JumpThreading.cpp revision 77beb479f556093c5f1b4854fcbb095cda34f202
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include "llvm/Transforms/Utils/Local.h"
23#include "llvm/Transforms/Utils/SSAUpdater.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33#include "llvm/Support/raw_ostream.h"
34using namespace llvm;
35
36STATISTIC(NumThreads, "Number of jumps threaded");
37STATISTIC(NumFolds,   "Number of terminators folded");
38STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
39
40static cl::opt<unsigned>
41Threshold("jump-threading-threshold",
42          cl::desc("Max block size to duplicate for jump threading"),
43          cl::init(6), cl::Hidden);
44
45// Turn on use of LazyValueInfo.
46static cl::opt<bool>
47EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
48
49
50
51namespace {
52  /// This pass performs 'jump threading', which looks at blocks that have
53  /// multiple predecessors and multiple successors.  If one or more of the
54  /// predecessors of the block can be proven to always jump to one of the
55  /// successors, we forward the edge from the predecessor to the successor by
56  /// duplicating the contents of this block.
57  ///
58  /// An example of when this can occur is code like this:
59  ///
60  ///   if () { ...
61  ///     X = 4;
62  ///   }
63  ///   if (X < 3) {
64  ///
65  /// In this case, the unconditional branch at the end of the first if can be
66  /// revectored to the false side of the second if.
67  ///
68  class JumpThreading : public FunctionPass {
69    TargetData *TD;
70    LazyValueInfo *LVI;
71#ifdef NDEBUG
72    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
73#else
74    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
75#endif
76  public:
77    static char ID; // Pass identification
78    JumpThreading() : FunctionPass(&ID) {}
79
80    bool runOnFunction(Function &F);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      if (EnableLVI)
84        AU.addRequired<LazyValueInfo>();
85    }
86
87    void FindLoopHeaders(Function &F);
88    bool ProcessBlock(BasicBlock *BB);
89    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
90                    BasicBlock *SuccBB);
91    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
92                                          BasicBlock *PredBB);
93
94    typedef SmallVectorImpl<std::pair<ConstantInt*,
95                                      BasicBlock*> > PredValueInfo;
96
97    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
98                                         PredValueInfo &Result);
99    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
100
101
102    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
104
105    bool ProcessBranchOnPHI(PHINode *PN);
106
107    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
108  };
109}
110
111char JumpThreading::ID = 0;
112static RegisterPass<JumpThreading>
113X("jump-threading", "Jump Threading");
114
115// Public interface to the Jump Threading pass
116FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
117
118/// runOnFunction - Top level algorithm.
119///
120bool JumpThreading::runOnFunction(Function &F) {
121  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
122  TD = getAnalysisIfAvailable<TargetData>();
123  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
124
125  FindLoopHeaders(F);
126
127  bool Changed, EverChanged = false;
128  do {
129    Changed = false;
130    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
131      BasicBlock *BB = I;
132      // Thread all of the branches we can over this block.
133      while (ProcessBlock(BB))
134        Changed = true;
135
136      ++I;
137
138      // If the block is trivially dead, zap it.  This eliminates the successor
139      // edges which simplifies the CFG.
140      if (pred_begin(BB) == pred_end(BB) &&
141          BB != &BB->getParent()->getEntryBlock()) {
142        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
143              << "' with terminator: " << *BB->getTerminator() << '\n');
144        LoopHeaders.erase(BB);
145        DeleteDeadBlock(BB);
146        Changed = true;
147      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
148        // Can't thread an unconditional jump, but if the block is "almost
149        // empty", we can replace uses of it with uses of the successor and make
150        // this dead.
151        if (BI->isUnconditional() &&
152            BB != &BB->getParent()->getEntryBlock()) {
153          BasicBlock::iterator BBI = BB->getFirstNonPHI();
154          // Ignore dbg intrinsics.
155          while (isa<DbgInfoIntrinsic>(BBI))
156            ++BBI;
157          // If the terminator is the only non-phi instruction, try to nuke it.
158          if (BBI->isTerminator()) {
159            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
160            // block, we have to make sure it isn't in the LoopHeaders set.  We
161            // reinsert afterward if needed.
162            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
163            BasicBlock *Succ = BI->getSuccessor(0);
164
165            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
166              Changed = true;
167              // If we deleted BB and BB was the header of a loop, then the
168              // successor is now the header of the loop.
169              BB = Succ;
170            }
171
172            if (ErasedFromLoopHeaders)
173              LoopHeaders.insert(BB);
174          }
175        }
176      }
177    }
178    EverChanged |= Changed;
179  } while (Changed);
180
181  LoopHeaders.clear();
182  return EverChanged;
183}
184
185/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
186/// thread across it.
187static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
188  /// Ignore PHI nodes, these will be flattened when duplication happens.
189  BasicBlock::const_iterator I = BB->getFirstNonPHI();
190
191  // FIXME: THREADING will delete values that are just used to compute the
192  // branch, so they shouldn't count against the duplication cost.
193
194
195  // Sum up the cost of each instruction until we get to the terminator.  Don't
196  // include the terminator because the copy won't include it.
197  unsigned Size = 0;
198  for (; !isa<TerminatorInst>(I); ++I) {
199    // Debugger intrinsics don't incur code size.
200    if (isa<DbgInfoIntrinsic>(I)) continue;
201
202    // If this is a pointer->pointer bitcast, it is free.
203    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
204      continue;
205
206    // All other instructions count for at least one unit.
207    ++Size;
208
209    // Calls are more expensive.  If they are non-intrinsic calls, we model them
210    // as having cost of 4.  If they are a non-vector intrinsic, we model them
211    // as having cost of 2 total, and if they are a vector intrinsic, we model
212    // them as having cost 1.
213    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
214      if (!isa<IntrinsicInst>(CI))
215        Size += 3;
216      else if (!isa<VectorType>(CI->getType()))
217        Size += 1;
218    }
219  }
220
221  // Threading through a switch statement is particularly profitable.  If this
222  // block ends in a switch, decrease its cost to make it more likely to happen.
223  if (isa<SwitchInst>(I))
224    Size = Size > 6 ? Size-6 : 0;
225
226  return Size;
227}
228
229/// FindLoopHeaders - We do not want jump threading to turn proper loop
230/// structures into irreducible loops.  Doing this breaks up the loop nesting
231/// hierarchy and pessimizes later transformations.  To prevent this from
232/// happening, we first have to find the loop headers.  Here we approximate this
233/// by finding targets of backedges in the CFG.
234///
235/// Note that there definitely are cases when we want to allow threading of
236/// edges across a loop header.  For example, threading a jump from outside the
237/// loop (the preheader) to an exit block of the loop is definitely profitable.
238/// It is also almost always profitable to thread backedges from within the loop
239/// to exit blocks, and is often profitable to thread backedges to other blocks
240/// within the loop (forming a nested loop).  This simple analysis is not rich
241/// enough to track all of these properties and keep it up-to-date as the CFG
242/// mutates, so we don't allow any of these transformations.
243///
244void JumpThreading::FindLoopHeaders(Function &F) {
245  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
246  FindFunctionBackedges(F, Edges);
247
248  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
249    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
250}
251
252/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
253/// if we can infer that the value is a known ConstantInt in any of our
254/// predecessors.  If so, return the known list of value and pred BB in the
255/// result vector.  If a value is known to be undef, it is returned as null.
256///
257/// This returns true if there were any known values.
258///
259bool JumpThreading::
260ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
261  // If V is a constantint, then it is known in all predecessors.
262  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
263    ConstantInt *CI = dyn_cast<ConstantInt>(V);
264
265    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
266      Result.push_back(std::make_pair(CI, *PI));
267    return true;
268  }
269
270  // If V is a non-instruction value, or an instruction in a different block,
271  // then it can't be derived from a PHI.
272  Instruction *I = dyn_cast<Instruction>(V);
273  if (I == 0 || I->getParent() != BB) {
274
275    // Okay, if this is a live-in value, see if it has a known value at the end
276    // of any of our predecessors.
277    //
278    // FIXME: This should be an edge property, not a block end property.
279    /// TODO: Per PR2563, we could infer value range information about a
280    /// predecessor based on its terminator.
281    //
282    if (LVI) {
283      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
284      // "I" is a non-local compare-with-a-constant instruction.  This would be
285      // able to handle value inequalities better, for example if the compare is
286      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
287      // Perhaps getConstantOnEdge should be smart enough to do this?
288
289      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
290        // If the value is known by LazyValueInfo to be a constant in a
291        // predecessor, use that information to try to thread this block.
292        Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
293        if (PredCst == 0 ||
294            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
295          continue;
296
297        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
298      }
299
300      return !Result.empty();
301    }
302
303    return false;
304  }
305
306  /// If I is a PHI node, then we know the incoming values for any constants.
307  if (PHINode *PN = dyn_cast<PHINode>(I)) {
308    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
309      Value *InVal = PN->getIncomingValue(i);
310      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
311        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
312        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
313      }
314    }
315    return !Result.empty();
316  }
317
318  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
319
320  // Handle some boolean conditions.
321  if (I->getType()->getPrimitiveSizeInBits() == 1) {
322    // X | true -> true
323    // X & false -> false
324    if (I->getOpcode() == Instruction::Or ||
325        I->getOpcode() == Instruction::And) {
326      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
327      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
328
329      if (LHSVals.empty() && RHSVals.empty())
330        return false;
331
332      ConstantInt *InterestingVal;
333      if (I->getOpcode() == Instruction::Or)
334        InterestingVal = ConstantInt::getTrue(I->getContext());
335      else
336        InterestingVal = ConstantInt::getFalse(I->getContext());
337
338      // Scan for the sentinel.
339      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
340        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
341          Result.push_back(LHSVals[i]);
342      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
343        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
344          Result.push_back(RHSVals[i]);
345      return !Result.empty();
346    }
347
348    // Handle the NOT form of XOR.
349    if (I->getOpcode() == Instruction::Xor &&
350        isa<ConstantInt>(I->getOperand(1)) &&
351        cast<ConstantInt>(I->getOperand(1))->isOne()) {
352      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
353      if (Result.empty())
354        return false;
355
356      // Invert the known values.
357      for (unsigned i = 0, e = Result.size(); i != e; ++i)
358        if (Result[i].first)
359          Result[i].first =
360            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
361      return true;
362    }
363  }
364
365  // Handle compare with phi operand, where the PHI is defined in this block.
366  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
367    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
368    if (PN && PN->getParent() == BB) {
369      // We can do this simplification if any comparisons fold to true or false.
370      // See if any do.
371      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
372        BasicBlock *PredBB = PN->getIncomingBlock(i);
373        Value *LHS = PN->getIncomingValue(i);
374        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
375
376        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
377        if (Res == 0) {
378          if (!LVI || !isa<Constant>(RHS))
379            continue;
380
381          LazyValueInfo::Tristate
382            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
383                                           cast<Constant>(RHS), PredBB, BB);
384          if (ResT == LazyValueInfo::Unknown)
385            continue;
386          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
387        }
388
389        if (isa<UndefValue>(Res))
390          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
391        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
392          Result.push_back(std::make_pair(CI, PredBB));
393      }
394
395      return !Result.empty();
396    }
397
398
399    // If comparing a live-in value against a constant, see if we know the
400    // live-in value on any predecessors.
401    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
402        Cmp->getType()->isInteger() && // Not vector compare.
403        (!isa<Instruction>(Cmp->getOperand(0)) ||
404         cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
405      Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
406
407      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
408        // If the value is known by LazyValueInfo to be a constant in a
409        // predecessor, use that information to try to thread this block.
410        LazyValueInfo::Tristate
411          Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
412                                        RHSCst, *PI, BB);
413        if (Res == LazyValueInfo::Unknown)
414          continue;
415
416        Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
417        Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
418      }
419
420      return !Result.empty();
421    }
422  }
423  return false;
424}
425
426
427
428/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
429/// in an undefined jump, decide which block is best to revector to.
430///
431/// Since we can pick an arbitrary destination, we pick the successor with the
432/// fewest predecessors.  This should reduce the in-degree of the others.
433///
434static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
435  TerminatorInst *BBTerm = BB->getTerminator();
436  unsigned MinSucc = 0;
437  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
438  // Compute the successor with the minimum number of predecessors.
439  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
440  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
441    TestBB = BBTerm->getSuccessor(i);
442    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
443    if (NumPreds < MinNumPreds)
444      MinSucc = i;
445  }
446
447  return MinSucc;
448}
449
450/// ProcessBlock - If there are any predecessors whose control can be threaded
451/// through to a successor, transform them now.
452bool JumpThreading::ProcessBlock(BasicBlock *BB) {
453  // If this block has a single predecessor, and if that pred has a single
454  // successor, merge the blocks.  This encourages recursive jump threading
455  // because now the condition in this block can be threaded through
456  // predecessors of our predecessor block.
457  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
458    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
459        SinglePred != BB) {
460      // If SinglePred was a loop header, BB becomes one.
461      if (LoopHeaders.erase(SinglePred))
462        LoopHeaders.insert(BB);
463
464      // Remember if SinglePred was the entry block of the function.  If so, we
465      // will need to move BB back to the entry position.
466      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
467      MergeBasicBlockIntoOnlyPred(BB);
468
469      if (isEntry && BB != &BB->getParent()->getEntryBlock())
470        BB->moveBefore(&BB->getParent()->getEntryBlock());
471      return true;
472    }
473  }
474
475  // Look to see if the terminator is a branch of switch, if not we can't thread
476  // it.
477  Value *Condition;
478  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
479    // Can't thread an unconditional jump.
480    if (BI->isUnconditional()) return false;
481    Condition = BI->getCondition();
482  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
483    Condition = SI->getCondition();
484  else
485    return false; // Must be an invoke.
486
487  // If the terminator of this block is branching on a constant, simplify the
488  // terminator to an unconditional branch.  This can occur due to threading in
489  // other blocks.
490  if (isa<ConstantInt>(Condition)) {
491    DEBUG(dbgs() << "  In block '" << BB->getName()
492          << "' folding terminator: " << *BB->getTerminator() << '\n');
493    ++NumFolds;
494    ConstantFoldTerminator(BB);
495    return true;
496  }
497
498  // If the terminator is branching on an undef, we can pick any of the
499  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
500  if (isa<UndefValue>(Condition)) {
501    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
502
503    // Fold the branch/switch.
504    TerminatorInst *BBTerm = BB->getTerminator();
505    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
506      if (i == BestSucc) continue;
507      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
508    }
509
510    DEBUG(dbgs() << "  In block '" << BB->getName()
511          << "' folding undef terminator: " << *BBTerm << '\n');
512    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
513    BBTerm->eraseFromParent();
514    return true;
515  }
516
517  Instruction *CondInst = dyn_cast<Instruction>(Condition);
518
519  // If the condition is an instruction defined in another block, see if a
520  // predecessor has the same condition:
521  //     br COND, BBX, BBY
522  //  BBX:
523  //     br COND, BBZ, BBW
524  if (!LVI &&
525      !Condition->hasOneUse() && // Multiple uses.
526      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
527    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
528    if (isa<BranchInst>(BB->getTerminator())) {
529      for (; PI != E; ++PI)
530        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
531          if (PBI->isConditional() && PBI->getCondition() == Condition &&
532              ProcessBranchOnDuplicateCond(*PI, BB))
533            return true;
534    } else {
535      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
536      for (; PI != E; ++PI)
537        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
538          if (PSI->getCondition() == Condition &&
539              ProcessSwitchOnDuplicateCond(*PI, BB))
540            return true;
541    }
542  }
543
544  // All the rest of our checks depend on the condition being an instruction.
545  if (CondInst == 0) {
546    // FIXME: Unify this with code below.
547    if (LVI && ProcessThreadableEdges(Condition, BB))
548      return true;
549    return false;
550  }
551
552
553  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
554    if (!LVI &&
555        (!isa<PHINode>(CondCmp->getOperand(0)) ||
556         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
557      // If we have a comparison, loop over the predecessors to see if there is
558      // a condition with a lexically identical value.
559      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
560      for (; PI != E; ++PI)
561        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
562          if (PBI->isConditional() && *PI != BB) {
563            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
564              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
565                  CI->getOperand(1) == CondCmp->getOperand(1) &&
566                  CI->getPredicate() == CondCmp->getPredicate()) {
567                // TODO: Could handle things like (x != 4) --> (x == 17)
568                if (ProcessBranchOnDuplicateCond(*PI, BB))
569                  return true;
570              }
571            }
572          }
573    }
574  }
575
576  // Check for some cases that are worth simplifying.  Right now we want to look
577  // for loads that are used by a switch or by the condition for the branch.  If
578  // we see one, check to see if it's partially redundant.  If so, insert a PHI
579  // which can then be used to thread the values.
580  //
581  Value *SimplifyValue = CondInst;
582  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
583    if (isa<Constant>(CondCmp->getOperand(1)))
584      SimplifyValue = CondCmp->getOperand(0);
585
586  // TODO: There are other places where load PRE would be profitable, such as
587  // more complex comparisons.
588  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
589    if (SimplifyPartiallyRedundantLoad(LI))
590      return true;
591
592
593  // Handle a variety of cases where we are branching on something derived from
594  // a PHI node in the current block.  If we can prove that any predecessors
595  // compute a predictable value based on a PHI node, thread those predecessors.
596  //
597  if (ProcessThreadableEdges(CondInst, BB))
598    return true;
599
600  // If this is an otherwise-unfoldable branch on a phi node in the current
601  // block, see if we can simplify.
602  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
603    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
604      return ProcessBranchOnPHI(PN);
605
606  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
607  // "(X == 4)", thread through this block.
608
609  return false;
610}
611
612/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
613/// block that jump on exactly the same condition.  This means that we almost
614/// always know the direction of the edge in the DESTBB:
615///  PREDBB:
616///     br COND, DESTBB, BBY
617///  DESTBB:
618///     br COND, BBZ, BBW
619///
620/// If DESTBB has multiple predecessors, we can't just constant fold the branch
621/// in DESTBB, we have to thread over it.
622bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
623                                                 BasicBlock *BB) {
624  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
625
626  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
627  // fold the branch to an unconditional one, which allows other recursive
628  // simplifications.
629  bool BranchDir;
630  if (PredBI->getSuccessor(1) != BB)
631    BranchDir = true;
632  else if (PredBI->getSuccessor(0) != BB)
633    BranchDir = false;
634  else {
635    DEBUG(dbgs() << "  In block '" << PredBB->getName()
636          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
637    ++NumFolds;
638    ConstantFoldTerminator(PredBB);
639    return true;
640  }
641
642  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
643
644  // If the dest block has one predecessor, just fix the branch condition to a
645  // constant and fold it.
646  if (BB->getSinglePredecessor()) {
647    DEBUG(dbgs() << "  In block '" << BB->getName()
648          << "' folding condition to '" << BranchDir << "': "
649          << *BB->getTerminator() << '\n');
650    ++NumFolds;
651    Value *OldCond = DestBI->getCondition();
652    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
653                                          BranchDir));
654    ConstantFoldTerminator(BB);
655    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
656    return true;
657  }
658
659
660  // Next, figure out which successor we are threading to.
661  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
662
663  SmallVector<BasicBlock*, 2> Preds;
664  Preds.push_back(PredBB);
665
666  // Ok, try to thread it!
667  return ThreadEdge(BB, Preds, SuccBB);
668}
669
670/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
671/// block that switch on exactly the same condition.  This means that we almost
672/// always know the direction of the edge in the DESTBB:
673///  PREDBB:
674///     switch COND [... DESTBB, BBY ... ]
675///  DESTBB:
676///     switch COND [... BBZ, BBW ]
677///
678/// Optimizing switches like this is very important, because simplifycfg builds
679/// switches out of repeated 'if' conditions.
680bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
681                                                 BasicBlock *DestBB) {
682  // Can't thread edge to self.
683  if (PredBB == DestBB)
684    return false;
685
686  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
687  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
688
689  // There are a variety of optimizations that we can potentially do on these
690  // blocks: we order them from most to least preferable.
691
692  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
693  // directly to their destination.  This does not introduce *any* code size
694  // growth.  Skip debug info first.
695  BasicBlock::iterator BBI = DestBB->begin();
696  while (isa<DbgInfoIntrinsic>(BBI))
697    BBI++;
698
699  // FIXME: Thread if it just contains a PHI.
700  if (isa<SwitchInst>(BBI)) {
701    bool MadeChange = false;
702    // Ignore the default edge for now.
703    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
704      ConstantInt *DestVal = DestSI->getCaseValue(i);
705      BasicBlock *DestSucc = DestSI->getSuccessor(i);
706
707      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
708      // PredSI has an explicit case for it.  If so, forward.  If it is covered
709      // by the default case, we can't update PredSI.
710      unsigned PredCase = PredSI->findCaseValue(DestVal);
711      if (PredCase == 0) continue;
712
713      // If PredSI doesn't go to DestBB on this value, then it won't reach the
714      // case on this condition.
715      if (PredSI->getSuccessor(PredCase) != DestBB &&
716          DestSI->getSuccessor(i) != DestBB)
717        continue;
718
719      // Do not forward this if it already goes to this destination, this would
720      // be an infinite loop.
721      if (PredSI->getSuccessor(PredCase) == DestSucc)
722        continue;
723
724      // Otherwise, we're safe to make the change.  Make sure that the edge from
725      // DestSI to DestSucc is not critical and has no PHI nodes.
726      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
727      DEBUG(dbgs() << "THROUGH: " << *DestSI);
728
729      // If the destination has PHI nodes, just split the edge for updating
730      // simplicity.
731      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
732        SplitCriticalEdge(DestSI, i, this);
733        DestSucc = DestSI->getSuccessor(i);
734      }
735      FoldSingleEntryPHINodes(DestSucc);
736      PredSI->setSuccessor(PredCase, DestSucc);
737      MadeChange = true;
738    }
739
740    if (MadeChange)
741      return true;
742  }
743
744  return false;
745}
746
747
748/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
749/// load instruction, eliminate it by replacing it with a PHI node.  This is an
750/// important optimization that encourages jump threading, and needs to be run
751/// interlaced with other jump threading tasks.
752bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
753  // Don't hack volatile loads.
754  if (LI->isVolatile()) return false;
755
756  // If the load is defined in a block with exactly one predecessor, it can't be
757  // partially redundant.
758  BasicBlock *LoadBB = LI->getParent();
759  if (LoadBB->getSinglePredecessor())
760    return false;
761
762  Value *LoadedPtr = LI->getOperand(0);
763
764  // If the loaded operand is defined in the LoadBB, it can't be available.
765  // TODO: Could do simple PHI translation, that would be fun :)
766  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
767    if (PtrOp->getParent() == LoadBB)
768      return false;
769
770  // Scan a few instructions up from the load, to see if it is obviously live at
771  // the entry to its block.
772  BasicBlock::iterator BBIt = LI;
773
774  if (Value *AvailableVal =
775        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
776    // If the value if the load is locally available within the block, just use
777    // it.  This frequently occurs for reg2mem'd allocas.
778    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
779
780    // If the returned value is the load itself, replace with an undef. This can
781    // only happen in dead loops.
782    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
783    LI->replaceAllUsesWith(AvailableVal);
784    LI->eraseFromParent();
785    return true;
786  }
787
788  // Otherwise, if we scanned the whole block and got to the top of the block,
789  // we know the block is locally transparent to the load.  If not, something
790  // might clobber its value.
791  if (BBIt != LoadBB->begin())
792    return false;
793
794
795  SmallPtrSet<BasicBlock*, 8> PredsScanned;
796  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
797  AvailablePredsTy AvailablePreds;
798  BasicBlock *OneUnavailablePred = 0;
799
800  // If we got here, the loaded value is transparent through to the start of the
801  // block.  Check to see if it is available in any of the predecessor blocks.
802  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
803       PI != PE; ++PI) {
804    BasicBlock *PredBB = *PI;
805
806    // If we already scanned this predecessor, skip it.
807    if (!PredsScanned.insert(PredBB))
808      continue;
809
810    // Scan the predecessor to see if the value is available in the pred.
811    BBIt = PredBB->end();
812    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
813    if (!PredAvailable) {
814      OneUnavailablePred = PredBB;
815      continue;
816    }
817
818    // If so, this load is partially redundant.  Remember this info so that we
819    // can create a PHI node.
820    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
821  }
822
823  // If the loaded value isn't available in any predecessor, it isn't partially
824  // redundant.
825  if (AvailablePreds.empty()) return false;
826
827  // Okay, the loaded value is available in at least one (and maybe all!)
828  // predecessors.  If the value is unavailable in more than one unique
829  // predecessor, we want to insert a merge block for those common predecessors.
830  // This ensures that we only have to insert one reload, thus not increasing
831  // code size.
832  BasicBlock *UnavailablePred = 0;
833
834  // If there is exactly one predecessor where the value is unavailable, the
835  // already computed 'OneUnavailablePred' block is it.  If it ends in an
836  // unconditional branch, we know that it isn't a critical edge.
837  if (PredsScanned.size() == AvailablePreds.size()+1 &&
838      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
839    UnavailablePred = OneUnavailablePred;
840  } else if (PredsScanned.size() != AvailablePreds.size()) {
841    // Otherwise, we had multiple unavailable predecessors or we had a critical
842    // edge from the one.
843    SmallVector<BasicBlock*, 8> PredsToSplit;
844    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
845
846    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
847      AvailablePredSet.insert(AvailablePreds[i].first);
848
849    // Add all the unavailable predecessors to the PredsToSplit list.
850    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
851         PI != PE; ++PI)
852      if (!AvailablePredSet.count(*PI))
853        PredsToSplit.push_back(*PI);
854
855    // Split them out to their own block.
856    UnavailablePred =
857      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
858                             "thread-pre-split", this);
859  }
860
861  // If the value isn't available in all predecessors, then there will be
862  // exactly one where it isn't available.  Insert a load on that edge and add
863  // it to the AvailablePreds list.
864  if (UnavailablePred) {
865    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
866           "Can't handle critical edge here!");
867    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
868                                 LI->getAlignment(),
869                                 UnavailablePred->getTerminator());
870    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
871  }
872
873  // Now we know that each predecessor of this block has a value in
874  // AvailablePreds, sort them for efficient access as we're walking the preds.
875  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
876
877  // Create a PHI node at the start of the block for the PRE'd load value.
878  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
879  PN->takeName(LI);
880
881  // Insert new entries into the PHI for each predecessor.  A single block may
882  // have multiple entries here.
883  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
884       ++PI) {
885    AvailablePredsTy::iterator I =
886      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
887                       std::make_pair(*PI, (Value*)0));
888
889    assert(I != AvailablePreds.end() && I->first == *PI &&
890           "Didn't find entry for predecessor!");
891
892    PN->addIncoming(I->second, I->first);
893  }
894
895  //cerr << "PRE: " << *LI << *PN << "\n";
896
897  LI->replaceAllUsesWith(PN);
898  LI->eraseFromParent();
899
900  return true;
901}
902
903/// FindMostPopularDest - The specified list contains multiple possible
904/// threadable destinations.  Pick the one that occurs the most frequently in
905/// the list.
906static BasicBlock *
907FindMostPopularDest(BasicBlock *BB,
908                    const SmallVectorImpl<std::pair<BasicBlock*,
909                                  BasicBlock*> > &PredToDestList) {
910  assert(!PredToDestList.empty());
911
912  // Determine popularity.  If there are multiple possible destinations, we
913  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
914  // blocks with known and real destinations to threading undef.  We'll handle
915  // them later if interesting.
916  DenseMap<BasicBlock*, unsigned> DestPopularity;
917  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
918    if (PredToDestList[i].second)
919      DestPopularity[PredToDestList[i].second]++;
920
921  // Find the most popular dest.
922  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
923  BasicBlock *MostPopularDest = DPI->first;
924  unsigned Popularity = DPI->second;
925  SmallVector<BasicBlock*, 4> SamePopularity;
926
927  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
928    // If the popularity of this entry isn't higher than the popularity we've
929    // seen so far, ignore it.
930    if (DPI->second < Popularity)
931      ; // ignore.
932    else if (DPI->second == Popularity) {
933      // If it is the same as what we've seen so far, keep track of it.
934      SamePopularity.push_back(DPI->first);
935    } else {
936      // If it is more popular, remember it.
937      SamePopularity.clear();
938      MostPopularDest = DPI->first;
939      Popularity = DPI->second;
940    }
941  }
942
943  // Okay, now we know the most popular destination.  If there is more than
944  // destination, we need to determine one.  This is arbitrary, but we need
945  // to make a deterministic decision.  Pick the first one that appears in the
946  // successor list.
947  if (!SamePopularity.empty()) {
948    SamePopularity.push_back(MostPopularDest);
949    TerminatorInst *TI = BB->getTerminator();
950    for (unsigned i = 0; ; ++i) {
951      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
952
953      if (std::find(SamePopularity.begin(), SamePopularity.end(),
954                    TI->getSuccessor(i)) == SamePopularity.end())
955        continue;
956
957      MostPopularDest = TI->getSuccessor(i);
958      break;
959    }
960  }
961
962  // Okay, we have finally picked the most popular destination.
963  return MostPopularDest;
964}
965
966bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
967  // If threading this would thread across a loop header, don't even try to
968  // thread the edge.
969  if (LoopHeaders.count(BB))
970    return false;
971
972  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
973  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
974    return false;
975  assert(!PredValues.empty() &&
976         "ComputeValueKnownInPredecessors returned true with no values");
977
978  DEBUG(dbgs() << "IN BB: " << *BB;
979        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
980          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
981          if (PredValues[i].first)
982            dbgs() << *PredValues[i].first;
983          else
984            dbgs() << "UNDEF";
985          dbgs() << " for pred '" << PredValues[i].second->getName()
986          << "'.\n";
987        });
988
989  // Decide what we want to thread through.  Convert our list of known values to
990  // a list of known destinations for each pred.  This also discards duplicate
991  // predecessors and keeps track of the undefined inputs (which are represented
992  // as a null dest in the PredToDestList).
993  SmallPtrSet<BasicBlock*, 16> SeenPreds;
994  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
995
996  BasicBlock *OnlyDest = 0;
997  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
998
999  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1000    BasicBlock *Pred = PredValues[i].second;
1001    if (!SeenPreds.insert(Pred))
1002      continue;  // Duplicate predecessor entry.
1003
1004    // If the predecessor ends with an indirect goto, we can't change its
1005    // destination.
1006    if (isa<IndirectBrInst>(Pred->getTerminator()))
1007      continue;
1008
1009    ConstantInt *Val = PredValues[i].first;
1010
1011    BasicBlock *DestBB;
1012    if (Val == 0)      // Undef.
1013      DestBB = 0;
1014    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1015      DestBB = BI->getSuccessor(Val->isZero());
1016    else {
1017      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1018      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1019    }
1020
1021    // If we have exactly one destination, remember it for efficiency below.
1022    if (i == 0)
1023      OnlyDest = DestBB;
1024    else if (OnlyDest != DestBB)
1025      OnlyDest = MultipleDestSentinel;
1026
1027    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1028  }
1029
1030  // If all edges were unthreadable, we fail.
1031  if (PredToDestList.empty())
1032    return false;
1033
1034  // Determine which is the most common successor.  If we have many inputs and
1035  // this block is a switch, we want to start by threading the batch that goes
1036  // to the most popular destination first.  If we only know about one
1037  // threadable destination (the common case) we can avoid this.
1038  BasicBlock *MostPopularDest = OnlyDest;
1039
1040  if (MostPopularDest == MultipleDestSentinel)
1041    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1042
1043  // Now that we know what the most popular destination is, factor all
1044  // predecessors that will jump to it into a single predecessor.
1045  SmallVector<BasicBlock*, 16> PredsToFactor;
1046  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1047    if (PredToDestList[i].second == MostPopularDest) {
1048      BasicBlock *Pred = PredToDestList[i].first;
1049
1050      // This predecessor may be a switch or something else that has multiple
1051      // edges to the block.  Factor each of these edges by listing them
1052      // according to # occurrences in PredsToFactor.
1053      TerminatorInst *PredTI = Pred->getTerminator();
1054      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1055        if (PredTI->getSuccessor(i) == BB)
1056          PredsToFactor.push_back(Pred);
1057    }
1058
1059  // If the threadable edges are branching on an undefined value, we get to pick
1060  // the destination that these predecessors should get to.
1061  if (MostPopularDest == 0)
1062    MostPopularDest = BB->getTerminator()->
1063                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1064
1065  // Ok, try to thread it!
1066  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1067}
1068
1069/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1070/// a PHI node in the current block.  See if there are any simplifications we
1071/// can do based on inputs to the phi node.
1072///
1073bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1074  BasicBlock *BB = PN->getParent();
1075
1076  // If any of the predecessor blocks end in an unconditional branch, we can
1077  // *duplicate* the conditional branch into that block in order to further
1078  // encourage jump threading and to eliminate cases where we have branch on a
1079  // phi of an icmp (branch on icmp is much better).
1080  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1081    BasicBlock *PredBB = PN->getIncomingBlock(i);
1082    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1083      if (PredBr->isUnconditional() &&
1084          // Try to duplicate BB into PredBB.
1085          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1086        return true;
1087  }
1088
1089  return false;
1090}
1091
1092/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1093/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1094/// NewPred using the entries from OldPred (suitably mapped).
1095static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1096                                            BasicBlock *OldPred,
1097                                            BasicBlock *NewPred,
1098                                     DenseMap<Instruction*, Value*> &ValueMap) {
1099  for (BasicBlock::iterator PNI = PHIBB->begin();
1100       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1101    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1102    // DestBlock.
1103    Value *IV = PN->getIncomingValueForBlock(OldPred);
1104
1105    // Remap the value if necessary.
1106    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1107      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1108      if (I != ValueMap.end())
1109        IV = I->second;
1110    }
1111
1112    PN->addIncoming(IV, NewPred);
1113  }
1114}
1115
1116/// ThreadEdge - We have decided that it is safe and profitable to factor the
1117/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1118/// across BB.  Transform the IR to reflect this change.
1119bool JumpThreading::ThreadEdge(BasicBlock *BB,
1120                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1121                               BasicBlock *SuccBB) {
1122  // If threading to the same block as we come from, we would infinite loop.
1123  if (SuccBB == BB) {
1124    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1125          << "' - would thread to self!\n");
1126    return false;
1127  }
1128
1129  // If threading this would thread across a loop header, don't thread the edge.
1130  // See the comments above FindLoopHeaders for justifications and caveats.
1131  if (LoopHeaders.count(BB)) {
1132    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1133          << "' to dest BB '" << SuccBB->getName()
1134          << "' - it might create an irreducible loop!\n");
1135    return false;
1136  }
1137
1138  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1139  if (JumpThreadCost > Threshold) {
1140    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1141          << "' - Cost is too high: " << JumpThreadCost << "\n");
1142    return false;
1143  }
1144
1145  // And finally, do it!  Start by factoring the predecessors is needed.
1146  BasicBlock *PredBB;
1147  if (PredBBs.size() == 1)
1148    PredBB = PredBBs[0];
1149  else {
1150    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1151          << " common predecessors.\n");
1152    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1153                                    ".thr_comm", this);
1154  }
1155
1156  // And finally, do it!
1157  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1158        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1159        << ", across block:\n    "
1160        << *BB << "\n");
1161
1162  // We are going to have to map operands from the original BB block to the new
1163  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1164  // account for entry from PredBB.
1165  DenseMap<Instruction*, Value*> ValueMapping;
1166
1167  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1168                                         BB->getName()+".thread",
1169                                         BB->getParent(), BB);
1170  NewBB->moveAfter(PredBB);
1171
1172  BasicBlock::iterator BI = BB->begin();
1173  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1174    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1175
1176  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1177  // mapping and using it to remap operands in the cloned instructions.
1178  for (; !isa<TerminatorInst>(BI); ++BI) {
1179    Instruction *New = BI->clone();
1180    New->setName(BI->getName());
1181    NewBB->getInstList().push_back(New);
1182    ValueMapping[BI] = New;
1183
1184    // Remap operands to patch up intra-block references.
1185    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1186      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1187        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1188        if (I != ValueMapping.end())
1189          New->setOperand(i, I->second);
1190      }
1191  }
1192
1193  // We didn't copy the terminator from BB over to NewBB, because there is now
1194  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1195  BranchInst::Create(SuccBB, NewBB);
1196
1197  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1198  // PHI nodes for NewBB now.
1199  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1200
1201  // If there were values defined in BB that are used outside the block, then we
1202  // now have to update all uses of the value to use either the original value,
1203  // the cloned value, or some PHI derived value.  This can require arbitrary
1204  // PHI insertion, of which we are prepared to do, clean these up now.
1205  SSAUpdater SSAUpdate;
1206  SmallVector<Use*, 16> UsesToRename;
1207  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1208    // Scan all uses of this instruction to see if it is used outside of its
1209    // block, and if so, record them in UsesToRename.
1210    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1211         ++UI) {
1212      Instruction *User = cast<Instruction>(*UI);
1213      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1214        if (UserPN->getIncomingBlock(UI) == BB)
1215          continue;
1216      } else if (User->getParent() == BB)
1217        continue;
1218
1219      UsesToRename.push_back(&UI.getUse());
1220    }
1221
1222    // If there are no uses outside the block, we're done with this instruction.
1223    if (UsesToRename.empty())
1224      continue;
1225
1226    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1227
1228    // We found a use of I outside of BB.  Rename all uses of I that are outside
1229    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1230    // with the two values we know.
1231    SSAUpdate.Initialize(I);
1232    SSAUpdate.AddAvailableValue(BB, I);
1233    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1234
1235    while (!UsesToRename.empty())
1236      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1237    DEBUG(dbgs() << "\n");
1238  }
1239
1240
1241  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1242  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1243  // us to simplify any PHI nodes in BB.
1244  TerminatorInst *PredTerm = PredBB->getTerminator();
1245  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1246    if (PredTerm->getSuccessor(i) == BB) {
1247      RemovePredecessorAndSimplify(BB, PredBB, TD);
1248      PredTerm->setSuccessor(i, NewBB);
1249    }
1250
1251  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1252  // over the new instructions and zap any that are constants or dead.  This
1253  // frequently happens because of phi translation.
1254  BI = NewBB->begin();
1255  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1256    Instruction *Inst = BI++;
1257
1258    if (Value *V = SimplifyInstruction(Inst, TD)) {
1259      WeakVH BIHandle(BI);
1260      ReplaceAndSimplifyAllUses(Inst, V, TD);
1261      if (BIHandle == 0)
1262        BI = NewBB->begin();
1263      continue;
1264    }
1265
1266    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1267  }
1268
1269  // Threaded an edge!
1270  ++NumThreads;
1271  return true;
1272}
1273
1274/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1275/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1276/// If we can duplicate the contents of BB up into PredBB do so now, this
1277/// improves the odds that the branch will be on an analyzable instruction like
1278/// a compare.
1279bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1280                                                     BasicBlock *PredBB) {
1281  // If BB is a loop header, then duplicating this block outside the loop would
1282  // cause us to transform this into an irreducible loop, don't do this.
1283  // See the comments above FindLoopHeaders for justifications and caveats.
1284  if (LoopHeaders.count(BB)) {
1285    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1286          << "' into predecessor block '" << PredBB->getName()
1287          << "' - it might create an irreducible loop!\n");
1288    return false;
1289  }
1290
1291  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1292  if (DuplicationCost > Threshold) {
1293    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1294          << "' - Cost is too high: " << DuplicationCost << "\n");
1295    return false;
1296  }
1297
1298  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1299  // of PredBB.
1300  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1301        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1302        << DuplicationCost << " block is:" << *BB << "\n");
1303
1304  // We are going to have to map operands from the original BB block into the
1305  // PredBB block.  Evaluate PHI nodes in BB.
1306  DenseMap<Instruction*, Value*> ValueMapping;
1307
1308  BasicBlock::iterator BI = BB->begin();
1309  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1310    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1311
1312  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1313
1314  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1315  // mapping and using it to remap operands in the cloned instructions.
1316  for (; BI != BB->end(); ++BI) {
1317    Instruction *New = BI->clone();
1318    New->setName(BI->getName());
1319    PredBB->getInstList().insert(OldPredBranch, New);
1320    ValueMapping[BI] = New;
1321
1322    // Remap operands to patch up intra-block references.
1323    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1324      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1325        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1326        if (I != ValueMapping.end())
1327          New->setOperand(i, I->second);
1328      }
1329  }
1330
1331  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1332  // add entries to the PHI nodes for branch from PredBB now.
1333  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1334  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1335                                  ValueMapping);
1336  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1337                                  ValueMapping);
1338
1339  // If there were values defined in BB that are used outside the block, then we
1340  // now have to update all uses of the value to use either the original value,
1341  // the cloned value, or some PHI derived value.  This can require arbitrary
1342  // PHI insertion, of which we are prepared to do, clean these up now.
1343  SSAUpdater SSAUpdate;
1344  SmallVector<Use*, 16> UsesToRename;
1345  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1346    // Scan all uses of this instruction to see if it is used outside of its
1347    // block, and if so, record them in UsesToRename.
1348    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1349         ++UI) {
1350      Instruction *User = cast<Instruction>(*UI);
1351      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1352        if (UserPN->getIncomingBlock(UI) == BB)
1353          continue;
1354      } else if (User->getParent() == BB)
1355        continue;
1356
1357      UsesToRename.push_back(&UI.getUse());
1358    }
1359
1360    // If there are no uses outside the block, we're done with this instruction.
1361    if (UsesToRename.empty())
1362      continue;
1363
1364    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1365
1366    // We found a use of I outside of BB.  Rename all uses of I that are outside
1367    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1368    // with the two values we know.
1369    SSAUpdate.Initialize(I);
1370    SSAUpdate.AddAvailableValue(BB, I);
1371    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1372
1373    while (!UsesToRename.empty())
1374      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1375    DEBUG(dbgs() << "\n");
1376  }
1377
1378  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1379  // that we nuked.
1380  RemovePredecessorAndSimplify(BB, PredBB, TD);
1381
1382  // Remove the unconditional branch at the end of the PredBB block.
1383  OldPredBranch->eraseFromParent();
1384
1385  ++NumDupes;
1386  return true;
1387}
1388
1389
1390