JumpThreading.cpp revision b0bc6c361da9009e8414efde317d9bbff755f6c0
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include "llvm/Transforms/Utils/Local.h"
23#include "llvm/Transforms/Utils/SSAUpdater.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33#include "llvm/Support/raw_ostream.h"
34using namespace llvm;
35
36STATISTIC(NumThreads, "Number of jumps threaded");
37STATISTIC(NumFolds,   "Number of terminators folded");
38STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
39
40static cl::opt<unsigned>
41Threshold("jump-threading-threshold",
42          cl::desc("Max block size to duplicate for jump threading"),
43          cl::init(6), cl::Hidden);
44
45// Turn on use of LazyValueInfo.
46static cl::opt<bool>
47EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
48
49
50
51namespace {
52  /// This pass performs 'jump threading', which looks at blocks that have
53  /// multiple predecessors and multiple successors.  If one or more of the
54  /// predecessors of the block can be proven to always jump to one of the
55  /// successors, we forward the edge from the predecessor to the successor by
56  /// duplicating the contents of this block.
57  ///
58  /// An example of when this can occur is code like this:
59  ///
60  ///   if () { ...
61  ///     X = 4;
62  ///   }
63  ///   if (X < 3) {
64  ///
65  /// In this case, the unconditional branch at the end of the first if can be
66  /// revectored to the false side of the second if.
67  ///
68  class JumpThreading : public FunctionPass {
69    TargetData *TD;
70    LazyValueInfo *LVI;
71#ifdef NDEBUG
72    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
73#else
74    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
75#endif
76  public:
77    static char ID; // Pass identification
78    JumpThreading() : FunctionPass(&ID) {}
79
80    bool runOnFunction(Function &F);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      if (EnableLVI)
84        AU.addRequired<LazyValueInfo>();
85    }
86
87    void FindLoopHeaders(Function &F);
88    bool ProcessBlock(BasicBlock *BB);
89    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
90                    BasicBlock *SuccBB);
91    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
92                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
93
94    typedef SmallVectorImpl<std::pair<ConstantInt*,
95                                      BasicBlock*> > PredValueInfo;
96
97    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
98                                         PredValueInfo &Result);
99    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
100
101
102    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
103    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
104
105    bool ProcessBranchOnPHI(PHINode *PN);
106    bool ProcessBranchOnXOR(BinaryOperator *BO);
107
108    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
109  };
110}
111
112char JumpThreading::ID = 0;
113static RegisterPass<JumpThreading>
114X("jump-threading", "Jump Threading");
115
116// Public interface to the Jump Threading pass
117FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
118
119/// runOnFunction - Top level algorithm.
120///
121bool JumpThreading::runOnFunction(Function &F) {
122  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
123  TD = getAnalysisIfAvailable<TargetData>();
124  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
125
126  FindLoopHeaders(F);
127
128  bool Changed, EverChanged = false;
129  do {
130    Changed = false;
131    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
132      BasicBlock *BB = I;
133      // Thread all of the branches we can over this block.
134      while (ProcessBlock(BB))
135        Changed = true;
136
137      ++I;
138
139      // If the block is trivially dead, zap it.  This eliminates the successor
140      // edges which simplifies the CFG.
141      if (pred_begin(BB) == pred_end(BB) &&
142          BB != &BB->getParent()->getEntryBlock()) {
143        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
144              << "' with terminator: " << *BB->getTerminator() << '\n');
145        LoopHeaders.erase(BB);
146        DeleteDeadBlock(BB);
147        Changed = true;
148      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
149        // Can't thread an unconditional jump, but if the block is "almost
150        // empty", we can replace uses of it with uses of the successor and make
151        // this dead.
152        if (BI->isUnconditional() &&
153            BB != &BB->getParent()->getEntryBlock()) {
154          BasicBlock::iterator BBI = BB->getFirstNonPHI();
155          // Ignore dbg intrinsics.
156          while (isa<DbgInfoIntrinsic>(BBI))
157            ++BBI;
158          // If the terminator is the only non-phi instruction, try to nuke it.
159          if (BBI->isTerminator()) {
160            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
161            // block, we have to make sure it isn't in the LoopHeaders set.  We
162            // reinsert afterward if needed.
163            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
164            BasicBlock *Succ = BI->getSuccessor(0);
165
166            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
167              Changed = true;
168              // If we deleted BB and BB was the header of a loop, then the
169              // successor is now the header of the loop.
170              BB = Succ;
171            }
172
173            if (ErasedFromLoopHeaders)
174              LoopHeaders.insert(BB);
175          }
176        }
177      }
178    }
179    EverChanged |= Changed;
180  } while (Changed);
181
182  LoopHeaders.clear();
183  return EverChanged;
184}
185
186/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
187/// thread across it.
188static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
189  /// Ignore PHI nodes, these will be flattened when duplication happens.
190  BasicBlock::const_iterator I = BB->getFirstNonPHI();
191
192  // FIXME: THREADING will delete values that are just used to compute the
193  // branch, so they shouldn't count against the duplication cost.
194
195
196  // Sum up the cost of each instruction until we get to the terminator.  Don't
197  // include the terminator because the copy won't include it.
198  unsigned Size = 0;
199  for (; !isa<TerminatorInst>(I); ++I) {
200    // Debugger intrinsics don't incur code size.
201    if (isa<DbgInfoIntrinsic>(I)) continue;
202
203    // If this is a pointer->pointer bitcast, it is free.
204    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
205      continue;
206
207    // All other instructions count for at least one unit.
208    ++Size;
209
210    // Calls are more expensive.  If they are non-intrinsic calls, we model them
211    // as having cost of 4.  If they are a non-vector intrinsic, we model them
212    // as having cost of 2 total, and if they are a vector intrinsic, we model
213    // them as having cost 1.
214    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
215      if (!isa<IntrinsicInst>(CI))
216        Size += 3;
217      else if (!isa<VectorType>(CI->getType()))
218        Size += 1;
219    }
220  }
221
222  // Threading through a switch statement is particularly profitable.  If this
223  // block ends in a switch, decrease its cost to make it more likely to happen.
224  if (isa<SwitchInst>(I))
225    Size = Size > 6 ? Size-6 : 0;
226
227  return Size;
228}
229
230/// FindLoopHeaders - We do not want jump threading to turn proper loop
231/// structures into irreducible loops.  Doing this breaks up the loop nesting
232/// hierarchy and pessimizes later transformations.  To prevent this from
233/// happening, we first have to find the loop headers.  Here we approximate this
234/// by finding targets of backedges in the CFG.
235///
236/// Note that there definitely are cases when we want to allow threading of
237/// edges across a loop header.  For example, threading a jump from outside the
238/// loop (the preheader) to an exit block of the loop is definitely profitable.
239/// It is also almost always profitable to thread backedges from within the loop
240/// to exit blocks, and is often profitable to thread backedges to other blocks
241/// within the loop (forming a nested loop).  This simple analysis is not rich
242/// enough to track all of these properties and keep it up-to-date as the CFG
243/// mutates, so we don't allow any of these transformations.
244///
245void JumpThreading::FindLoopHeaders(Function &F) {
246  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
247  FindFunctionBackedges(F, Edges);
248
249  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
250    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
251}
252
253/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
254/// if we can infer that the value is a known ConstantInt in any of our
255/// predecessors.  If so, return the known list of value and pred BB in the
256/// result vector.  If a value is known to be undef, it is returned as null.
257///
258/// This returns true if there were any known values.
259///
260bool JumpThreading::
261ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
262  // If V is a constantint, then it is known in all predecessors.
263  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
264    ConstantInt *CI = dyn_cast<ConstantInt>(V);
265
266    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
267      Result.push_back(std::make_pair(CI, *PI));
268    return true;
269  }
270
271  // If V is a non-instruction value, or an instruction in a different block,
272  // then it can't be derived from a PHI.
273  Instruction *I = dyn_cast<Instruction>(V);
274  if (I == 0 || I->getParent() != BB) {
275
276    // Okay, if this is a live-in value, see if it has a known value at the end
277    // of any of our predecessors.
278    //
279    // FIXME: This should be an edge property, not a block end property.
280    /// TODO: Per PR2563, we could infer value range information about a
281    /// predecessor based on its terminator.
282    //
283    if (LVI) {
284      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
285      // "I" is a non-local compare-with-a-constant instruction.  This would be
286      // able to handle value inequalities better, for example if the compare is
287      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
288      // Perhaps getConstantOnEdge should be smart enough to do this?
289
290      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
291        // If the value is known by LazyValueInfo to be a constant in a
292        // predecessor, use that information to try to thread this block.
293        Constant *PredCst = LVI->getConstantOnEdge(V, *PI, BB);
294        if (PredCst == 0 ||
295            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
296          continue;
297
298        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), *PI));
299      }
300
301      return !Result.empty();
302    }
303
304    return false;
305  }
306
307  /// If I is a PHI node, then we know the incoming values for any constants.
308  if (PHINode *PN = dyn_cast<PHINode>(I)) {
309    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
310      Value *InVal = PN->getIncomingValue(i);
311      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
312        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
313        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
314      }
315    }
316    return !Result.empty();
317  }
318
319  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
320
321  // Handle some boolean conditions.
322  if (I->getType()->getPrimitiveSizeInBits() == 1) {
323    // X | true -> true
324    // X & false -> false
325    if (I->getOpcode() == Instruction::Or ||
326        I->getOpcode() == Instruction::And) {
327      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
328      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
329
330      if (LHSVals.empty() && RHSVals.empty())
331        return false;
332
333      ConstantInt *InterestingVal;
334      if (I->getOpcode() == Instruction::Or)
335        InterestingVal = ConstantInt::getTrue(I->getContext());
336      else
337        InterestingVal = ConstantInt::getFalse(I->getContext());
338
339      // Scan for the sentinel.  If we find an undef, force it to the
340      // interesting value: x|undef -> true and x&undef -> false.
341      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
342        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
343          Result.push_back(LHSVals[i]);
344          Result.back().first = InterestingVal;
345        }
346      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
347        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
348          Result.push_back(RHSVals[i]);
349          Result.back().first = InterestingVal;
350        }
351      return !Result.empty();
352    }
353
354    // Handle the NOT form of XOR.
355    if (I->getOpcode() == Instruction::Xor &&
356        isa<ConstantInt>(I->getOperand(1)) &&
357        cast<ConstantInt>(I->getOperand(1))->isOne()) {
358      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
359      if (Result.empty())
360        return false;
361
362      // Invert the known values.
363      for (unsigned i = 0, e = Result.size(); i != e; ++i)
364        if (Result[i].first)
365          Result[i].first =
366            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
367      return true;
368    }
369  }
370
371  // Handle compare with phi operand, where the PHI is defined in this block.
372  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
373    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
374    if (PN && PN->getParent() == BB) {
375      // We can do this simplification if any comparisons fold to true or false.
376      // See if any do.
377      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
378        BasicBlock *PredBB = PN->getIncomingBlock(i);
379        Value *LHS = PN->getIncomingValue(i);
380        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
381
382        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
383        if (Res == 0) {
384          if (!LVI || !isa<Constant>(RHS))
385            continue;
386
387          LazyValueInfo::Tristate
388            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
389                                           cast<Constant>(RHS), PredBB, BB);
390          if (ResT == LazyValueInfo::Unknown)
391            continue;
392          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
393        }
394
395        if (isa<UndefValue>(Res))
396          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
397        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
398          Result.push_back(std::make_pair(CI, PredBB));
399      }
400
401      return !Result.empty();
402    }
403
404
405    // If comparing a live-in value against a constant, see if we know the
406    // live-in value on any predecessors.
407    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
408        Cmp->getType()->isIntegerTy() && // Not vector compare.
409        (!isa<Instruction>(Cmp->getOperand(0)) ||
410         cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
411      Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
412
413      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
414        // If the value is known by LazyValueInfo to be a constant in a
415        // predecessor, use that information to try to thread this block.
416        LazyValueInfo::Tristate
417          Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
418                                        RHSCst, *PI, BB);
419        if (Res == LazyValueInfo::Unknown)
420          continue;
421
422        Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
423        Result.push_back(std::make_pair(cast<ConstantInt>(ResC), *PI));
424      }
425
426      return !Result.empty();
427    }
428  }
429  return false;
430}
431
432
433
434/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
435/// in an undefined jump, decide which block is best to revector to.
436///
437/// Since we can pick an arbitrary destination, we pick the successor with the
438/// fewest predecessors.  This should reduce the in-degree of the others.
439///
440static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
441  TerminatorInst *BBTerm = BB->getTerminator();
442  unsigned MinSucc = 0;
443  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
444  // Compute the successor with the minimum number of predecessors.
445  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
446  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
447    TestBB = BBTerm->getSuccessor(i);
448    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
449    if (NumPreds < MinNumPreds)
450      MinSucc = i;
451  }
452
453  return MinSucc;
454}
455
456/// ProcessBlock - If there are any predecessors whose control can be threaded
457/// through to a successor, transform them now.
458bool JumpThreading::ProcessBlock(BasicBlock *BB) {
459  // If the block is trivially dead, just return and let the caller nuke it.
460  // This simplifies other transformations.
461  if (pred_begin(BB) == pred_end(BB) &&
462      BB != &BB->getParent()->getEntryBlock())
463    return false;
464
465  // If this block has a single predecessor, and if that pred has a single
466  // successor, merge the blocks.  This encourages recursive jump threading
467  // because now the condition in this block can be threaded through
468  // predecessors of our predecessor block.
469  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
470    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
471        SinglePred != BB) {
472      // If SinglePred was a loop header, BB becomes one.
473      if (LoopHeaders.erase(SinglePred))
474        LoopHeaders.insert(BB);
475
476      // Remember if SinglePred was the entry block of the function.  If so, we
477      // will need to move BB back to the entry position.
478      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
479      MergeBasicBlockIntoOnlyPred(BB);
480
481      if (isEntry && BB != &BB->getParent()->getEntryBlock())
482        BB->moveBefore(&BB->getParent()->getEntryBlock());
483      return true;
484    }
485  }
486
487  // Look to see if the terminator is a branch of switch, if not we can't thread
488  // it.
489  Value *Condition;
490  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
491    // Can't thread an unconditional jump.
492    if (BI->isUnconditional()) return false;
493    Condition = BI->getCondition();
494  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
495    Condition = SI->getCondition();
496  else
497    return false; // Must be an invoke.
498
499  // If the terminator of this block is branching on a constant, simplify the
500  // terminator to an unconditional branch.  This can occur due to threading in
501  // other blocks.
502  if (isa<ConstantInt>(Condition)) {
503    DEBUG(dbgs() << "  In block '" << BB->getName()
504          << "' folding terminator: " << *BB->getTerminator() << '\n');
505    ++NumFolds;
506    ConstantFoldTerminator(BB);
507    return true;
508  }
509
510  // If the terminator is branching on an undef, we can pick any of the
511  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
512  if (isa<UndefValue>(Condition)) {
513    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
514
515    // Fold the branch/switch.
516    TerminatorInst *BBTerm = BB->getTerminator();
517    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
518      if (i == BestSucc) continue;
519      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
520    }
521
522    DEBUG(dbgs() << "  In block '" << BB->getName()
523          << "' folding undef terminator: " << *BBTerm << '\n');
524    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
525    BBTerm->eraseFromParent();
526    return true;
527  }
528
529  Instruction *CondInst = dyn_cast<Instruction>(Condition);
530
531  // If the condition is an instruction defined in another block, see if a
532  // predecessor has the same condition:
533  //     br COND, BBX, BBY
534  //  BBX:
535  //     br COND, BBZ, BBW
536  if (!LVI &&
537      !Condition->hasOneUse() && // Multiple uses.
538      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
539    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
540    if (isa<BranchInst>(BB->getTerminator())) {
541      for (; PI != E; ++PI)
542        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
543          if (PBI->isConditional() && PBI->getCondition() == Condition &&
544              ProcessBranchOnDuplicateCond(*PI, BB))
545            return true;
546    } else {
547      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
548      for (; PI != E; ++PI)
549        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
550          if (PSI->getCondition() == Condition &&
551              ProcessSwitchOnDuplicateCond(*PI, BB))
552            return true;
553    }
554  }
555
556  // All the rest of our checks depend on the condition being an instruction.
557  if (CondInst == 0) {
558    // FIXME: Unify this with code below.
559    if (LVI && ProcessThreadableEdges(Condition, BB))
560      return true;
561    return false;
562  }
563
564
565  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
566    if (!LVI &&
567        (!isa<PHINode>(CondCmp->getOperand(0)) ||
568         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
569      // If we have a comparison, loop over the predecessors to see if there is
570      // a condition with a lexically identical value.
571      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
572      for (; PI != E; ++PI)
573        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
574          if (PBI->isConditional() && *PI != BB) {
575            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
576              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
577                  CI->getOperand(1) == CondCmp->getOperand(1) &&
578                  CI->getPredicate() == CondCmp->getPredicate()) {
579                // TODO: Could handle things like (x != 4) --> (x == 17)
580                if (ProcessBranchOnDuplicateCond(*PI, BB))
581                  return true;
582              }
583            }
584          }
585    }
586  }
587
588  // Check for some cases that are worth simplifying.  Right now we want to look
589  // for loads that are used by a switch or by the condition for the branch.  If
590  // we see one, check to see if it's partially redundant.  If so, insert a PHI
591  // which can then be used to thread the values.
592  //
593  Value *SimplifyValue = CondInst;
594  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
595    if (isa<Constant>(CondCmp->getOperand(1)))
596      SimplifyValue = CondCmp->getOperand(0);
597
598  // TODO: There are other places where load PRE would be profitable, such as
599  // more complex comparisons.
600  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
601    if (SimplifyPartiallyRedundantLoad(LI))
602      return true;
603
604
605  // Handle a variety of cases where we are branching on something derived from
606  // a PHI node in the current block.  If we can prove that any predecessors
607  // compute a predictable value based on a PHI node, thread those predecessors.
608  //
609  if (ProcessThreadableEdges(CondInst, BB))
610    return true;
611
612  // If this is an otherwise-unfoldable branch on a phi node in the current
613  // block, see if we can simplify.
614  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
615    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
616      return ProcessBranchOnPHI(PN);
617
618
619  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
620  if (CondInst->getOpcode() == Instruction::Xor &&
621      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
622    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
623
624
625  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
626  // "(X == 4)", thread through this block.
627
628  return false;
629}
630
631/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
632/// block that jump on exactly the same condition.  This means that we almost
633/// always know the direction of the edge in the DESTBB:
634///  PREDBB:
635///     br COND, DESTBB, BBY
636///  DESTBB:
637///     br COND, BBZ, BBW
638///
639/// If DESTBB has multiple predecessors, we can't just constant fold the branch
640/// in DESTBB, we have to thread over it.
641bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
642                                                 BasicBlock *BB) {
643  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
644
645  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
646  // fold the branch to an unconditional one, which allows other recursive
647  // simplifications.
648  bool BranchDir;
649  if (PredBI->getSuccessor(1) != BB)
650    BranchDir = true;
651  else if (PredBI->getSuccessor(0) != BB)
652    BranchDir = false;
653  else {
654    DEBUG(dbgs() << "  In block '" << PredBB->getName()
655          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
656    ++NumFolds;
657    ConstantFoldTerminator(PredBB);
658    return true;
659  }
660
661  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
662
663  // If the dest block has one predecessor, just fix the branch condition to a
664  // constant and fold it.
665  if (BB->getSinglePredecessor()) {
666    DEBUG(dbgs() << "  In block '" << BB->getName()
667          << "' folding condition to '" << BranchDir << "': "
668          << *BB->getTerminator() << '\n');
669    ++NumFolds;
670    Value *OldCond = DestBI->getCondition();
671    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
672                                          BranchDir));
673    ConstantFoldTerminator(BB);
674    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
675    return true;
676  }
677
678
679  // Next, figure out which successor we are threading to.
680  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
681
682  SmallVector<BasicBlock*, 2> Preds;
683  Preds.push_back(PredBB);
684
685  // Ok, try to thread it!
686  return ThreadEdge(BB, Preds, SuccBB);
687}
688
689/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
690/// block that switch on exactly the same condition.  This means that we almost
691/// always know the direction of the edge in the DESTBB:
692///  PREDBB:
693///     switch COND [... DESTBB, BBY ... ]
694///  DESTBB:
695///     switch COND [... BBZ, BBW ]
696///
697/// Optimizing switches like this is very important, because simplifycfg builds
698/// switches out of repeated 'if' conditions.
699bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
700                                                 BasicBlock *DestBB) {
701  // Can't thread edge to self.
702  if (PredBB == DestBB)
703    return false;
704
705  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
706  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
707
708  // There are a variety of optimizations that we can potentially do on these
709  // blocks: we order them from most to least preferable.
710
711  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
712  // directly to their destination.  This does not introduce *any* code size
713  // growth.  Skip debug info first.
714  BasicBlock::iterator BBI = DestBB->begin();
715  while (isa<DbgInfoIntrinsic>(BBI))
716    BBI++;
717
718  // FIXME: Thread if it just contains a PHI.
719  if (isa<SwitchInst>(BBI)) {
720    bool MadeChange = false;
721    // Ignore the default edge for now.
722    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
723      ConstantInt *DestVal = DestSI->getCaseValue(i);
724      BasicBlock *DestSucc = DestSI->getSuccessor(i);
725
726      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
727      // PredSI has an explicit case for it.  If so, forward.  If it is covered
728      // by the default case, we can't update PredSI.
729      unsigned PredCase = PredSI->findCaseValue(DestVal);
730      if (PredCase == 0) continue;
731
732      // If PredSI doesn't go to DestBB on this value, then it won't reach the
733      // case on this condition.
734      if (PredSI->getSuccessor(PredCase) != DestBB &&
735          DestSI->getSuccessor(i) != DestBB)
736        continue;
737
738      // Do not forward this if it already goes to this destination, this would
739      // be an infinite loop.
740      if (PredSI->getSuccessor(PredCase) == DestSucc)
741        continue;
742
743      // Otherwise, we're safe to make the change.  Make sure that the edge from
744      // DestSI to DestSucc is not critical and has no PHI nodes.
745      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
746      DEBUG(dbgs() << "THROUGH: " << *DestSI);
747
748      // If the destination has PHI nodes, just split the edge for updating
749      // simplicity.
750      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
751        SplitCriticalEdge(DestSI, i, this);
752        DestSucc = DestSI->getSuccessor(i);
753      }
754      FoldSingleEntryPHINodes(DestSucc);
755      PredSI->setSuccessor(PredCase, DestSucc);
756      MadeChange = true;
757    }
758
759    if (MadeChange)
760      return true;
761  }
762
763  return false;
764}
765
766
767/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
768/// load instruction, eliminate it by replacing it with a PHI node.  This is an
769/// important optimization that encourages jump threading, and needs to be run
770/// interlaced with other jump threading tasks.
771bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
772  // Don't hack volatile loads.
773  if (LI->isVolatile()) return false;
774
775  // If the load is defined in a block with exactly one predecessor, it can't be
776  // partially redundant.
777  BasicBlock *LoadBB = LI->getParent();
778  if (LoadBB->getSinglePredecessor())
779    return false;
780
781  Value *LoadedPtr = LI->getOperand(0);
782
783  // If the loaded operand is defined in the LoadBB, it can't be available.
784  // TODO: Could do simple PHI translation, that would be fun :)
785  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
786    if (PtrOp->getParent() == LoadBB)
787      return false;
788
789  // Scan a few instructions up from the load, to see if it is obviously live at
790  // the entry to its block.
791  BasicBlock::iterator BBIt = LI;
792
793  if (Value *AvailableVal =
794        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
795    // If the value if the load is locally available within the block, just use
796    // it.  This frequently occurs for reg2mem'd allocas.
797    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
798
799    // If the returned value is the load itself, replace with an undef. This can
800    // only happen in dead loops.
801    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
802    LI->replaceAllUsesWith(AvailableVal);
803    LI->eraseFromParent();
804    return true;
805  }
806
807  // Otherwise, if we scanned the whole block and got to the top of the block,
808  // we know the block is locally transparent to the load.  If not, something
809  // might clobber its value.
810  if (BBIt != LoadBB->begin())
811    return false;
812
813
814  SmallPtrSet<BasicBlock*, 8> PredsScanned;
815  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
816  AvailablePredsTy AvailablePreds;
817  BasicBlock *OneUnavailablePred = 0;
818
819  // If we got here, the loaded value is transparent through to the start of the
820  // block.  Check to see if it is available in any of the predecessor blocks.
821  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
822       PI != PE; ++PI) {
823    BasicBlock *PredBB = *PI;
824
825    // If we already scanned this predecessor, skip it.
826    if (!PredsScanned.insert(PredBB))
827      continue;
828
829    // Scan the predecessor to see if the value is available in the pred.
830    BBIt = PredBB->end();
831    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
832    if (!PredAvailable) {
833      OneUnavailablePred = PredBB;
834      continue;
835    }
836
837    // If so, this load is partially redundant.  Remember this info so that we
838    // can create a PHI node.
839    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
840  }
841
842  // If the loaded value isn't available in any predecessor, it isn't partially
843  // redundant.
844  if (AvailablePreds.empty()) return false;
845
846  // Okay, the loaded value is available in at least one (and maybe all!)
847  // predecessors.  If the value is unavailable in more than one unique
848  // predecessor, we want to insert a merge block for those common predecessors.
849  // This ensures that we only have to insert one reload, thus not increasing
850  // code size.
851  BasicBlock *UnavailablePred = 0;
852
853  // If there is exactly one predecessor where the value is unavailable, the
854  // already computed 'OneUnavailablePred' block is it.  If it ends in an
855  // unconditional branch, we know that it isn't a critical edge.
856  if (PredsScanned.size() == AvailablePreds.size()+1 &&
857      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
858    UnavailablePred = OneUnavailablePred;
859  } else if (PredsScanned.size() != AvailablePreds.size()) {
860    // Otherwise, we had multiple unavailable predecessors or we had a critical
861    // edge from the one.
862    SmallVector<BasicBlock*, 8> PredsToSplit;
863    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
864
865    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
866      AvailablePredSet.insert(AvailablePreds[i].first);
867
868    // Add all the unavailable predecessors to the PredsToSplit list.
869    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
870         PI != PE; ++PI)
871      if (!AvailablePredSet.count(*PI))
872        PredsToSplit.push_back(*PI);
873
874    // Split them out to their own block.
875    UnavailablePred =
876      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
877                             "thread-pre-split", this);
878  }
879
880  // If the value isn't available in all predecessors, then there will be
881  // exactly one where it isn't available.  Insert a load on that edge and add
882  // it to the AvailablePreds list.
883  if (UnavailablePred) {
884    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
885           "Can't handle critical edge here!");
886    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
887                                 LI->getAlignment(),
888                                 UnavailablePred->getTerminator());
889    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
890  }
891
892  // Now we know that each predecessor of this block has a value in
893  // AvailablePreds, sort them for efficient access as we're walking the preds.
894  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
895
896  // Create a PHI node at the start of the block for the PRE'd load value.
897  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
898  PN->takeName(LI);
899
900  // Insert new entries into the PHI for each predecessor.  A single block may
901  // have multiple entries here.
902  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
903       ++PI) {
904    AvailablePredsTy::iterator I =
905      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
906                       std::make_pair(*PI, (Value*)0));
907
908    assert(I != AvailablePreds.end() && I->first == *PI &&
909           "Didn't find entry for predecessor!");
910
911    PN->addIncoming(I->second, I->first);
912  }
913
914  //cerr << "PRE: " << *LI << *PN << "\n";
915
916  LI->replaceAllUsesWith(PN);
917  LI->eraseFromParent();
918
919  return true;
920}
921
922/// FindMostPopularDest - The specified list contains multiple possible
923/// threadable destinations.  Pick the one that occurs the most frequently in
924/// the list.
925static BasicBlock *
926FindMostPopularDest(BasicBlock *BB,
927                    const SmallVectorImpl<std::pair<BasicBlock*,
928                                  BasicBlock*> > &PredToDestList) {
929  assert(!PredToDestList.empty());
930
931  // Determine popularity.  If there are multiple possible destinations, we
932  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
933  // blocks with known and real destinations to threading undef.  We'll handle
934  // them later if interesting.
935  DenseMap<BasicBlock*, unsigned> DestPopularity;
936  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
937    if (PredToDestList[i].second)
938      DestPopularity[PredToDestList[i].second]++;
939
940  // Find the most popular dest.
941  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
942  BasicBlock *MostPopularDest = DPI->first;
943  unsigned Popularity = DPI->second;
944  SmallVector<BasicBlock*, 4> SamePopularity;
945
946  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
947    // If the popularity of this entry isn't higher than the popularity we've
948    // seen so far, ignore it.
949    if (DPI->second < Popularity)
950      ; // ignore.
951    else if (DPI->second == Popularity) {
952      // If it is the same as what we've seen so far, keep track of it.
953      SamePopularity.push_back(DPI->first);
954    } else {
955      // If it is more popular, remember it.
956      SamePopularity.clear();
957      MostPopularDest = DPI->first;
958      Popularity = DPI->second;
959    }
960  }
961
962  // Okay, now we know the most popular destination.  If there is more than
963  // destination, we need to determine one.  This is arbitrary, but we need
964  // to make a deterministic decision.  Pick the first one that appears in the
965  // successor list.
966  if (!SamePopularity.empty()) {
967    SamePopularity.push_back(MostPopularDest);
968    TerminatorInst *TI = BB->getTerminator();
969    for (unsigned i = 0; ; ++i) {
970      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
971
972      if (std::find(SamePopularity.begin(), SamePopularity.end(),
973                    TI->getSuccessor(i)) == SamePopularity.end())
974        continue;
975
976      MostPopularDest = TI->getSuccessor(i);
977      break;
978    }
979  }
980
981  // Okay, we have finally picked the most popular destination.
982  return MostPopularDest;
983}
984
985bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
986  // If threading this would thread across a loop header, don't even try to
987  // thread the edge.
988  if (LoopHeaders.count(BB))
989    return false;
990
991  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
992  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
993    return false;
994  assert(!PredValues.empty() &&
995         "ComputeValueKnownInPredecessors returned true with no values");
996
997  DEBUG(dbgs() << "IN BB: " << *BB;
998        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
999          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1000          if (PredValues[i].first)
1001            dbgs() << *PredValues[i].first;
1002          else
1003            dbgs() << "UNDEF";
1004          dbgs() << " for pred '" << PredValues[i].second->getName()
1005          << "'.\n";
1006        });
1007
1008  // Decide what we want to thread through.  Convert our list of known values to
1009  // a list of known destinations for each pred.  This also discards duplicate
1010  // predecessors and keeps track of the undefined inputs (which are represented
1011  // as a null dest in the PredToDestList).
1012  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1013  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1014
1015  BasicBlock *OnlyDest = 0;
1016  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1017
1018  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1019    BasicBlock *Pred = PredValues[i].second;
1020    if (!SeenPreds.insert(Pred))
1021      continue;  // Duplicate predecessor entry.
1022
1023    // If the predecessor ends with an indirect goto, we can't change its
1024    // destination.
1025    if (isa<IndirectBrInst>(Pred->getTerminator()))
1026      continue;
1027
1028    ConstantInt *Val = PredValues[i].first;
1029
1030    BasicBlock *DestBB;
1031    if (Val == 0)      // Undef.
1032      DestBB = 0;
1033    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1034      DestBB = BI->getSuccessor(Val->isZero());
1035    else {
1036      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1037      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1038    }
1039
1040    // If we have exactly one destination, remember it for efficiency below.
1041    if (i == 0)
1042      OnlyDest = DestBB;
1043    else if (OnlyDest != DestBB)
1044      OnlyDest = MultipleDestSentinel;
1045
1046    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1047  }
1048
1049  // If all edges were unthreadable, we fail.
1050  if (PredToDestList.empty())
1051    return false;
1052
1053  // Determine which is the most common successor.  If we have many inputs and
1054  // this block is a switch, we want to start by threading the batch that goes
1055  // to the most popular destination first.  If we only know about one
1056  // threadable destination (the common case) we can avoid this.
1057  BasicBlock *MostPopularDest = OnlyDest;
1058
1059  if (MostPopularDest == MultipleDestSentinel)
1060    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1061
1062  // Now that we know what the most popular destination is, factor all
1063  // predecessors that will jump to it into a single predecessor.
1064  SmallVector<BasicBlock*, 16> PredsToFactor;
1065  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1066    if (PredToDestList[i].second == MostPopularDest) {
1067      BasicBlock *Pred = PredToDestList[i].first;
1068
1069      // This predecessor may be a switch or something else that has multiple
1070      // edges to the block.  Factor each of these edges by listing them
1071      // according to # occurrences in PredsToFactor.
1072      TerminatorInst *PredTI = Pred->getTerminator();
1073      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1074        if (PredTI->getSuccessor(i) == BB)
1075          PredsToFactor.push_back(Pred);
1076    }
1077
1078  // If the threadable edges are branching on an undefined value, we get to pick
1079  // the destination that these predecessors should get to.
1080  if (MostPopularDest == 0)
1081    MostPopularDest = BB->getTerminator()->
1082                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1083
1084  // Ok, try to thread it!
1085  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1086}
1087
1088/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1089/// a PHI node in the current block.  See if there are any simplifications we
1090/// can do based on inputs to the phi node.
1091///
1092bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1093  BasicBlock *BB = PN->getParent();
1094
1095  // TODO: We could make use of this to do it once for blocks with common PHI
1096  // values.
1097  SmallVector<BasicBlock*, 1> PredBBs;
1098  PredBBs.resize(1);
1099
1100  // If any of the predecessor blocks end in an unconditional branch, we can
1101  // *duplicate* the conditional branch into that block in order to further
1102  // encourage jump threading and to eliminate cases where we have branch on a
1103  // phi of an icmp (branch on icmp is much better).
1104  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1105    BasicBlock *PredBB = PN->getIncomingBlock(i);
1106    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1107      if (PredBr->isUnconditional()) {
1108        PredBBs[0] = PredBB;
1109        // Try to duplicate BB into PredBB.
1110        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1111          return true;
1112      }
1113  }
1114
1115  return false;
1116}
1117
1118/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1119/// a xor instruction in the current block.  See if there are any
1120/// simplifications we can do based on inputs to the xor.
1121///
1122bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1123  BasicBlock *BB = BO->getParent();
1124
1125  // If either the LHS or RHS of the xor is a constant, don't do this
1126  // optimization.
1127  if (isa<ConstantInt>(BO->getOperand(0)) ||
1128      isa<ConstantInt>(BO->getOperand(1)))
1129    return false;
1130
1131  // If the first instruction in BB isn't a phi, we won't be able to infer
1132  // anything special about any particular predecessor.
1133  if (!isa<PHINode>(BB->front()))
1134    return false;
1135
1136  // If we have a xor as the branch input to this block, and we know that the
1137  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1138  // the condition into the predecessor and fix that value to true, saving some
1139  // logical ops on that path and encouraging other paths to simplify.
1140  //
1141  // This copies something like this:
1142  //
1143  //  BB:
1144  //    %X = phi i1 [1],  [%X']
1145  //    %Y = icmp eq i32 %A, %B
1146  //    %Z = xor i1 %X, %Y
1147  //    br i1 %Z, ...
1148  //
1149  // Into:
1150  //  BB':
1151  //    %Y = icmp ne i32 %A, %B
1152  //    br i1 %Z, ...
1153
1154  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1155  bool isLHS = true;
1156  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1157    assert(XorOpValues.empty());
1158    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1159      return false;
1160    isLHS = false;
1161  }
1162
1163  assert(!XorOpValues.empty() &&
1164         "ComputeValueKnownInPredecessors returned true with no values");
1165
1166  // Scan the information to see which is most popular: true or false.  The
1167  // predecessors can be of the set true, false, or undef.
1168  unsigned NumTrue = 0, NumFalse = 0;
1169  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1170    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1171    if (XorOpValues[i].first->isZero())
1172      ++NumFalse;
1173    else
1174      ++NumTrue;
1175  }
1176
1177  // Determine which value to split on, true, false, or undef if neither.
1178  ConstantInt *SplitVal = 0;
1179  if (NumTrue > NumFalse)
1180    SplitVal = ConstantInt::getTrue(BB->getContext());
1181  else if (NumTrue != 0 || NumFalse != 0)
1182    SplitVal = ConstantInt::getFalse(BB->getContext());
1183
1184  // Collect all of the blocks that this can be folded into so that we can
1185  // factor this once and clone it once.
1186  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1187  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1188    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1189
1190    BlocksToFoldInto.push_back(XorOpValues[i].second);
1191  }
1192
1193  // If we inferred a value for all of the predecessors, then duplication won't
1194  // help us.  However, we can just replace the LHS or RHS with the constant.
1195  if (BlocksToFoldInto.size() ==
1196      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1197    if (SplitVal == 0) {
1198      // If all preds provide undef, just nuke the xor, because it is undef too.
1199      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1200      BO->eraseFromParent();
1201    } else if (SplitVal->isZero()) {
1202      // If all preds provide 0, replace the xor with the other input.
1203      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1204      BO->eraseFromParent();
1205    } else {
1206      // If all preds provide 1, set the computed value to 1.
1207      BO->setOperand(!isLHS, SplitVal);
1208    }
1209
1210    return true;
1211  }
1212
1213  // Try to duplicate BB into PredBB.
1214  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1215}
1216
1217
1218/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1219/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1220/// NewPred using the entries from OldPred (suitably mapped).
1221static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1222                                            BasicBlock *OldPred,
1223                                            BasicBlock *NewPred,
1224                                     DenseMap<Instruction*, Value*> &ValueMap) {
1225  for (BasicBlock::iterator PNI = PHIBB->begin();
1226       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1227    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1228    // DestBlock.
1229    Value *IV = PN->getIncomingValueForBlock(OldPred);
1230
1231    // Remap the value if necessary.
1232    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1233      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1234      if (I != ValueMap.end())
1235        IV = I->second;
1236    }
1237
1238    PN->addIncoming(IV, NewPred);
1239  }
1240}
1241
1242/// ThreadEdge - We have decided that it is safe and profitable to factor the
1243/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1244/// across BB.  Transform the IR to reflect this change.
1245bool JumpThreading::ThreadEdge(BasicBlock *BB,
1246                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1247                               BasicBlock *SuccBB) {
1248  // If threading to the same block as we come from, we would infinite loop.
1249  if (SuccBB == BB) {
1250    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1251          << "' - would thread to self!\n");
1252    return false;
1253  }
1254
1255  // If threading this would thread across a loop header, don't thread the edge.
1256  // See the comments above FindLoopHeaders for justifications and caveats.
1257  if (LoopHeaders.count(BB)) {
1258    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1259          << "' to dest BB '" << SuccBB->getName()
1260          << "' - it might create an irreducible loop!\n");
1261    return false;
1262  }
1263
1264  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1265  if (JumpThreadCost > Threshold) {
1266    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1267          << "' - Cost is too high: " << JumpThreadCost << "\n");
1268    return false;
1269  }
1270
1271  // And finally, do it!  Start by factoring the predecessors is needed.
1272  BasicBlock *PredBB;
1273  if (PredBBs.size() == 1)
1274    PredBB = PredBBs[0];
1275  else {
1276    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1277          << " common predecessors.\n");
1278    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1279                                    ".thr_comm", this);
1280  }
1281
1282  // And finally, do it!
1283  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1284        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1285        << ", across block:\n    "
1286        << *BB << "\n");
1287
1288  // We are going to have to map operands from the original BB block to the new
1289  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1290  // account for entry from PredBB.
1291  DenseMap<Instruction*, Value*> ValueMapping;
1292
1293  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1294                                         BB->getName()+".thread",
1295                                         BB->getParent(), BB);
1296  NewBB->moveAfter(PredBB);
1297
1298  BasicBlock::iterator BI = BB->begin();
1299  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1300    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1301
1302  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1303  // mapping and using it to remap operands in the cloned instructions.
1304  for (; !isa<TerminatorInst>(BI); ++BI) {
1305    Instruction *New = BI->clone();
1306    New->setName(BI->getName());
1307    NewBB->getInstList().push_back(New);
1308    ValueMapping[BI] = New;
1309
1310    // Remap operands to patch up intra-block references.
1311    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1312      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1313        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1314        if (I != ValueMapping.end())
1315          New->setOperand(i, I->second);
1316      }
1317  }
1318
1319  // We didn't copy the terminator from BB over to NewBB, because there is now
1320  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1321  BranchInst::Create(SuccBB, NewBB);
1322
1323  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1324  // PHI nodes for NewBB now.
1325  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1326
1327  // If there were values defined in BB that are used outside the block, then we
1328  // now have to update all uses of the value to use either the original value,
1329  // the cloned value, or some PHI derived value.  This can require arbitrary
1330  // PHI insertion, of which we are prepared to do, clean these up now.
1331  SSAUpdater SSAUpdate;
1332  SmallVector<Use*, 16> UsesToRename;
1333  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1334    // Scan all uses of this instruction to see if it is used outside of its
1335    // block, and if so, record them in UsesToRename.
1336    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1337         ++UI) {
1338      Instruction *User = cast<Instruction>(*UI);
1339      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1340        if (UserPN->getIncomingBlock(UI) == BB)
1341          continue;
1342      } else if (User->getParent() == BB)
1343        continue;
1344
1345      UsesToRename.push_back(&UI.getUse());
1346    }
1347
1348    // If there are no uses outside the block, we're done with this instruction.
1349    if (UsesToRename.empty())
1350      continue;
1351
1352    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1353
1354    // We found a use of I outside of BB.  Rename all uses of I that are outside
1355    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1356    // with the two values we know.
1357    SSAUpdate.Initialize(I);
1358    SSAUpdate.AddAvailableValue(BB, I);
1359    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1360
1361    while (!UsesToRename.empty())
1362      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1363    DEBUG(dbgs() << "\n");
1364  }
1365
1366
1367  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1368  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1369  // us to simplify any PHI nodes in BB.
1370  TerminatorInst *PredTerm = PredBB->getTerminator();
1371  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1372    if (PredTerm->getSuccessor(i) == BB) {
1373      RemovePredecessorAndSimplify(BB, PredBB, TD);
1374      PredTerm->setSuccessor(i, NewBB);
1375    }
1376
1377  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1378  // over the new instructions and zap any that are constants or dead.  This
1379  // frequently happens because of phi translation.
1380  SimplifyInstructionsInBlock(NewBB, TD);
1381
1382  // Threaded an edge!
1383  ++NumThreads;
1384  return true;
1385}
1386
1387/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1388/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1389/// If we can duplicate the contents of BB up into PredBB do so now, this
1390/// improves the odds that the branch will be on an analyzable instruction like
1391/// a compare.
1392bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1393                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1394  assert(!PredBBs.empty() && "Can't handle an empty set");
1395
1396  // If BB is a loop header, then duplicating this block outside the loop would
1397  // cause us to transform this into an irreducible loop, don't do this.
1398  // See the comments above FindLoopHeaders for justifications and caveats.
1399  if (LoopHeaders.count(BB)) {
1400    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1401          << "' into predecessor block '" << PredBBs[0]->getName()
1402          << "' - it might create an irreducible loop!\n");
1403    return false;
1404  }
1405
1406  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1407  if (DuplicationCost > Threshold) {
1408    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1409          << "' - Cost is too high: " << DuplicationCost << "\n");
1410    return false;
1411  }
1412
1413  // And finally, do it!  Start by factoring the predecessors is needed.
1414  BasicBlock *PredBB;
1415  if (PredBBs.size() == 1)
1416    PredBB = PredBBs[0];
1417  else {
1418    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1419          << " common predecessors.\n");
1420    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1421                                    ".thr_comm", this);
1422  }
1423
1424  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1425  // of PredBB.
1426  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1427        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1428        << DuplicationCost << " block is:" << *BB << "\n");
1429
1430  // Unless PredBB ends with an unconditional branch, split the edge so that we
1431  // can just clone the bits from BB into the end of the new PredBB.
1432  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1433
1434  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1435    PredBB = SplitEdge(PredBB, BB, this);
1436    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1437  }
1438
1439  // We are going to have to map operands from the original BB block into the
1440  // PredBB block.  Evaluate PHI nodes in BB.
1441  DenseMap<Instruction*, Value*> ValueMapping;
1442
1443  BasicBlock::iterator BI = BB->begin();
1444  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1445    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1446
1447  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1448  // mapping and using it to remap operands in the cloned instructions.
1449  for (; BI != BB->end(); ++BI) {
1450    Instruction *New = BI->clone();
1451
1452    // Remap operands to patch up intra-block references.
1453    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1454      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1455        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1456        if (I != ValueMapping.end())
1457          New->setOperand(i, I->second);
1458      }
1459
1460    // If this instruction can be simplified after the operands are updated,
1461    // just use the simplified value instead.  This frequently happens due to
1462    // phi translation.
1463    if (Value *IV = SimplifyInstruction(New, TD)) {
1464      delete New;
1465      ValueMapping[BI] = IV;
1466    } else {
1467      // Otherwise, insert the new instruction into the block.
1468      New->setName(BI->getName());
1469      PredBB->getInstList().insert(OldPredBranch, New);
1470      ValueMapping[BI] = New;
1471    }
1472  }
1473
1474  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1475  // add entries to the PHI nodes for branch from PredBB now.
1476  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1477  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1478                                  ValueMapping);
1479  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1480                                  ValueMapping);
1481
1482  // If there were values defined in BB that are used outside the block, then we
1483  // now have to update all uses of the value to use either the original value,
1484  // the cloned value, or some PHI derived value.  This can require arbitrary
1485  // PHI insertion, of which we are prepared to do, clean these up now.
1486  SSAUpdater SSAUpdate;
1487  SmallVector<Use*, 16> UsesToRename;
1488  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1489    // Scan all uses of this instruction to see if it is used outside of its
1490    // block, and if so, record them in UsesToRename.
1491    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1492         ++UI) {
1493      Instruction *User = cast<Instruction>(*UI);
1494      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1495        if (UserPN->getIncomingBlock(UI) == BB)
1496          continue;
1497      } else if (User->getParent() == BB)
1498        continue;
1499
1500      UsesToRename.push_back(&UI.getUse());
1501    }
1502
1503    // If there are no uses outside the block, we're done with this instruction.
1504    if (UsesToRename.empty())
1505      continue;
1506
1507    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1508
1509    // We found a use of I outside of BB.  Rename all uses of I that are outside
1510    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1511    // with the two values we know.
1512    SSAUpdate.Initialize(I);
1513    SSAUpdate.AddAvailableValue(BB, I);
1514    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1515
1516    while (!UsesToRename.empty())
1517      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1518    DEBUG(dbgs() << "\n");
1519  }
1520
1521  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1522  // that we nuked.
1523  RemovePredecessorAndSimplify(BB, PredBB, TD);
1524
1525  // Remove the unconditional branch at the end of the PredBB block.
1526  OldPredBranch->eraseFromParent();
1527
1528  ++NumDupes;
1529  return true;
1530}
1531
1532
1533