PromoteMemoryToRegister.cpp revision c8789cb40b81d032b79e02023e025d3ca7711365
1//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
2//
3// This file is used to promote memory references to be register references.  A
4// simple example of the transformation performed by this function is:
5//
6//        FROM CODE                           TO CODE
7//   %X = alloca int, uint 1                 ret int 42
8//   store int 42, int *%X
9//   %Y = load int* %X
10//   ret int %Y
11//
12// The code is transformed by looping over all of the alloca instruction,
13// calculating dominator frontiers, then inserting phi-nodes following the usual
14// SSA construction algorithm.  This code does not modify the CFG of the
15// function.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Utils/PromoteMemToReg.h"
20#include "llvm/Analysis/Dominators.h"
21#include "llvm/iMemory.h"
22#include "llvm/iPHINode.h"
23#include "llvm/iTerminators.h"
24#include "llvm/Function.h"
25#include "llvm/Constant.h"
26#include "llvm/Type.h"
27#include "llvm/Support/CFG.h"
28#include "Support/StringExtras.h"
29
30/// isAllocaPromotable - Return true if this alloca is legal for promotion.
31/// This is true if there are only loads and stores to the alloca...
32///
33bool isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
34  // FIXME: If the memory unit is of pointer or integer type, we can permit
35  // assignments to subsections of the memory unit.
36
37  // Only allow direct loads and stores...
38  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
39       UI != UE; ++UI)     // Loop over all of the uses of the alloca
40    if (!isa<LoadInst>(*UI))
41      if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
42        if (SI->getOperand(0) == AI)
43          return false;   // Don't allow a store of the AI, only INTO the AI.
44      } else {
45        return false;   // Not a load or store?
46      }
47
48  return true;
49}
50
51
52namespace {
53  struct PromoteMem2Reg {
54    const std::vector<AllocaInst*>   &Allocas;      // the alloca instructions..
55    std::vector<unsigned> VersionNumbers;           // Current version counters
56    DominanceFrontier &DF;
57    const TargetData &TD;
58
59    std::map<Instruction*, unsigned>  AllocaLookup; // reverse mapping of above
60
61    std::vector<std::vector<BasicBlock*> > PhiNodes;// Idx corresponds 2 Allocas
62
63    // List of instructions to remove at end of pass
64    std::vector<Instruction *>        KillList;
65
66    std::map<BasicBlock*,
67             std::vector<PHINode*> >  NewPhiNodes; // the PhiNodes we're adding
68
69  public:
70    PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominanceFrontier &df,
71                   const TargetData &td)
72      : Allocas(A), DF(df), TD(td) {}
73
74    void run();
75
76  private:
77    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
78                    std::vector<Value*> &IncVals,
79                    std::set<BasicBlock*> &Visited);
80    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx);
81  };
82}  // end of anonymous namespace
83
84
85void PromoteMem2Reg::run() {
86  // If there is nothing to do, bail out...
87  if (Allocas.empty()) return;
88
89  Function &F = *DF.getRoot()->getParent();
90  VersionNumbers.resize(Allocas.size());
91
92  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
93    assert(isAllocaPromotable(Allocas[i], TD) &&
94           "Cannot promote non-promotable alloca!");
95    assert(Allocas[i]->getParent()->getParent() == &F &&
96           "All allocas should be in the same function, which is same as DF!");
97    AllocaLookup[Allocas[i]] = i;
98  }
99
100
101  // Add each alloca to the KillList.  Note: KillList is destroyed MOST recently
102  // added to least recently.
103  KillList.assign(Allocas.begin(), Allocas.end());
104
105  // Calculate the set of write-locations for each alloca.  This is analogous to
106  // counting the number of 'redefinitions' of each variable.
107  std::vector<std::vector<BasicBlock*> > WriteSets;// Idx corresponds to Allocas
108  WriteSets.resize(Allocas.size());
109  for (unsigned i = 0; i != Allocas.size(); ++i) {
110    AllocaInst *AI = Allocas[i];
111    for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
112      if (StoreInst *SI = dyn_cast<StoreInst>(*U))
113        // jot down the basic-block it came from
114        WriteSets[i].push_back(SI->getParent());
115  }
116
117  // Compute the locations where PhiNodes need to be inserted.  Look at the
118  // dominance frontier of EACH basic-block we have a write in
119  //
120  PhiNodes.resize(Allocas.size());
121  for (unsigned i = 0; i != Allocas.size(); ++i) {
122    for (unsigned j = 0; j != WriteSets[i].size(); j++) {
123      // Look up the DF for this write, add it to PhiNodes
124      DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
125      if (it != DF.end()) {
126        const DominanceFrontier::DomSetType &S = it->second;
127        for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
128             P != PE; ++P)
129          QueuePhiNode(*P, i);
130      }
131    }
132
133    // Perform iterative step
134    for (unsigned k = 0; k != PhiNodes[i].size(); k++) {
135      DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
136      if (it != DF.end()) {
137        const DominanceFrontier::DomSetType     &S = it->second;
138        for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
139             P != PE; ++P)
140          QueuePhiNode(*P, i);
141      }
142    }
143  }
144
145  // Set the incoming values for the basic block to be null values for all of
146  // the alloca's.  We do this in case there is a load of a value that has not
147  // been stored yet.  In this case, it will get this null value.
148  //
149  std::vector<Value *> Values(Allocas.size());
150  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
151    Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType());
152
153  // Walks all basic blocks in the function performing the SSA rename algorithm
154  // and inserting the phi nodes we marked as necessary
155  //
156  std::set<BasicBlock*> Visited;      // The basic blocks we've already visited
157  RenamePass(F.begin(), 0, Values, Visited);
158
159  // Remove all instructions marked by being placed in the KillList...
160  //
161  while (!KillList.empty()) {
162    Instruction *I = KillList.back();
163    KillList.pop_back();
164
165    // If there are any uses of these instructions left, they must be in
166    // sections of dead code that were not processed on the dominance frontier.
167    // Just delete the users now.
168    //
169    while (!I->use_empty()) {
170      Instruction *U = cast<Instruction>(I->use_back());
171      if (!U->use_empty())  // If uses remain in dead code segment...
172        U->replaceAllUsesWith(Constant::getNullValue(U->getType()));
173      U->getParent()->getInstList().erase(U);
174    }
175
176    I->getParent()->getInstList().erase(I);
177  }
178}
179
180
181// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
182// Alloca returns true if there wasn't already a phi-node for that variable
183//
184bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) {
185  // Look up the basic-block in question
186  std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
187  if (BBPNs.empty()) BBPNs.resize(Allocas.size());
188
189  // If the BB already has a phi node added for the i'th alloca then we're done!
190  if (BBPNs[AllocaNo]) return false;
191
192  // Create a PhiNode using the dereferenced type... and add the phi-node to the
193  // BasicBlock.
194  PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
195                            Allocas[AllocaNo]->getName() + "." +
196                                      utostr(VersionNumbers[AllocaNo]++),
197                            BB->begin());
198
199  // Add null incoming values for all predecessors.  This ensures that if one of
200  // the predecessors is not found in the depth-first traversal of the CFG (ie,
201  // because it is an unreachable predecessor), that all PHI nodes will have the
202  // correct number of entries for their predecessors.
203  Value *NullVal = Constant::getNullValue(PN->getType());
204
205  // This is neccesary because adding incoming values to the PHI node adds uses
206  // to the basic blocks being used, which can invalidate the predecessor
207  // iterator!
208  std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
209  for (unsigned i = 0, e = Preds.size(); i != e; ++i)
210    PN->addIncoming(NullVal, Preds[i]);
211
212  BBPNs[AllocaNo] = PN;
213  PhiNodes[AllocaNo].push_back(BB);
214  return true;
215}
216
217void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
218                             std::vector<Value*> &IncomingVals,
219                             std::set<BasicBlock*> &Visited) {
220  // If this is a BB needing a phi node, lookup/create the phinode for each
221  // variable we need phinodes for.
222  std::vector<PHINode *> &BBPNs = NewPhiNodes[BB];
223  for (unsigned k = 0; k != BBPNs.size(); ++k)
224    if (PHINode *PN = BBPNs[k]) {
225      // The PHI node may have multiple entries for this predecessor.  We must
226      // make sure we update all of them.
227      for (unsigned i = 0, e = PN->getNumOperands(); i != e; i += 2) {
228        if (PN->getOperand(i+1) == Pred)
229          // At this point we can assume that the array has phi nodes.. let's
230          // update the incoming data.
231          PN->setOperand(i, IncomingVals[k]);
232      }
233      // also note that the active variable IS designated by the phi node
234      IncomingVals[k] = PN;
235    }
236
237  // don't revisit nodes
238  if (Visited.count(BB)) return;
239
240  // mark as visited
241  Visited.insert(BB);
242
243  // keep track of the value of each variable we're watching.. how?
244  for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) {
245    Instruction *I = II; // get the instruction
246
247    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
248      if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
249        std::map<Instruction*, unsigned>::iterator AI = AllocaLookup.find(Src);
250        if (AI != AllocaLookup.end()) {
251          Value *V = IncomingVals[AI->second];
252
253          // walk the use list of this load and replace all uses with r
254          LI->replaceAllUsesWith(V);
255          KillList.push_back(LI); // Mark the load to be deleted
256        }
257      }
258    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
259      // Delete this instruction and mark the name as the current holder of the
260      // value
261      if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
262        std::map<Instruction *, unsigned>::iterator ai =AllocaLookup.find(Dest);
263        if (ai != AllocaLookup.end()) {
264          // what value were we writing?
265          IncomingVals[ai->second] = SI->getOperand(0);
266          KillList.push_back(SI);  // Mark the store to be deleted
267        }
268      }
269
270    } else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(I)) {
271      // Recurse across our successors
272      for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
273        std::vector<Value*> OutgoingVals(IncomingVals);
274        RenamePass(TI->getSuccessor(i), BB, OutgoingVals, Visited);
275      }
276    }
277  }
278}
279
280/// PromoteMemToReg - Promote the specified list of alloca instructions into
281/// scalar registers, inserting PHI nodes as appropriate.  This function makes
282/// use of DominanceFrontier information.  This function does not modify the CFG
283/// of the function at all.  All allocas must be from the same function.
284///
285void PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
286                     DominanceFrontier &DF, const TargetData &TD) {
287  PromoteMem2Reg(Allocas, DF, TD).run();
288}
289