LI->getOperand(0);
747
748  // If the loaded operand is defined in the LoadBB, it can't be available.
749  // FIXME: Could do PHI translation, that would be fun :)
750  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
751    if (PtrOp->getParent() == LoadBB)
752      return false;
753
754  // Scan a few instructions up from the load, to see if it is obviously live at
755  // the entry to its block.
756  BasicBlock::iterator BBIt = LI;
757
758  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
759                                                     BBIt, 6)) {
760    // If the value if the load is locally available within the block, just use
761    // it.  This frequently occurs for reg2mem'd allocas.
762    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
763
764    // If the returned value is the load itself, replace with an undef. This can
765    // only happen in dead loops.
766    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
767    LI->replaceAllUsesWith(AvailableVal);
768    LI->eraseFromParent();
769    return true;
770  }
771
772  // Otherwise, if we scanned the whole block and got to the top of the block,
773  // we know the block is locally transparent to the load.  If not, something
774  // might clobber its value.
775  if (BBIt != LoadBB->begin())
776    return false;
777
778
779  SmallPtrSet<BasicBlock*, 8> PredsScanned;
780  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
781  AvailablePredsTy AvailablePreds;
782  BasicBlock *OneUnavailablePred = 0;
783
784  // If we got here, the loaded value is transparent through to the start of the
785  // block.  Check to see if it is available in any of the predecessor blocks.
786  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
787       PI != PE; ++PI) {
788    BasicBlock *PredBB = *PI;
789
790    // If we already scanned this predecessor, skip it.
791    if (!PredsScanned.insert(PredBB))
792      continue;
793
794    // Scan the predecessor to see if the value is available in the pred.
795    BBIt = PredBB->end();
796    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
797    if (!PredAvailable) {
798      OneUnavailablePred = PredBB;
799      continue;
800    }
801
802    // If so, this load is partially redundant.  Remember this info so that we
803    // can create a PHI node.
804    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
805  }
806
807  // If the loaded value isn't available in any predecessor, it isn't partially
808  // redundant.
809  if (AvailablePreds.empty()) return false;
810
811  // Okay, the loaded value is available in at least one (and maybe all!)
812  // predecessors.  If the value is unavailable in more than one unique
813  // predecessor, we want to insert a merge block for those common predecessors.
814  // This ensures that we only have to insert one reload, thus not increasing
815  // code size.
816  BasicBlock *UnavailablePred = 0;
817
818  // If there is exactly one predecessor where the value is unavailable, the
819  // already computed 'OneUnavailablePred' block is it.  If it ends in an
820  // unconditional branch, we know that it isn't a critical edge.
821  if (PredsScanned.size() == AvailablePreds.size()+1 &&
822      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
823    UnavailablePred = OneUnavailablePred;
824  } else if (PredsScanned.size() != AvailablePreds.size()) {
825    // Otherwise, we had multiple unavailable predecessors or we had a critical
826    // edge from the one.
827    SmallVector<BasicBlock*, 8> PredsToSplit;
828    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
829
830    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
831      AvailablePredSet.insert(AvailablePreds[i].first);
832
833    // Add all the unavailable predecessors to the PredsToSplit list.
834    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
835         PI != PE; ++PI)
836      if (!AvailablePredSet.count(*PI))
837        PredsToSplit.push_back(*PI);
838
839    // Split them out to their own block.
840    UnavailablePred =
841      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
842                             "thread-split", this);
843  }
844
845  // If the value isn't available in all predecessors, then there will be
846  // exactly one where it isn't available.  Insert a load on that edge and add
847  // it to the AvailablePreds list.
848  if (UnavailablePred) {
849    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
850           "Can't handle critical edge here!");
851    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
852                                 UnavailablePred->getTerminator());
853    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
854  }
855
856  // Now we know that each predecessor of this block has a value in
857  // AvailablePreds, sort them for efficient access as we're walking the preds.
858  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
859
860  // Create a PHI node at the start of the block for the PRE'd load value.
861  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
862  PN->takeName(LI);
863
864  // Insert new entries into the PHI for each predecessor.  A single block may
865  // have multiple entries here.
866  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
867       ++PI) {
868    AvailablePredsTy::iterator I =
869      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
870                       std::make_pair(*PI, (Value*)0));
871
872    assert(I != AvailablePreds.end() && I->first == *PI &&
873           "Didn't find entry for predecessor!");
874
875    PN->addIncoming(I->second, I->first);
876  }
877
878  //cerr << "PRE: " << *LI << *PN << "\n";
879
880  LI->replaceAllUsesWith(PN);
881  LI->eraseFromParent();
882
883  return true;
884}
885
886/// FindMostPopularDest - The specified list contains multiple possible
887/// threadable destinations.  Pick the one that occurs the most frequently in
888/// the list.
889static BasicBlock *
890FindMostPopularDest(BasicBlock *BB,
891                    const SmallVectorImpl<std::pair<BasicBlock*,
892                                  BasicBlock*> > &PredToDestList) {
893  assert(!PredToDestList.empty());
894
895  // Determine popularity.  If there are multiple possible destinations, we
896  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
897  // blocks with known and real destinations to threading undef.  We'll handle
898  // them later if interesting.
899  DenseMap<BasicBlock*, unsigned> DestPopularity;
900  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
901    if (PredToDestList[i].second)
902      DestPopularity[PredToDestList[i].second]++;
903
904  // Find the most popular dest.
905  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
906  BasicBlock *MostPopularDest = DPI->first;
907  unsigned Popularity = DPI->second;
908  SmallVector<BasicBlock*, 4> SamePopularity;
909
910  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
911    // If the popularity of this entry isn't higher than the popularity we've
912    // seen so far, ignore it.
913    if (DPI->second < Popularity)
914      ; // ignore.
915    else if (DPI->second == Popularity) {
916      // If it is the same as what we've seen so far, keep track of it.
917      SamePopularity.push_back(DPI->first);
918    } else {
919      // If it is more popular, remember it.
920      SamePopularity.clear();
921      MostPopularDest = DPI->first;
922      Popularity = DPI->second;
923    }
924  }
925
926  // Okay, now we know the most popular destination.  If there is more than
927  // destination, we need to determine one.  This is arbitrary, but we need
928  // to make a deterministic decision.  Pick the first one that appears in the
929  // successor list.
930  if (!SamePopularity.empty()) {
931    SamePopularity.push_back(MostPopularDest);
932    TerminatorInst *TI = BB->getTerminator();
933    for (unsigned i = 0; ; ++i) {
934      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
935
936      if (std::find(SamePopularity.begin(), SamePopularity.end(),
937                    TI->getSuccessor(i)) == SamePopularity.end())
938        continue;
939
940      MostPopularDest = TI->getSuccessor(i);
941      break;
942    }
943  }
944
945  // Okay, we have finally picked the most popular destination.
946  return MostPopularDest;
947}
948
949bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
950                                           BasicBlock *BB) {
951  // If threading this would thread across a loop header, don't even try to
952  // thread the edge.
953  if (LoopHeaders.count(BB))
954    return false;
955
956  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
957  if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
958    return false;
959  assert(!PredValues.empty() &&
960         "ComputeValueKnownInPredecessors returned true with no values");
961
962  DEBUG(errs() << "IN BB: " << *BB;
963        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
964          errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
965          if (PredValues[i].first)
966            errs() << *PredValues[i].first;
967          else
968            errs() << "UNDEF";
969          errs() << " for pred '" << PredValues[i].second->getName()
970          << "'.\n";
971        });
972
973  // Decide what we want to thread through.  Convert our list of known values to
974  // a list of known destinations for each pred.  This also discards duplicate
975  // predecessors and keeps track of the undefined inputs (which are represented
976  // as a null dest in the PredToDestList).
977  SmallPtrSet<BasicBlock*, 16> SeenPreds;
978  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
979
980  BasicBlock *OnlyDest = 0;
981  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
982
983  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
984    BasicBlock *Pred = PredValues[i].second;
985    if (!SeenPreds.insert(Pred))
986      continue;  // Duplicate predecessor entry.
987
988    // If the predecessor ends with an indirect goto, we can't change its
989    // destination.
990    if (isa<IndirectBrInst>(Pred->getTerminator()))
991      continue;
992
993    ConstantInt *Val = PredValues[i].first;
994
995    BasicBlock *DestBB;
996    if (Val == 0)      // Undef.
997      DestBB = 0;
998    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
999      DestBB = BI->getSuccessor(Val->isZero());
1000    else {
1001      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1002      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1003    }
1004
1005    // If we have exactly one destination, remember it for efficiency below.
1006    if (i == 0)
1007      OnlyDest = DestBB;
1008    else if (OnlyDest != DestBB)
1009      OnlyDest = MultipleDestSentinel;
1010
1011    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1012  }
1013
1014  // If all edges were unthreadable, we fail.
1015  if (PredToDestList.empty())
1016    return false;
1017
1018  // Determine which is the most common successor.  If we have many inputs and
1019  // this block is a switch, we want to start by threading the batch that goes
1020  // to the most popular destination first.  If we only know about one
1021  // threadable destination (the common case) we can avoid this.
1022  BasicBlock *MostPopularDest = OnlyDest;
1023
1024  if (MostPopularDest == MultipleDestSentinel)
1025    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1026
1027  // Now that we know what the most popular destination is, factor all
1028  // predecessors that will jump to it into a single predecessor.
1029  SmallVector<BasicBlock*, 16> PredsToFactor;
1030  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1031    if (PredToDestList[i].second == MostPopularDest) {
1032      BasicBlock *Pred = PredToDestList[i].first;
1033
1034      // This predecessor may be a switch or something else that has multiple
1035      // edges to the block.  Factor each of these edges by listing them
1036      // according to # occurrences in PredsToFactor.
1037      TerminatorInst *PredTI = Pred->getTerminator();
1038      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1039        if (PredTI->getSuccessor(i) == BB)
1040          PredsToFactor.push_back(Pred);
1041    }
1042
1043  // If the threadable edges are branching on an undefined value, we get to pick
1044  // the destination that these predecessors should get to.
1045  if (MostPopularDest == 0)
1046    MostPopularDest = BB->getTerminator()->
1047                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1048
1049  // Ok, try to thread it!
1050  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1051}
1052
1053/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1054/// the current block.  See if there are any simplifications we can do based on
1055/// inputs to the phi node.
1056///
1057bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1058  BasicBlock *BB = PN->getParent();
1059
1060  // If any of the predecessor blocks end in an unconditional branch, we can
1061  // *duplicate* the jump into that block in order to further encourage jump
1062  // threading and to eliminate cases where we have branch on a phi of an icmp
1063  // (branch on icmp is much better).
1064
1065  // We don't want to do this tranformation for switches, because we don't
1066  // really want to duplicate a switch.
1067  if (isa<SwitchInst>(BB->getTerminator()))
1068    return false;
1069
1070  // Look for unconditional branch predecessors.
1071  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1072    BasicBlock *PredBB = PN->getIncomingBlock(i);
1073    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1074      if (PredBr->isUnconditional() &&
1075          // Try to duplicate BB into PredBB.
1076          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1077        return true;
1078  }
1079
1080  return false;
1081}
1082
1083
1084/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1085/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1086/// NewPred using the entries from OldPred (suitably mapped).
1087static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1088                                            BasicBlock *OldPred,
1089                                            BasicBlock *NewPred,
1090                                     DenseMap<Instruction*, Value*> &ValueMap) {
1091  for (BasicBlock::iterator PNI = PHIBB->begin();
1092       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1093    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1094    // DestBlock.
1095    Value *IV = PN->getIncomingValueForBlock(OldPred);
1096
1097    // Remap the value if necessary.
1098    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1099      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1100      if (I != ValueMap.end())
1101        IV = I->second;
1102    }
1103
1104    PN->addIncoming(IV, NewPred);
1105  }
1106}
1107
1108/// ThreadEdge - We have decided that it is safe and profitable to factor the
1109/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1110/// across BB.  Transform the IR to reflect this change.
1111bool JumpThreading::ThreadEdge(BasicBlock *BB,
1112                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1113                               BasicBlock *SuccBB) {
1114  // If threading to the same block as we come from, we would infinite loop.
1115  if (SuccBB == BB) {
1116    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1117          << "' - would thread to self!\n");
1118    return false;
1119  }
1120
1121  // If threading this would thread across a loop header, don't thread the edge.
1122  // See the comments above FindLoopHeaders for justifications and caveats.
1123  if (LoopHeaders.count(BB)) {
1124    DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1125          << "' to dest BB '" << SuccBB->getName()
1126          << "' - it might create an irreducible loop!\n");
1127    return false;
1128  }
1129
1130  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1131  if (JumpThreadCost > Threshold) {
1132    DEBUG(errs() << "  Not threading BB '" << BB->getName()
1133          << "' - Cost is too high: " << JumpThreadCost << "\n");
1134    return false;
1135  }
1136
1137  // And finally, do it!  Start by factoring the predecessors is needed.
1138  BasicBlock *PredBB;
1139  if (PredBBs.size() == 1)
1140    PredBB = PredBBs[0];
1141  else {
1142    DEBUG(errs() << "  Factoring out " << PredBBs.size()
1143          << " common predecessors.\n");
1144    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1145                                    ".thr_comm", this);
1146  }
1147
1148  // And finally, do it!
1149  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1150        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1151        << ", across block:\n    "
1152        << *BB << "\n");
1153
1154  // We are going to have to map operands from the original BB block to the new
1155  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1156  // account for entry from PredBB.
1157  DenseMap<Instruction*, Value*> ValueMapping;
1158
1159  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1160                                         BB->getName()+".thread",
1161                                         BB->getParent(), BB);
1162  NewBB->moveAfter(PredBB);
1163
1164  BasicBlock::iterator BI = BB->begin();
1165  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1166    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1167
1168  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1169  // mapping and using it to remap operands in the cloned instructions.
1170  for (; !isa<TerminatorInst>(BI); ++BI) {
1171    Instruction *New = BI->clone();
1172    New->setName(BI->getName());
1173    NewBB->getInstList().push_back(New);
1174    ValueMapping[BI] = New;
1175
1176    // Remap operands to patch up intra-block references.
1177    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1178      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1179        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1180        if (I != ValueMapping.end())
1181          New->setOperand(i, I->second);
1182      }
1183  }
1184
1185  // We didn't copy the terminator from BB over to NewBB, because there is now
1186  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1187  BranchInst::Create(SuccBB, NewBB);
1188
1189  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1190  // PHI nodes for NewBB now.
1191  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1192
1193  // If there were values defined in BB that are used outside the block, then we
1194  // now have to update all uses of the value to use either the original value,
1195  // the cloned value, or some PHI derived value.  This can require arbitrary
1196  // PHI insertion, of which we are prepared to do, clean these up now.
1197  SSAUpdater SSAUpdate;
1198  SmallVector<Use*, 16> UsesToRename;
1199  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1200    // Scan all uses of this instruction to see if it is used outside of its
1201    // block, and if so, record them in UsesToRename.
1202    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1203         ++UI) {
1204      Instruction *User = cast<Instruction>(*UI);
1205      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1206        if (UserPN->getIncomingBlock(UI) == BB)
1207          continue;
1208      } else if (User->getParent() == BB)
1209        continue;
1210
1211      UsesToRename.push_back(&UI.getUse());
1212    }
1213
1214    // If there are no uses outside the block, we're done with this instruction.
1215    if (UsesToRename.empty())
1216      continue;
1217
1218    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1219
1220    // We found a use of I outside of BB.  Rename all uses of I that are outside
1221    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1222    // with the two values we know.
1223    SSAUpdate.Initialize(I);
1224    SSAUpdate.AddAvailableValue(BB, I);
1225    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1226
1227    while (!UsesToRename.empty())
1228      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1229    DEBUG(errs() << "\n");
1230  }
1231
1232
1233  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1234  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1235  // us to simplify any PHI nodes in BB.
1236  TerminatorInst *PredTerm = PredBB->getTerminator();
1237  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1238    if (PredTerm->getSuccessor(i) == BB) {
1239      RemovePredecessorAndSimplify(BB, PredBB, TD);
1240      PredTerm->setSuccessor(i, NewBB);
1241    }
1242
1243  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1244  // over the new instructions and zap any that are constants or dead.  This
1245  // frequently happens because of phi translation.
1246  BI = NewBB->begin();
1247  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1248    Instruction *Inst = BI++;
1249
1250    if (Value *V = SimplifyInstruction(Inst, TD)) {
1251      WeakVH BIHandle(BI);
1252      ReplaceAndSimplifyAllUses(Inst, V, TD);
1253      if (BIHandle == 0)
1254        BI = NewBB->begin();
1255      continue;
1256    }
1257
1258    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1259  }
1260
1261  // Threaded an edge!
1262  ++NumThreads;
1263  return true;
1264}
1265
1266/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1267/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1268/// If we can duplicate the contents of BB up into PredBB do so now, this
1269/// improves the odds that the branch will be on an analyzable instruction like
1270/// a compare.
1271bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1272                                                     BasicBlock *PredBB) {
1273  // If BB is a loop header, then duplicating this block outside the loop would
1274  // cause us to transform this into an irreducible loop, don't do this.
1275  // See the comments above FindLoopHeaders for justifications and caveats.
1276  if (LoopHeaders.count(BB)) {
1277    DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1278          << "' into predecessor block '" << PredBB->getName()
1279          << "' - it might create an irreducible loop!\n");
1280    return false;
1281  }
1282
1283  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1284  if (DuplicationCost > Threshold) {
1285    DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1286          << "' - Cost is too high: " << DuplicationCost << "\n");
1287    return false;
1288  }
1289
1290  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1291  // of PredBB.
1292  DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1293        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1294        << DuplicationCost << " block is:" << *BB << "\n");
1295
1296  // We are going to have to map operands from the original BB block into the
1297  // PredBB block.  Evaluate PHI nodes in BB.
1298  DenseMap<Instruction*, Value*> ValueMapping;
1299
1300  BasicBlock::iterator BI = BB->begin();
1301  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1302    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1303
1304  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1305
1306  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1307  // mapping and using it to remap operands in the cloned instructions.
1308  for (; BI != BB->end(); ++BI) {
1309    Instruction *New = BI->clone();
1310    New->setName(BI->getName());
1311    PredBB->getInstList().insert(OldPredBranch, New);
1312    ValueMapping[BI] = New;
1313
1314    // Remap operands to patch up intra-block references.
1315    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1316      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1317        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1318        if (I != ValueMapping.end())
1319          New->setOperand(i, I->second);
1320      }
1321  }
1322
1323  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1324  // add entries to the PHI nodes for branch from PredBB now.
1325  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1326  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1327                                  ValueMapping);
1328  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1329                                  ValueMapping);
1330
1331  // If there were values defined in BB that are used outside the block, then we
1332  // now have to update all uses of the value to use either the original value,
1333  // the cloned value, or some PHI derived value.  This can require arbitrary
1334  // PHI insertion, of which we are prepared to do, clean these up now.
1335  SSAUpdater SSAUpdate;
1336  SmallVector<Use*, 16> UsesToRename;
1337  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1338    // Scan all uses of this instruction to see if it is used outside of its
1339    // block, and if so, record them in UsesToRename.
1340    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1341         ++UI) {
1342      Instruction *User = cast<Instruction>(*UI);
1343      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1344        if (UserPN->getIncomingBlock(UI) == BB)
1345          continue;
1346      } else if (User->getParent() == BB)
1347        continue;
1348
1349      UsesToRename.push_back(&UI.getUse());
1350    }
1351
1352    // If there are no uses outside the block, we're done with this instruction.
1353    if (UsesToRename.empty())
1354      continue;
1355
1356    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1357
1358    // We found a use of I outside of BB.  Rename all uses of I that are outside
1359    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1360    // with the two values we know.
1361    SSAUpdate.Initialize(I);
1362    SSAUpdate.AddAvailableValue(BB, I);
1363    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1364
1365    while (!UsesToRename.empty())
1366      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1367    DEBUG(errs() << "\n");
1368  }
1369
1370  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1371  // that we nuked.
1372  RemovePredecessorAndSimplify(BB, PredBB, TD);
1373
1374  // Remove the unconditional branch at the end of the PredBB block.
1375  OldPredBranch->eraseFromParent();
1376
1377  ++NumDupes;
1378  return true;
1379}
1380
1381
1382