JumpThreading.cpp revision a5ddb59a1319ccd23844c74809a64bc4d88f59d1
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/Pass.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Support/CommandLine.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25using namespace llvm;
26
27STATISTIC(NumThreads, "Number of jumps threaded");
28STATISTIC(NumFolds,   "Number of terminators folded");
29
30static cl::opt<unsigned>
31Threshold("jump-threading-threshold",
32          cl::desc("Max block size to duplicate for jump threading"),
33          cl::init(6), cl::Hidden);
34
35namespace {
36  /// This pass performs 'jump threading', which looks at blocks that have
37  /// multiple predecessors and multiple successors.  If one or more of the
38  /// predecessors of the block can be proven to always jump to one of the
39  /// successors, we forward the edge from the predecessor to the successor by
40  /// duplicating the contents of this block.
41  ///
42  /// An example of when this can occur is code like this:
43  ///
44  ///   if () { ...
45  ///     X = 4;
46  ///   }
47  ///   if (X < 3) {
48  ///
49  /// In this case, the unconditional branch at the end of the first if can be
50  /// revectored to the false side of the second if.
51  ///
52  class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
53  public:
54    static char ID; // Pass identification
55    JumpThreading() : FunctionPass((intptr_t)&ID) {}
56
57    bool runOnFunction(Function &F);
58    bool ThreadBlock(BasicBlock *BB);
59    void ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
60    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Constant *CstVal);
61
62    bool ProcessJumpOnPHI(PHINode *PN);
63    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
64    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
65  };
66  char JumpThreading::ID = 0;
67  RegisterPass<JumpThreading> X("jump-threading", "Jump Threading");
68}
69
70// Public interface to the Jump Threading pass
71FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
72
73/// runOnFunction - Top level algorithm.
74///
75bool JumpThreading::runOnFunction(Function &F) {
76  DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
77
78  bool AnotherIteration = true, EverChanged = false;
79  while (AnotherIteration) {
80    AnotherIteration = false;
81    bool Changed = false;
82    for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
83      while (ThreadBlock(I))
84        Changed = true;
85    AnotherIteration = Changed;
86    EverChanged |= Changed;
87  }
88  return EverChanged;
89}
90
91/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
92/// value for the PHI, factor them together so we get one block to thread for
93/// the whole group.
94/// This is important for things like "phi i1 [true, true, false, true, x]"
95/// where we only need to clone the block for the true blocks once.
96///
97BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Constant *CstVal) {
98  SmallVector<BasicBlock*, 16> CommonPreds;
99  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
100    if (PN->getIncomingValue(i) == CstVal)
101      CommonPreds.push_back(PN->getIncomingBlock(i));
102
103  if (CommonPreds.size() == 1)
104    return CommonPreds[0];
105
106  DOUT << "  Factoring out " << CommonPreds.size()
107       << " common predecessors.\n";
108  return SplitBlockPredecessors(PN->getParent(),
109                                &CommonPreds[0], CommonPreds.size(),
110                                ".thr_comm", this);
111}
112
113
114/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
115/// thread across it.
116static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
117  BasicBlock::const_iterator I = BB->begin();
118  /// Ignore PHI nodes, these will be flattened when duplication happens.
119  while (isa<PHINode>(*I)) ++I;
120
121  // Sum up the cost of each instruction until we get to the terminator.  Don't
122  // include the terminator because the copy won't include it.
123  unsigned Size = 0;
124  for (; !isa<TerminatorInst>(I); ++I) {
125    // Debugger intrinsics don't incur code size.
126    if (isa<DbgInfoIntrinsic>(I)) continue;
127
128    // If this is a pointer->pointer bitcast, it is free.
129    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
130      continue;
131
132    // All other instructions count for at least one unit.
133    ++Size;
134
135    // Calls are more expensive.  If they are non-intrinsic calls, we model them
136    // as having cost of 4.  If they are a non-vector intrinsic, we model them
137    // as having cost of 2 total, and if they are a vector intrinsic, we model
138    // them as having cost 1.
139    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
140      if (!isa<IntrinsicInst>(CI))
141        Size += 3;
142      else if (isa<VectorType>(CI->getType()))
143        Size += 1;
144    }
145  }
146
147  // Threading through a switch statement is particularly profitable.  If this
148  // block ends in a switch, decrease its cost to make it more likely to happen.
149  if (isa<SwitchInst>(I))
150    Size = Size > 6 ? Size-6 : 0;
151
152  return Size;
153}
154
155
156/// ThreadBlock - If there are any predecessors whose control can be threaded
157/// through to a successor, transform them now.
158bool JumpThreading::ThreadBlock(BasicBlock *BB) {
159  // See if this block ends with a branch of switch.  If so, see if the
160  // condition is a phi node.  If so, and if an entry of the phi node is a
161  // constant, we can thread the block.
162  Value *Condition;
163  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
164    // Can't thread an unconditional jump.
165    if (BI->isUnconditional()) return false;
166    Condition = BI->getCondition();
167  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
168    Condition = SI->getCondition();
169  else
170    return false; // Must be an invoke.
171
172  // If the terminator of this block is branching on a constant, simplify the
173  // terminator to an unconditional branch.  This can occur due to threading in
174  // other blocks.
175  if (isa<ConstantInt>(Condition)) {
176    DOUT << "  In block '" << BB->getNameStart()
177         << "' folding terminator: " << *BB->getTerminator();
178    ++NumFolds;
179    ConstantFoldTerminator(BB);
180    return true;
181  }
182
183  // If there is only a single predecessor of this block, nothing to fold.
184  if (BB->getSinglePredecessor())
185    return false;
186
187  // See if this is a phi node in the current block.
188  PHINode *PN = dyn_cast<PHINode>(Condition);
189  if (PN && PN->getParent() == BB)
190    return ProcessJumpOnPHI(PN);
191
192  // If this is a conditional branch whose condition is and/or of a phi, try to
193  // simplify it.
194  if (BinaryOperator *CondI = dyn_cast<BinaryOperator>(Condition)) {
195    if ((CondI->getOpcode() == Instruction::And ||
196         CondI->getOpcode() == Instruction::Or) &&
197        isa<BranchInst>(BB->getTerminator()) &&
198        ProcessBranchOnLogical(CondI, BB,
199                               CondI->getOpcode() == Instruction::And))
200      return true;
201  }
202
203  // If we have "br (phi != 42)" and the phi node has any constant values as
204  // operands, we can thread through this block.
205  if (CmpInst *CondCmp = dyn_cast<CmpInst>(Condition))
206    if (isa<PHINode>(CondCmp->getOperand(0)) &&
207        isa<Constant>(CondCmp->getOperand(1)) &&
208        ProcessBranchOnCompare(CondCmp, BB))
209      return true;
210
211  return false;
212}
213
214/// ProcessJumpOnPHI - We have a conditional branch of switch on a PHI node in
215/// the current block.  See if there are any simplifications we can do based on
216/// inputs to the phi node.
217///
218bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
219  // See if the phi node has any constant values.  If so, we can determine where
220  // the corresponding predecessor will branch.
221  ConstantInt *PredCst = 0;
222  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
223    if ((PredCst = dyn_cast<ConstantInt>(PN->getIncomingValue(i))))
224      break;
225
226  // If no incoming value has a constant, we don't know the destination of any
227  // predecessors.
228  if (PredCst == 0)
229    return false;
230
231  // See if the cost of duplicating this block is low enough.
232  BasicBlock *BB = PN->getParent();
233  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
234  if (JumpThreadCost > Threshold) {
235    DOUT << "  Not threading BB '" << BB->getNameStart()
236         << "' - Cost is too high: " << JumpThreadCost << "\n";
237    return false;
238  }
239
240  // If so, we can actually do this threading.  Merge any common predecessors
241  // that will act the same.
242  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
243
244  // Next, figure out which successor we are threading to.
245  BasicBlock *SuccBB;
246  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
247    SuccBB = BI->getSuccessor(PredCst == ConstantInt::getFalse());
248  else {
249    SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
250    SuccBB = SI->getSuccessor(SI->findCaseValue(PredCst));
251  }
252
253  // And finally, do it!
254  DOUT << "  Threading edge from '" << PredBB->getNameStart() << "' to '"
255       << SuccBB->getNameStart() << "' with cost: " << JumpThreadCost
256       << ", across block:\n    "
257       << *BB << "\n";
258
259  ThreadEdge(BB, PredBB, SuccBB);
260  ++NumThreads;
261  return true;
262}
263
264/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
265/// whose condition is an AND/OR where one side is PN.  If PN has constant
266/// operands that permit us to evaluate the condition for some operand, thread
267/// through the block.  For example with:
268///   br (and X, phi(Y, Z, false))
269/// the predecessor corresponding to the 'false' will always jump to the false
270/// destination of the branch.
271///
272bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
273                                           bool isAnd) {
274  // If this is a binary operator tree of the same AND/OR opcode, check the
275  // LHS/RHS.
276  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
277    if (isAnd && BO->getOpcode() == Instruction::And ||
278        !isAnd && BO->getOpcode() == Instruction::Or) {
279      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
280        return true;
281      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
282        return true;
283    }
284
285  // If this isn't a PHI node, we can't handle it.
286  PHINode *PN = dyn_cast<PHINode>(V);
287  if (!PN || PN->getParent() != BB) return false;
288
289  // We can only do the simplification for phi nodes of 'false' with AND or
290  // 'true' with OR.  See if we have any entries in the phi for this.
291  unsigned PredNo = ~0U;
292  ConstantInt *PredCst = ConstantInt::get(Type::Int1Ty, !isAnd);
293  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
294    if (PN->getIncomingValue(i) == PredCst) {
295      PredNo = i;
296      break;
297    }
298  }
299
300  // If no match, bail out.
301  if (PredNo == ~0U)
302    return false;
303
304  // See if the cost of duplicating this block is low enough.
305  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
306  if (JumpThreadCost > Threshold) {
307    DOUT << "  Not threading BB '" << BB->getNameStart()
308         << "' - Cost is too high: " << JumpThreadCost << "\n";
309    return false;
310  }
311
312  // If so, we can actually do this threading.  Merge any common predecessors
313  // that will act the same.
314  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
315
316  // Next, figure out which successor we are threading to.  If this was an AND,
317  // the constant must be FALSE, and we must be targeting the 'false' block.
318  // If this is an OR, the constant must be TRUE, and we must be targeting the
319  // 'true' block.
320  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
321
322  // And finally, do it!
323  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
324       << "' to '" << SuccBB->getNameStart() << "' with cost: "
325       << JumpThreadCost << ", across block:\n    "
326       << *BB << "\n";
327
328  ThreadEdge(BB, PredBB, SuccBB);
329  ++NumThreads;
330  return true;
331}
332
333/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
334/// node and a constant.  If the PHI node contains any constants as inputs, we
335/// can fold the compare for that edge and thread through it.
336bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
337  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
338  Constant *RHS = cast<Constant>(Cmp->getOperand(1));
339
340  // If the phi isn't in the current block, an incoming edge to this block
341  // doesn't control the destination.
342  if (PN->getParent() != BB)
343    return false;
344
345  // We can do this simplification if any comparisons fold to true or false.
346  // See if any do.
347  Constant *PredCst = 0;
348  bool TrueDirection = false;
349  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
350    PredCst = dyn_cast<Constant>(PN->getIncomingValue(i));
351    if (PredCst == 0) continue;
352
353    Constant *Res;
354    if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cmp))
355      Res = ConstantExpr::getICmp(ICI->getPredicate(), PredCst, RHS);
356    else
357      Res = ConstantExpr::getFCmp(cast<FCmpInst>(Cmp)->getPredicate(),
358                                  PredCst, RHS);
359    // If this folded to a constant expr, we can't do anything.
360    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
361      TrueDirection = ResC->getZExtValue();
362      break;
363    }
364    // If this folded to undef, just go the false way.
365    if (isa<UndefValue>(Res)) {
366      TrueDirection = false;
367      break;
368    }
369
370    // Otherwise, we can't fold this input.
371    PredCst = 0;
372  }
373
374  // If no match, bail out.
375  if (PredCst == 0)
376    return false;
377
378  // See if the cost of duplicating this block is low enough.
379  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
380  if (JumpThreadCost > Threshold) {
381    DOUT << "  Not threading BB '" << BB->getNameStart()
382         << "' - Cost is too high: " << JumpThreadCost << "\n";
383    return false;
384  }
385
386  // If so, we can actually do this threading.  Merge any common predecessors
387  // that will act the same.
388  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
389
390  // Next, get our successor.
391  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
392
393  // And finally, do it!
394  DOUT << "  Threading edge through bool from '" << PredBB->getNameStart()
395       << "' to '" << SuccBB->getNameStart() << "' with cost: "
396       << JumpThreadCost << ", across block:\n    "
397       << *BB << "\n";
398
399  ThreadEdge(BB, PredBB, SuccBB);
400  ++NumThreads;
401  return true;
402}
403
404
405/// ThreadEdge - We have decided that it is safe and profitable to thread an
406/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
407/// change.
408void JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
409                               BasicBlock *SuccBB) {
410
411  // Jump Threading can not update SSA properties correctly if the values
412  // defined in the duplicated block are used outside of the block itself.  For
413  // this reason, we spill all values that are used outside of BB to the stack.
414  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
415    if (I->isUsedOutsideOfBlock(BB)) {
416      // We found a use of I outside of BB.  Create a new stack slot to
417      // break this inter-block usage pattern.
418      DemoteRegToStack(*I);
419    }
420
421  // We are going to have to map operands from the original BB block to the new
422  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
423  // account for entry from PredBB.
424  DenseMap<Instruction*, Value*> ValueMapping;
425
426  BasicBlock *NewBB =
427    BasicBlock::Create(BB->getName()+".thread", BB->getParent(), BB);
428  NewBB->moveAfter(PredBB);
429
430  BasicBlock::iterator BI = BB->begin();
431  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
432    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
433
434  // Clone the non-phi instructions of BB into NewBB, keeping track of the
435  // mapping and using it to remap operands in the cloned instructions.
436  for (; !isa<TerminatorInst>(BI); ++BI) {
437    Instruction *New = BI->clone();
438    New->setName(BI->getNameStart());
439    NewBB->getInstList().push_back(New);
440    ValueMapping[BI] = New;
441
442    // Remap operands to patch up intra-block references.
443    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
444      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i)))
445        if (Value *Remapped = ValueMapping[Inst])
446          New->setOperand(i, Remapped);
447  }
448
449  // We didn't copy the terminator from BB over to NewBB, because there is now
450  // an unconditional jump to SuccBB.  Insert the unconditional jump.
451  BranchInst::Create(SuccBB, NewBB);
452
453  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
454  // PHI nodes for NewBB now.
455  for (BasicBlock::iterator PNI = SuccBB->begin(); isa<PHINode>(PNI); ++PNI) {
456    PHINode *PN = cast<PHINode>(PNI);
457    // Ok, we have a PHI node.  Figure out what the incoming value was for the
458    // DestBlock.
459    Value *IV = PN->getIncomingValueForBlock(BB);
460
461    // Remap the value if necessary.
462    if (Instruction *Inst = dyn_cast<Instruction>(IV))
463      if (Value *MappedIV = ValueMapping[Inst])
464        IV = MappedIV;
465    PN->addIncoming(IV, NewBB);
466  }
467
468  // Finally, NewBB is good to go.  Update the terminator of PredBB to jump to
469  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
470  // us to simplify any PHI nodes in BB.
471  TerminatorInst *PredTerm = PredBB->getTerminator();
472  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
473    if (PredTerm->getSuccessor(i) == BB) {
474      BB->removePredecessor(PredBB);
475      PredTerm->setSuccessor(i, NewBB);
476    }
477}
478