JumpThreading.cpp revision f2d197b77a34c35bfe25de0c098a34068cc4d85c
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/LazyValueInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ValueHandle.h"
34#include "llvm/Support/raw_ostream.h"
35using namespace llvm;
36
37STATISTIC(NumThreads, "Number of jumps threaded");
38STATISTIC(NumFolds,   "Number of terminators folded");
39STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
40
41static cl::opt<unsigned>
42Threshold("jump-threading-threshold",
43          cl::desc("Max block size to duplicate for jump threading"),
44          cl::init(6), cl::Hidden);
45
46// Turn on use of LazyValueInfo.
47static cl::opt<bool>
48EnableLVI("enable-jump-threading-lvi",
49          cl::desc("Use LVI for jump threading"),
50          cl::init(true),
51          cl::ReallyHidden);
52
53
54
55namespace {
56  /// This pass performs 'jump threading', which looks at blocks that have
57  /// multiple predecessors and multiple successors.  If one or more of the
58  /// predecessors of the block can be proven to always jump to one of the
59  /// successors, we forward the edge from the predecessor to the successor by
60  /// duplicating the contents of this block.
61  ///
62  /// An example of when this can occur is code like this:
63  ///
64  ///   if () { ...
65  ///     X = 4;
66  ///   }
67  ///   if (X < 3) {
68  ///
69  /// In this case, the unconditional branch at the end of the first if can be
70  /// revectored to the false side of the second if.
71  ///
72  class JumpThreading : public FunctionPass {
73    TargetData *TD;
74    LazyValueInfo *LVI;
75#ifdef NDEBUG
76    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
77#else
78    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
79#endif
80  public:
81    static char ID; // Pass identification
82    JumpThreading() : FunctionPass(ID) {}
83
84    bool runOnFunction(Function &F);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      if (EnableLVI)
88        AU.addRequired<LazyValueInfo>();
89    }
90
91    void FindLoopHeaders(Function &F);
92    bool ProcessBlock(BasicBlock *BB);
93    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
94                    BasicBlock *SuccBB);
95    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
96                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
97
98    typedef SmallVectorImpl<std::pair<ConstantInt*,
99                                      BasicBlock*> > PredValueInfo;
100
101    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
102                                         PredValueInfo &Result);
103    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
104
105
106    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
107    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
108
109    bool ProcessBranchOnPHI(PHINode *PN);
110    bool ProcessBranchOnXOR(BinaryOperator *BO);
111
112    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
113  };
114}
115
116char JumpThreading::ID = 0;
117INITIALIZE_PASS(JumpThreading, "jump-threading",
118                "Jump Threading", false, false);
119
120// Public interface to the Jump Threading pass
121FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
122
123/// runOnFunction - Top level algorithm.
124///
125bool JumpThreading::runOnFunction(Function &F) {
126  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
127  TD = getAnalysisIfAvailable<TargetData>();
128  LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
129
130  FindLoopHeaders(F);
131
132  bool Changed, EverChanged = false;
133  do {
134    Changed = false;
135    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
136      BasicBlock *BB = I;
137      // Thread all of the branches we can over this block.
138      while (ProcessBlock(BB))
139        Changed = true;
140
141      ++I;
142
143      // If the block is trivially dead, zap it.  This eliminates the successor
144      // edges which simplifies the CFG.
145      if (pred_begin(BB) == pred_end(BB) &&
146          BB != &BB->getParent()->getEntryBlock()) {
147        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
148              << "' with terminator: " << *BB->getTerminator() << '\n');
149        LoopHeaders.erase(BB);
150        if (LVI) LVI->eraseBlock(BB);
151        DeleteDeadBlock(BB);
152        Changed = true;
153      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
154        // Can't thread an unconditional jump, but if the block is "almost
155        // empty", we can replace uses of it with uses of the successor and make
156        // this dead.
157        if (BI->isUnconditional() &&
158            BB != &BB->getParent()->getEntryBlock()) {
159          BasicBlock::iterator BBI = BB->getFirstNonPHI();
160          // Ignore dbg intrinsics.
161          while (isa<DbgInfoIntrinsic>(BBI))
162            ++BBI;
163          // If the terminator is the only non-phi instruction, try to nuke it.
164          if (BBI->isTerminator()) {
165            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
166            // block, we have to make sure it isn't in the LoopHeaders set.  We
167            // reinsert afterward if needed.
168            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
169            BasicBlock *Succ = BI->getSuccessor(0);
170
171            // FIXME: It is always conservatively correct to drop the info
172            // for a block even if it doesn't get erased.  This isn't totally
173            // awesome, but it allows us to use AssertingVH to prevent nasty
174            // dangling pointer issues within LazyValueInfo.
175            if (LVI) LVI->eraseBlock(BB);
176            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
177              Changed = true;
178              // If we deleted BB and BB was the header of a loop, then the
179              // successor is now the header of the loop.
180              BB = Succ;
181            }
182
183            if (ErasedFromLoopHeaders)
184              LoopHeaders.insert(BB);
185          }
186        }
187      }
188    }
189    EverChanged |= Changed;
190  } while (Changed);
191
192  LoopHeaders.clear();
193  return EverChanged;
194}
195
196/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
197/// thread across it.
198static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
199  /// Ignore PHI nodes, these will be flattened when duplication happens.
200  BasicBlock::const_iterator I = BB->getFirstNonPHI();
201
202  // FIXME: THREADING will delete values that are just used to compute the
203  // branch, so they shouldn't count against the duplication cost.
204
205
206  // Sum up the cost of each instruction until we get to the terminator.  Don't
207  // include the terminator because the copy won't include it.
208  unsigned Size = 0;
209  for (; !isa<TerminatorInst>(I); ++I) {
210    // Debugger intrinsics don't incur code size.
211    if (isa<DbgInfoIntrinsic>(I)) continue;
212
213    // If this is a pointer->pointer bitcast, it is free.
214    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
215      continue;
216
217    // All other instructions count for at least one unit.
218    ++Size;
219
220    // Calls are more expensive.  If they are non-intrinsic calls, we model them
221    // as having cost of 4.  If they are a non-vector intrinsic, we model them
222    // as having cost of 2 total, and if they are a vector intrinsic, we model
223    // them as having cost 1.
224    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
225      if (!isa<IntrinsicInst>(CI))
226        Size += 3;
227      else if (!CI->getType()->isVectorTy())
228        Size += 1;
229    }
230  }
231
232  // Threading through a switch statement is particularly profitable.  If this
233  // block ends in a switch, decrease its cost to make it more likely to happen.
234  if (isa<SwitchInst>(I))
235    Size = Size > 6 ? Size-6 : 0;
236
237  return Size;
238}
239
240/// FindLoopHeaders - We do not want jump threading to turn proper loop
241/// structures into irreducible loops.  Doing this breaks up the loop nesting
242/// hierarchy and pessimizes later transformations.  To prevent this from
243/// happening, we first have to find the loop headers.  Here we approximate this
244/// by finding targets of backedges in the CFG.
245///
246/// Note that there definitely are cases when we want to allow threading of
247/// edges across a loop header.  For example, threading a jump from outside the
248/// loop (the preheader) to an exit block of the loop is definitely profitable.
249/// It is also almost always profitable to thread backedges from within the loop
250/// to exit blocks, and is often profitable to thread backedges to other blocks
251/// within the loop (forming a nested loop).  This simple analysis is not rich
252/// enough to track all of these properties and keep it up-to-date as the CFG
253/// mutates, so we don't allow any of these transformations.
254///
255void JumpThreading::FindLoopHeaders(Function &F) {
256  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
257  FindFunctionBackedges(F, Edges);
258
259  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
260    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
261}
262
263/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
264/// if we can infer that the value is a known ConstantInt in any of our
265/// predecessors.  If so, return the known list of value and pred BB in the
266/// result vector.  If a value is known to be undef, it is returned as null.
267///
268/// This returns true if there were any known values.
269///
270bool JumpThreading::
271ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
272  // If V is a constantint, then it is known in all predecessors.
273  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
274    ConstantInt *CI = dyn_cast<ConstantInt>(V);
275
276    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
277      Result.push_back(std::make_pair(CI, *PI));
278    return true;
279  }
280
281  // If V is a non-instruction value, or an instruction in a different block,
282  // then it can't be derived from a PHI.
283  Instruction *I = dyn_cast<Instruction>(V);
284  if (I == 0 || I->getParent() != BB) {
285
286    // Okay, if this is a live-in value, see if it has a known value at the end
287    // of any of our predecessors.
288    //
289    // FIXME: This should be an edge property, not a block end property.
290    /// TODO: Per PR2563, we could infer value range information about a
291    /// predecessor based on its terminator.
292    //
293    if (LVI) {
294      // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
295      // "I" is a non-local compare-with-a-constant instruction.  This would be
296      // able to handle value inequalities better, for example if the compare is
297      // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
298      // Perhaps getConstantOnEdge should be smart enough to do this?
299
300      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
301        BasicBlock *P = *PI;
302        // If the value is known by LazyValueInfo to be a constant in a
303        // predecessor, use that information to try to thread this block.
304        Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
305        if (PredCst == 0 ||
306            (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
307          continue;
308
309        Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
310      }
311
312      return !Result.empty();
313    }
314
315    return false;
316  }
317
318  /// If I is a PHI node, then we know the incoming values for any constants.
319  if (PHINode *PN = dyn_cast<PHINode>(I)) {
320    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
321      Value *InVal = PN->getIncomingValue(i);
322      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
323        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
324        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
325      }
326    }
327    return !Result.empty();
328  }
329
330  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
331
332  // Handle some boolean conditions.
333  if (I->getType()->getPrimitiveSizeInBits() == 1) {
334    // X | true -> true
335    // X & false -> false
336    if (I->getOpcode() == Instruction::Or ||
337        I->getOpcode() == Instruction::And) {
338      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
339      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
340
341      if (LHSVals.empty() && RHSVals.empty())
342        return false;
343
344      ConstantInt *InterestingVal;
345      if (I->getOpcode() == Instruction::Or)
346        InterestingVal = ConstantInt::getTrue(I->getContext());
347      else
348        InterestingVal = ConstantInt::getFalse(I->getContext());
349
350      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
351
352      // Scan for the sentinel.  If we find an undef, force it to the
353      // interesting value: x|undef -> true and x&undef -> false.
354      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
355        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
356          Result.push_back(LHSVals[i]);
357          Result.back().first = InterestingVal;
358          LHSKnownBBs.insert(LHSVals[i].second);
359        }
360      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
361        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
362          // If we already inferred a value for this block on the LHS, don't
363          // re-add it.
364          if (!LHSKnownBBs.count(RHSVals[i].second)) {
365            Result.push_back(RHSVals[i]);
366            Result.back().first = InterestingVal;
367          }
368        }
369      return !Result.empty();
370    }
371
372    // Handle the NOT form of XOR.
373    if (I->getOpcode() == Instruction::Xor &&
374        isa<ConstantInt>(I->getOperand(1)) &&
375        cast<ConstantInt>(I->getOperand(1))->isOne()) {
376      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
377      if (Result.empty())
378        return false;
379
380      // Invert the known values.
381      for (unsigned i = 0, e = Result.size(); i != e; ++i)
382        if (Result[i].first)
383          Result[i].first =
384            cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
385      return true;
386    }
387  }
388
389  // Handle compare with phi operand, where the PHI is defined in this block.
390  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
391    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
392    if (PN && PN->getParent() == BB) {
393      // We can do this simplification if any comparisons fold to true or false.
394      // See if any do.
395      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
396        BasicBlock *PredBB = PN->getIncomingBlock(i);
397        Value *LHS = PN->getIncomingValue(i);
398        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
399
400        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
401        if (Res == 0) {
402          if (!LVI || !isa<Constant>(RHS))
403            continue;
404
405          LazyValueInfo::Tristate
406            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
407                                           cast<Constant>(RHS), PredBB, BB);
408          if (ResT == LazyValueInfo::Unknown)
409            continue;
410          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
411        }
412
413        if (isa<UndefValue>(Res))
414          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
415        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
416          Result.push_back(std::make_pair(CI, PredBB));
417      }
418
419      return !Result.empty();
420    }
421
422
423    // If comparing a live-in value against a constant, see if we know the
424    // live-in value on any predecessors.
425    if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
426        Cmp->getType()->isIntegerTy() && // Not vector compare.
427        (!isa<Instruction>(Cmp->getOperand(0)) ||
428         cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
429      Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
430
431      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
432        BasicBlock *P = *PI;
433        // If the value is known by LazyValueInfo to be a constant in a
434        // predecessor, use that information to try to thread this block.
435        LazyValueInfo::Tristate
436          Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
437                                        RHSCst, P, BB);
438        if (Res == LazyValueInfo::Unknown)
439          continue;
440
441        Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
442        Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
443      }
444
445      return !Result.empty();
446    }
447  }
448  return false;
449}
450
451
452
453/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
454/// in an undefined jump, decide which block is best to revector to.
455///
456/// Since we can pick an arbitrary destination, we pick the successor with the
457/// fewest predecessors.  This should reduce the in-degree of the others.
458///
459static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
460  TerminatorInst *BBTerm = BB->getTerminator();
461  unsigned MinSucc = 0;
462  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
463  // Compute the successor with the minimum number of predecessors.
464  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
465  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
466    TestBB = BBTerm->getSuccessor(i);
467    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
468    if (NumPreds < MinNumPreds)
469      MinSucc = i;
470  }
471
472  return MinSucc;
473}
474
475/// ProcessBlock - If there are any predecessors whose control can be threaded
476/// through to a successor, transform them now.
477bool JumpThreading::ProcessBlock(BasicBlock *BB) {
478  // If the block is trivially dead, just return and let the caller nuke it.
479  // This simplifies other transformations.
480  if (pred_begin(BB) == pred_end(BB) &&
481      BB != &BB->getParent()->getEntryBlock())
482    return false;
483
484  // If this block has a single predecessor, and if that pred has a single
485  // successor, merge the blocks.  This encourages recursive jump threading
486  // because now the condition in this block can be threaded through
487  // predecessors of our predecessor block.
488  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
489    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
490        SinglePred != BB) {
491      // If SinglePred was a loop header, BB becomes one.
492      if (LoopHeaders.erase(SinglePred))
493        LoopHeaders.insert(BB);
494
495      // Remember if SinglePred was the entry block of the function.  If so, we
496      // will need to move BB back to the entry position.
497      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
498      if (LVI) LVI->eraseBlock(SinglePred);
499      MergeBasicBlockIntoOnlyPred(BB);
500
501      if (isEntry && BB != &BB->getParent()->getEntryBlock())
502        BB->moveBefore(&BB->getParent()->getEntryBlock());
503      return true;
504    }
505  }
506
507  // Look to see if the terminator is a branch of switch, if not we can't thread
508  // it.
509  Value *Condition;
510  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
511    // Can't thread an unconditional jump.
512    if (BI->isUnconditional()) return false;
513    Condition = BI->getCondition();
514  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
515    Condition = SI->getCondition();
516  else
517    return false; // Must be an invoke.
518
519  // If the terminator of this block is branching on a constant, simplify the
520  // terminator to an unconditional branch.  This can occur due to threading in
521  // other blocks.
522  if (isa<ConstantInt>(Condition)) {
523    DEBUG(dbgs() << "  In block '" << BB->getName()
524          << "' folding terminator: " << *BB->getTerminator() << '\n');
525    ++NumFolds;
526    ConstantFoldTerminator(BB);
527    return true;
528  }
529
530  // If the terminator is branching on an undef, we can pick any of the
531  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
532  if (isa<UndefValue>(Condition)) {
533    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
534
535    // Fold the branch/switch.
536    TerminatorInst *BBTerm = BB->getTerminator();
537    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
538      if (i == BestSucc) continue;
539      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
540    }
541
542    DEBUG(dbgs() << "  In block '" << BB->getName()
543          << "' folding undef terminator: " << *BBTerm << '\n');
544    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
545    BBTerm->eraseFromParent();
546    return true;
547  }
548
549  Instruction *CondInst = dyn_cast<Instruction>(Condition);
550
551  // If the condition is an instruction defined in another block, see if a
552  // predecessor has the same condition:
553  //     br COND, BBX, BBY
554  //  BBX:
555  //     br COND, BBZ, BBW
556  if (!LVI &&
557      !Condition->hasOneUse() && // Multiple uses.
558      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
559    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
560    if (isa<BranchInst>(BB->getTerminator())) {
561      for (; PI != E; ++PI) {
562        BasicBlock *P = *PI;
563        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
564          if (PBI->isConditional() && PBI->getCondition() == Condition &&
565              ProcessBranchOnDuplicateCond(P, BB))
566            return true;
567      }
568    } else {
569      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
570      for (; PI != E; ++PI) {
571        BasicBlock *P = *PI;
572        if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
573          if (PSI->getCondition() == Condition &&
574              ProcessSwitchOnDuplicateCond(P, BB))
575            return true;
576      }
577    }
578  }
579
580  // All the rest of our checks depend on the condition being an instruction.
581  if (CondInst == 0) {
582    // FIXME: Unify this with code below.
583    if (LVI && ProcessThreadableEdges(Condition, BB))
584      return true;
585    return false;
586  }
587
588
589  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
590    if (!LVI &&
591        (!isa<PHINode>(CondCmp->getOperand(0)) ||
592         cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
593      // If we have a comparison, loop over the predecessors to see if there is
594      // a condition with a lexically identical value.
595      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
596      for (; PI != E; ++PI) {
597        BasicBlock *P = *PI;
598        if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
599          if (PBI->isConditional() && P != BB) {
600            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
601              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
602                  CI->getOperand(1) == CondCmp->getOperand(1) &&
603                  CI->getPredicate() == CondCmp->getPredicate()) {
604                // TODO: Could handle things like (x != 4) --> (x == 17)
605                if (ProcessBranchOnDuplicateCond(P, BB))
606                  return true;
607              }
608            }
609          }
610      }
611    }
612  }
613
614  // Check for some cases that are worth simplifying.  Right now we want to look
615  // for loads that are used by a switch or by the condition for the branch.  If
616  // we see one, check to see if it's partially redundant.  If so, insert a PHI
617  // which can then be used to thread the values.
618  //
619  Value *SimplifyValue = CondInst;
620  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
621    if (isa<Constant>(CondCmp->getOperand(1)))
622      SimplifyValue = CondCmp->getOperand(0);
623
624  // TODO: There are other places where load PRE would be profitable, such as
625  // more complex comparisons.
626  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
627    if (SimplifyPartiallyRedundantLoad(LI))
628      return true;
629
630
631  // Handle a variety of cases where we are branching on something derived from
632  // a PHI node in the current block.  If we can prove that any predecessors
633  // compute a predictable value based on a PHI node, thread those predecessors.
634  //
635  if (ProcessThreadableEdges(CondInst, BB))
636    return true;
637
638  // If this is an otherwise-unfoldable branch on a phi node in the current
639  // block, see if we can simplify.
640  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
641    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
642      return ProcessBranchOnPHI(PN);
643
644
645  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
646  if (CondInst->getOpcode() == Instruction::Xor &&
647      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
648    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
649
650
651  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
652  // "(X == 4)", thread through this block.
653
654  return false;
655}
656
657/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
658/// block that jump on exactly the same condition.  This means that we almost
659/// always know the direction of the edge in the DESTBB:
660///  PREDBB:
661///     br COND, DESTBB, BBY
662///  DESTBB:
663///     br COND, BBZ, BBW
664///
665/// If DESTBB has multiple predecessors, we can't just constant fold the branch
666/// in DESTBB, we have to thread over it.
667bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
668                                                 BasicBlock *BB) {
669  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
670
671  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
672  // fold the branch to an unconditional one, which allows other recursive
673  // simplifications.
674  bool BranchDir;
675  if (PredBI->getSuccessor(1) != BB)
676    BranchDir = true;
677  else if (PredBI->getSuccessor(0) != BB)
678    BranchDir = false;
679  else {
680    DEBUG(dbgs() << "  In block '" << PredBB->getName()
681          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
682    ++NumFolds;
683    ConstantFoldTerminator(PredBB);
684    return true;
685  }
686
687  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
688
689  // If the dest block has one predecessor, just fix the branch condition to a
690  // constant and fold it.
691  if (BB->getSinglePredecessor()) {
692    DEBUG(dbgs() << "  In block '" << BB->getName()
693          << "' folding condition to '" << BranchDir << "': "
694          << *BB->getTerminator() << '\n');
695    ++NumFolds;
696    Value *OldCond = DestBI->getCondition();
697    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
698                                          BranchDir));
699    // Delete dead instructions before we fold the branch.  Folding the branch
700    // can eliminate edges from the CFG which can end up deleting OldCond.
701    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
702    ConstantFoldTerminator(BB);
703    return true;
704  }
705
706
707  // Next, figure out which successor we are threading to.
708  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
709
710  SmallVector<BasicBlock*, 2> Preds;
711  Preds.push_back(PredBB);
712
713  // Ok, try to thread it!
714  return ThreadEdge(BB, Preds, SuccBB);
715}
716
717/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
718/// block that switch on exactly the same condition.  This means that we almost
719/// always know the direction of the edge in the DESTBB:
720///  PREDBB:
721///     switch COND [... DESTBB, BBY ... ]
722///  DESTBB:
723///     switch COND [... BBZ, BBW ]
724///
725/// Optimizing switches like this is very important, because simplifycfg builds
726/// switches out of repeated 'if' conditions.
727bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
728                                                 BasicBlock *DestBB) {
729  // Can't thread edge to self.
730  if (PredBB == DestBB)
731    return false;
732
733  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
734  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
735
736  // There are a variety of optimizations that we can potentially do on these
737  // blocks: we order them from most to least preferable.
738
739  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
740  // directly to their destination.  This does not introduce *any* code size
741  // growth.  Skip debug info first.
742  BasicBlock::iterator BBI = DestBB->begin();
743  while (isa<DbgInfoIntrinsic>(BBI))
744    BBI++;
745
746  // FIXME: Thread if it just contains a PHI.
747  if (isa<SwitchInst>(BBI)) {
748    bool MadeChange = false;
749    // Ignore the default edge for now.
750    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
751      ConstantInt *DestVal = DestSI->getCaseValue(i);
752      BasicBlock *DestSucc = DestSI->getSuccessor(i);
753
754      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
755      // PredSI has an explicit case for it.  If so, forward.  If it is covered
756      // by the default case, we can't update PredSI.
757      unsigned PredCase = PredSI->findCaseValue(DestVal);
758      if (PredCase == 0) continue;
759
760      // If PredSI doesn't go to DestBB on this value, then it won't reach the
761      // case on this condition.
762      if (PredSI->getSuccessor(PredCase) != DestBB &&
763          DestSI->getSuccessor(i) != DestBB)
764        continue;
765
766      // Do not forward this if it already goes to this destination, this would
767      // be an infinite loop.
768      if (PredSI->getSuccessor(PredCase) == DestSucc)
769        continue;
770
771      // Otherwise, we're safe to make the change.  Make sure that the edge from
772      // DestSI to DestSucc is not critical and has no PHI nodes.
773      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
774      DEBUG(dbgs() << "THROUGH: " << *DestSI);
775
776      // If the destination has PHI nodes, just split the edge for updating
777      // simplicity.
778      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
779        SplitCriticalEdge(DestSI, i, this);
780        DestSucc = DestSI->getSuccessor(i);
781      }
782      FoldSingleEntryPHINodes(DestSucc);
783      PredSI->setSuccessor(PredCase, DestSucc);
784      MadeChange = true;
785    }
786
787    if (MadeChange)
788      return true;
789  }
790
791  return false;
792}
793
794
795/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
796/// load instruction, eliminate it by replacing it with a PHI node.  This is an
797/// important optimization that encourages jump threading, and needs to be run
798/// interlaced with other jump threading tasks.
799bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
800  // Don't hack volatile loads.
801  if (LI->isVolatile()) return false;
802
803  // If the load is defined in a block with exactly one predecessor, it can't be
804  // partially redundant.
805  BasicBlock *LoadBB = LI->getParent();
806  if (LoadBB->getSinglePredecessor())
807    return false;
808
809  Value *LoadedPtr = LI->getOperand(0);
810
811  // If the loaded operand is defined in the LoadBB, it can't be available.
812  // TODO: Could do simple PHI translation, that would be fun :)
813  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
814    if (PtrOp->getParent() == LoadBB)
815      return false;
816
817  // Scan a few instructions up from the load, to see if it is obviously live at
818  // the entry to its block.
819  BasicBlock::iterator BBIt = LI;
820
821  if (Value *AvailableVal =
822        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
823    // If the value if the load is locally available within the block, just use
824    // it.  This frequently occurs for reg2mem'd allocas.
825    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
826
827    // If the returned value is the load itself, replace with an undef. This can
828    // only happen in dead loops.
829    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
830    LI->replaceAllUsesWith(AvailableVal);
831    LI->eraseFromParent();
832    return true;
833  }
834
835  // Otherwise, if we scanned the whole block and got to the top of the block,
836  // we know the block is locally transparent to the load.  If not, something
837  // might clobber its value.
838  if (BBIt != LoadBB->begin())
839    return false;
840
841
842  SmallPtrSet<BasicBlock*, 8> PredsScanned;
843  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
844  AvailablePredsTy AvailablePreds;
845  BasicBlock *OneUnavailablePred = 0;
846
847  // If we got here, the loaded value is transparent through to the start of the
848  // block.  Check to see if it is available in any of the predecessor blocks.
849  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
850       PI != PE; ++PI) {
851    BasicBlock *PredBB = *PI;
852
853    // If we already scanned this predecessor, skip it.
854    if (!PredsScanned.insert(PredBB))
855      continue;
856
857    // Scan the predecessor to see if the value is available in the pred.
858    BBIt = PredBB->end();
859    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
860    if (!PredAvailable) {
861      OneUnavailablePred = PredBB;
862      continue;
863    }
864
865    // If so, this load is partially redundant.  Remember this info so that we
866    // can create a PHI node.
867    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
868  }
869
870  // If the loaded value isn't available in any predecessor, it isn't partially
871  // redundant.
872  if (AvailablePreds.empty()) return false;
873
874  // Okay, the loaded value is available in at least one (and maybe all!)
875  // predecessors.  If the value is unavailable in more than one unique
876  // predecessor, we want to insert a merge block for those common predecessors.
877  // This ensures that we only have to insert one reload, thus not increasing
878  // code size.
879  BasicBlock *UnavailablePred = 0;
880
881  // If there is exactly one predecessor where the value is unavailable, the
882  // already computed 'OneUnavailablePred' block is it.  If it ends in an
883  // unconditional branch, we know that it isn't a critical edge.
884  if (PredsScanned.size() == AvailablePreds.size()+1 &&
885      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
886    UnavailablePred = OneUnavailablePred;
887  } else if (PredsScanned.size() != AvailablePreds.size()) {
888    // Otherwise, we had multiple unavailable predecessors or we had a critical
889    // edge from the one.
890    SmallVector<BasicBlock*, 8> PredsToSplit;
891    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
892
893    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
894      AvailablePredSet.insert(AvailablePreds[i].first);
895
896    // Add all the unavailable predecessors to the PredsToSplit list.
897    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
898         PI != PE; ++PI) {
899      BasicBlock *P = *PI;
900      // If the predecessor is an indirect goto, we can't split the edge.
901      if (isa<IndirectBrInst>(P->getTerminator()))
902        return false;
903
904      if (!AvailablePredSet.count(P))
905        PredsToSplit.push_back(P);
906    }
907
908    // Split them out to their own block.
909    UnavailablePred =
910      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
911                             "thread-pre-split", this);
912  }
913
914  // If the value isn't available in all predecessors, then there will be
915  // exactly one where it isn't available.  Insert a load on that edge and add
916  // it to the AvailablePreds list.
917  if (UnavailablePred) {
918    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
919           "Can't handle critical edge here!");
920    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
921                                 LI->getAlignment(),
922                                 UnavailablePred->getTerminator());
923    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
924  }
925
926  // Now we know that each predecessor of this block has a value in
927  // AvailablePreds, sort them for efficient access as we're walking the preds.
928  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
929
930  // Create a PHI node at the start of the block for the PRE'd load value.
931  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
932  PN->takeName(LI);
933
934  // Insert new entries into the PHI for each predecessor.  A single block may
935  // have multiple entries here.
936  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
937       ++PI) {
938    BasicBlock *P = *PI;
939    AvailablePredsTy::iterator I =
940      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
941                       std::make_pair(P, (Value*)0));
942
943    assert(I != AvailablePreds.end() && I->first == P &&
944           "Didn't find entry for predecessor!");
945
946    PN->addIncoming(I->second, I->first);
947  }
948
949  //cerr << "PRE: " << *LI << *PN << "\n";
950
951  LI->replaceAllUsesWith(PN);
952  LI->eraseFromParent();
953
954  return true;
955}
956
957/// FindMostPopularDest - The specified list contains multiple possible
958/// threadable destinations.  Pick the one that occurs the most frequently in
959/// the list.
960static BasicBlock *
961FindMostPopularDest(BasicBlock *BB,
962                    const SmallVectorImpl<std::pair<BasicBlock*,
963                                  BasicBlock*> > &PredToDestList) {
964  assert(!PredToDestList.empty());
965
966  // Determine popularity.  If there are multiple possible destinations, we
967  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
968  // blocks with known and real destinations to threading undef.  We'll handle
969  // them later if interesting.
970  DenseMap<BasicBlock*, unsigned> DestPopularity;
971  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
972    if (PredToDestList[i].second)
973      DestPopularity[PredToDestList[i].second]++;
974
975  // Find the most popular dest.
976  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
977  BasicBlock *MostPopularDest = DPI->first;
978  unsigned Popularity = DPI->second;
979  SmallVector<BasicBlock*, 4> SamePopularity;
980
981  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
982    // If the popularity of this entry isn't higher than the popularity we've
983    // seen so far, ignore it.
984    if (DPI->second < Popularity)
985      ; // ignore.
986    else if (DPI->second == Popularity) {
987      // If it is the same as what we've seen so far, keep track of it.
988      SamePopularity.push_back(DPI->first);
989    } else {
990      // If it is more popular, remember it.
991      SamePopularity.clear();
992      MostPopularDest = DPI->first;
993      Popularity = DPI->second;
994    }
995  }
996
997  // Okay, now we know the most popular destination.  If there is more than
998  // destination, we need to determine one.  This is arbitrary, but we need
999  // to make a deterministic decision.  Pick the first one that appears in the
1000  // successor list.
1001  if (!SamePopularity.empty()) {
1002    SamePopularity.push_back(MostPopularDest);
1003    TerminatorInst *TI = BB->getTerminator();
1004    for (unsigned i = 0; ; ++i) {
1005      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1006
1007      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1008                    TI->getSuccessor(i)) == SamePopularity.end())
1009        continue;
1010
1011      MostPopularDest = TI->getSuccessor(i);
1012      break;
1013    }
1014  }
1015
1016  // Okay, we have finally picked the most popular destination.
1017  return MostPopularDest;
1018}
1019
1020bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1021  // If threading this would thread across a loop header, don't even try to
1022  // thread the edge.
1023  if (LoopHeaders.count(BB))
1024    return false;
1025
1026  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1027  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1028    return false;
1029  assert(!PredValues.empty() &&
1030         "ComputeValueKnownInPredecessors returned true with no values");
1031
1032  DEBUG(dbgs() << "IN BB: " << *BB;
1033        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1034          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
1035          if (PredValues[i].first)
1036            dbgs() << *PredValues[i].first;
1037          else
1038            dbgs() << "UNDEF";
1039          dbgs() << " for pred '" << PredValues[i].second->getName()
1040          << "'.\n";
1041        });
1042
1043  // Decide what we want to thread through.  Convert our list of known values to
1044  // a list of known destinations for each pred.  This also discards duplicate
1045  // predecessors and keeps track of the undefined inputs (which are represented
1046  // as a null dest in the PredToDestList).
1047  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1048  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1049
1050  BasicBlock *OnlyDest = 0;
1051  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1052
1053  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1054    BasicBlock *Pred = PredValues[i].second;
1055    if (!SeenPreds.insert(Pred))
1056      continue;  // Duplicate predecessor entry.
1057
1058    // If the predecessor ends with an indirect goto, we can't change its
1059    // destination.
1060    if (isa<IndirectBrInst>(Pred->getTerminator()))
1061      continue;
1062
1063    ConstantInt *Val = PredValues[i].first;
1064
1065    BasicBlock *DestBB;
1066    if (Val == 0)      // Undef.
1067      DestBB = 0;
1068    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1069      DestBB = BI->getSuccessor(Val->isZero());
1070    else {
1071      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1072      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1073    }
1074
1075    // If we have exactly one destination, remember it for efficiency below.
1076    if (i == 0)
1077      OnlyDest = DestBB;
1078    else if (OnlyDest != DestBB)
1079      OnlyDest = MultipleDestSentinel;
1080
1081    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1082  }
1083
1084  // If all edges were unthreadable, we fail.
1085  if (PredToDestList.empty())
1086    return false;
1087
1088  // Determine which is the most common successor.  If we have many inputs and
1089  // this block is a switch, we want to start by threading the batch that goes
1090  // to the most popular destination first.  If we only know about one
1091  // threadable destination (the common case) we can avoid this.
1092  BasicBlock *MostPopularDest = OnlyDest;
1093
1094  if (MostPopularDest == MultipleDestSentinel)
1095    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1096
1097  // Now that we know what the most popular destination is, factor all
1098  // predecessors that will jump to it into a single predecessor.
1099  SmallVector<BasicBlock*, 16> PredsToFactor;
1100  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1101    if (PredToDestList[i].second == MostPopularDest) {
1102      BasicBlock *Pred = PredToDestList[i].first;
1103
1104      // This predecessor may be a switch or something else that has multiple
1105      // edges to the block.  Factor each of these edges by listing them
1106      // according to # occurrences in PredsToFactor.
1107      TerminatorInst *PredTI = Pred->getTerminator();
1108      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1109        if (PredTI->getSuccessor(i) == BB)
1110          PredsToFactor.push_back(Pred);
1111    }
1112
1113  // If the threadable edges are branching on an undefined value, we get to pick
1114  // the destination that these predecessors should get to.
1115  if (MostPopularDest == 0)
1116    MostPopularDest = BB->getTerminator()->
1117                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1118
1119  // Ok, try to thread it!
1120  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1121}
1122
1123/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1124/// a PHI node in the current block.  See if there are any simplifications we
1125/// can do based on inputs to the phi node.
1126///
1127bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1128  BasicBlock *BB = PN->getParent();
1129
1130  // TODO: We could make use of this to do it once for blocks with common PHI
1131  // values.
1132  SmallVector<BasicBlock*, 1> PredBBs;
1133  PredBBs.resize(1);
1134
1135  // If any of the predecessor blocks end in an unconditional branch, we can
1136  // *duplicate* the conditional branch into that block in order to further
1137  // encourage jump threading and to eliminate cases where we have branch on a
1138  // phi of an icmp (branch on icmp is much better).
1139  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1140    BasicBlock *PredBB = PN->getIncomingBlock(i);
1141    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1142      if (PredBr->isUnconditional()) {
1143        PredBBs[0] = PredBB;
1144        // Try to duplicate BB into PredBB.
1145        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1146          return true;
1147      }
1148  }
1149
1150  return false;
1151}
1152
1153/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1154/// a xor instruction in the current block.  See if there are any
1155/// simplifications we can do based on inputs to the xor.
1156///
1157bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1158  BasicBlock *BB = BO->getParent();
1159
1160  // If either the LHS or RHS of the xor is a constant, don't do this
1161  // optimization.
1162  if (isa<ConstantInt>(BO->getOperand(0)) ||
1163      isa<ConstantInt>(BO->getOperand(1)))
1164    return false;
1165
1166  // If the first instruction in BB isn't a phi, we won't be able to infer
1167  // anything special about any particular predecessor.
1168  if (!isa<PHINode>(BB->front()))
1169    return false;
1170
1171  // If we have a xor as the branch input to this block, and we know that the
1172  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1173  // the condition into the predecessor and fix that value to true, saving some
1174  // logical ops on that path and encouraging other paths to simplify.
1175  //
1176  // This copies something like this:
1177  //
1178  //  BB:
1179  //    %X = phi i1 [1],  [%X']
1180  //    %Y = icmp eq i32 %A, %B
1181  //    %Z = xor i1 %X, %Y
1182  //    br i1 %Z, ...
1183  //
1184  // Into:
1185  //  BB':
1186  //    %Y = icmp ne i32 %A, %B
1187  //    br i1 %Z, ...
1188
1189  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1190  bool isLHS = true;
1191  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1192    assert(XorOpValues.empty());
1193    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1194      return false;
1195    isLHS = false;
1196  }
1197
1198  assert(!XorOpValues.empty() &&
1199         "ComputeValueKnownInPredecessors returned true with no values");
1200
1201  // Scan the information to see which is most popular: true or false.  The
1202  // predecessors can be of the set true, false, or undef.
1203  unsigned NumTrue = 0, NumFalse = 0;
1204  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1205    if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
1206    if (XorOpValues[i].first->isZero())
1207      ++NumFalse;
1208    else
1209      ++NumTrue;
1210  }
1211
1212  // Determine which value to split on, true, false, or undef if neither.
1213  ConstantInt *SplitVal = 0;
1214  if (NumTrue > NumFalse)
1215    SplitVal = ConstantInt::getTrue(BB->getContext());
1216  else if (NumTrue != 0 || NumFalse != 0)
1217    SplitVal = ConstantInt::getFalse(BB->getContext());
1218
1219  // Collect all of the blocks that this can be folded into so that we can
1220  // factor this once and clone it once.
1221  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1222  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1223    if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1224
1225    BlocksToFoldInto.push_back(XorOpValues[i].second);
1226  }
1227
1228  // If we inferred a value for all of the predecessors, then duplication won't
1229  // help us.  However, we can just replace the LHS or RHS with the constant.
1230  if (BlocksToFoldInto.size() ==
1231      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1232    if (SplitVal == 0) {
1233      // If all preds provide undef, just nuke the xor, because it is undef too.
1234      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1235      BO->eraseFromParent();
1236    } else if (SplitVal->isZero()) {
1237      // If all preds provide 0, replace the xor with the other input.
1238      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1239      BO->eraseFromParent();
1240    } else {
1241      // If all preds provide 1, set the computed value to 1.
1242      BO->setOperand(!isLHS, SplitVal);
1243    }
1244
1245    return true;
1246  }
1247
1248  // Try to duplicate BB into PredBB.
1249  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1250}
1251
1252
1253/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1254/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1255/// NewPred using the entries from OldPred (suitably mapped).
1256static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1257                                            BasicBlock *OldPred,
1258                                            BasicBlock *NewPred,
1259                                     DenseMap<Instruction*, Value*> &ValueMap) {
1260  for (BasicBlock::iterator PNI = PHIBB->begin();
1261       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1262    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1263    // DestBlock.
1264    Value *IV = PN->getIncomingValueForBlock(OldPred);
1265
1266    // Remap the value if necessary.
1267    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1268      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1269      if (I != ValueMap.end())
1270        IV = I->second;
1271    }
1272
1273    PN->addIncoming(IV, NewPred);
1274  }
1275}
1276
1277/// ThreadEdge - We have decided that it is safe and profitable to factor the
1278/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1279/// across BB.  Transform the IR to reflect this change.
1280bool JumpThreading::ThreadEdge(BasicBlock *BB,
1281                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1282                               BasicBlock *SuccBB) {
1283  // If threading to the same block as we come from, we would infinite loop.
1284  if (SuccBB == BB) {
1285    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1286          << "' - would thread to self!\n");
1287    return false;
1288  }
1289
1290  // If threading this would thread across a loop header, don't thread the edge.
1291  // See the comments above FindLoopHeaders for justifications and caveats.
1292  if (LoopHeaders.count(BB)) {
1293    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1294          << "' to dest BB '" << SuccBB->getName()
1295          << "' - it might create an irreducible loop!\n");
1296    return false;
1297  }
1298
1299  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1300  if (JumpThreadCost > Threshold) {
1301    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1302          << "' - Cost is too high: " << JumpThreadCost << "\n");
1303    return false;
1304  }
1305
1306  // And finally, do it!  Start by factoring the predecessors is needed.
1307  BasicBlock *PredBB;
1308  if (PredBBs.size() == 1)
1309    PredBB = PredBBs[0];
1310  else {
1311    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1312          << " common predecessors.\n");
1313    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1314                                    ".thr_comm", this);
1315  }
1316
1317  // And finally, do it!
1318  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1319        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1320        << ", across block:\n    "
1321        << *BB << "\n");
1322
1323  if (LVI)
1324    LVI->threadEdge(PredBB, BB, SuccBB);
1325
1326  // We are going to have to map operands from the original BB block to the new
1327  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1328  // account for entry from PredBB.
1329  DenseMap<Instruction*, Value*> ValueMapping;
1330
1331  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1332                                         BB->getName()+".thread",
1333                                         BB->getParent(), BB);
1334  NewBB->moveAfter(PredBB);
1335
1336  BasicBlock::iterator BI = BB->begin();
1337  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1338    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1339
1340  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1341  // mapping and using it to remap operands in the cloned instructions.
1342  for (; !isa<TerminatorInst>(BI); ++BI) {
1343    Instruction *New = BI->clone();
1344    New->setName(BI->getName());
1345    NewBB->getInstList().push_back(New);
1346    ValueMapping[BI] = New;
1347
1348    // Remap operands to patch up intra-block references.
1349    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1350      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1351        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1352        if (I != ValueMapping.end())
1353          New->setOperand(i, I->second);
1354      }
1355  }
1356
1357  // We didn't copy the terminator from BB over to NewBB, because there is now
1358  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1359  BranchInst::Create(SuccBB, NewBB);
1360
1361  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1362  // PHI nodes for NewBB now.
1363  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1364
1365  // If there were values defined in BB that are used outside the block, then we
1366  // now have to update all uses of the value to use either the original value,
1367  // the cloned value, or some PHI derived value.  This can require arbitrary
1368  // PHI insertion, of which we are prepared to do, clean these up now.
1369  SSAUpdater SSAUpdate;
1370  SmallVector<Use*, 16> UsesToRename;
1371  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1372    // Scan all uses of this instruction to see if it is used outside of its
1373    // block, and if so, record them in UsesToRename.
1374    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1375         ++UI) {
1376      Instruction *User = cast<Instruction>(*UI);
1377      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1378        if (UserPN->getIncomingBlock(UI) == BB)
1379          continue;
1380      } else if (User->getParent() == BB)
1381        continue;
1382
1383      UsesToRename.push_back(&UI.getUse());
1384    }
1385
1386    // If there are no uses outside the block, we're done with this instruction.
1387    if (UsesToRename.empty())
1388      continue;
1389
1390    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1391
1392    // We found a use of I outside of BB.  Rename all uses of I that are outside
1393    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1394    // with the two values we know.
1395    SSAUpdate.Initialize(I);
1396    SSAUpdate.AddAvailableValue(BB, I);
1397    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1398
1399    while (!UsesToRename.empty())
1400      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1401    DEBUG(dbgs() << "\n");
1402  }
1403
1404
1405  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1406  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1407  // us to simplify any PHI nodes in BB.
1408  TerminatorInst *PredTerm = PredBB->getTerminator();
1409  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1410    if (PredTerm->getSuccessor(i) == BB) {
1411      RemovePredecessorAndSimplify(BB, PredBB, TD);
1412      PredTerm->setSuccessor(i, NewBB);
1413    }
1414
1415  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1416  // over the new instructions and zap any that are constants or dead.  This
1417  // frequently happens because of phi translation.
1418  SimplifyInstructionsInBlock(NewBB, TD);
1419
1420  // Threaded an edge!
1421  ++NumThreads;
1422  return true;
1423}
1424
1425/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1426/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1427/// If we can duplicate the contents of BB up into PredBB do so now, this
1428/// improves the odds that the branch will be on an analyzable instruction like
1429/// a compare.
1430bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1431                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1432  assert(!PredBBs.empty() && "Can't handle an empty set");
1433
1434  // If BB is a loop header, then duplicating this block outside the loop would
1435  // cause us to transform this into an irreducible loop, don't do this.
1436  // See the comments above FindLoopHeaders for justifications and caveats.
1437  if (LoopHeaders.count(BB)) {
1438    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1439          << "' into predecessor block '" << PredBBs[0]->getName()
1440          << "' - it might create an irreducible loop!\n");
1441    return false;
1442  }
1443
1444  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1445  if (DuplicationCost > Threshold) {
1446    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1447          << "' - Cost is too high: " << DuplicationCost << "\n");
1448    return false;
1449  }
1450
1451  // And finally, do it!  Start by factoring the predecessors is needed.
1452  BasicBlock *PredBB;
1453  if (PredBBs.size() == 1)
1454    PredBB = PredBBs[0];
1455  else {
1456    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1457          << " common predecessors.\n");
1458    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1459                                    ".thr_comm", this);
1460  }
1461
1462  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1463  // of PredBB.
1464  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1465        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1466        << DuplicationCost << " block is:" << *BB << "\n");
1467
1468  // Unless PredBB ends with an unconditional branch, split the edge so that we
1469  // can just clone the bits from BB into the end of the new PredBB.
1470  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1471
1472  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1473    PredBB = SplitEdge(PredBB, BB, this);
1474    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1475  }
1476
1477  // We are going to have to map operands from the original BB block into the
1478  // PredBB block.  Evaluate PHI nodes in BB.
1479  DenseMap<Instruction*, Value*> ValueMapping;
1480
1481  BasicBlock::iterator BI = BB->begin();
1482  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1483    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1484
1485  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1486  // mapping and using it to remap operands in the cloned instructions.
1487  for (; BI != BB->end(); ++BI) {
1488    Instruction *New = BI->clone();
1489
1490    // Remap operands to patch up intra-block references.
1491    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1492      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1493        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1494        if (I != ValueMapping.end())
1495          New->setOperand(i, I->second);
1496      }
1497
1498    // If this instruction can be simplified after the operands are updated,
1499    // just use the simplified value instead.  This frequently happens due to
1500    // phi translation.
1501    if (Value *IV = SimplifyInstruction(New, TD)) {
1502      delete New;
1503      ValueMapping[BI] = IV;
1504    } else {
1505      // Otherwise, insert the new instruction into the block.
1506      New->setName(BI->getName());
1507      PredBB->getInstList().insert(OldPredBranch, New);
1508      ValueMapping[BI] = New;
1509    }
1510  }
1511
1512  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1513  // add entries to the PHI nodes for branch from PredBB now.
1514  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1515  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1516                                  ValueMapping);
1517  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1518                                  ValueMapping);
1519
1520  // If there were values defined in BB that are used outside the block, then we
1521  // now have to update all uses of the value to use either the original value,
1522  // the cloned value, or some PHI derived value.  This can require arbitrary
1523  // PHI insertion, of which we are prepared to do, clean these up now.
1524  SSAUpdater SSAUpdate;
1525  SmallVector<Use*, 16> UsesToRename;
1526  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1527    // Scan all uses of this instruction to see if it is used outside of its
1528    // block, and if so, record them in UsesToRename.
1529    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1530         ++UI) {
1531      Instruction *User = cast<Instruction>(*UI);
1532      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1533        if (UserPN->getIncomingBlock(UI) == BB)
1534          continue;
1535      } else if (User->getParent() == BB)
1536        continue;
1537
1538      UsesToRename.push_back(&UI.getUse());
1539    }
1540
1541    // If there are no uses outside the block, we're done with this instruction.
1542    if (UsesToRename.empty())
1543      continue;
1544
1545    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1546
1547    // We found a use of I outside of BB.  Rename all uses of I that are outside
1548    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1549    // with the two values we know.
1550    SSAUpdate.Initialize(I);
1551    SSAUpdate.AddAvailableValue(BB, I);
1552    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1553
1554    while (!UsesToRename.empty())
1555      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1556    DEBUG(dbgs() << "\n");
1557  }
1558
1559  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1560  // that we nuked.
1561  RemovePredecessorAndSimplify(BB, PredBB, TD);
1562
1563  // Remove the unconditional branch at the end of the PredBB block.
1564  OldPredBranch->eraseFromParent();
1565
1566  ++NumDupes;
1567  return true;
1568}
1569
1570
1571