PromoteMemoryToRegister.cpp revision 5dd75b4ca7e582f44da2f50362e8ab4c59972b5f
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promote memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using dominator frontiers to place PHI nodes, then traversing
13// the function in depth-first order to rewrite loads and stores as appropriate.
14// This is just the standard SSA construction algorithm to construct "pruned"
15// SSA form.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "mem2reg"
20#include "llvm/Transforms/Utils/PromoteMemToReg.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/AliasSetTracker.h"
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Compiler.h"
34#include <algorithm>
35using namespace llvm;
36
37STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
38STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
39STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
40
41// Provide DenseMapKeyInfo for all pointers.
42namespace llvm {
43template<>
44struct DenseMapKeyInfo<std::pair<BasicBlock*, unsigned> > {
45  static inline std::pair<BasicBlock*, unsigned> getEmptyKey() {
46    return std::make_pair((BasicBlock*)-1, ~0U);
47  }
48  static inline std::pair<BasicBlock*, unsigned> getTombstoneKey() {
49    return std::make_pair((BasicBlock*)-2, 0U);
50  }
51  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
52    return DenseMapKeyInfo<void*>::getHashValue(Val.first) + Val.second*2;
53  }
54  static bool isPod() { return true; }
55};
56}
57
58/// isAllocaPromotable - Return true if this alloca is legal for promotion.
59/// This is true if there are only loads and stores to the alloca.
60///
61bool llvm::isAllocaPromotable(const AllocaInst *AI) {
62  // FIXME: If the memory unit is of pointer or integer type, we can permit
63  // assignments to subsections of the memory unit.
64
65  // Only allow direct loads and stores...
66  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
67       UI != UE; ++UI)     // Loop over all of the uses of the alloca
68    if (isa<LoadInst>(*UI)) {
69      // noop
70    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
71      if (SI->getOperand(0) == AI)
72        return false;   // Don't allow a store OF the AI, only INTO the AI.
73    } else {
74      return false;   // Not a load or store.
75    }
76
77  return true;
78}
79
80namespace {
81  struct AllocaInfo;
82
83  // Data package used by RenamePass()
84  class VISIBILITY_HIDDEN RenamePassData {
85  public:
86    typedef std::vector<Value *> ValVector;
87
88    RenamePassData() {}
89    RenamePassData(BasicBlock *B, BasicBlock *P,
90                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
91    BasicBlock *BB;
92    BasicBlock *Pred;
93    ValVector Values;
94
95    void swap(RenamePassData &RHS) {
96      std::swap(BB, RHS.BB);
97      std::swap(Pred, RHS.Pred);
98      Values.swap(RHS.Values);
99    }
100  };
101
102  struct VISIBILITY_HIDDEN PromoteMem2Reg {
103    /// Allocas - The alloca instructions being promoted.
104    ///
105    std::vector<AllocaInst*> Allocas;
106    SmallVector<AllocaInst*, 16> &RetryList;
107    DominatorTree &DT;
108    DominanceFrontier &DF;
109
110    /// AST - An AliasSetTracker object to update.  If null, don't update it.
111    ///
112    AliasSetTracker *AST;
113
114    /// AllocaLookup - Reverse mapping of Allocas.
115    ///
116    std::map<AllocaInst*, unsigned>  AllocaLookup;
117
118    /// NewPhiNodes - The PhiNodes we're adding.
119    ///
120    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
121
122    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
123    /// it corresponds to.
124    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
125
126    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
127    /// each alloca that is of pointer type, we keep track of what to copyValue
128    /// to the inserted PHI nodes here.
129    ///
130    std::vector<Value*> PointerAllocaValues;
131
132    /// Visited - The set of basic blocks the renamer has already visited.
133    ///
134    SmallPtrSet<BasicBlock*, 16> Visited;
135
136    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
137    /// non-determinstic behavior.
138    DenseMap<BasicBlock*, unsigned> BBNumbers;
139
140  public:
141    PromoteMem2Reg(const std::vector<AllocaInst*> &A,
142                   SmallVector<AllocaInst*, 16> &Retry, DominatorTree &dt,
143                   DominanceFrontier &df, AliasSetTracker *ast)
144      : Allocas(A), RetryList(Retry), DT(dt), DF(df), AST(ast) {}
145
146    void run();
147
148    /// properlyDominates - Return true if I1 properly dominates I2.
149    ///
150    bool properlyDominates(Instruction *I1, Instruction *I2) const {
151      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
152        I1 = II->getNormalDest()->begin();
153      return DT.properlyDominates(I1->getParent(), I2->getParent());
154    }
155
156    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
157    ///
158    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
159      return DT.dominates(BB1, BB2);
160    }
161
162  private:
163    void RemoveFromAllocasList(unsigned &AllocaIdx) {
164      Allocas[AllocaIdx] = Allocas.back();
165      Allocas.pop_back();
166      --AllocaIdx;
167    }
168
169    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info);
170
171    void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
172                               SmallPtrSet<PHINode*, 16> &DeadPHINodes);
173    bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
174    void PromoteLocallyUsedAllocas(BasicBlock *BB,
175                                   const std::vector<AllocaInst*> &AIs);
176
177    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
178                    RenamePassData::ValVector &IncVals,
179                    std::vector<RenamePassData> &Worklist);
180    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
181                      SmallPtrSet<PHINode*, 16> &InsertedPHINodes);
182  };
183
184  struct AllocaInfo {
185    std::vector<BasicBlock*> DefiningBlocks;
186    std::vector<BasicBlock*> UsingBlocks;
187
188    StoreInst  *OnlyStore;
189    BasicBlock *OnlyBlock;
190    bool OnlyUsedInOneBlock;
191
192    Value *AllocaPointerVal;
193
194    void clear() {
195      DefiningBlocks.clear();
196      UsingBlocks.clear();
197      OnlyStore = 0;
198      OnlyBlock = 0;
199      OnlyUsedInOneBlock = true;
200      AllocaPointerVal = 0;
201    }
202
203    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
204    /// ivars.
205    void AnalyzeAlloca(AllocaInst *AI) {
206      clear();
207
208      // As we scan the uses of the alloca instruction, keep track of stores,
209      // and decide whether all of the loads and stores to the alloca are within
210      // the same basic block.
211      for (Value::use_iterator U = AI->use_begin(), E = AI->use_end();
212           U != E; ++U){
213        Instruction *User = cast<Instruction>(*U);
214        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
215          // Remember the basic blocks which define new values for the alloca
216          DefiningBlocks.push_back(SI->getParent());
217          AllocaPointerVal = SI->getOperand(0);
218          OnlyStore = SI;
219        } else {
220          LoadInst *LI = cast<LoadInst>(User);
221          // Otherwise it must be a load instruction, keep track of variable reads
222          UsingBlocks.push_back(LI->getParent());
223          AllocaPointerVal = LI;
224        }
225
226        if (OnlyUsedInOneBlock) {
227          if (OnlyBlock == 0)
228            OnlyBlock = User->getParent();
229          else if (OnlyBlock != User->getParent())
230            OnlyUsedInOneBlock = false;
231        }
232      }
233    }
234  };
235
236}  // end of anonymous namespace
237
238
239void PromoteMem2Reg::run() {
240  Function &F = *DF.getRoot()->getParent();
241
242  // LocallyUsedAllocas - Keep track of all of the alloca instructions which are
243  // only used in a single basic block.  These instructions can be efficiently
244  // promoted by performing a single linear scan over that one block.  Since
245  // individual basic blocks are sometimes large, we group together all allocas
246  // that are live in a single basic block by the basic block they are live in.
247  std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
248
249  if (AST) PointerAllocaValues.resize(Allocas.size());
250
251  AllocaInfo Info;
252
253  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
254    AllocaInst *AI = Allocas[AllocaNum];
255
256    assert(isAllocaPromotable(AI) &&
257           "Cannot promote non-promotable alloca!");
258    assert(AI->getParent()->getParent() == &F &&
259           "All allocas should be in the same function, which is same as DF!");
260
261    if (AI->use_empty()) {
262      // If there are no uses of the alloca, just delete it now.
263      if (AST) AST->deleteValue(AI);
264      AI->eraseFromParent();
265
266      // Remove the alloca from the Allocas list, since it has been processed
267      RemoveFromAllocasList(AllocaNum);
268      ++NumDeadAlloca;
269      continue;
270    }
271
272    // Calculate the set of read and write-locations for each alloca.  This is
273    // analogous to finding the 'uses' and 'definitions' of each variable.
274    Info.AnalyzeAlloca(AI);
275
276    // If the alloca is only read and written in one basic block, just perform a
277    // linear sweep over the block to eliminate it.
278    if (Info.OnlyUsedInOneBlock) {
279      LocallyUsedAllocas[Info.OnlyBlock].push_back(AI);
280
281      // Remove the alloca from the Allocas list, since it will be processed.
282      RemoveFromAllocasList(AllocaNum);
283      continue;
284    }
285
286    // If there is only a single store to this value, replace any loads of
287    // it that are directly dominated by the definition with the value stored.
288    if (Info.DefiningBlocks.size() == 1) {
289      RewriteSingleStoreAlloca(AI, Info);
290
291      // Finally, after the scan, check to see if the store is all that is left.
292      if (Info.UsingBlocks.empty()) {
293        ++NumSingleStore;
294        // The alloca has been processed, move on.
295        RemoveFromAllocasList(AllocaNum);
296        continue;
297      }
298    }
299
300
301    if (AST)
302      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
303
304    // If we haven't computed a numbering for the BB's in the function, do so
305    // now.
306    if (BBNumbers.empty()) {
307      unsigned ID = 0;
308      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
309        BBNumbers[I] = ID++;
310    }
311
312    // Compute the locations where PhiNodes need to be inserted.  Look at the
313    // dominance frontier of EACH basic-block we have a write in.
314    //
315    unsigned CurrentVersion = 0;
316    SmallPtrSet<PHINode*, 16> InsertedPHINodes;
317    std::vector<std::pair<unsigned, BasicBlock*> > DFBlocks;
318    while (!Info.DefiningBlocks.empty()) {
319      BasicBlock *BB = Info.DefiningBlocks.back();
320      Info.DefiningBlocks.pop_back();
321
322      // Look up the DF for this write, add it to PhiNodes
323      DominanceFrontier::const_iterator it = DF.find(BB);
324      if (it != DF.end()) {
325        const DominanceFrontier::DomSetType &S = it->second;
326
327        // In theory we don't need the indirection through the DFBlocks vector.
328        // In practice, the order of calling QueuePhiNode would depend on the
329        // (unspecified) ordering of basic blocks in the dominance frontier,
330        // which would give PHI nodes non-determinstic subscripts.  Fix this by
331        // processing blocks in order of the occurance in the function.
332        for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
333             PE = S.end(); P != PE; ++P)
334          DFBlocks.push_back(std::make_pair(BBNumbers[*P], *P));
335
336        // Sort by which the block ordering in the function.
337        std::sort(DFBlocks.begin(), DFBlocks.end());
338
339        for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
340          BasicBlock *BB = DFBlocks[i].second;
341          if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
342            Info.DefiningBlocks.push_back(BB);
343        }
344        DFBlocks.clear();
345      }
346    }
347
348    // Now that we have inserted PHI nodes along the Iterated Dominance Frontier
349    // of the writes to the variable, scan through the reads of the variable,
350    // marking PHI nodes which are actually necessary as alive (by removing them
351    // from the InsertedPHINodes set).  This is not perfect: there may PHI
352    // marked alive because of loads which are dominated by stores, but there
353    // will be no unmarked PHI nodes which are actually used.
354    //
355    for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i)
356      MarkDominatingPHILive(Info.UsingBlocks[i], AllocaNum, InsertedPHINodes);
357    Info.UsingBlocks.clear();
358
359    // If there are any PHI nodes which are now known to be dead, remove them!
360    for (SmallPtrSet<PHINode*, 16>::iterator I = InsertedPHINodes.begin(),
361           E = InsertedPHINodes.end(); I != E; ++I) {
362      PHINode *PN = *I;
363      bool Erased=NewPhiNodes.erase(std::make_pair(PN->getParent(), AllocaNum));
364      Erased=Erased;
365      assert(Erased && "PHI already removed?");
366
367      if (AST && isa<PointerType>(PN->getType()))
368        AST->deleteValue(PN);
369      PN->eraseFromParent();
370      PhiToAllocaMap.erase(PN);
371    }
372
373    // Keep the reverse mapping of the 'Allocas' array.
374    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
375  }
376
377  // Process all allocas which are only used in a single basic block.
378  for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
379         LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
380    const std::vector<AllocaInst*> &LocAllocas = I->second;
381    assert(!LocAllocas.empty() && "empty alloca list??");
382
383    // It's common for there to only be one alloca in the list.  Handle it
384    // efficiently.
385    if (LocAllocas.size() == 1) {
386      // If we can do the quick promotion pass, do so now.
387      if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
388        RetryList.push_back(LocAllocas[0]);  // Failed, retry later.
389    } else {
390      // Locally promote anything possible.  Note that if this is unable to
391      // promote a particular alloca, it puts the alloca onto the Allocas vector
392      // for global processing.
393      PromoteLocallyUsedAllocas(I->first, LocAllocas);
394    }
395  }
396
397  if (Allocas.empty())
398    return; // All of the allocas must have been trivial!
399
400  // Set the incoming values for the basic block to be null values for all of
401  // the alloca's.  We do this in case there is a load of a value that has not
402  // been stored yet.  In this case, it will get this null value.
403  //
404  RenamePassData::ValVector Values(Allocas.size());
405  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
406    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
407
408  // Walks all basic blocks in the function performing the SSA rename algorithm
409  // and inserting the phi nodes we marked as necessary
410  //
411  std::vector<RenamePassData> RenamePassWorkList;
412  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
413  while (!RenamePassWorkList.empty()) {
414    RenamePassData RPD;
415    RPD.swap(RenamePassWorkList.back());
416    RenamePassWorkList.pop_back();
417    // RenamePass may add new worklist entries.
418    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
419  }
420
421  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
422  Visited.clear();
423
424  // Remove the allocas themselves from the function.
425  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
426    Instruction *A = Allocas[i];
427
428    // If there are any uses of the alloca instructions left, they must be in
429    // sections of dead code that were not processed on the dominance frontier.
430    // Just delete the users now.
431    //
432    if (!A->use_empty())
433      A->replaceAllUsesWith(UndefValue::get(A->getType()));
434    if (AST) AST->deleteValue(A);
435    A->eraseFromParent();
436  }
437
438
439  // Loop over all of the PHI nodes and see if there are any that we can get
440  // rid of because they merge all of the same incoming values.  This can
441  // happen due to undef values coming into the PHI nodes.  This process is
442  // iterative, because eliminating one PHI node can cause others to be removed.
443  bool EliminatedAPHI = true;
444  while (EliminatedAPHI) {
445    EliminatedAPHI = false;
446
447    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
448           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
449      PHINode *PN = I->second;
450
451      // If this PHI node merges one value and/or undefs, get the value.
452      if (Value *V = PN->hasConstantValue(true)) {
453        if (!isa<Instruction>(V) ||
454            properlyDominates(cast<Instruction>(V), PN)) {
455          if (AST && isa<PointerType>(PN->getType()))
456            AST->deleteValue(PN);
457          PN->replaceAllUsesWith(V);
458          PN->eraseFromParent();
459          NewPhiNodes.erase(I++);
460          EliminatedAPHI = true;
461          continue;
462        }
463      }
464      ++I;
465    }
466  }
467
468  // At this point, the renamer has added entries to PHI nodes for all reachable
469  // code.  Unfortunately, there may be unreachable blocks which the renamer
470  // hasn't traversed.  If this is the case, the PHI nodes may not
471  // have incoming values for all predecessors.  Loop over all PHI nodes we have
472  // created, inserting undef values if they are missing any incoming values.
473  //
474  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
475         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
476    // We want to do this once per basic block.  As such, only process a block
477    // when we find the PHI that is the first entry in the block.
478    PHINode *SomePHI = I->second;
479    BasicBlock *BB = SomePHI->getParent();
480    if (&BB->front() != SomePHI)
481      continue;
482
483    // Count the number of preds for BB.
484    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
485
486    // Only do work here if there the PHI nodes are missing incoming values.  We
487    // know that all PHI nodes that were inserted in a block will have the same
488    // number of incoming values, so we can just check any of them.
489    if (SomePHI->getNumIncomingValues() == Preds.size())
490      continue;
491
492    // Ok, now we know that all of the PHI nodes are missing entries for some
493    // basic blocks.  Start by sorting the incoming predecessors for efficient
494    // access.
495    std::sort(Preds.begin(), Preds.end());
496
497    // Now we loop through all BB's which have entries in SomePHI and remove
498    // them from the Preds list.
499    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
500      // Do a log(n) search of the Preds list for the entry we want.
501      SmallVector<BasicBlock*, 16>::iterator EntIt =
502        std::lower_bound(Preds.begin(), Preds.end(),
503                         SomePHI->getIncomingBlock(i));
504      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
505             "PHI node has entry for a block which is not a predecessor!");
506
507      // Remove the entry
508      Preds.erase(EntIt);
509    }
510
511    // At this point, the blocks left in the preds list must have dummy
512    // entries inserted into every PHI nodes for the block.  Update all the phi
513    // nodes in this block that we are inserting (there could be phis before
514    // mem2reg runs).
515    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
516    BasicBlock::iterator BBI = BB->begin();
517    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
518           SomePHI->getNumIncomingValues() == NumBadPreds) {
519      Value *UndefVal = UndefValue::get(SomePHI->getType());
520      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
521        SomePHI->addIncoming(UndefVal, Preds[pred]);
522    }
523  }
524
525  NewPhiNodes.clear();
526}
527
528
529/// RewriteSingleStoreAlloca - If there is only a single store to this value,
530/// replace any loads of it that are directly dominated by the definition with
531/// the value stored.
532void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
533                                              AllocaInfo &Info) {
534  // Be aware of loads before the store.
535  std::set<BasicBlock*> ProcessedBlocks;
536  for (unsigned i = 0, e = Info.UsingBlocks.size(); i != e; ++i) {
537    // If the store dominates the block and if we haven't processed it yet,
538    // do so now.
539    if (!dominates(Info.OnlyStore->getParent(), Info.UsingBlocks[i]))
540      continue;
541
542    if (!ProcessedBlocks.insert(Info.UsingBlocks[i]).second)
543      continue;
544
545    BasicBlock *UseBlock = Info.UsingBlocks[i];
546
547    // If the use and store are in the same block, do a quick scan to
548    // verify that there are no uses before the store.
549    if (UseBlock == Info.OnlyStore->getParent()) {
550      BasicBlock::iterator I = UseBlock->begin();
551      for (; &*I != Info.OnlyStore; ++I) { // scan block for store.
552        if (isa<LoadInst>(I) && I->getOperand(0) == AI)
553          break;
554      }
555      if (&*I != Info.OnlyStore) break;  // Do not handle this case.
556    }
557
558    // Otherwise, if this is a different block or if all uses happen
559    // after the store, do a simple linear scan to replace loads with
560    // the stored value.
561    for (BasicBlock::iterator I = UseBlock->begin(),E = UseBlock->end();
562         I != E; ) {
563      if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
564        if (LI->getOperand(0) == AI) {
565          LI->replaceAllUsesWith(Info.OnlyStore->getOperand(0));
566          if (AST && isa<PointerType>(LI->getType()))
567            AST->deleteValue(LI);
568          LI->eraseFromParent();
569        }
570      }
571    }
572
573    // Finally, remove this block from the UsingBlock set.
574    Info.UsingBlocks[i] = Info.UsingBlocks.back();
575    --i; --e;
576  }
577}
578
579
580// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
581// "minimal" SSA form.  To do this, it inserts all of the PHI nodes on the IDF
582// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
583// each read of the variable.  For each block that reads the variable, this
584// function is called, which removes used PHI nodes from the DeadPHINodes set.
585// After all of the reads have been processed, any PHI nodes left in the
586// DeadPHINodes set are removed.
587//
588void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
589                                      SmallPtrSet<PHINode*, 16> &DeadPHINodes) {
590  // Scan the immediate dominators of this block looking for a block which has a
591  // PHI node for Alloca num.  If we find it, mark the PHI node as being alive!
592  DomTreeNode *IDomNode = DT.getNode(BB);
593  for (DomTreeNode *IDom = IDomNode; IDom; IDom = IDom->getIDom()) {
594    BasicBlock *DomBB = IDom->getBlock();
595    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator
596      I = NewPhiNodes.find(std::make_pair(DomBB, AllocaNum));
597    if (I != NewPhiNodes.end()) {
598      // Ok, we found an inserted PHI node which dominates this value.
599      PHINode *DominatingPHI = I->second;
600
601      // Find out if we previously thought it was dead.  If so, mark it as being
602      // live by removing it from the DeadPHINodes set.
603      if (DeadPHINodes.erase(DominatingPHI)) {
604        // Now that we have marked the PHI node alive, also mark any PHI nodes
605        // which it might use as being alive as well.
606        for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
607             PI != PE; ++PI)
608          MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
609      }
610    }
611  }
612}
613
614/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
615/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
616/// potentially useless PHI nodes by just performing a single linear pass over
617/// the basic block using the Alloca.
618///
619/// If we cannot promote this alloca (because it is read before it is written),
620/// return true.  This is necessary in cases where, due to control flow, the
621/// alloca is potentially undefined on some control flow paths.  e.g. code like
622/// this is potentially correct:
623///
624///   for (...) { if (c) { A = undef; undef = B; } }
625///
626/// ... so long as A is not used before undef is set.
627///
628bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
629  assert(!AI->use_empty() && "There are no uses of the alloca!");
630
631  // Handle degenerate cases quickly.
632  if (AI->hasOneUse()) {
633    Instruction *U = cast<Instruction>(AI->use_back());
634    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
635      // Must be a load of uninitialized value.
636      LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
637      if (AST && isa<PointerType>(LI->getType()))
638        AST->deleteValue(LI);
639    } else {
640      // Otherwise it must be a store which is never read.
641      assert(isa<StoreInst>(U));
642    }
643    BB->getInstList().erase(U);
644  } else {
645    // Uses of the uninitialized memory location shall get undef.
646    Value *CurVal = 0;
647
648    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
649      Instruction *Inst = I++;
650      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
651        if (LI->getOperand(0) == AI) {
652          if (!CurVal) return true;  // Could not locally promote!
653
654          // Loads just returns the "current value"...
655          LI->replaceAllUsesWith(CurVal);
656          if (AST && isa<PointerType>(LI->getType()))
657            AST->deleteValue(LI);
658          BB->getInstList().erase(LI);
659        }
660      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
661        if (SI->getOperand(1) == AI) {
662          // Store updates the "current value"...
663          CurVal = SI->getOperand(0);
664          BB->getInstList().erase(SI);
665        }
666      }
667    }
668  }
669
670  // After traversing the basic block, there should be no more uses of the
671  // alloca, remove it now.
672  assert(AI->use_empty() && "Uses of alloca from more than one BB??");
673  if (AST) AST->deleteValue(AI);
674  AI->getParent()->getInstList().erase(AI);
675
676  ++NumLocalPromoted;
677  return false;
678}
679
680/// PromoteLocallyUsedAllocas - This method is just like
681/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
682/// instructions in parallel.  This is important in cases where we have large
683/// basic blocks, as we don't want to rescan the entire basic block for each
684/// alloca which is locally used in it (which might be a lot).
685void PromoteMem2Reg::
686PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
687  std::map<AllocaInst*, Value*> CurValues;
688  for (unsigned i = 0, e = AIs.size(); i != e; ++i)
689    CurValues[AIs[i]] = 0; // Insert with null value
690
691  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
692    Instruction *Inst = I++;
693    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
694      // Is this a load of an alloca we are tracking?
695      if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
696        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
697        if (AIt != CurValues.end()) {
698          // If loading an uninitialized value, allow the inter-block case to
699          // handle it.  Due to control flow, this might actually be ok.
700          if (AIt->second == 0) {  // Use of locally uninitialized value??
701            RetryList.push_back(AI);   // Retry elsewhere.
702            CurValues.erase(AIt);   // Stop tracking this here.
703            if (CurValues.empty()) return;
704          } else {
705            // Loads just returns the "current value"...
706            LI->replaceAllUsesWith(AIt->second);
707            if (AST && isa<PointerType>(LI->getType()))
708              AST->deleteValue(LI);
709            BB->getInstList().erase(LI);
710          }
711        }
712      }
713    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
714      if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
715        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
716        if (AIt != CurValues.end()) {
717          // Store updates the "current value"...
718          AIt->second = SI->getOperand(0);
719          BB->getInstList().erase(SI);
720        }
721      }
722    }
723  }
724}
725
726
727
728// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
729// Alloca returns true if there wasn't already a phi-node for that variable
730//
731bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
732                                  unsigned &Version,
733                                  SmallPtrSet<PHINode*, 16> &InsertedPHINodes) {
734  // Look up the basic-block in question.
735  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
736
737  // If the BB already has a phi node added for the i'th alloca then we're done!
738  if (PN) return false;
739
740  // Create a PhiNode using the dereferenced type... and add the phi-node to the
741  // BasicBlock.
742  PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
743                   Allocas[AllocaNo]->getName() + "." +
744                   utostr(Version++), BB->begin());
745  PhiToAllocaMap[PN] = AllocaNo;
746
747  InsertedPHINodes.insert(PN);
748
749  if (AST && isa<PointerType>(PN->getType()))
750    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
751
752  return true;
753}
754
755
756// RenamePass - Recursively traverse the CFG of the function, renaming loads and
757// stores to the allocas which we are promoting.  IncomingVals indicates what
758// value each Alloca contains on exit from the predecessor block Pred.
759//
760void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
761                                RenamePassData::ValVector &IncomingVals,
762                                std::vector<RenamePassData> &Worklist) {
763  // If we are inserting any phi nodes into this BB, they will already be in the
764  // block.
765  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
766    // Pred may have multiple edges to BB.  If so, we want to add N incoming
767    // values to each PHI we are inserting on the first time we see the edge.
768    // Check to see if APN already has incoming values from Pred.  This also
769    // prevents us from modifying PHI nodes that are not currently being
770    // inserted.
771    bool HasPredEntries = false;
772    for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
773      if (APN->getIncomingBlock(i) == Pred) {
774        HasPredEntries = true;
775        break;
776      }
777    }
778
779    // If we have PHI nodes to update, compute the number of edges from Pred to
780    // BB.
781    if (!HasPredEntries) {
782      TerminatorInst *PredTerm = Pred->getTerminator();
783      unsigned NumEdges = 0;
784      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
785        if (PredTerm->getSuccessor(i) == BB)
786          ++NumEdges;
787      }
788      assert(NumEdges && "Must be at least one edge from Pred to BB!");
789
790      // Add entries for all the phis.
791      BasicBlock::iterator PNI = BB->begin();
792      do {
793        unsigned AllocaNo = PhiToAllocaMap[APN];
794
795        // Add N incoming values to the PHI node.
796        for (unsigned i = 0; i != NumEdges; ++i)
797          APN->addIncoming(IncomingVals[AllocaNo], Pred);
798
799        // The currently active variable for this block is now the PHI.
800        IncomingVals[AllocaNo] = APN;
801
802        // Get the next phi node.
803        ++PNI;
804        APN = dyn_cast<PHINode>(PNI);
805        if (APN == 0) break;
806
807        // Verify it doesn't already have entries for Pred.  If it does, it is
808        // not being inserted by this mem2reg invocation.
809        HasPredEntries = false;
810        for (unsigned i = 0, e = APN->getNumIncomingValues(); i != e; ++i) {
811          if (APN->getIncomingBlock(i) == Pred) {
812            HasPredEntries = true;
813            break;
814          }
815        }
816      } while (!HasPredEntries);
817    }
818  }
819
820  // Don't revisit blocks.
821  if (!Visited.insert(BB)) return;
822
823  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
824    Instruction *I = II++; // get the instruction, increment iterator
825
826    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
827      if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
828        std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
829        if (AI != AllocaLookup.end()) {
830          Value *V = IncomingVals[AI->second];
831
832          // walk the use list of this load and replace all uses with r
833          LI->replaceAllUsesWith(V);
834          if (AST && isa<PointerType>(LI->getType()))
835            AST->deleteValue(LI);
836          BB->getInstList().erase(LI);
837        }
838      }
839    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
840      // Delete this instruction and mark the name as the current holder of the
841      // value
842      if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
843        std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
844        if (ai != AllocaLookup.end()) {
845          // what value were we writing?
846          IncomingVals[ai->second] = SI->getOperand(0);
847          BB->getInstList().erase(SI);
848        }
849      }
850    }
851  }
852
853  // Recurse to our successors.
854  TerminatorInst *TI = BB->getTerminator();
855  for (unsigned i = 0; i != TI->getNumSuccessors(); i++)
856    Worklist.push_back(RenamePassData(TI->getSuccessor(i), BB, IncomingVals));
857}
858
859/// PromoteMemToReg - Promote the specified list of alloca instructions into
860/// scalar registers, inserting PHI nodes as appropriate.  This function makes
861/// use of DominanceFrontier information.  This function does not modify the CFG
862/// of the function at all.  All allocas must be from the same function.
863///
864/// If AST is specified, the specified tracker is updated to reflect changes
865/// made to the IR.
866///
867void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
868                           DominatorTree &DT, DominanceFrontier &DF,
869                           AliasSetTracker *AST) {
870  // If there is nothing to do, bail out...
871  if (Allocas.empty()) return;
872
873  SmallVector<AllocaInst*, 16> RetryList;
874  PromoteMem2Reg(Allocas, RetryList, DT, DF, AST).run();
875
876  // PromoteMem2Reg may not have been able to promote all of the allocas in one
877  // pass, run it again if needed.
878  std::vector<AllocaInst*> NewAllocas;
879  while (!RetryList.empty()) {
880    // If we need to retry some allocas, this is due to there being no store
881    // before a read in a local block.  To counteract this, insert a store of
882    // undef into the alloca right after the alloca itself.
883    for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
884      BasicBlock::iterator BBI = RetryList[i];
885
886      new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
887                    RetryList[i], ++BBI);
888    }
889
890    NewAllocas.assign(RetryList.begin(), RetryList.end());
891    RetryList.clear();
892    PromoteMem2Reg(NewAllocas, RetryList, DT, DF, AST).run();
893    NewAllocas.clear();
894  }
895}
896