JumpThreading.cpp revision 9683f181746c2312c8828c79b6e25a07fb441d57
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Pass.h"
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/Transforms/Utils/BasicBlockUtils.h"
20#include "llvm/Transforms/Utils/Local.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/SmallSet.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ValueHandle.h"
31using namespace llvm;
32
33STATISTIC(NumThreads, "Number of jumps threaded");
34STATISTIC(NumFolds,   "Number of terminators folded");
35
36static cl::opt<unsigned>
37Threshold("jump-threading-threshold",
38          cl::desc("Max block size to duplicate for jump threading"),
39          cl::init(6), cl::Hidden);
40
41namespace {
42  /// This pass performs 'jump threading', which looks at blocks that have
43  /// multiple predecessors and multiple successors.  If one or more of the
44  /// predecessors of the block can be proven to always jump to one of the
45  /// successors, we forward the edge from the predecessor to the successor by
46  /// duplicating the contents of this block.
47  ///
48  /// An example of when this can occur is code like this:
49  ///
50  ///   if () { ...
51  ///     X = 4;
52  ///   }
53  ///   if (X < 3) {
54  ///
55  /// In this case, the unconditional branch at the end of the first if can be
56  /// revectored to the false side of the second if.
57  ///
58  class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
59    TargetData *TD;
60#ifdef NDEBUG
61    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
62#else
63    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
64#endif
65  public:
66    static char ID; // Pass identification
67    JumpThreading() : FunctionPass(&ID) {}
68
69    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70      AU.addRequired<TargetData>();
71    }
72
73    bool runOnFunction(Function &F);
74    void FindLoopHeaders(Function &F);
75
76    bool ProcessBlock(BasicBlock *BB);
77    bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB,
78                    unsigned JumpThreadCost);
79    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
80    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
81    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
82
83    bool ProcessJumpOnPHI(PHINode *PN);
84    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
85    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
86
87    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
88  };
89}
90
91char JumpThreading::ID = 0;
92static RegisterPass<JumpThreading>
93X("jump-threading", "Jump Threading");
94
95// Public interface to the Jump Threading pass
96FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
97
98/// runOnFunction - Top level algorithm.
99///
100bool JumpThreading::runOnFunction(Function &F) {
101  DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
102  TD = &getAnalysis<TargetData>();
103
104  FindLoopHeaders(F);
105
106  bool AnotherIteration = true, EverChanged = false;
107  while (AnotherIteration) {
108    AnotherIteration = false;
109    bool Changed = false;
110    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
111      BasicBlock *BB = I;
112      while (ProcessBlock(BB))
113        Changed = true;
114
115      ++I;
116
117      // If the block is trivially dead, zap it.  This eliminates the successor
118      // edges which simplifies the CFG.
119      if (pred_begin(BB) == pred_end(BB) &&
120          BB != &BB->getParent()->getEntryBlock()) {
121        DOUT << "  JT: Deleting dead block '" << BB->getNameStart()
122             << "' with terminator: " << *BB->getTerminator();
123        LoopHeaders.erase(BB);
124        DeleteDeadBlock(BB);
125        Changed = true;
126      }
127    }
128    AnotherIteration = Changed;
129    EverChanged |= Changed;
130  }
131
132  LoopHeaders.clear();
133  return EverChanged;
134}
135
136/// FindLoopHeaders - We do not want jump threading to turn proper loop
137/// structures into irreducible loops.  Doing this breaks up the loop nesting
138/// hierarchy and pessimizes later transformations.  To prevent this from
139/// happening, we first have to find the loop headers.  Here we approximate this
140/// by finding targets of backedges in the CFG.
141///
142/// Note that there definitely are cases when we want to allow threading of
143/// edges across a loop header.  For example, threading a jump from outside the
144/// loop (the preheader) to an exit block of the loop is definitely profitable.
145/// It is also almost always profitable to thread backedges from within the loop
146/// to exit blocks, and is often profitable to thread backedges to other blocks
147/// within the loop (forming a nested loop).  This simple analysis is not rich
148/// enough to track all of these properties and keep it up-to-date as the CFG
149/// mutates, so we don't allow any of these transformations.
150///
151void JumpThreading::FindLoopHeaders(Function &F) {
152  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
153  FindFunctionBackedges(F, Edges);
154
155  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
156    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
157}
158
159
160/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
161/// value for the PHI, factor them together so we get one block to thread for
162/// the whole group.
163/// This is important for things like "phi i1 [true, true, false, true, x]"
164/// where we only need to clone the block for the true blocks once.
165///
166BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
167  SmallVector<BasicBlock*, 16> CommonPreds;
168  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
169    if (PN->getIncomingValue(i) == Val)
170      CommonPreds.push_back(PN->getIncomingBlock(i));
171
172  if (CommonPreds.size() == 1)
173    return CommonPreds[0];
174
175  DOUT << "  Factoring out " << CommonPreds.size()
176       << " common predecessors.\n";
177  return SplitBlockPredecessors(PN->getParent(),
178                                &CommonPreds[0], CommonPreds.size(),
179                                ".thr_comm", this);
180}
181
182
183/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
184/// thread across it.
185static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
186  /// Ignore PHI nodes, these will be flattened when duplication happens.
187  BasicBlock::const_iterator I = BB->getFirstNonPHI();
188
189  // Sum up the cost of each instruction until we get to the terminator.  Don't
190  // include the terminator because the copy won't include it.
191  unsigned Size = 0;
192  for (; !isa<TerminatorInst>(I); ++I) {
193    // Debugger intrinsics don't incur code size.
194    if (isa<DbgInfoIntrinsic>(I)) continue;
195
196    // If this is a pointer->pointer bitcast, it is free.
197    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
198      continue;
199
200    // All other instructions count for at least one unit.
201    ++Size;
202
203    // Calls are more expensive.  If they are non-intrinsic calls, we model them
204    // as having cost of 4.  If they are a non-vector intrinsic, we model them
205    // as having cost of 2 total, and if they are a vector intrinsic, we model
206    // them as having cost 1.
207    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
208      if (!isa<IntrinsicInst>(CI))
209        Size += 3;
210      else if (isa<VectorType>(CI->getType()))
211        Size += 1;
212    }
213  }
214
215  // Threading through a switch statement is particularly profitable.  If this
216  // block ends in a switch, decrease its cost to make it more likely to happen.
217  if (isa<SwitchInst>(I))
218    Size = Size > 6 ? Size-6 : 0;
219
220  return Size;
221}
222
223/// ProcessBlock - If there are any predecessors whose control can be threaded
224/// through to a successor, transform them now.
225bool JumpThreading::ProcessBlock(BasicBlock *BB) {
226  // If this block has a single predecessor, and if that pred has a single
227  // successor, merge the blocks.  This encourages recursive jump threading
228  // because now the condition in this block can be threaded through
229  // predecessors of our predecessor block.
230  if (BasicBlock *SinglePred = BB->getSinglePredecessor())
231    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
232        SinglePred != BB) {
233      // If SinglePred was a loop header, BB becomes one.
234      if (LoopHeaders.erase(SinglePred))
235        LoopHeaders.insert(BB);
236
237      // Remember if SinglePred was the entry block of the function.  If so, we
238      // will need to move BB back to the entry position.
239      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
240      MergeBasicBlockIntoOnlyPred(BB);
241
242      if (isEntry && BB != &BB->getParent()->getEntryBlock())
243        BB->moveBefore(&BB->getParent()->getEntryBlock());
244      return true;
245    }
246
247  // See if this block ends with a branch or switch.  If so, see if the
248  // condition is a phi node.  If so, and if an entry of the phi node is a
249  // constant, we can thread the block.
250  Value *Condition;
251  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
252    // Can't thread an unconditional jump.
253    if (BI->isUnconditional()) return false;
254    Condition = BI->getCondition();
255  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
256    Condition = SI->getCondition();
257  else
258    return false; // Must be an invoke.
259
260  // If the terminator of this block is branching on a constant, simplify the
261  // terminator to an unconditional branch.  This can occur due to threading in
262  // other blocks.
263  if (isa<ConstantInt>(Condition)) {
264    DOUT << "  In block '" << BB->getNameStart()
265         << "' folding terminator: " << *BB->getTerminator();
266    ++NumFolds;
267    ConstantFoldTerminator(BB);
268    return true;
269  }
270
271  // If the terminator is branching on an undef, we can pick any of the
272  // successors to branch to.  Since this is arbitrary, we pick the successor
273  // with the fewest predecessors.  This should reduce the in-degree of the
274  // others.
275  if (isa<UndefValue>(Condition)) {
276    TerminatorInst *BBTerm = BB->getTerminator();
277    unsigned MinSucc = 0;
278    BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
279    // Compute the successor with the minimum number of predecessors.
280    unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
281    for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
282      TestBB = BBTerm->getSuccessor(i);
283      unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
284      if (NumPreds < MinNumPreds)
285        MinSucc = i;
286    }
287
288    // Fold the branch/switch.
289    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
290      if (i == MinSucc) continue;
291      BBTerm->getSuccessor(i)->removePredecessor(BB);
292    }
293
294    DOUT << "  In block '" << BB->getNameStart()
295         << "' folding undef terminator: " << *BBTerm;
296    BranchInst::Create(BBTerm->getSuccessor(MinSucc), BBTerm);
297    BBTerm->eraseFromParent();
298    return true;
299  }
300
301  Instruction *CondInst = dyn_cast<Instruction>(Condition);
302
303  // If the condition is an instruction defined in another block, see if a
304  // predecessor has the same condition:
305  //     br COND, BBX, BBY
306  //  BBX:
307  //     br COND, BBZ, BBW
308  if (!Condition->hasOneUse() && // Multiple uses.
309      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
310    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
311    if (isa<BranchInst>(BB->getTerminator())) {
312      for (; PI != E; ++PI)
313        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
314          if (PBI->isConditional() && PBI->getCondition() == Condition &&
315              ProcessBranchOnDuplicateCond(*PI, BB))
316            return true;
317    } else {
318      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
319      for (; PI != E; ++PI)
320        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
321          if (PSI->getCondition() == Condition &&
322              ProcessSwitchOnDuplicateCond(*PI, BB))
323            return true;
324    }
325  }
326
327  // If there is only a single predecessor of this block, nothing to fold.
328  if (BB->getSinglePredecessor())
329    return false;
330
331  // All the rest of our checks depend on the condition being an instruction.
332  if (CondInst == 0)
333    return false;
334
335  // See if this is a phi node in the current block.
336  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
337    if (PN->getParent() == BB)
338      return ProcessJumpOnPHI(PN);
339
340  // If this is a conditional branch whose condition is and/or of a phi, try to
341  // simplify it.
342  if ((CondInst->getOpcode() == Instruction::And ||
343       CondInst->getOpcode() == Instruction::Or) &&
344      isa<BranchInst>(BB->getTerminator()) &&
345      ProcessBranchOnLogical(CondInst, BB,
346                             CondInst->getOpcode() == Instruction::And))
347    return true;
348
349  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
350    if (isa<PHINode>(CondCmp->getOperand(0))) {
351      // If we have "br (phi != 42)" and the phi node has any constant values
352      // as operands, we can thread through this block.
353      //
354      // If we have "br (cmp phi, x)" and the phi node contains x such that the
355      // comparison uniquely identifies the branch target, we can thread
356      // through this block.
357
358      if (ProcessBranchOnCompare(CondCmp, BB))
359        return true;
360    }
361  }
362
363  // Check for some cases that are worth simplifying.  Right now we want to look
364  // for loads that are used by a switch or by the condition for the branch.  If
365  // we see one, check to see if it's partially redundant.  If so, insert a PHI
366  // which can then be used to thread the values.
367  //
368  // This is particularly important because reg2mem inserts loads and stores all
369  // over the place, and this blocks jump threading if we don't zap them.
370  Value *SimplifyValue = CondInst;
371  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
372    if (isa<Constant>(CondCmp->getOperand(1)))
373      SimplifyValue = CondCmp->getOperand(0);
374
375  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
376    if (SimplifyPartiallyRedundantLoad(LI))
377      return true;
378
379  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
380  // "(X == 4)" thread through this block.
381
382  return false;
383}
384
385/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
386/// block that jump on exactly the same condition.  This means that we almost
387/// always know the direction of the edge in the DESTBB:
388///  PREDBB:
389///     br COND, DESTBB, BBY
390///  DESTBB:
391///     br COND, BBZ, BBW
392///
393/// If DESTBB has multiple predecessors, we can't just constant fold the branch
394/// in DESTBB, we have to thread over it.
395bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
396                                                 BasicBlock *BB) {
397  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
398
399  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
400  // fold the branch to an unconditional one, which allows other recursive
401  // simplifications.
402  bool BranchDir;
403  if (PredBI->getSuccessor(1) != BB)
404    BranchDir = true;
405  else if (PredBI->getSuccessor(0) != BB)
406    BranchDir = false;
407  else {
408    DOUT << "  In block '" << PredBB->getNameStart()
409         << "' folding terminator: " << *PredBB->getTerminator();
410    ++NumFolds;
411    ConstantFoldTerminator(PredBB);
412    return true;
413  }
414
415  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
416
417  // If the dest block has one predecessor, just fix the branch condition to a
418  // constant and fold it.
419  if (BB->getSinglePredecessor()) {
420    DOUT << "  In block '" << BB->getNameStart()
421         << "' folding condition to '" << BranchDir << "': "
422         << *BB->getTerminator();
423    ++NumFolds;
424    DestBI->setCondition(ConstantInt::get(Type::Int1Ty, BranchDir));
425    ConstantFoldTerminator(BB);
426    return true;
427  }
428
429  // Otherwise we need to thread from PredBB to DestBB's successor which
430  // involves code duplication.  Check to see if it is worth it.
431  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
432  if (JumpThreadCost > Threshold) {
433    DOUT << "  Not threading BB '" << BB->getNameStart()
434         << "' - Cost is too high: " << JumpThreadCost << "\n";
435    return false;
436  }
437
438  // Next, figure out which successor we are threading to.
439  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
440
441  // Ok, try to thread it!
442  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
443}
444
445/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
446/// block that switch on exactly the same condition.  This means that we almost
447/// always know the direction of the edge in the DESTBB:
448///  PREDBB:
449///     switch COND [... DESTBB, BBY ... ]
450///  DESTBB:
451///     switch COND [... BBZ, BBW ]
452///
453/// Optimizing switches like this is very important, because simplifycfg builds
454/// switches out of repeated 'if' conditions.
455bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
456                                                 BasicBlock *DestBB) {
457  // Can't thread edge to self.
458  if (PredBB == DestBB)
459    return false;
460
461
462  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
463  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
464
465  // There are a variety of optimizations that we can potentially do on these
466  // blocks: we order them from most to least preferable.
467
468  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
469  // directly to their destination.  This does not introduce *any* code size
470  // growth.  Skip debug info first.
471  BasicBlock::iterator BBI = DestBB->begin();
472  while (isa<DbgInfoIntrinsic>(BBI))
473    BBI++;
474
475  // FIXME: Thread if it just contains a PHI.
476  if (isa<SwitchInst>(BBI)) {
477    bool MadeChange = false;
478    // Ignore the default edge for now.
479    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
480      ConstantInt *DestVal = DestSI->getCaseValue(i);
481      BasicBlock *DestSucc = DestSI->getSuccessor(i);
482
483      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
484      // PredSI has an explicit case for it.  If so, forward.  If it is covered
485      // by the default case, we can't update PredSI.
486      unsigned PredCase = PredSI->findCaseValue(DestVal);
487      if (PredCase == 0) continue;
488
489      // If PredSI doesn't go to DestBB on this value, then it won't reach the
490      // case on this condition.
491      if (PredSI->getSuccessor(PredCase) != DestBB &&
492          DestSI->getSuccessor(i) != DestBB)
493        continue;
494
495      // Otherwise, we're safe to make the change.  Make sure that the edge from
496      // DestSI to DestSucc is not critical and has no PHI nodes.
497      DOUT << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI;
498      DOUT << "THROUGH: " << *DestSI;
499
500      // If the destination has PHI nodes, just split the edge for updating
501      // simplicity.
502      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
503        SplitCriticalEdge(DestSI, i, this);
504        DestSucc = DestSI->getSuccessor(i);
505      }
506      FoldSingleEntryPHINodes(DestSucc);
507      PredSI->setSuccessor(PredCase, DestSucc);
508      MadeChange = true;
509    }
510
511    if (MadeChange)
512      return true;
513  }
514
515  return false;
516}
517
518
519/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
520/// load instruction, eliminate it by replacing it with a PHI node.  This is an
521/// important optimization that encourages jump threading, and needs to be run
522/// interlaced with other jump threading tasks.
523bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
524  // Don't hack volatile loads.
525  if (LI->isVolatile()) return false;
526
527  // If the load is defined in a block with exactly one predecessor, it can't be
528  // partially redundant.
529  BasicBlock *LoadBB = LI->getParent();
530  if (LoadBB->getSinglePredecessor())
531    return false;
532
533  Value *LoadedPtr = LI->getOperand(0);
534
535  // If the loaded operand is defined in the LoadBB, it can't be available.
536  // FIXME: Could do PHI translation, that would be fun :)
537  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
538    if (PtrOp->getParent() == LoadBB)
539      return false;
540
541  // Scan a few instructions up from the load, to see if it is obviously live at
542  // the entry to its block.
543  BasicBlock::iterator BBIt = LI;
544
545  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
546                                                     BBIt, 6)) {
547    // If the value if the load is locally available within the block, just use
548    // it.  This frequently occurs for reg2mem'd allocas.
549    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
550
551    // If the returned value is the load itself, replace with an undef. This can
552    // only happen in dead loops.
553    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
554    LI->replaceAllUsesWith(AvailableVal);
555    LI->eraseFromParent();
556    return true;
557  }
558
559  // Otherwise, if we scanned the whole block and got to the top of the block,
560  // we know the block is locally transparent to the load.  If not, something
561  // might clobber its value.
562  if (BBIt != LoadBB->begin())
563    return false;
564
565
566  SmallPtrSet<BasicBlock*, 8> PredsScanned;
567  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
568  AvailablePredsTy AvailablePreds;
569  BasicBlock *OneUnavailablePred = 0;
570
571  // If we got here, the loaded value is transparent through to the start of the
572  // block.  Check to see if it is available in any of the predecessor blocks.
573  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
574       PI != PE; ++PI) {
575    BasicBlock *PredBB = *PI;
576
577    // If we already scanned this predecessor, skip it.
578    if (!PredsScanned.insert(PredBB))
579      continue;
580
581    // Scan the predecessor to see if the value is available in the pred.
582    BBIt = PredBB->end();
583    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
584    if (!PredAvailable) {
585      OneUnavailablePred = PredBB;
586      continue;
587    }
588
589    // If so, this load is partially redundant.  Remember this info so that we
590    // can create a PHI node.
591    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
592  }
593
594  // If the loaded value isn't available in any predecessor, it isn't partially
595  // redundant.
596  if (AvailablePreds.empty()) return false;
597
598  // Okay, the loaded value is available in at least one (and maybe all!)
599  // predecessors.  If the value is unavailable in more than one unique
600  // predecessor, we want to insert a merge block for those common predecessors.
601  // This ensures that we only have to insert one reload, thus not increasing
602  // code size.
603  BasicBlock *UnavailablePred = 0;
604
605  // If there is exactly one predecessor where the value is unavailable, the
606  // already computed 'OneUnavailablePred' block is it.  If it ends in an
607  // unconditional branch, we know that it isn't a critical edge.
608  if (PredsScanned.size() == AvailablePreds.size()+1 &&
609      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
610    UnavailablePred = OneUnavailablePred;
611  } else if (PredsScanned.size() != AvailablePreds.size()) {
612    // Otherwise, we had multiple unavailable predecessors or we had a critical
613    // edge from the one.
614    SmallVector<BasicBlock*, 8> PredsToSplit;
615    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
616
617    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
618      AvailablePredSet.insert(AvailablePreds[i].first);
619
620    // Add all the unavailable predecessors to the PredsToSplit list.
621    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
622         PI != PE; ++PI)
623      if (!AvailablePredSet.count(*PI))
624        PredsToSplit.push_back(*PI);
625
626    // Split them out to their own block.
627    UnavailablePred =
628      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
629                             "thread-split", this);
630  }
631
632  // If the value isn't available in all predecessors, then there will be
633  // exactly one where it isn't available.  Insert a load on that edge and add
634  // it to the AvailablePreds list.
635  if (UnavailablePred) {
636    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
637           "Can't handle critical edge here!");
638    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
639                                 UnavailablePred->getTerminator());
640    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
641  }
642
643  // Now we know that each predecessor of this block has a value in
644  // AvailablePreds, sort them for efficient access as we're walking the preds.
645  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
646
647  // Create a PHI node at the start of the block for the PRE'd load value.
648  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
649  PN->takeName(LI);
650
651  // Insert new entries into the PHI for each predecessor.  A single block may
652  // have multiple entries here.
653  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
654       ++PI) {
655    AvailablePredsTy::iterator I =
656      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
657                       std::make_pair(*PI, (Value*)0));
658
659    assert(I != AvailablePreds.end() && I->first == *PI &&
660           "Didn't find entry for predecessor!");
661
662    PN->addIncoming(I->second, I->first);
663  }
664
665  //cerr << "PRE: " << *LI << *PN << "\n";
666
667  LI->replaceAllUsesWith(PN);
668  LI->eraseFromParent();
669
670  return true;
671}
672
673
674/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
675/// the current block.  See if there are any simplifications we can do based on
676/// inputs to the phi node.
677///
678bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
679  // See if the phi node has any constant values.  If so, we can determine where
680  // the corresponding predecessor will branch.
681  ConstantInt *PredCst = 0;
682  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
683    if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
684      break;
685
686  // If no incoming value has a constant, we don't know the destination of any
687  // predecessors.
688  if (PredCst == 0)
689    return false;
690
691  // See if the cost of duplicating this block is low enough.
692  BasicBlock *BB = PN->getParent();
693  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
694  if (JumpThreadCost > Threshold) {
695    DOUT << "  Not threading BB '" << BB->getNameStart()
696         << "' - Cost is too high: " << JumpThreadCost << "\n";
697    return false;
698  }
699
700  // If so, we can actually do this threading.  Merge any common predecessors
701  // that will act the same.
702  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
703
704  // Next, figure out which successor we are threading to.
705  BasicBlock *SuccBB;
706  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
707    SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
708  else {
709    SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
710    SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
711  }
712
713  // Ok, try to thread it!
714  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
715}
716
717/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
718/// whose condition is an AND/OR where one side is PN.  If PN has constant
719/// operands that permit us to evaluate the condition for some operand, thread
720/// through the block.  For example with:
721///   br (and X, phi(Y, Z, false))
722/// the predecessor corresponding to the 'false' will always jump to the false
723/// destination of the branch.
724///
725bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
726                                           bool isAnd) {
727  // If this is a binary operator tree of the same AND/OR opcode, check the
728  // LHS/RHS.
729  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
730    if ((isAnd && BO->getOpcode() == Instruction::And) ||
731        (!isAnd && BO->getOpcode() == Instruction::Or)) {
732      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
733        return true;
734      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
735        return true;
736    }
737
738  // If this isn't a PHI node, we can't handle it.
739  PHINode *PN = dyn_cast<PHINode>(V);
740  if (!PN || PN->getParent() != BB) return false;
741
742  // We can only do the simplification for phi nodes of 'false' with AND or
743  // 'true' with OR.  See if we have any entries in the phi for this.
744  unsigned PredNo = ~0U;
745  ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
746  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
747    if (PN->getIncomingValue(i) == PredCst) {
748      PredNo = i;
749      break;
750    }
751  }
752
753  // If no match, bail out.
754  if (PredNo == ~0U)
755    return false;
756
757  // See if the cost of duplicating this block is low enough.
758  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
759  if (JumpThreadCost > Threshold) {
760    DOUT << "  Not threading BB '" << BB->getNameStart()
761         << "' - Cost is too high: " << JumpThreadCost << "\n";
762    return false;
763  }
764
765  // If so, we can actually do this threading.  Merge any common predecessors
766  // that will act the same.
767  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
768
769  // Next, figure out which successor we are threading to.  If this was an AND,
770  // the constant must be FALSE, and we must be targeting the 'false' block.
771  // If this is an OR, the constant must be TRUE, and we must be targeting the
772  // 'true' block.
773  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
774
775  // Ok, try to thread it!
776  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
777}
778
779/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
780/// hand sides of the compare instruction, try to determine the result. If the
781/// result can not be determined, a null pointer is returned.
782static Constant *GetResultOfComparison(CmpInst::Predicate pred,
783                                       Value *LHS, Value *RHS) {
784  if (Constant *CLHS = dyn_cast<Constant>(LHS))
785    if (Constant *CRHS = dyn_cast<Constant>(RHS))
786      return ConstantExpr::getCompare(pred, CLHS, CRHS);
787
788  if (LHS == RHS)
789    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
790      return ICmpInst::isTrueWhenEqual(pred) ?
791                 ConstantInt::getTrue() : ConstantInt::getFalse();
792
793  return 0;
794}
795
796/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
797/// node and a value.  If we can identify when the comparison is true between
798/// the phi inputs and the value, we can fold the compare for that edge and
799/// thread through it.
800bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
801  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
802  Value *RHS = Cmp->getOperand(1);
803
804  // If the phi isn't in the current block, an incoming edge to this block
805  // doesn't control the destination.
806  if (PN->getParent() != BB)
807    return false;
808
809  // We can do this simplification if any comparisons fold to true or false.
810  // See if any do.
811  Value *PredVal = 0;
812  bool TrueDirection = false;
813  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
814    PredVal = PN->getIncomingValue(i);
815
816    Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal, RHS);
817    if (!Res) {
818      PredVal = 0;
819      continue;
820    }
821
822    // If this folded to a constant expr, we can't do anything.
823    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
824      TrueDirection = ResC->getZExtValue();
825      break;
826    }
827    // If this folded to undef, just go the false way.
828    if (isa<UndefValue>(Res)) {
829      TrueDirection = false;
830      break;
831    }
832
833    // Otherwise, we can't fold this input.
834    PredVal = 0;
835  }
836
837  // If no match, bail out.
838  if (PredVal == 0)
839    return false;
840
841  // See if the cost of duplicating this block is low enough.
842  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
843  if (JumpThreadCost > Threshold) {
844    DOUT << "  Not threading BB '" << BB->getNameStart()
845         << "' - Cost is too high: " << JumpThreadCost << "\n";
846    return false;
847  }
848
849  // If so, we can actually do this threading.  Merge any common predecessors
850  // that will act the same.
851  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
852
853  // Next, get our successor.
854  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
855
856  // Ok, try to thread it!
857  return ThreadEdge(BB, PredBB, SuccBB, JumpThreadCost);
858}
859
860
861/// ThreadEdge - We have decided that it is safe and profitable to thread an
862/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
863/// change.
864bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
865                               BasicBlock *SuccBB, unsigned JumpThreadCost) {
866
867  // If threading to the same block as we come from, we would infinite loop.
868  if (SuccBB == BB) {
869    DOUT << "  Not threading across BB '" << BB->getNameStart()
870         << "' - would thread to self!\n";
871    return false;
872  }
873
874  // If threading this would thread across a loop header, don't thread the edge.
875  // See the comments above FindLoopHeaders for justifications and caveats.
876  if (LoopHeaders.count(BB)) {
877    DOUT << "  Not threading from '" << PredBB->getNameStart()
878         << "' across loop header BB '" << BB->getNameStart()
879         << "' to dest BB '" << SuccBB->getNameStart()
880         << "' - it might create an irreducible loop!\n";
881    return false;
882  }
883
884  // And finally, do it!
885  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
886       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
887       << ", across block:\n    "
888       << *BB << "\n";
889
890  // Jump Threading can not update SSA properties correctly if the values
891  // defined in the duplicated block are used outside of the block itself.  For
892  // this reason, we spill all values that are used outside of BB to the stack.
893  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
894    if (!I->isUsedOutsideOfBlock(BB))
895      continue;
896
897    // We found a use of I outside of BB.  Create a new stack slot to
898    // break this inter-block usage pattern.
899    DemoteRegToStack(*I);
900  }
901
902  // We are going to have to map operands from the original BB block to the new
903  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
904  // account for entry from PredBB.
905  DenseMap<Instruction*, Value*> ValueMapping;
906
907  BasicBlock *NewBB =
908    BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
909  NewBB->moveAfter(PredBB);
910
911  BasicBlock::iterator BI = BB->begin();
912  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
913    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
914
915  // Clone the non-phi instructions of BB into NewBB, keeping track of the
916  // mapping and using it to remap operands in the cloned instructions.
917  for (; !isa<TerminatorInst>(BI); ++BI) {
918    Instruction *New = BI->clone();
919    New->setName(BI->getNameStart());
920    NewBB->getInstList().push_back(New);
921    ValueMapping[BI] = New;
922
923    // Remap operands to patch up intra-block references.
924    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
925      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
926        if (Value *Remapped = ValueMapping[Inst])
927          New->setOperand(i, Remapped);
928  }
929
930  // We didn't copy the terminator from BB over to NewBB, because there is now
931  // an unconditional jump to SuccBB.  Insert the unconditional jump.
932  BranchInst::Create(SuccBB, NewBB);
933
934  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
935  // PHI nodes for NewBB now.
936  for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
937    PHINode *PN = cast<PHINode>(PNI);
938    // Ok, we have a PHI node.  Figure out what the incoming value was for the
939    // DestBlock.
940    Value *IV = PN->getIncomingValueForBlock(BB);
941
942    // Remap the value if necessary.
943    if (Instruction *Inst = dyn_cast<Instruction>(IV))
944      if (Value *MappedIV = ValueMapping[Inst])
945        IV = MappedIV;
946    PN->addIncoming(IV, NewBB);
947  }
948
949  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
950  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
951  // us to simplify any PHI nodes in BB.
952  TerminatorInst *PredTerm = PredBB->getTerminator();
953  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
954    if (PredTerm->getSuccessor(i) == BB) {
955      BB->removePredecessor(PredBB);
956      PredTerm->setSuccessor(i, NewBB);
957    }
958
959  // At this point, the IR is fully up to date and consistent.  Do a quick scan
960  // over the new instructions and zap any that are constants or dead.  This
961  // frequently happens because of phi translation.
962  BI = NewBB->begin();
963  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
964    Instruction *Inst = BI++;
965    if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
966      Inst->replaceAllUsesWith(C);
967      Inst->eraseFromParent();
968      continue;
969    }
970
971    RecursivelyDeleteTriviallyDeadInstructions(Inst);
972  }
973
974  // Threaded an edge!
975  ++NumThreads;
976  return true;
977}
978