JumpThreading.cpp revision bdbf1a177de085927c375efa986c52af2057fb7a
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36
37static cl::opt<unsigned>
38Threshold("jump-threading-threshold",
39          cl::desc("Max block size to duplicate for jump threading"),
40          cl::init(6), cl::Hidden);
41
42namespace {
43  /// This pass performs 'jump threading', which looks at blocks that have
44  /// multiple predecessors and multiple successors.  If one or more of the
45  /// predecessors of the block can be proven to always jump to one of the
46  /// successors, we forward the edge from the predecessor to the successor by
47  /// duplicating the contents of this block.
48  ///
49  /// An example of when this can occur is code like this:
50  ///
51  ///   if () { ...
52  ///     X = 4;
53  ///   }
54  ///   if (X < 3) {
55  ///
56  /// In this case, the unconditional branch at the end of the first if can be
57  /// revectored to the false side of the second if.
58  ///
59  class JumpThreading : public FunctionPass {
60    TargetData *TD;
61#ifdef NDEBUG
62    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
63#else
64    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
65#endif
66  public:
67    static char ID; // Pass identification
68    JumpThreading() : FunctionPass(&ID) {}
69
70    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71    }
72
73    bool runOnFunction(Function &F);
74    void FindLoopHeaders(Function &F);
75
76    bool ProcessBlock(BasicBlock *BB);
77    bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB);
78    BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val);
79    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
80    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
81
82    bool ProcessJumpOnPHI(PHINode *PN);
83    bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
84    bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
85
86    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
87  };
88}
89
90char JumpThreading::ID = 0;
91static RegisterPass<JumpThreading>
92X("jump-threading", "Jump Threading");
93
94// Public interface to the Jump Threading pass
95FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
96
97/// runOnFunction - Top level algorithm.
98///
99bool JumpThreading::runOnFunction(Function &F) {
100  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
101  TD = getAnalysisIfAvailable<TargetData>();
102
103  FindLoopHeaders(F);
104
105  bool AnotherIteration = true, EverChanged = false;
106  while (AnotherIteration) {
107    AnotherIteration = false;
108    bool Changed = false;
109    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
110      BasicBlock *BB = I;
111      while (ProcessBlock(BB))
112        Changed = true;
113
114      ++I;
115
116      // If the block is trivially dead, zap it.  This eliminates the successor
117      // edges which simplifies the CFG.
118      if (pred_begin(BB) == pred_end(BB) &&
119          BB != &BB->getParent()->getEntryBlock()) {
120        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
121              << "' with terminator: " << *BB->getTerminator());
122        LoopHeaders.erase(BB);
123        DeleteDeadBlock(BB);
124        Changed = true;
125      }
126    }
127    AnotherIteration = Changed;
128    EverChanged |= Changed;
129  }
130
131  LoopHeaders.clear();
132  return EverChanged;
133}
134
135/// FindLoopHeaders - We do not want jump threading to turn proper loop
136/// structures into irreducible loops.  Doing this breaks up the loop nesting
137/// hierarchy and pessimizes later transformations.  To prevent this from
138/// happening, we first have to find the loop headers.  Here we approximate this
139/// by finding targets of backedges in the CFG.
140///
141/// Note that there definitely are cases when we want to allow threading of
142/// edges across a loop header.  For example, threading a jump from outside the
143/// loop (the preheader) to an exit block of the loop is definitely profitable.
144/// It is also almost always profitable to thread backedges from within the loop
145/// to exit blocks, and is often profitable to thread backedges to other blocks
146/// within the loop (forming a nested loop).  This simple analysis is not rich
147/// enough to track all of these properties and keep it up-to-date as the CFG
148/// mutates, so we don't allow any of these transformations.
149///
150void JumpThreading::FindLoopHeaders(Function &F) {
151  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
152  FindFunctionBackedges(F, Edges);
153
154  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
155    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
156}
157
158
159/// FactorCommonPHIPreds - If there are multiple preds with the same incoming
160/// value for the PHI, factor them together so we get one block to thread for
161/// the whole group.
162/// This is important for things like "phi i1 [true, true, false, true, x]"
163/// where we only need to clone the block for the true blocks once.
164///
165BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) {
166  SmallVector<BasicBlock*, 16> CommonPreds;
167  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
168    if (PN->getIncomingValue(i) == Val)
169      CommonPreds.push_back(PN->getIncomingBlock(i));
170
171  if (CommonPreds.size() == 1)
172    return CommonPreds[0];
173
174  DEBUG(errs() << "  Factoring out " << CommonPreds.size()
175        << " common predecessors.\n");
176  return SplitBlockPredecessors(PN->getParent(),
177                                &CommonPreds[0], CommonPreds.size(),
178                                ".thr_comm", this);
179}
180
181
182/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
183/// in an undefined jump, decide which block is best to revector to.
184///
185/// Since we can pick an arbitrary destination, we pick the successor with the
186/// fewest predecessors.  This should reduce the in-degree of the others.
187///
188static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
189  TerminatorInst *BBTerm = BB->getTerminator();
190  unsigned MinSucc = 0;
191  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
192  // Compute the successor with the minimum number of predecessors.
193  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
194  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
195    TestBB = BBTerm->getSuccessor(i);
196    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
197    if (NumPreds < MinNumPreds)
198      MinSucc = i;
199  }
200
201  return MinSucc;
202}
203
204/// ProcessBlock - If there are any predecessors whose control can be threaded
205/// through to a successor, transform them now.
206bool JumpThreading::ProcessBlock(BasicBlock *BB) {
207  // If this block has a single predecessor, and if that pred has a single
208  // successor, merge the blocks.  This encourages recursive jump threading
209  // because now the condition in this block can be threaded through
210  // predecessors of our predecessor block.
211  if (BasicBlock *SinglePred = BB->getSinglePredecessor())
212    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
213        SinglePred != BB) {
214      // If SinglePred was a loop header, BB becomes one.
215      if (LoopHeaders.erase(SinglePred))
216        LoopHeaders.insert(BB);
217
218      // Remember if SinglePred was the entry block of the function.  If so, we
219      // will need to move BB back to the entry position.
220      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
221      MergeBasicBlockIntoOnlyPred(BB);
222
223      if (isEntry && BB != &BB->getParent()->getEntryBlock())
224        BB->moveBefore(&BB->getParent()->getEntryBlock());
225      return true;
226    }
227
228  // See if this block ends with a branch or switch.  If so, see if the
229  // condition is a phi node.  If so, and if an entry of the phi node is a
230  // constant, we can thread the block.
231  Value *Condition;
232  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
233    // Can't thread an unconditional jump.
234    if (BI->isUnconditional()) return false;
235    Condition = BI->getCondition();
236  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
237    Condition = SI->getCondition();
238  else
239    return false; // Must be an invoke.
240
241  // If the terminator of this block is branching on a constant, simplify the
242  // terminator to an unconditional branch.  This can occur due to threading in
243  // other blocks.
244  if (isa<ConstantInt>(Condition)) {
245    DEBUG(errs() << "  In block '" << BB->getName()
246          << "' folding terminator: " << *BB->getTerminator());
247    ++NumFolds;
248    ConstantFoldTerminator(BB);
249    return true;
250  }
251
252  // If the terminator is branching on an undef, we can pick any of the
253  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
254  if (isa<UndefValue>(Condition)) {
255    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
256
257    // Fold the branch/switch.
258    TerminatorInst *BBTerm = BB->getTerminator();
259    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
260      if (i == BestSucc) continue;
261      BBTerm->getSuccessor(i)->removePredecessor(BB);
262    }
263
264    DEBUG(errs() << "  In block '" << BB->getName()
265          << "' folding undef terminator: " << *BBTerm);
266    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
267    BBTerm->eraseFromParent();
268    return true;
269  }
270
271  Instruction *CondInst = dyn_cast<Instruction>(Condition);
272
273  // If the condition is an instruction defined in another block, see if a
274  // predecessor has the same condition:
275  //     br COND, BBX, BBY
276  //  BBX:
277  //     br COND, BBZ, BBW
278  if (!Condition->hasOneUse() && // Multiple uses.
279      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
280    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
281    if (isa<BranchInst>(BB->getTerminator())) {
282      for (; PI != E; ++PI)
283        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
284          if (PBI->isConditional() && PBI->getCondition() == Condition &&
285              ProcessBranchOnDuplicateCond(*PI, BB))
286            return true;
287    } else {
288      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
289      for (; PI != E; ++PI)
290        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
291          if (PSI->getCondition() == Condition &&
292              ProcessSwitchOnDuplicateCond(*PI, BB))
293            return true;
294    }
295  }
296
297  // All the rest of our checks depend on the condition being an instruction.
298  if (CondInst == 0)
299    return false;
300
301  // See if this is a phi node in the current block.
302  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
303    if (PN->getParent() == BB)
304      return ProcessJumpOnPHI(PN);
305
306  // If this is a conditional branch whose condition is and/or of a phi, try to
307  // simplify it.
308  if ((CondInst->getOpcode() == Instruction::And ||
309       CondInst->getOpcode() == Instruction::Or) &&
310      isa<BranchInst>(BB->getTerminator()) &&
311      ProcessBranchOnLogical(CondInst, BB,
312                             CondInst->getOpcode() == Instruction::And))
313    return true;
314
315  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
316    if (isa<PHINode>(CondCmp->getOperand(0))) {
317      // If we have "br (phi != 42)" and the phi node has any constant values
318      // as operands, we can thread through this block.
319      //
320      // If we have "br (cmp phi, x)" and the phi node contains x such that the
321      // comparison uniquely identifies the branch target, we can thread
322      // through this block.
323
324      if (ProcessBranchOnCompare(CondCmp, BB))
325        return true;
326    }
327
328    // If we have a comparison, loop over the predecessors to see if there is
329    // a condition with the same value.
330    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
331    for (; PI != E; ++PI)
332      if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
333        if (PBI->isConditional() && *PI != BB) {
334          if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
335            if (CI->getOperand(0) == CondCmp->getOperand(0) &&
336                CI->getOperand(1) == CondCmp->getOperand(1) &&
337                CI->getPredicate() == CondCmp->getPredicate()) {
338              // TODO: Could handle things like (x != 4) --> (x == 17)
339              if (ProcessBranchOnDuplicateCond(*PI, BB))
340                return true;
341            }
342          }
343        }
344  }
345
346  // Check for some cases that are worth simplifying.  Right now we want to look
347  // for loads that are used by a switch or by the condition for the branch.  If
348  // we see one, check to see if it's partially redundant.  If so, insert a PHI
349  // which can then be used to thread the values.
350  //
351  // This is particularly important because reg2mem inserts loads and stores all
352  // over the place, and this blocks jump threading if we don't zap them.
353  Value *SimplifyValue = CondInst;
354  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
355    if (isa<Constant>(CondCmp->getOperand(1)))
356      SimplifyValue = CondCmp->getOperand(0);
357
358  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
359    if (SimplifyPartiallyRedundantLoad(LI))
360      return true;
361
362  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
363  // "(X == 4)" thread through this block.
364
365  return false;
366}
367
368/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
369/// block that jump on exactly the same condition.  This means that we almost
370/// always know the direction of the edge in the DESTBB:
371///  PREDBB:
372///     br COND, DESTBB, BBY
373///  DESTBB:
374///     br COND, BBZ, BBW
375///
376/// If DESTBB has multiple predecessors, we can't just constant fold the branch
377/// in DESTBB, we have to thread over it.
378bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
379                                                 BasicBlock *BB) {
380  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
381
382  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
383  // fold the branch to an unconditional one, which allows other recursive
384  // simplifications.
385  bool BranchDir;
386  if (PredBI->getSuccessor(1) != BB)
387    BranchDir = true;
388  else if (PredBI->getSuccessor(0) != BB)
389    BranchDir = false;
390  else {
391    DEBUG(errs() << "  In block '" << PredBB->getName()
392          << "' folding terminator: " << *PredBB->getTerminator());
393    ++NumFolds;
394    ConstantFoldTerminator(PredBB);
395    return true;
396  }
397
398  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
399
400  // If the dest block has one predecessor, just fix the branch condition to a
401  // constant and fold it.
402  if (BB->getSinglePredecessor()) {
403    DEBUG(errs() << "  In block '" << BB->getName()
404          << "' folding condition to '" << BranchDir << "': "
405          << *BB->getTerminator());
406    ++NumFolds;
407    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
408                                          BranchDir));
409    ConstantFoldTerminator(BB);
410    return true;
411  }
412
413
414  // Next, figure out which successor we are threading to.
415  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
416
417  // Ok, try to thread it!
418  return ThreadEdge(BB, PredBB, SuccBB);
419}
420
421/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
422/// block that switch on exactly the same condition.  This means that we almost
423/// always know the direction of the edge in the DESTBB:
424///  PREDBB:
425///     switch COND [... DESTBB, BBY ... ]
426///  DESTBB:
427///     switch COND [... BBZ, BBW ]
428///
429/// Optimizing switches like this is very important, because simplifycfg builds
430/// switches out of repeated 'if' conditions.
431bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
432                                                 BasicBlock *DestBB) {
433  // Can't thread edge to self.
434  if (PredBB == DestBB)
435    return false;
436
437  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
438  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
439
440  // There are a variety of optimizations that we can potentially do on these
441  // blocks: we order them from most to least preferable.
442
443  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
444  // directly to their destination.  This does not introduce *any* code size
445  // growth.  Skip debug info first.
446  BasicBlock::iterator BBI = DestBB->begin();
447  while (isa<DbgInfoIntrinsic>(BBI))
448    BBI++;
449
450  // FIXME: Thread if it just contains a PHI.
451  if (isa<SwitchInst>(BBI)) {
452    bool MadeChange = false;
453    // Ignore the default edge for now.
454    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
455      ConstantInt *DestVal = DestSI->getCaseValue(i);
456      BasicBlock *DestSucc = DestSI->getSuccessor(i);
457
458      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
459      // PredSI has an explicit case for it.  If so, forward.  If it is covered
460      // by the default case, we can't update PredSI.
461      unsigned PredCase = PredSI->findCaseValue(DestVal);
462      if (PredCase == 0) continue;
463
464      // If PredSI doesn't go to DestBB on this value, then it won't reach the
465      // case on this condition.
466      if (PredSI->getSuccessor(PredCase) != DestBB &&
467          DestSI->getSuccessor(i) != DestBB)
468        continue;
469
470      // Otherwise, we're safe to make the change.  Make sure that the edge from
471      // DestSI to DestSucc is not critical and has no PHI nodes.
472      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
473      DEBUG(errs() << "THROUGH: " << *DestSI);
474
475      // If the destination has PHI nodes, just split the edge for updating
476      // simplicity.
477      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
478        SplitCriticalEdge(DestSI, i, this);
479        DestSucc = DestSI->getSuccessor(i);
480      }
481      FoldSingleEntryPHINodes(DestSucc);
482      PredSI->setSuccessor(PredCase, DestSucc);
483      MadeChange = true;
484    }
485
486    if (MadeChange)
487      return true;
488  }
489
490  return false;
491}
492
493
494/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
495/// load instruction, eliminate it by replacing it with a PHI node.  This is an
496/// important optimization that encourages jump threading, and needs to be run
497/// interlaced with other jump threading tasks.
498bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
499  // Don't hack volatile loads.
500  if (LI->isVolatile()) return false;
501
502  // If the load is defined in a block with exactly one predecessor, it can't be
503  // partially redundant.
504  BasicBlock *LoadBB = LI->getParent();
505  if (LoadBB->getSinglePredecessor())
506    return false;
507
508  Value *LoadedPtr = LI->getOperand(0);
509
510  // If the loaded operand is defined in the LoadBB, it can't be available.
511  // FIXME: Could do PHI translation, that would be fun :)
512  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
513    if (PtrOp->getParent() == LoadBB)
514      return false;
515
516  // Scan a few instructions up from the load, to see if it is obviously live at
517  // the entry to its block.
518  BasicBlock::iterator BBIt = LI;
519
520  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
521                                                     BBIt, 6)) {
522    // If the value if the load is locally available within the block, just use
523    // it.  This frequently occurs for reg2mem'd allocas.
524    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
525
526    // If the returned value is the load itself, replace with an undef. This can
527    // only happen in dead loops.
528    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
529    LI->replaceAllUsesWith(AvailableVal);
530    LI->eraseFromParent();
531    return true;
532  }
533
534  // Otherwise, if we scanned the whole block and got to the top of the block,
535  // we know the block is locally transparent to the load.  If not, something
536  // might clobber its value.
537  if (BBIt != LoadBB->begin())
538    return false;
539
540
541  SmallPtrSet<BasicBlock*, 8> PredsScanned;
542  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
543  AvailablePredsTy AvailablePreds;
544  BasicBlock *OneUnavailablePred = 0;
545
546  // If we got here, the loaded value is transparent through to the start of the
547  // block.  Check to see if it is available in any of the predecessor blocks.
548  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
549       PI != PE; ++PI) {
550    BasicBlock *PredBB = *PI;
551
552    // If we already scanned this predecessor, skip it.
553    if (!PredsScanned.insert(PredBB))
554      continue;
555
556    // Scan the predecessor to see if the value is available in the pred.
557    BBIt = PredBB->end();
558    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
559    if (!PredAvailable) {
560      OneUnavailablePred = PredBB;
561      continue;
562    }
563
564    // If so, this load is partially redundant.  Remember this info so that we
565    // can create a PHI node.
566    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
567  }
568
569  // If the loaded value isn't available in any predecessor, it isn't partially
570  // redundant.
571  if (AvailablePreds.empty()) return false;
572
573  // Okay, the loaded value is available in at least one (and maybe all!)
574  // predecessors.  If the value is unavailable in more than one unique
575  // predecessor, we want to insert a merge block for those common predecessors.
576  // This ensures that we only have to insert one reload, thus not increasing
577  // code size.
578  BasicBlock *UnavailablePred = 0;
579
580  // If there is exactly one predecessor where the value is unavailable, the
581  // already computed 'OneUnavailablePred' block is it.  If it ends in an
582  // unconditional branch, we know that it isn't a critical edge.
583  if (PredsScanned.size() == AvailablePreds.size()+1 &&
584      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
585    UnavailablePred = OneUnavailablePred;
586  } else if (PredsScanned.size() != AvailablePreds.size()) {
587    // Otherwise, we had multiple unavailable predecessors or we had a critical
588    // edge from the one.
589    SmallVector<BasicBlock*, 8> PredsToSplit;
590    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
591
592    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
593      AvailablePredSet.insert(AvailablePreds[i].first);
594
595    // Add all the unavailable predecessors to the PredsToSplit list.
596    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
597         PI != PE; ++PI)
598      if (!AvailablePredSet.count(*PI))
599        PredsToSplit.push_back(*PI);
600
601    // Split them out to their own block.
602    UnavailablePred =
603      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
604                             "thread-split", this);
605  }
606
607  // If the value isn't available in all predecessors, then there will be
608  // exactly one where it isn't available.  Insert a load on that edge and add
609  // it to the AvailablePreds list.
610  if (UnavailablePred) {
611    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
612           "Can't handle critical edge here!");
613    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
614                                 UnavailablePred->getTerminator());
615    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
616  }
617
618  // Now we know that each predecessor of this block has a value in
619  // AvailablePreds, sort them for efficient access as we're walking the preds.
620  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
621
622  // Create a PHI node at the start of the block for the PRE'd load value.
623  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
624  PN->takeName(LI);
625
626  // Insert new entries into the PHI for each predecessor.  A single block may
627  // have multiple entries here.
628  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
629       ++PI) {
630    AvailablePredsTy::iterator I =
631      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
632                       std::make_pair(*PI, (Value*)0));
633
634    assert(I != AvailablePreds.end() && I->first == *PI &&
635           "Didn't find entry for predecessor!");
636
637    PN->addIncoming(I->second, I->first);
638  }
639
640  //cerr << "PRE: " << *LI << *PN << "\n";
641
642  LI->replaceAllUsesWith(PN);
643  LI->eraseFromParent();
644
645  return true;
646}
647
648
649/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
650/// the current block.  See if there are any simplifications we can do based on
651/// inputs to the phi node.
652///
653bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
654  // See if the phi node has any constant integer or undef values.  If so, we
655  // can determine where the corresponding predecessor will branch.
656  Constant *PredCst = 0;
657  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
658    Value *PredVal = PN->getIncomingValue(i);
659    if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
660      PredCst = CI;
661      break;
662    }
663
664    if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
665      PredCst = UV;
666      break;
667    }
668  }
669
670  // If no incoming value has a constant, we don't know the destination of any
671  // predecessors.
672  if (PredCst == 0) {
673    return false;
674  }
675
676  // See if the cost of duplicating this block is low enough.
677  BasicBlock *BB = PN->getParent();
678
679  // If so, we can actually do this threading.  Merge any common predecessors
680  // that will act the same.
681  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
682
683  TerminatorInst *BBTerm = BB->getTerminator();
684
685  // Next, figure out which successor we are threading to.
686  BasicBlock *SuccBB;
687  if (isa<UndefValue>(PredCst)) {
688    // If the branch was going off an undef from PredBB, pick an arbitrary dest.
689    SuccBB = BBTerm->getSuccessor(GetBestDestForJumpOnUndef(BB));
690  } else if (BranchInst *BI = dyn_cast<BranchInst>(BBTerm))
691    SuccBB = BI->getSuccessor(cast<ConstantInt>(PredCst)->isZero());
692  else {
693    SwitchInst *SI = cast<SwitchInst>(BBTerm);
694    SuccBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(PredCst)));
695  }
696
697  // Ok, try to thread it!
698  return ThreadEdge(BB, PredBB, SuccBB);
699}
700
701/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
702/// whose condition is an AND/OR where one side is PN.  If PN has constant
703/// operands that permit us to evaluate the condition for some operand, thread
704/// through the block.  For example with:
705///   br (and X, phi(Y, Z, false))
706/// the predecessor corresponding to the 'false' will always jump to the false
707/// destination of the branch.
708///
709bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
710                                           bool isAnd) {
711  // If this is a binary operator tree of the same AND/OR opcode, check the
712  // LHS/RHS.
713  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
714    if ((isAnd && BO->getOpcode() == Instruction::And) ||
715        (!isAnd && BO->getOpcode() == Instruction::Or)) {
716      if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
717        return true;
718      if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
719        return true;
720    }
721
722  // If this isn't a PHI node, we can't handle it.
723  PHINode *PN = dyn_cast<PHINode>(V);
724  if (!PN || PN->getParent() != BB) return false;
725
726  // We can only do the simplification for phi nodes of 'false' with AND or
727  // 'true' with OR.  See if we have any entries in the phi for this.
728  unsigned PredNo = ~0U;
729  ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
730                                          !isAnd);
731  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
732    if (PN->getIncomingValue(i) == PredCst) {
733      PredNo = i;
734      break;
735    }
736  }
737
738  // If no match, bail out.
739  if (PredNo == ~0U)
740    return false;
741
742  // If so, we can actually do this threading.  Merge any common predecessors
743  // that will act the same.
744  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
745
746  // Next, figure out which successor we are threading to.  If this was an AND,
747  // the constant must be FALSE, and we must be targeting the 'false' block.
748  // If this is an OR, the constant must be TRUE, and we must be targeting the
749  // 'true' block.
750  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
751
752  // Ok, try to thread it!
753  return ThreadEdge(BB, PredBB, SuccBB);
754}
755
756/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
757/// hand sides of the compare instruction, try to determine the result. If the
758/// result can not be determined, a null pointer is returned.
759static Constant *GetResultOfComparison(CmpInst::Predicate pred,
760                                       Value *LHS, Value *RHS,
761                                       LLVMContext &Context) {
762  if (Constant *CLHS = dyn_cast<Constant>(LHS))
763    if (Constant *CRHS = dyn_cast<Constant>(RHS))
764      return ConstantExpr::getCompare(pred, CLHS, CRHS);
765
766  if (LHS == RHS)
767    if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
768      return ICmpInst::isTrueWhenEqual(pred) ?
769                 ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
770
771  return 0;
772}
773
774/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
775/// node and a value.  If we can identify when the comparison is true between
776/// the phi inputs and the value, we can fold the compare for that edge and
777/// thread through it.
778bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
779  PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
780  Value *RHS = Cmp->getOperand(1);
781
782  // If the phi isn't in the current block, an incoming edge to this block
783  // doesn't control the destination.
784  if (PN->getParent() != BB)
785    return false;
786
787  // We can do this simplification if any comparisons fold to true or false.
788  // See if any do.
789  Value *PredVal = 0;
790  bool TrueDirection = false;
791  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
792    PredVal = PN->getIncomingValue(i);
793
794    Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
795                                          RHS, Cmp->getContext());
796    if (!Res) {
797      PredVal = 0;
798      continue;
799    }
800
801    // If this folded to a constant expr, we can't do anything.
802    if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
803      TrueDirection = ResC->getZExtValue();
804      break;
805    }
806    // If this folded to undef, just go the false way.
807    if (isa<UndefValue>(Res)) {
808      TrueDirection = false;
809      break;
810    }
811
812    // Otherwise, we can't fold this input.
813    PredVal = 0;
814  }
815
816  // If no match, bail out.
817  if (PredVal == 0)
818    return false;
819
820  // If so, we can actually do this threading.  Merge any common predecessors
821  // that will act the same.
822  BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
823
824  // Next, get our successor.
825  BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
826
827  // Ok, try to thread it!
828  return ThreadEdge(BB, PredBB, SuccBB);
829}
830
831/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
832/// thread across it.
833static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
834  /// Ignore PHI nodes, these will be flattened when duplication happens.
835  BasicBlock::const_iterator I = BB->getFirstNonPHI();
836
837  // Sum up the cost of each instruction until we get to the terminator.  Don't
838  // include the terminator because the copy won't include it.
839  unsigned Size = 0;
840  for (; !isa<TerminatorInst>(I); ++I) {
841    // Debugger intrinsics don't incur code size.
842    if (isa<DbgInfoIntrinsic>(I)) continue;
843
844    // If this is a pointer->pointer bitcast, it is free.
845    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
846      continue;
847
848    // All other instructions count for at least one unit.
849    ++Size;
850
851    // Calls are more expensive.  If they are non-intrinsic calls, we model them
852    // as having cost of 4.  If they are a non-vector intrinsic, we model them
853    // as having cost of 2 total, and if they are a vector intrinsic, we model
854    // them as having cost 1.
855    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
856      if (!isa<IntrinsicInst>(CI))
857        Size += 3;
858      else if (!isa<VectorType>(CI->getType()))
859        Size += 1;
860    }
861  }
862
863  // Threading through a switch statement is particularly profitable.  If this
864  // block ends in a switch, decrease its cost to make it more likely to happen.
865  if (isa<SwitchInst>(I))
866    Size = Size > 6 ? Size-6 : 0;
867
868  return Size;
869}
870
871
872/// ThreadEdge - We have decided that it is safe and profitable to thread an
873/// edge from PredBB to SuccBB across BB.  Transform the IR to reflect this
874/// change.
875bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
876                               BasicBlock *SuccBB) {
877  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
878  if (JumpThreadCost > Threshold) {
879    DEBUG(errs() << "  Not threading BB '" << BB->getName()
880          << "' - Cost is too high: " << JumpThreadCost << "\n");
881    return false;
882  }
883
884  // If threading to the same block as we come from, we would infinite loop.
885  if (SuccBB == BB) {
886    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
887          << "' - would thread to self!\n");
888    return false;
889  }
890
891  // If threading this would thread across a loop header, don't thread the edge.
892  // See the comments above FindLoopHeaders for justifications and caveats.
893  if (LoopHeaders.count(BB)) {
894    DEBUG(errs() << "  Not threading from '" << PredBB->getName()
895          << "' across loop header BB '" << BB->getName()
896          << "' to dest BB '" << SuccBB->getName()
897          << "' - it might create an irreducible loop!\n");
898    return false;
899  }
900
901  // And finally, do it!
902  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
903        << SuccBB->getName() << "' with cost: " << JumpThreadCost
904        << ", across block:\n    "
905        << *BB << "\n");
906
907  // We are going to have to map operands from the original BB block to the new
908  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
909  // account for entry from PredBB.
910  DenseMap<Instruction*, Value*> ValueMapping;
911
912  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
913                                         BB->getName()+".thread",
914                                         BB->getParent(), BB);
915  NewBB->moveAfter(PredBB);
916
917  BasicBlock::iterator BI = BB->begin();
918  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
919    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
920
921  // Clone the non-phi instructions of BB into NewBB, keeping track of the
922  // mapping and using it to remap operands in the cloned instructions.
923  for (; !isa<TerminatorInst>(BI); ++BI) {
924    Instruction *New = BI->clone();
925    New->setName(BI->getName());
926    NewBB->getInstList().push_back(New);
927    ValueMapping[BI] = New;
928
929    // Remap operands to patch up intra-block references.
930    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
931      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
932        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
933        if (I != ValueMapping.end())
934          New->setOperand(i, I->second);
935      }
936  }
937
938  // We didn't copy the terminator from BB over to NewBB, because there is now
939  // an unconditional jump to SuccBB.  Insert the unconditional jump.
940  BranchInst::Create(SuccBB, NewBB);
941
942  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
943  // PHI nodes for NewBB now.
944  for (BasicBlock::iterator PNI = SuccBB->begin();
945       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
946    // Ok, we have a PHI node.  Figure out what the incoming value was for the
947    // DestBlock.
948    Value *IV = PN->getIncomingValueForBlock(BB);
949
950    // Remap the value if necessary.
951    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
952      DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
953      if (I != ValueMapping.end())
954        IV = I->second;
955    }
956    PN->addIncoming(IV, NewBB);
957  }
958
959  // If there were values defined in BB that are used outside the block, then we
960  // now have to update all uses of the value to use either the original value,
961  // the cloned value, or some PHI derived value.  This can require arbitrary
962  // PHI insertion, of which we are prepared to do, clean these up now.
963  SSAUpdater SSAUpdate;
964  SmallVector<Use*, 16> UsesToRename;
965  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
966    // Scan all uses of this instruction to see if it is used outside of its
967    // block, and if so, record them in UsesToRename.
968    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
969         ++UI) {
970      Instruction *User = cast<Instruction>(*UI);
971      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
972        if (UserPN->getIncomingBlock(UI) == BB)
973          continue;
974      } else if (User->getParent() == BB)
975        continue;
976
977      UsesToRename.push_back(&UI.getUse());
978    }
979
980    // If there are no uses outside the block, we're done with this instruction.
981    if (UsesToRename.empty())
982      continue;
983
984    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
985
986    // We found a use of I outside of BB.  Rename all uses of I that are outside
987    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
988    // with the two values we know.
989    SSAUpdate.Initialize(I);
990    SSAUpdate.AddAvailableValue(BB, I);
991    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
992
993    while (!UsesToRename.empty())
994      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
995    DEBUG(errs() << "\n");
996  }
997
998
999  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1000  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1001  // us to simplify any PHI nodes in BB.
1002  TerminatorInst *PredTerm = PredBB->getTerminator();
1003  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1004    if (PredTerm->getSuccessor(i) == BB) {
1005      BB->removePredecessor(PredBB);
1006      PredTerm->setSuccessor(i, NewBB);
1007    }
1008
1009  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1010  // over the new instructions and zap any that are constants or dead.  This
1011  // frequently happens because of phi translation.
1012  BI = NewBB->begin();
1013  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1014    Instruction *Inst = BI++;
1015    if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
1016      Inst->replaceAllUsesWith(C);
1017      Inst->eraseFromParent();
1018      continue;
1019    }
1020
1021    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1022  }
1023
1024  // Threaded an edge!
1025  ++NumThreads;
1026  return true;
1027}
1028