JumpThreading.cpp revision fddcf47a249fe3a1102257deddc996ee327a85cb
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Transforms/Utils/Local.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32using namespace llvm;
33
34STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds,   "Number of terminators folded");
36STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
37
38static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40          cl::desc("Max block size to duplicate for jump threading"),
41          cl::init(6), cl::Hidden);
42
43namespace {
44  /// This pass performs 'jump threading', which looks at blocks that have
45  /// multiple predecessors and multiple successors.  If one or more of the
46  /// predecessors of the block can be proven to always jump to one of the
47  /// successors, we forward the edge from the predecessor to the successor by
48  /// duplicating the contents of this block.
49  ///
50  /// An example of when this can occur is code like this:
51  ///
52  ///   if () { ...
53  ///     X = 4;
54  ///   }
55  ///   if (X < 3) {
56  ///
57  /// In this case, the unconditional branch at the end of the first if can be
58  /// revectored to the false side of the second if.
59  ///
60  class JumpThreading : public FunctionPass {
61    TargetData *TD;
62#ifdef NDEBUG
63    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
67  public:
68    static char ID; // Pass identification
69    JumpThreading() : FunctionPass(&ID) {}
70
71    bool runOnFunction(Function &F);
72    void FindLoopHeaders(Function &F);
73
74    bool ProcessBlock(BasicBlock *BB);
75    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76                    BasicBlock *SuccBB);
77    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78                                          BasicBlock *PredBB);
79
80    typedef SmallVectorImpl<std::pair<ConstantInt*,
81                                      BasicBlock*> > PredValueInfo;
82
83    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84                                         PredValueInfo &Result);
85    bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
88    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
89    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
90
91    bool ProcessJumpOnPHI(PHINode *PN);
92
93    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
94  };
95}
96
97char JumpThreading::ID = 0;
98static RegisterPass<JumpThreading>
99X("jump-threading", "Jump Threading");
100
101// Public interface to the Jump Threading pass
102FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103
104/// runOnFunction - Top level algorithm.
105///
106bool JumpThreading::runOnFunction(Function &F) {
107  DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
108  TD = getAnalysisIfAvailable<TargetData>();
109
110  FindLoopHeaders(F);
111
112  bool AnotherIteration = true, EverChanged = false;
113  while (AnotherIteration) {
114    AnotherIteration = false;
115    bool Changed = false;
116    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117      BasicBlock *BB = I;
118      while (ProcessBlock(BB))
119        Changed = true;
120
121      ++I;
122
123      // If the block is trivially dead, zap it.  This eliminates the successor
124      // edges which simplifies the CFG.
125      if (pred_begin(BB) == pred_end(BB) &&
126          BB != &BB->getParent()->getEntryBlock()) {
127        DEBUG(errs() << "  JT: Deleting dead block '" << BB->getName()
128              << "' with terminator: " << *BB->getTerminator() << '\n');
129        LoopHeaders.erase(BB);
130        DeleteDeadBlock(BB);
131        Changed = true;
132      }
133    }
134    AnotherIteration = Changed;
135    EverChanged |= Changed;
136  }
137
138  LoopHeaders.clear();
139  return EverChanged;
140}
141
142/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
143/// thread across it.
144static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
145  /// Ignore PHI nodes, these will be flattened when duplication happens.
146  BasicBlock::const_iterator I = BB->getFirstNonPHI();
147
148  // Sum up the cost of each instruction until we get to the terminator.  Don't
149  // include the terminator because the copy won't include it.
150  unsigned Size = 0;
151  for (; !isa<TerminatorInst>(I); ++I) {
152    // Debugger intrinsics don't incur code size.
153    if (isa<DbgInfoIntrinsic>(I)) continue;
154
155    // If this is a pointer->pointer bitcast, it is free.
156    if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
157      continue;
158
159    // All other instructions count for at least one unit.
160    ++Size;
161
162    // Calls are more expensive.  If they are non-intrinsic calls, we model them
163    // as having cost of 4.  If they are a non-vector intrinsic, we model them
164    // as having cost of 2 total, and if they are a vector intrinsic, we model
165    // them as having cost 1.
166    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
167      if (!isa<IntrinsicInst>(CI))
168        Size += 3;
169      else if (!isa<VectorType>(CI->getType()))
170        Size += 1;
171    }
172  }
173
174  // Threading through a switch statement is particularly profitable.  If this
175  // block ends in a switch, decrease its cost to make it more likely to happen.
176  if (isa<SwitchInst>(I))
177    Size = Size > 6 ? Size-6 : 0;
178
179  return Size;
180}
181
182
183//===----------------------------------------------------------------------===//
184
185/// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
186/// delete the From instruction.  In addition to a basic RAUW, this does a
187/// recursive simplification of the newly formed instructions.  This catches
188/// things where one simplification exposes other opportunities.  This only
189/// simplifies and deletes scalar operations, it does not change the CFG.
190///
191static void ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
192                                      const TargetData *TD) {
193  assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
194
195  // FromHandle - This keeps a weakvh on the from value so that we can know if
196  // it gets deleted out from under us in a recursive simplification.
197  WeakVH FromHandle(From);
198
199  while (!From->use_empty()) {
200    // Update the instruction to use the new value.
201    Use &U = From->use_begin().getUse();
202    Instruction *User = cast<Instruction>(U.getUser());
203    U = To;
204
205    // See if we can simplify it.
206    if (Value *V = SimplifyInstruction(User, TD)) {
207      // Recursively simplify this.
208      ReplaceAndSimplifyAllUses(User, V, TD);
209
210      // If the recursive simplification ended up revisiting and deleting 'From'
211      // then we're done.
212      if (FromHandle == 0)
213        return;
214    }
215  }
216  From->eraseFromParent();
217}
218
219
220/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
221/// method is called when we're about to delete Pred as a predecessor of BB.  If
222/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
223///
224/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
225/// nodes that collapse into identity values.  For example, if we have:
226///   x = phi(1, 0, 0, 0)
227///   y = and x, z
228///
229/// .. and delete the predecessor corresponding to the '1', this will attempt to
230/// recursively fold the and to 0.
231static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
232                                         TargetData *TD) {
233  // This only adjusts blocks with PHI nodes.
234  if (!isa<PHINode>(BB->begin()))
235    return;
236
237  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
238  // them down.  This will leave us with single entry phi nodes and other phis
239  // that can be removed.
240  BB->removePredecessor(Pred, true);
241
242  WeakVH PhiIt = &BB->front();
243  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
244    PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
245
246    Value *PNV = PN->hasConstantValue();
247    if (PNV == 0) continue;
248
249    // If we're able to simplify the phi to a single value, substitute the new
250    // value into all of its uses.
251    assert(PNV != PN && "hasConstantValue broken");
252
253    ReplaceAndSimplifyAllUses(PN, PNV, TD);
254
255    // If recursive simplification ended up deleting the next PHI node we would
256    // iterate to, then our iterator is invalid, restart scanning from the top
257    // of the block.
258    if (PhiIt == 0) PhiIt = &BB->front();
259  }
260}
261
262//===----------------------------------------------------------------------===//
263
264
265/// FindLoopHeaders - We do not want jump threading to turn proper loop
266/// structures into irreducible loops.  Doing this breaks up the loop nesting
267/// hierarchy and pessimizes later transformations.  To prevent this from
268/// happening, we first have to find the loop headers.  Here we approximate this
269/// by finding targets of backedges in the CFG.
270///
271/// Note that there definitely are cases when we want to allow threading of
272/// edges across a loop header.  For example, threading a jump from outside the
273/// loop (the preheader) to an exit block of the loop is definitely profitable.
274/// It is also almost always profitable to thread backedges from within the loop
275/// to exit blocks, and is often profitable to thread backedges to other blocks
276/// within the loop (forming a nested loop).  This simple analysis is not rich
277/// enough to track all of these properties and keep it up-to-date as the CFG
278/// mutates, so we don't allow any of these transformations.
279///
280void JumpThreading::FindLoopHeaders(Function &F) {
281  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
282  FindFunctionBackedges(F, Edges);
283
284  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
285    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
286}
287
288/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
289/// if we can infer that the value is a known ConstantInt in any of our
290/// predecessors.  If so, return the known list of value and pred BB in the
291/// result vector.  If a value is known to be undef, it is returned as null.
292///
293/// The BB basic block is known to start with a PHI node.
294///
295/// This returns true if there were any known values.
296///
297///
298/// TODO: Per PR2563, we could infer value range information about a predecessor
299/// based on its terminator.
300bool JumpThreading::
301ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
302  PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
303
304  // If V is a constantint, then it is known in all predecessors.
305  if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
306    ConstantInt *CI = dyn_cast<ConstantInt>(V);
307    Result.resize(TheFirstPHI->getNumIncomingValues());
308    for (unsigned i = 0, e = Result.size(); i != e; ++i)
309      Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
310    return true;
311  }
312
313  // If V is a non-instruction value, or an instruction in a different block,
314  // then it can't be derived from a PHI.
315  Instruction *I = dyn_cast<Instruction>(V);
316  if (I == 0 || I->getParent() != BB)
317    return false;
318
319  /// If I is a PHI node, then we know the incoming values for any constants.
320  if (PHINode *PN = dyn_cast<PHINode>(I)) {
321    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
322      Value *InVal = PN->getIncomingValue(i);
323      if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
324        ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
325        Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
326      }
327    }
328    return !Result.empty();
329  }
330
331  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
332
333  // Handle some boolean conditions.
334  if (I->getType()->getPrimitiveSizeInBits() == 1) {
335    // X | true -> true
336    // X & false -> false
337    if (I->getOpcode() == Instruction::Or ||
338        I->getOpcode() == Instruction::And) {
339      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
340      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
341
342      if (LHSVals.empty() && RHSVals.empty())
343        return false;
344
345      ConstantInt *InterestingVal;
346      if (I->getOpcode() == Instruction::Or)
347        InterestingVal = ConstantInt::getTrue(I->getContext());
348      else
349        InterestingVal = ConstantInt::getFalse(I->getContext());
350
351      // Scan for the sentinel.
352      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
353        if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
354          Result.push_back(LHSVals[i]);
355      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
356        if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
357          Result.push_back(RHSVals[i]);
358      return !Result.empty();
359    }
360
361    // TODO: Should handle the NOT form of XOR.
362
363  }
364
365  // Handle compare with phi operand, where the PHI is defined in this block.
366  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
367    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
368    if (PN && PN->getParent() == BB) {
369      // We can do this simplification if any comparisons fold to true or false.
370      // See if any do.
371      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
372        BasicBlock *PredBB = PN->getIncomingBlock(i);
373        Value *LHS = PN->getIncomingValue(i);
374        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
375
376        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
377        if (Res == 0) continue;
378
379        if (isa<UndefValue>(Res))
380          Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
381        else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
382          Result.push_back(std::make_pair(CI, PredBB));
383      }
384
385      return !Result.empty();
386    }
387
388    // TODO: We could also recurse to see if we can determine constants another
389    // way.
390  }
391  return false;
392}
393
394
395
396/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
397/// in an undefined jump, decide which block is best to revector to.
398///
399/// Since we can pick an arbitrary destination, we pick the successor with the
400/// fewest predecessors.  This should reduce the in-degree of the others.
401///
402static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
403  TerminatorInst *BBTerm = BB->getTerminator();
404  unsigned MinSucc = 0;
405  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
406  // Compute the successor with the minimum number of predecessors.
407  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
408  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
409    TestBB = BBTerm->getSuccessor(i);
410    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
411    if (NumPreds < MinNumPreds)
412      MinSucc = i;
413  }
414
415  return MinSucc;
416}
417
418/// ProcessBlock - If there are any predecessors whose control can be threaded
419/// through to a successor, transform them now.
420bool JumpThreading::ProcessBlock(BasicBlock *BB) {
421  // If this block has a single predecessor, and if that pred has a single
422  // successor, merge the blocks.  This encourages recursive jump threading
423  // because now the condition in this block can be threaded through
424  // predecessors of our predecessor block.
425  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
426    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
427        SinglePred != BB) {
428      // If SinglePred was a loop header, BB becomes one.
429      if (LoopHeaders.erase(SinglePred))
430        LoopHeaders.insert(BB);
431
432      // Remember if SinglePred was the entry block of the function.  If so, we
433      // will need to move BB back to the entry position.
434      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
435      MergeBasicBlockIntoOnlyPred(BB);
436
437      if (isEntry && BB != &BB->getParent()->getEntryBlock())
438        BB->moveBefore(&BB->getParent()->getEntryBlock());
439      return true;
440    }
441  }
442
443  // Look to see if the terminator is a branch of switch, if not we can't thread
444  // it.
445  Value *Condition;
446  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
447    // Can't thread an unconditional jump.
448    if (BI->isUnconditional()) return false;
449    Condition = BI->getCondition();
450  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
451    Condition = SI->getCondition();
452  else
453    return false; // Must be an invoke.
454
455  // If the terminator of this block is branching on a constant, simplify the
456  // terminator to an unconditional branch.  This can occur due to threading in
457  // other blocks.
458  if (isa<ConstantInt>(Condition)) {
459    DEBUG(errs() << "  In block '" << BB->getName()
460          << "' folding terminator: " << *BB->getTerminator() << '\n');
461    ++NumFolds;
462    ConstantFoldTerminator(BB);
463    return true;
464  }
465
466  // If the terminator is branching on an undef, we can pick any of the
467  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
468  if (isa<UndefValue>(Condition)) {
469    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
470
471    // Fold the branch/switch.
472    TerminatorInst *BBTerm = BB->getTerminator();
473    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
474      if (i == BestSucc) continue;
475      RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
476    }
477
478    DEBUG(errs() << "  In block '" << BB->getName()
479          << "' folding undef terminator: " << *BBTerm << '\n');
480    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
481    BBTerm->eraseFromParent();
482    return true;
483  }
484
485  Instruction *CondInst = dyn_cast<Instruction>(Condition);
486
487  // If the condition is an instruction defined in another block, see if a
488  // predecessor has the same condition:
489  //     br COND, BBX, BBY
490  //  BBX:
491  //     br COND, BBZ, BBW
492  if (!Condition->hasOneUse() && // Multiple uses.
493      (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
494    pred_iterator PI = pred_begin(BB), E = pred_end(BB);
495    if (isa<BranchInst>(BB->getTerminator())) {
496      for (; PI != E; ++PI)
497        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
498          if (PBI->isConditional() && PBI->getCondition() == Condition &&
499              ProcessBranchOnDuplicateCond(*PI, BB))
500            return true;
501    } else {
502      assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
503      for (; PI != E; ++PI)
504        if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
505          if (PSI->getCondition() == Condition &&
506              ProcessSwitchOnDuplicateCond(*PI, BB))
507            return true;
508    }
509  }
510
511  // All the rest of our checks depend on the condition being an instruction.
512  if (CondInst == 0)
513    return false;
514
515  // See if this is a phi node in the current block.
516  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
517    if (PN->getParent() == BB)
518      return ProcessJumpOnPHI(PN);
519
520  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
521    if (!isa<PHINode>(CondCmp->getOperand(0)) ||
522        cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
523      // If we have a comparison, loop over the predecessors to see if there is
524      // a condition with a lexically identical value.
525      pred_iterator PI = pred_begin(BB), E = pred_end(BB);
526      for (; PI != E; ++PI)
527        if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
528          if (PBI->isConditional() && *PI != BB) {
529            if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
530              if (CI->getOperand(0) == CondCmp->getOperand(0) &&
531                  CI->getOperand(1) == CondCmp->getOperand(1) &&
532                  CI->getPredicate() == CondCmp->getPredicate()) {
533                // TODO: Could handle things like (x != 4) --> (x == 17)
534                if (ProcessBranchOnDuplicateCond(*PI, BB))
535                  return true;
536              }
537            }
538          }
539    }
540  }
541
542  // Check for some cases that are worth simplifying.  Right now we want to look
543  // for loads that are used by a switch or by the condition for the branch.  If
544  // we see one, check to see if it's partially redundant.  If so, insert a PHI
545  // which can then be used to thread the values.
546  //
547  // This is particularly important because reg2mem inserts loads and stores all
548  // over the place, and this blocks jump threading if we don't zap them.
549  Value *SimplifyValue = CondInst;
550  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
551    if (isa<Constant>(CondCmp->getOperand(1)))
552      SimplifyValue = CondCmp->getOperand(0);
553
554  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
555    if (SimplifyPartiallyRedundantLoad(LI))
556      return true;
557
558
559  // Handle a variety of cases where we are branching on something derived from
560  // a PHI node in the current block.  If we can prove that any predecessors
561  // compute a predictable value based on a PHI node, thread those predecessors.
562  //
563  // We only bother doing this if the current block has a PHI node and if the
564  // conditional instruction lives in the current block.  If either condition
565  // fails, this won't be a computable value anyway.
566  if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
567    if (ProcessThreadableEdges(CondInst, BB))
568      return true;
569
570
571  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
572  // "(X == 4)" thread through this block.
573
574  return false;
575}
576
577/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
578/// block that jump on exactly the same condition.  This means that we almost
579/// always know the direction of the edge in the DESTBB:
580///  PREDBB:
581///     br COND, DESTBB, BBY
582///  DESTBB:
583///     br COND, BBZ, BBW
584///
585/// If DESTBB has multiple predecessors, we can't just constant fold the branch
586/// in DESTBB, we have to thread over it.
587bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
588                                                 BasicBlock *BB) {
589  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
590
591  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
592  // fold the branch to an unconditional one, which allows other recursive
593  // simplifications.
594  bool BranchDir;
595  if (PredBI->getSuccessor(1) != BB)
596    BranchDir = true;
597  else if (PredBI->getSuccessor(0) != BB)
598    BranchDir = false;
599  else {
600    DEBUG(errs() << "  In block '" << PredBB->getName()
601          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
602    ++NumFolds;
603    ConstantFoldTerminator(PredBB);
604    return true;
605  }
606
607  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
608
609  // If the dest block has one predecessor, just fix the branch condition to a
610  // constant and fold it.
611  if (BB->getSinglePredecessor()) {
612    DEBUG(errs() << "  In block '" << BB->getName()
613          << "' folding condition to '" << BranchDir << "': "
614          << *BB->getTerminator() << '\n');
615    ++NumFolds;
616    Value *OldCond = DestBI->getCondition();
617    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
618                                          BranchDir));
619    ConstantFoldTerminator(BB);
620    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
621    return true;
622  }
623
624
625  // Next, figure out which successor we are threading to.
626  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
627
628  SmallVector<BasicBlock*, 2> Preds;
629  Preds.push_back(PredBB);
630
631  // Ok, try to thread it!
632  return ThreadEdge(BB, Preds, SuccBB);
633}
634
635/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
636/// block that switch on exactly the same condition.  This means that we almost
637/// always know the direction of the edge in the DESTBB:
638///  PREDBB:
639///     switch COND [... DESTBB, BBY ... ]
640///  DESTBB:
641///     switch COND [... BBZ, BBW ]
642///
643/// Optimizing switches like this is very important, because simplifycfg builds
644/// switches out of repeated 'if' conditions.
645bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
646                                                 BasicBlock *DestBB) {
647  // Can't thread edge to self.
648  if (PredBB == DestBB)
649    return false;
650
651  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
652  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
653
654  // There are a variety of optimizations that we can potentially do on these
655  // blocks: we order them from most to least preferable.
656
657  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
658  // directly to their destination.  This does not introduce *any* code size
659  // growth.  Skip debug info first.
660  BasicBlock::iterator BBI = DestBB->begin();
661  while (isa<DbgInfoIntrinsic>(BBI))
662    BBI++;
663
664  // FIXME: Thread if it just contains a PHI.
665  if (isa<SwitchInst>(BBI)) {
666    bool MadeChange = false;
667    // Ignore the default edge for now.
668    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
669      ConstantInt *DestVal = DestSI->getCaseValue(i);
670      BasicBlock *DestSucc = DestSI->getSuccessor(i);
671
672      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
673      // PredSI has an explicit case for it.  If so, forward.  If it is covered
674      // by the default case, we can't update PredSI.
675      unsigned PredCase = PredSI->findCaseValue(DestVal);
676      if (PredCase == 0) continue;
677
678      // If PredSI doesn't go to DestBB on this value, then it won't reach the
679      // case on this condition.
680      if (PredSI->getSuccessor(PredCase) != DestBB &&
681          DestSI->getSuccessor(i) != DestBB)
682        continue;
683
684      // Otherwise, we're safe to make the change.  Make sure that the edge from
685      // DestSI to DestSucc is not critical and has no PHI nodes.
686      DEBUG(errs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
687      DEBUG(errs() << "THROUGH: " << *DestSI);
688
689      // If the destination has PHI nodes, just split the edge for updating
690      // simplicity.
691      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
692        SplitCriticalEdge(DestSI, i, this);
693        DestSucc = DestSI->getSuccessor(i);
694      }
695      FoldSingleEntryPHINodes(DestSucc);
696      PredSI->setSuccessor(PredCase, DestSucc);
697      MadeChange = true;
698    }
699
700    if (MadeChange)
701      return true;
702  }
703
704  return false;
705}
706
707
708/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
709/// load instruction, eliminate it by replacing it with a PHI node.  This is an
710/// important optimization that encourages jump threading, and needs to be run
711/// interlaced with other jump threading tasks.
712bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
713  // Don't hack volatile loads.
714  if (LI->isVolatile()) return false;
715
716  // If the load is defined in a block with exactly one predecessor, it can't be
717  // partially redundant.
718  BasicBlock *LoadBB = LI->getParent();
719  if (LoadBB->getSinglePredecessor())
720    return false;
721
722  Value *LoadedPtr = LI->getOperand(0);
723
724  // If the loaded operand is defined in the LoadBB, it can't be available.
725  // FIXME: Could do PHI translation, that would be fun :)
726  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
727    if (PtrOp->getParent() == LoadBB)
728      return false;
729
730  // Scan a few instructions up from the load, to see if it is obviously live at
731  // the entry to its block.
732  BasicBlock::iterator BBIt = LI;
733
734  if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
735                                                     BBIt, 6)) {
736    // If the value if the load is locally available within the block, just use
737    // it.  This frequently occurs for reg2mem'd allocas.
738    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
739
740    // If the returned value is the load itself, replace with an undef. This can
741    // only happen in dead loops.
742    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
743    LI->replaceAllUsesWith(AvailableVal);
744    LI->eraseFromParent();
745    return true;
746  }
747
748  // Otherwise, if we scanned the whole block and got to the top of the block,
749  // we know the block is locally transparent to the load.  If not, something
750  // might clobber its value.
751  if (BBIt != LoadBB->begin())
752    return false;
753
754
755  SmallPtrSet<BasicBlock*, 8> PredsScanned;
756  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
757  AvailablePredsTy AvailablePreds;
758  BasicBlock *OneUnavailablePred = 0;
759
760  // If we got here, the loaded value is transparent through to the start of the
761  // block.  Check to see if it is available in any of the predecessor blocks.
762  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
763       PI != PE; ++PI) {
764    BasicBlock *PredBB = *PI;
765
766    // If we already scanned this predecessor, skip it.
767    if (!PredsScanned.insert(PredBB))
768      continue;
769
770    // Scan the predecessor to see if the value is available in the pred.
771    BBIt = PredBB->end();
772    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
773    if (!PredAvailable) {
774      OneUnavailablePred = PredBB;
775      continue;
776    }
777
778    // If so, this load is partially redundant.  Remember this info so that we
779    // can create a PHI node.
780    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
781  }
782
783  // If the loaded value isn't available in any predecessor, it isn't partially
784  // redundant.
785  if (AvailablePreds.empty()) return false;
786
787  // Okay, the loaded value is available in at least one (and maybe all!)
788  // predecessors.  If the value is unavailable in more than one unique
789  // predecessor, we want to insert a merge block for those common predecessors.
790  // This ensures that we only have to insert one reload, thus not increasing
791  // code size.
792  BasicBlock *UnavailablePred = 0;
793
794  // If there is exactly one predecessor where the value is unavailable, the
795  // already computed 'OneUnavailablePred' block is it.  If it ends in an
796  // unconditional branch, we know that it isn't a critical edge.
797  if (PredsScanned.size() == AvailablePreds.size()+1 &&
798      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
799    UnavailablePred = OneUnavailablePred;
800  } else if (PredsScanned.size() != AvailablePreds.size()) {
801    // Otherwise, we had multiple unavailable predecessors or we had a critical
802    // edge from the one.
803    SmallVector<BasicBlock*, 8> PredsToSplit;
804    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
805
806    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
807      AvailablePredSet.insert(AvailablePreds[i].first);
808
809    // Add all the unavailable predecessors to the PredsToSplit list.
810    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
811         PI != PE; ++PI)
812      if (!AvailablePredSet.count(*PI))
813        PredsToSplit.push_back(*PI);
814
815    // Split them out to their own block.
816    UnavailablePred =
817      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
818                             "thread-split", this);
819  }
820
821  // If the value isn't available in all predecessors, then there will be
822  // exactly one where it isn't available.  Insert a load on that edge and add
823  // it to the AvailablePreds list.
824  if (UnavailablePred) {
825    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
826           "Can't handle critical edge here!");
827    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
828                                 UnavailablePred->getTerminator());
829    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
830  }
831
832  // Now we know that each predecessor of this block has a value in
833  // AvailablePreds, sort them for efficient access as we're walking the preds.
834  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
835
836  // Create a PHI node at the start of the block for the PRE'd load value.
837  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
838  PN->takeName(LI);
839
840  // Insert new entries into the PHI for each predecessor.  A single block may
841  // have multiple entries here.
842  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
843       ++PI) {
844    AvailablePredsTy::iterator I =
845      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
846                       std::make_pair(*PI, (Value*)0));
847
848    assert(I != AvailablePreds.end() && I->first == *PI &&
849           "Didn't find entry for predecessor!");
850
851    PN->addIncoming(I->second, I->first);
852  }
853
854  //cerr << "PRE: " << *LI << *PN << "\n";
855
856  LI->replaceAllUsesWith(PN);
857  LI->eraseFromParent();
858
859  return true;
860}
861
862/// FindMostPopularDest - The specified list contains multiple possible
863/// threadable destinations.  Pick the one that occurs the most frequently in
864/// the list.
865static BasicBlock *
866FindMostPopularDest(BasicBlock *BB,
867                    const SmallVectorImpl<std::pair<BasicBlock*,
868                                  BasicBlock*> > &PredToDestList) {
869  assert(!PredToDestList.empty());
870
871  // Determine popularity.  If there are multiple possible destinations, we
872  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
873  // blocks with known and real destinations to threading undef.  We'll handle
874  // them later if interesting.
875  DenseMap<BasicBlock*, unsigned> DestPopularity;
876  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
877    if (PredToDestList[i].second)
878      DestPopularity[PredToDestList[i].second]++;
879
880  // Find the most popular dest.
881  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
882  BasicBlock *MostPopularDest = DPI->first;
883  unsigned Popularity = DPI->second;
884  SmallVector<BasicBlock*, 4> SamePopularity;
885
886  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
887    // If the popularity of this entry isn't higher than the popularity we've
888    // seen so far, ignore it.
889    if (DPI->second < Popularity)
890      ; // ignore.
891    else if (DPI->second == Popularity) {
892      // If it is the same as what we've seen so far, keep track of it.
893      SamePopularity.push_back(DPI->first);
894    } else {
895      // If it is more popular, remember it.
896      SamePopularity.clear();
897      MostPopularDest = DPI->first;
898      Popularity = DPI->second;
899    }
900  }
901
902  // Okay, now we know the most popular destination.  If there is more than
903  // destination, we need to determine one.  This is arbitrary, but we need
904  // to make a deterministic decision.  Pick the first one that appears in the
905  // successor list.
906  if (!SamePopularity.empty()) {
907    SamePopularity.push_back(MostPopularDest);
908    TerminatorInst *TI = BB->getTerminator();
909    for (unsigned i = 0; ; ++i) {
910      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
911
912      if (std::find(SamePopularity.begin(), SamePopularity.end(),
913                    TI->getSuccessor(i)) == SamePopularity.end())
914        continue;
915
916      MostPopularDest = TI->getSuccessor(i);
917      break;
918    }
919  }
920
921  // Okay, we have finally picked the most popular destination.
922  return MostPopularDest;
923}
924
925bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
926                                           BasicBlock *BB) {
927  // If threading this would thread across a loop header, don't even try to
928  // thread the edge.
929  if (LoopHeaders.count(BB))
930    return false;
931
932  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
933  if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
934    return false;
935  assert(!PredValues.empty() &&
936         "ComputeValueKnownInPredecessors returned true with no values");
937
938  DEBUG(errs() << "IN BB: " << *BB;
939        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
940          errs() << "  BB '" << BB->getName() << "': FOUND condition = ";
941          if (PredValues[i].first)
942            errs() << *PredValues[i].first;
943          else
944            errs() << "UNDEF";
945          errs() << " for pred '" << PredValues[i].second->getName()
946          << "'.\n";
947        });
948
949  // Decide what we want to thread through.  Convert our list of known values to
950  // a list of known destinations for each pred.  This also discards duplicate
951  // predecessors and keeps track of the undefined inputs (which are represented
952  // as a null dest in the PredToDestList).
953  SmallPtrSet<BasicBlock*, 16> SeenPreds;
954  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
955
956  BasicBlock *OnlyDest = 0;
957  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
958
959  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
960    BasicBlock *Pred = PredValues[i].second;
961    if (!SeenPreds.insert(Pred))
962      continue;  // Duplicate predecessor entry.
963
964    // If the predecessor ends with an indirect goto, we can't change its
965    // destination.
966    if (isa<IndirectBrInst>(Pred->getTerminator()))
967      continue;
968
969    ConstantInt *Val = PredValues[i].first;
970
971    BasicBlock *DestBB;
972    if (Val == 0)      // Undef.
973      DestBB = 0;
974    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
975      DestBB = BI->getSuccessor(Val->isZero());
976    else {
977      SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
978      DestBB = SI->getSuccessor(SI->findCaseValue(Val));
979    }
980
981    // If we have exactly one destination, remember it for efficiency below.
982    if (i == 0)
983      OnlyDest = DestBB;
984    else if (OnlyDest != DestBB)
985      OnlyDest = MultipleDestSentinel;
986
987    PredToDestList.push_back(std::make_pair(Pred, DestBB));
988  }
989
990  // If all edges were unthreadable, we fail.
991  if (PredToDestList.empty())
992    return false;
993
994  // Determine which is the most common successor.  If we have many inputs and
995  // this block is a switch, we want to start by threading the batch that goes
996  // to the most popular destination first.  If we only know about one
997  // threadable destination (the common case) we can avoid this.
998  BasicBlock *MostPopularDest = OnlyDest;
999
1000  if (MostPopularDest == MultipleDestSentinel)
1001    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1002
1003  // Now that we know what the most popular destination is, factor all
1004  // predecessors that will jump to it into a single predecessor.
1005  SmallVector<BasicBlock*, 16> PredsToFactor;
1006  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1007    if (PredToDestList[i].second == MostPopularDest) {
1008      BasicBlock *Pred = PredToDestList[i].first;
1009
1010      // This predecessor may be a switch or something else that has multiple
1011      // edges to the block.  Factor each of these edges by listing them
1012      // according to # occurrences in PredsToFactor.
1013      TerminatorInst *PredTI = Pred->getTerminator();
1014      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1015        if (PredTI->getSuccessor(i) == BB)
1016          PredsToFactor.push_back(Pred);
1017    }
1018
1019  // If the threadable edges are branching on an undefined value, we get to pick
1020  // the destination that these predecessors should get to.
1021  if (MostPopularDest == 0)
1022    MostPopularDest = BB->getTerminator()->
1023                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1024
1025  // Ok, try to thread it!
1026  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1027}
1028
1029/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
1030/// the current block.  See if there are any simplifications we can do based on
1031/// inputs to the phi node.
1032///
1033bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
1034  BasicBlock *BB = PN->getParent();
1035
1036  // If any of the predecessor blocks end in an unconditional branch, we can
1037  // *duplicate* the jump into that block in order to further encourage jump
1038  // threading and to eliminate cases where we have branch on a phi of an icmp
1039  // (branch on icmp is much better).
1040
1041  // We don't want to do this tranformation for switches, because we don't
1042  // really want to duplicate a switch.
1043  if (isa<SwitchInst>(BB->getTerminator()))
1044    return false;
1045
1046  // Look for unconditional branch predecessors.
1047  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1048    BasicBlock *PredBB = PN->getIncomingBlock(i);
1049    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1050      if (PredBr->isUnconditional() &&
1051          // Try to duplicate BB into PredBB.
1052          DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1053        return true;
1054  }
1055
1056  return false;
1057}
1058
1059
1060/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1061/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1062/// NewPred using the entries from OldPred (suitably mapped).
1063static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1064                                            BasicBlock *OldPred,
1065                                            BasicBlock *NewPred,
1066                                     DenseMap<Instruction*, Value*> &ValueMap) {
1067  for (BasicBlock::iterator PNI = PHIBB->begin();
1068       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1069    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1070    // DestBlock.
1071    Value *IV = PN->getIncomingValueForBlock(OldPred);
1072
1073    // Remap the value if necessary.
1074    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1075      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1076      if (I != ValueMap.end())
1077        IV = I->second;
1078    }
1079
1080    PN->addIncoming(IV, NewPred);
1081  }
1082}
1083
1084/// ThreadEdge - We have decided that it is safe and profitable to factor the
1085/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1086/// across BB.  Transform the IR to reflect this change.
1087bool JumpThreading::ThreadEdge(BasicBlock *BB,
1088                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1089                               BasicBlock *SuccBB) {
1090  // If threading to the same block as we come from, we would infinite loop.
1091  if (SuccBB == BB) {
1092    DEBUG(errs() << "  Not threading across BB '" << BB->getName()
1093          << "' - would thread to self!\n");
1094    return false;
1095  }
1096
1097  // If threading this would thread across a loop header, don't thread the edge.
1098  // See the comments above FindLoopHeaders for justifications and caveats.
1099  if (LoopHeaders.count(BB)) {
1100    DEBUG(errs() << "  Not threading across loop header BB '" << BB->getName()
1101          << "' to dest BB '" << SuccBB->getName()
1102          << "' - it might create an irreducible loop!\n");
1103    return false;
1104  }
1105
1106  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1107  if (JumpThreadCost > Threshold) {
1108    DEBUG(errs() << "  Not threading BB '" << BB->getName()
1109          << "' - Cost is too high: " << JumpThreadCost << "\n");
1110    return false;
1111  }
1112
1113  // And finally, do it!  Start by factoring the predecessors is needed.
1114  BasicBlock *PredBB;
1115  if (PredBBs.size() == 1)
1116    PredBB = PredBBs[0];
1117  else {
1118    DEBUG(errs() << "  Factoring out " << PredBBs.size()
1119          << " common predecessors.\n");
1120    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1121                                    ".thr_comm", this);
1122  }
1123
1124  // And finally, do it!
1125  DEBUG(errs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1126        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1127        << ", across block:\n    "
1128        << *BB << "\n");
1129
1130  // We are going to have to map operands from the original BB block to the new
1131  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1132  // account for entry from PredBB.
1133  DenseMap<Instruction*, Value*> ValueMapping;
1134
1135  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1136                                         BB->getName()+".thread",
1137                                         BB->getParent(), BB);
1138  NewBB->moveAfter(PredBB);
1139
1140  BasicBlock::iterator BI = BB->begin();
1141  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1142    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1143
1144  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1145  // mapping and using it to remap operands in the cloned instructions.
1146  for (; !isa<TerminatorInst>(BI); ++BI) {
1147    Instruction *New = BI->clone();
1148    New->setName(BI->getName());
1149    NewBB->getInstList().push_back(New);
1150    ValueMapping[BI] = New;
1151
1152    // Remap operands to patch up intra-block references.
1153    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1154      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1155        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1156        if (I != ValueMapping.end())
1157          New->setOperand(i, I->second);
1158      }
1159  }
1160
1161  // We didn't copy the terminator from BB over to NewBB, because there is now
1162  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1163  BranchInst::Create(SuccBB, NewBB);
1164
1165  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1166  // PHI nodes for NewBB now.
1167  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1168
1169  // If there were values defined in BB that are used outside the block, then we
1170  // now have to update all uses of the value to use either the original value,
1171  // the cloned value, or some PHI derived value.  This can require arbitrary
1172  // PHI insertion, of which we are prepared to do, clean these up now.
1173  SSAUpdater SSAUpdate;
1174  SmallVector<Use*, 16> UsesToRename;
1175  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1176    // Scan all uses of this instruction to see if it is used outside of its
1177    // block, and if so, record them in UsesToRename.
1178    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1179         ++UI) {
1180      Instruction *User = cast<Instruction>(*UI);
1181      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1182        if (UserPN->getIncomingBlock(UI) == BB)
1183          continue;
1184      } else if (User->getParent() == BB)
1185        continue;
1186
1187      UsesToRename.push_back(&UI.getUse());
1188    }
1189
1190    // If there are no uses outside the block, we're done with this instruction.
1191    if (UsesToRename.empty())
1192      continue;
1193
1194    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1195
1196    // We found a use of I outside of BB.  Rename all uses of I that are outside
1197    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1198    // with the two values we know.
1199    SSAUpdate.Initialize(I);
1200    SSAUpdate.AddAvailableValue(BB, I);
1201    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1202
1203    while (!UsesToRename.empty())
1204      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1205    DEBUG(errs() << "\n");
1206  }
1207
1208
1209  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1210  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1211  // us to simplify any PHI nodes in BB.
1212  TerminatorInst *PredTerm = PredBB->getTerminator();
1213  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1214    if (PredTerm->getSuccessor(i) == BB) {
1215      RemovePredecessorAndSimplify(BB, PredBB, TD);
1216      PredTerm->setSuccessor(i, NewBB);
1217    }
1218
1219  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1220  // over the new instructions and zap any that are constants or dead.  This
1221  // frequently happens because of phi translation.
1222  BI = NewBB->begin();
1223  for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1224    Instruction *Inst = BI++;
1225
1226    if (Value *V = SimplifyInstruction(Inst, TD)) {
1227      WeakVH BIHandle(BI);
1228      ReplaceAndSimplifyAllUses(Inst, V, TD);
1229      if (BIHandle == 0)
1230        BI = NewBB->begin();
1231      continue;
1232    }
1233
1234    RecursivelyDeleteTriviallyDeadInstructions(Inst);
1235  }
1236
1237  // Threaded an edge!
1238  ++NumThreads;
1239  return true;
1240}
1241
1242/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1243/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1244/// If we can duplicate the contents of BB up into PredBB do so now, this
1245/// improves the odds that the branch will be on an analyzable instruction like
1246/// a compare.
1247bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1248                                                     BasicBlock *PredBB) {
1249  // If BB is a loop header, then duplicating this block outside the loop would
1250  // cause us to transform this into an irreducible loop, don't do this.
1251  // See the comments above FindLoopHeaders for justifications and caveats.
1252  if (LoopHeaders.count(BB)) {
1253    DEBUG(errs() << "  Not duplicating loop header '" << BB->getName()
1254          << "' into predecessor block '" << PredBB->getName()
1255          << "' - it might create an irreducible loop!\n");
1256    return false;
1257  }
1258
1259  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1260  if (DuplicationCost > Threshold) {
1261    DEBUG(errs() << "  Not duplicating BB '" << BB->getName()
1262          << "' - Cost is too high: " << DuplicationCost << "\n");
1263    return false;
1264  }
1265
1266  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1267  // of PredBB.
1268  DEBUG(errs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1269        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1270        << DuplicationCost << " block is:" << *BB << "\n");
1271
1272  // We are going to have to map operands from the original BB block into the
1273  // PredBB block.  Evaluate PHI nodes in BB.
1274  DenseMap<Instruction*, Value*> ValueMapping;
1275
1276  BasicBlock::iterator BI = BB->begin();
1277  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1278    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1279
1280  BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1281
1282  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1283  // mapping and using it to remap operands in the cloned instructions.
1284  for (; BI != BB->end(); ++BI) {
1285    Instruction *New = BI->clone();
1286    New->setName(BI->getName());
1287    PredBB->getInstList().insert(OldPredBranch, New);
1288    ValueMapping[BI] = New;
1289
1290    // Remap operands to patch up intra-block references.
1291    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1292      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1293        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1294        if (I != ValueMapping.end())
1295          New->setOperand(i, I->second);
1296      }
1297  }
1298
1299  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1300  // add entries to the PHI nodes for branch from PredBB now.
1301  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1302  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1303                                  ValueMapping);
1304  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1305                                  ValueMapping);
1306
1307  // If there were values defined in BB that are used outside the block, then we
1308  // now have to update all uses of the value to use either the original value,
1309  // the cloned value, or some PHI derived value.  This can require arbitrary
1310  // PHI insertion, of which we are prepared to do, clean these up now.
1311  SSAUpdater SSAUpdate;
1312  SmallVector<Use*, 16> UsesToRename;
1313  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1314    // Scan all uses of this instruction to see if it is used outside of its
1315    // block, and if so, record them in UsesToRename.
1316    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1317         ++UI) {
1318      Instruction *User = cast<Instruction>(*UI);
1319      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1320        if (UserPN->getIncomingBlock(UI) == BB)
1321          continue;
1322      } else if (User->getParent() == BB)
1323        continue;
1324
1325      UsesToRename.push_back(&UI.getUse());
1326    }
1327
1328    // If there are no uses outside the block, we're done with this instruction.
1329    if (UsesToRename.empty())
1330      continue;
1331
1332    DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1333
1334    // We found a use of I outside of BB.  Rename all uses of I that are outside
1335    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1336    // with the two values we know.
1337    SSAUpdate.Initialize(I);
1338    SSAUpdate.AddAvailableValue(BB, I);
1339    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1340
1341    while (!UsesToRename.empty())
1342      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1343    DEBUG(errs() << "\n");
1344  }
1345
1346  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1347  // that we nuked.
1348  RemovePredecessorAndSimplify(BB, PredBB, TD);
1349
1350  // Remove the unconditional branch at the end of the PredBB block.
1351  OldPredBranch->eraseFromParent();
1352
1353  ++NumDupes;
1354  return true;
1355}
1356
1357
1358