PromoteMemoryToRegister.cpp revision 17e6e44298d8da4cd97ba0be66225cdad4670276
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promote memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using dominator frontiers to place PHI nodes, then traversing
13// the function in depth-first order to rewrite loads and stores as appropriate.
14// This is just the standard SSA construction algorithm to construct "pruned"
15// SSA form.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Utils/PromoteMemToReg.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/Instructions.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/AliasSetTracker.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Transforms/Utils/Local.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Support/StableBasicBlockNumbering.h"
30#include <algorithm>
31using namespace llvm;
32
33/// isAllocaPromotable - Return true if this alloca is legal for promotion.
34/// This is true if there are only loads and stores to the alloca.
35///
36bool llvm::isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
37  // FIXME: If the memory unit is of pointer or integer type, we can permit
38  // assignments to subsections of the memory unit.
39
40  // Only allow direct loads and stores...
41  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
42       UI != UE; ++UI)     // Loop over all of the uses of the alloca
43    if (isa<LoadInst>(*UI)) {
44      // noop
45    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
46      if (SI->getOperand(0) == AI)
47        return false;   // Don't allow a store OF the AI, only INTO the AI.
48    } else {
49      return false;   // Not a load or store.
50    }
51
52  return true;
53}
54
55namespace {
56  struct PromoteMem2Reg {
57    /// Allocas - The alloca instructions being promoted.
58    ///
59    std::vector<AllocaInst*> Allocas;
60    DominatorTree &DT;
61    DominanceFrontier &DF;
62    const TargetData &TD;
63
64    /// AST - An AliasSetTracker object to update.  If null, don't update it.
65    ///
66    AliasSetTracker *AST;
67
68    /// AllocaLookup - Reverse mapping of Allocas.
69    ///
70    std::map<AllocaInst*, unsigned>  AllocaLookup;
71
72    /// NewPhiNodes - The PhiNodes we're adding.
73    ///
74    std::map<BasicBlock*, std::vector<PHINode*> > NewPhiNodes;
75
76    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
77    /// each alloca that is of pointer type, we keep track of what to copyValue
78    /// to the inserted PHI nodes here.
79    ///
80    std::vector<Value*> PointerAllocaValues;
81
82    /// Visited - The set of basic blocks the renamer has already visited.
83    ///
84    std::set<BasicBlock*> Visited;
85
86    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
87    /// non-determinstic behavior.
88    StableBasicBlockNumbering BBNumbers;
89
90  public:
91    PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
92                   DominanceFrontier &df, const TargetData &td,
93                   AliasSetTracker *ast)
94      : Allocas(A), DT(dt), DF(df), TD(td), AST(ast) {}
95
96    void run();
97
98    /// dominates - Return true if I1 dominates I2 using the DominatorTree.
99    ///
100    bool dominates(Instruction *I1, Instruction *I2) const {
101      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
102        I1 = II->getNormalDest()->begin();
103      return DT[I1->getParent()]->dominates(DT[I2->getParent()]);
104    }
105
106  private:
107    void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
108                               std::set<PHINode*> &DeadPHINodes);
109    void PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
110    void PromoteLocallyUsedAllocas(BasicBlock *BB,
111                                   const std::vector<AllocaInst*> &AIs);
112
113    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
114                    std::vector<Value*> &IncVals);
115    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
116                      std::set<PHINode*> &InsertedPHINodes);
117  };
118}  // end of anonymous namespace
119
120void PromoteMem2Reg::run() {
121  Function &F = *DF.getRoot()->getParent();
122
123  // LocallyUsedAllocas - Keep track of all of the alloca instructions which are
124  // only used in a single basic block.  These instructions can be efficiently
125  // promoted by performing a single linear scan over that one block.  Since
126  // individual basic blocks are sometimes large, we group together all allocas
127  // that are live in a single basic block by the basic block they are live in.
128  std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
129
130  if (AST) PointerAllocaValues.resize(Allocas.size());
131
132  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
133    AllocaInst *AI = Allocas[AllocaNum];
134
135    assert(isAllocaPromotable(AI, TD) &&
136           "Cannot promote non-promotable alloca!");
137    assert(AI->getParent()->getParent() == &F &&
138           "All allocas should be in the same function, which is same as DF!");
139
140    if (AI->use_empty()) {
141      // If there are no uses of the alloca, just delete it now.
142      if (AST) AST->deleteValue(AI);
143      AI->getParent()->getInstList().erase(AI);
144
145      // Remove the alloca from the Allocas list, since it has been processed
146      Allocas[AllocaNum] = Allocas.back();
147      Allocas.pop_back();
148      --AllocaNum;
149      continue;
150    }
151
152    // Calculate the set of read and write-locations for each alloca.  This is
153    // analogous to finding the 'uses' and 'definitions' of each variable.
154    std::vector<BasicBlock*> DefiningBlocks;
155    std::vector<BasicBlock*> UsingBlocks;
156
157    BasicBlock *OnlyBlock = 0;
158    bool OnlyUsedInOneBlock = true;
159
160    // As we scan the uses of the alloca instruction, keep track of stores, and
161    // decide whether all of the loads and stores to the alloca are within the
162    // same basic block.
163    Value *AllocaPointerVal = 0;
164    for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E;++U){
165      Instruction *User = cast<Instruction>(*U);
166      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
167        // Remember the basic blocks which define new values for the alloca
168        DefiningBlocks.push_back(SI->getParent());
169        AllocaPointerVal = SI->getOperand(0);
170      } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
171        // Otherwise it must be a load instruction, keep track of variable reads
172        UsingBlocks.push_back(LI->getParent());
173        AllocaPointerVal = LI;
174      }
175
176      if (OnlyUsedInOneBlock) {
177        if (OnlyBlock == 0)
178          OnlyBlock = User->getParent();
179        else if (OnlyBlock != User->getParent())
180          OnlyUsedInOneBlock = false;
181      }
182    }
183
184    // If the alloca is only read and written in one basic block, just perform a
185    // linear sweep over the block to eliminate it.
186    if (OnlyUsedInOneBlock) {
187      LocallyUsedAllocas[OnlyBlock].push_back(AI);
188
189      // Remove the alloca from the Allocas list, since it will be processed.
190      Allocas[AllocaNum] = Allocas.back();
191      Allocas.pop_back();
192      --AllocaNum;
193      continue;
194    }
195
196    if (AST)
197      PointerAllocaValues[AllocaNum] = AllocaPointerVal;
198
199    // If we haven't computed a numbering for the BB's in the function, do so
200    // now.
201    BBNumbers.compute(F);
202
203    // Compute the locations where PhiNodes need to be inserted.  Look at the
204    // dominance frontier of EACH basic-block we have a write in.
205    //
206    unsigned CurrentVersion = 0;
207    std::set<PHINode*> InsertedPHINodes;
208    std::vector<unsigned> DFBlocks;
209    while (!DefiningBlocks.empty()) {
210      BasicBlock *BB = DefiningBlocks.back();
211      DefiningBlocks.pop_back();
212
213      // Look up the DF for this write, add it to PhiNodes
214      DominanceFrontier::const_iterator it = DF.find(BB);
215      if (it != DF.end()) {
216        const DominanceFrontier::DomSetType &S = it->second;
217
218        // In theory we don't need the indirection through the DFBlocks vector.
219        // In practice, the order of calling QueuePhiNode would depend on the
220        // (unspecified) ordering of basic blocks in the dominance frontier,
221        // which would give PHI nodes non-determinstic subscripts.  Fix this by
222        // processing blocks in order of the occurance in the function.
223        for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
224             PE = S.end(); P != PE; ++P)
225          DFBlocks.push_back(BBNumbers.getNumber(*P));
226
227        // Sort by which the block ordering in the function.
228        std::sort(DFBlocks.begin(), DFBlocks.end());
229
230        for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
231          BasicBlock *BB = BBNumbers.getBlock(DFBlocks[i]);
232          if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
233            DefiningBlocks.push_back(BB);
234        }
235        DFBlocks.clear();
236      }
237    }
238
239    // Now that we have inserted PHI nodes along the Iterated Dominance Frontier
240    // of the writes to the variable, scan through the reads of the variable,
241    // marking PHI nodes which are actually necessary as alive (by removing them
242    // from the InsertedPHINodes set).  This is not perfect: there may PHI
243    // marked alive because of loads which are dominated by stores, but there
244    // will be no unmarked PHI nodes which are actually used.
245    //
246    for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i)
247      MarkDominatingPHILive(UsingBlocks[i], AllocaNum, InsertedPHINodes);
248    UsingBlocks.clear();
249
250    // If there are any PHI nodes which are now known to be dead, remove them!
251    for (std::set<PHINode*>::iterator I = InsertedPHINodes.begin(),
252           E = InsertedPHINodes.end(); I != E; ++I) {
253      PHINode *PN = *I;
254      std::vector<PHINode*> &BBPNs = NewPhiNodes[PN->getParent()];
255      BBPNs[AllocaNum] = 0;
256
257      // Check to see if we just removed the last inserted PHI node from this
258      // basic block.  If so, remove the entry for the basic block.
259      bool HasOtherPHIs = false;
260      for (unsigned i = 0, e = BBPNs.size(); i != e; ++i)
261        if (BBPNs[i]) {
262          HasOtherPHIs = true;
263          break;
264        }
265      if (!HasOtherPHIs)
266        NewPhiNodes.erase(PN->getParent());
267
268      if (AST && isa<PointerType>(PN->getType()))
269        AST->deleteValue(PN);
270      PN->getParent()->getInstList().erase(PN);
271    }
272
273    // Keep the reverse mapping of the 'Allocas' array.
274    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
275  }
276
277  // Process all allocas which are only used in a single basic block.
278  for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
279         LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
280    const std::vector<AllocaInst*> &Allocas = I->second;
281    assert(!Allocas.empty() && "empty alloca list??");
282
283    // It's common for there to only be one alloca in the list.  Handle it
284    // efficiently.
285    if (Allocas.size() == 1)
286      PromoteLocallyUsedAlloca(I->first, Allocas[0]);
287    else
288      PromoteLocallyUsedAllocas(I->first, Allocas);
289  }
290
291  if (Allocas.empty())
292    return; // All of the allocas must have been trivial!
293
294  // Set the incoming values for the basic block to be null values for all of
295  // the alloca's.  We do this in case there is a load of a value that has not
296  // been stored yet.  In this case, it will get this null value.
297  //
298  std::vector<Value *> Values(Allocas.size());
299  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
300    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
301
302  // Walks all basic blocks in the function performing the SSA rename algorithm
303  // and inserting the phi nodes we marked as necessary
304  //
305  RenamePass(F.begin(), 0, Values);
306
307  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
308  Visited.clear();
309
310  // Remove the allocas themselves from the function...
311  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
312    Instruction *A = Allocas[i];
313
314    // If there are any uses of the alloca instructions left, they must be in
315    // sections of dead code that were not processed on the dominance frontier.
316    // Just delete the users now.
317    //
318    if (!A->use_empty())
319      A->replaceAllUsesWith(UndefValue::get(A->getType()));
320    if (AST) AST->deleteValue(A);
321    A->getParent()->getInstList().erase(A);
322  }
323
324  // At this point, the renamer has added entries to PHI nodes for all reachable
325  // code.  Unfortunately, there may be blocks which are not reachable, which
326  // the renamer hasn't traversed.  If this is the case, the PHI nodes may not
327  // have incoming values for all predecessors.  Loop over all PHI nodes we have
328  // created, inserting undef values if they are missing any incoming values.
329  //
330  for (std::map<BasicBlock*, std::vector<PHINode *> >::iterator I =
331         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
332
333    std::vector<BasicBlock*> Preds(pred_begin(I->first), pred_end(I->first));
334    std::vector<PHINode*> &PNs = I->second;
335    assert(!PNs.empty() && "Empty PHI node list??");
336
337    // Loop over all of the PHI nodes and see if there are any that we can get
338    // rid of because they merge all of the same incoming values.  This can
339    // happen due to undef values coming into the PHI nodes.
340    PHINode *SomePHI = 0;
341    for (unsigned i = 0, e = PNs.size(); i != e; ++i)
342      if (PNs[i]) {
343        if (Value *V = hasConstantValue(PNs[i])) {
344          if (!isa<Instruction>(V) || dominates(cast<Instruction>(V), PNs[i])) {
345            PNs[i]->replaceAllUsesWith(V);
346            PNs[i]->eraseFromParent();
347            PNs[i] = 0;
348          }
349        }
350        if (PNs[i])
351          SomePHI = PNs[i];
352      }
353
354    // Only do work here if there the PHI nodes are missing incoming values.  We
355    // know that all PHI nodes that were inserted in a block will have the same
356    // number of incoming values, so we can just check any PHI node.
357    if (SomePHI && Preds.size() != SomePHI->getNumIncomingValues()) {
358      // Ok, now we know that all of the PHI nodes are missing entries for some
359      // basic blocks.  Start by sorting the incoming predecessors for efficient
360      // access.
361      std::sort(Preds.begin(), Preds.end());
362
363      // Now we loop through all BB's which have entries in SomePHI and remove
364      // them from the Preds list.
365      for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
366        // Do a log(n) search of the Preds list for the entry we want.
367        std::vector<BasicBlock*>::iterator EntIt =
368          std::lower_bound(Preds.begin(), Preds.end(),
369                           SomePHI->getIncomingBlock(i));
370        assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
371               "PHI node has entry for a block which is not a predecessor!");
372
373        // Remove the entry
374        Preds.erase(EntIt);
375      }
376
377      // At this point, the blocks left in the preds list must have dummy
378      // entries inserted into every PHI nodes for the block.
379      for (unsigned i = 0, e = PNs.size(); i != e; ++i)
380        if (PHINode *PN = PNs[i]) {
381          Value *UndefVal = UndefValue::get(PN->getType());
382          for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
383            PN->addIncoming(UndefVal, Preds[pred]);
384        }
385    }
386  }
387}
388
389// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
390// "minimal" SSA form.  To do this, it inserts all of the PHI nodes on the IDF
391// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
392// each read of the variable.  For each block that reads the variable, this
393// function is called, which removes used PHI nodes from the DeadPHINodes set.
394// After all of the reads have been processed, any PHI nodes left in the
395// DeadPHINodes set are removed.
396//
397void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
398                                           std::set<PHINode*> &DeadPHINodes) {
399  // Scan the immediate dominators of this block looking for a block which has a
400  // PHI node for Alloca num.  If we find it, mark the PHI node as being alive!
401  for (DominatorTree::Node *N = DT[BB]; N; N = N->getIDom()) {
402    BasicBlock *DomBB = N->getBlock();
403    std::map<BasicBlock*, std::vector<PHINode*> >::iterator
404      I = NewPhiNodes.find(DomBB);
405    if (I != NewPhiNodes.end() && I->second[AllocaNum]) {
406      // Ok, we found an inserted PHI node which dominates this value.
407      PHINode *DominatingPHI = I->second[AllocaNum];
408
409      // Find out if we previously thought it was dead.
410      std::set<PHINode*>::iterator DPNI = DeadPHINodes.find(DominatingPHI);
411      if (DPNI != DeadPHINodes.end()) {
412        // Ok, until now, we thought this PHI node was dead.  Mark it as being
413        // alive/needed.
414        DeadPHINodes.erase(DPNI);
415
416        // Now that we have marked the PHI node alive, also mark any PHI nodes
417        // which it might use as being alive as well.
418        for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
419             PI != PE; ++PI)
420          MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
421      }
422    }
423  }
424}
425
426/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
427/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
428/// potentially useless PHI nodes by just performing a single linear pass over
429/// the basic block using the Alloca.
430///
431void PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
432  assert(!AI->use_empty() && "There are no uses of the alloca!");
433
434  // Handle degenerate cases quickly.
435  if (AI->hasOneUse()) {
436    Instruction *U = cast<Instruction>(AI->use_back());
437    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
438      // Must be a load of uninitialized value.
439      LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
440      if (AST && isa<PointerType>(LI->getType()))
441        AST->deleteValue(LI);
442    } else {
443      // Otherwise it must be a store which is never read.
444      assert(isa<StoreInst>(U));
445    }
446    BB->getInstList().erase(U);
447  } else {
448    // Uses of the uninitialized memory location shall get undef.
449    Value *CurVal = UndefValue::get(AI->getAllocatedType());
450
451    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
452      Instruction *Inst = I++;
453      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
454        if (LI->getOperand(0) == AI) {
455          // Loads just returns the "current value"...
456          LI->replaceAllUsesWith(CurVal);
457          if (AST && isa<PointerType>(LI->getType()))
458            AST->deleteValue(LI);
459          BB->getInstList().erase(LI);
460        }
461      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
462        if (SI->getOperand(1) == AI) {
463          // Store updates the "current value"...
464          CurVal = SI->getOperand(0);
465          BB->getInstList().erase(SI);
466        }
467      }
468    }
469  }
470
471  // After traversing the basic block, there should be no more uses of the
472  // alloca, remove it now.
473  assert(AI->use_empty() && "Uses of alloca from more than one BB??");
474  if (AST) AST->deleteValue(AI);
475  AI->getParent()->getInstList().erase(AI);
476}
477
478/// PromoteLocallyUsedAllocas - This method is just like
479/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
480/// instructions in parallel.  This is important in cases where we have large
481/// basic blocks, as we don't want to rescan the entire basic block for each
482/// alloca which is locally used in it (which might be a lot).
483void PromoteMem2Reg::
484PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
485  std::map<AllocaInst*, Value*> CurValues;
486  for (unsigned i = 0, e = AIs.size(); i != e; ++i)
487    CurValues[AIs[i]] = 0; // Insert with null value
488
489  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
490    Instruction *Inst = I++;
491    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
492      // Is this a load of an alloca we are tracking?
493      if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
494        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
495        if (AIt != CurValues.end()) {
496          // Loads just returns the "current value"...
497          if (AIt->second == 0)   // Uninitialized value??
498            AIt->second = UndefValue::get(AIt->first->getAllocatedType());
499          LI->replaceAllUsesWith(AIt->second);
500          if (AST && isa<PointerType>(LI->getType()))
501            AST->deleteValue(LI);
502          BB->getInstList().erase(LI);
503        }
504      }
505    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
506      if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
507        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
508        if (AIt != CurValues.end()) {
509          // Store updates the "current value"...
510          AIt->second = SI->getOperand(0);
511          BB->getInstList().erase(SI);
512        }
513      }
514    }
515  }
516}
517
518
519
520// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
521// Alloca returns true if there wasn't already a phi-node for that variable
522//
523bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
524                                  unsigned &Version,
525                                  std::set<PHINode*> &InsertedPHINodes) {
526  // Look up the basic-block in question.
527  std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
528  if (BBPNs.empty()) BBPNs.resize(Allocas.size());
529
530  // If the BB already has a phi node added for the i'th alloca then we're done!
531  if (BBPNs[AllocaNo]) return false;
532
533  // Create a PhiNode using the dereferenced type... and add the phi-node to the
534  // BasicBlock.
535  PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
536                            Allocas[AllocaNo]->getName() + "." +
537                                        utostr(Version++), BB->begin());
538  BBPNs[AllocaNo] = PN;
539  InsertedPHINodes.insert(PN);
540
541  if (AST && isa<PointerType>(PN->getType()))
542    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
543
544  return true;
545}
546
547
548// RenamePass - Recursively traverse the CFG of the function, renaming loads and
549// stores to the allocas which we are promoting.  IncomingVals indicates what
550// value each Alloca contains on exit from the predecessor block Pred.
551//
552void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
553                                std::vector<Value*> &IncomingVals) {
554
555  // If this BB needs a PHI node, update the PHI node for each variable we need
556  // PHI nodes for.
557  std::map<BasicBlock*, std::vector<PHINode *> >::iterator
558    BBPNI = NewPhiNodes.find(BB);
559  if (BBPNI != NewPhiNodes.end()) {
560    std::vector<PHINode *> &BBPNs = BBPNI->second;
561    for (unsigned k = 0; k != BBPNs.size(); ++k)
562      if (PHINode *PN = BBPNs[k]) {
563        // Add this incoming value to the PHI node.
564        PN->addIncoming(IncomingVals[k], Pred);
565
566        // The currently active variable for this block is now the PHI.
567        IncomingVals[k] = PN;
568      }
569  }
570
571  // don't revisit nodes
572  if (Visited.count(BB)) return;
573
574  // mark as visited
575  Visited.insert(BB);
576
577  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
578    Instruction *I = II++; // get the instruction, increment iterator
579
580    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
581      if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
582        std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
583        if (AI != AllocaLookup.end()) {
584          Value *V = IncomingVals[AI->second];
585
586          // walk the use list of this load and replace all uses with r
587          LI->replaceAllUsesWith(V);
588          if (AST && isa<PointerType>(LI->getType()))
589            AST->deleteValue(LI);
590          BB->getInstList().erase(LI);
591        }
592      }
593    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
594      // Delete this instruction and mark the name as the current holder of the
595      // value
596      if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
597        std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
598        if (ai != AllocaLookup.end()) {
599          // what value were we writing?
600          IncomingVals[ai->second] = SI->getOperand(0);
601          BB->getInstList().erase(SI);
602        }
603      }
604    }
605  }
606
607  // Recurse to our successors.
608  TerminatorInst *TI = BB->getTerminator();
609  for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
610    std::vector<Value*> OutgoingVals(IncomingVals);
611    RenamePass(TI->getSuccessor(i), BB, OutgoingVals);
612  }
613}
614
615/// PromoteMemToReg - Promote the specified list of alloca instructions into
616/// scalar registers, inserting PHI nodes as appropriate.  This function makes
617/// use of DominanceFrontier information.  This function does not modify the CFG
618/// of the function at all.  All allocas must be from the same function.
619///
620/// If AST is specified, the specified tracker is updated to reflect changes
621/// made to the IR.
622///
623void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
624                           DominatorTree &DT, DominanceFrontier &DF,
625                           const TargetData &TD, AliasSetTracker *AST) {
626  // If there is nothing to do, bail out...
627  if (Allocas.empty()) return;
628  PromoteMem2Reg(Allocas, DT, DF, TD, AST).run();
629}
630