AsmWriter.cpp revision 0d51e7ec0d2dcbea9e304fd58deb05f37eb75635
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/ParameterAttributes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instruction.h"
26#include "llvm/Instructions.h"
27#include "llvm/Module.h"
28#include "llvm/ValueSymbolTable.h"
29#include "llvm/TypeSymbolTable.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/Streams.h"
35#include <algorithm>
36#include <cctype>
37using namespace llvm;
38
39namespace llvm {
40
41// Make virtual table appear in this compilation unit.
42AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
43
44/// This class provides computation of slot numbers for LLVM Assembly writing.
45/// @brief LLVM Assembly Writing Slot Computation.
46class SlotMachine {
47
48/// @name Types
49/// @{
50public:
51
52  /// @brief A mapping of Values to slot numbers
53  typedef std::map<const Value*,unsigned> ValueMap;
54
55/// @}
56/// @name Constructors
57/// @{
58public:
59  /// @brief Construct from a module
60  explicit SlotMachine(const Module *M);
61
62  /// @brief Construct from a function, starting out in incorp state.
63  explicit SlotMachine(const Function *F);
64
65/// @}
66/// @name Accessors
67/// @{
68public:
69  /// Return the slot number of the specified value in it's type
70  /// plane.  If something is not in the SlotMachine, return -1.
71  int getLocalSlot(const Value *V);
72  int getGlobalSlot(const GlobalValue *V);
73
74/// @}
75/// @name Mutators
76/// @{
77public:
78  /// If you'd like to deal with a function instead of just a module, use
79  /// this method to get its data into the SlotMachine.
80  void incorporateFunction(const Function *F) {
81    TheFunction = F;
82    FunctionProcessed = false;
83  }
84
85  /// After calling incorporateFunction, use this method to remove the
86  /// most recently incorporated function from the SlotMachine. This
87  /// will reset the state of the machine back to just the module contents.
88  void purgeFunction();
89
90/// @}
91/// @name Implementation Details
92/// @{
93private:
94  /// This function does the actual initialization.
95  inline void initialize();
96
97  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
98  void CreateModuleSlot(const GlobalValue *V);
99
100  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
101  void CreateFunctionSlot(const Value *V);
102
103  /// Add all of the module level global variables (and their initializers)
104  /// and function declarations, but not the contents of those functions.
105  void processModule();
106
107  /// Add all of the functions arguments, basic blocks, and instructions
108  void processFunction();
109
110  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
111  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
112
113/// @}
114/// @name Data
115/// @{
116public:
117
118  /// @brief The module for which we are holding slot numbers
119  const Module* TheModule;
120
121  /// @brief The function for which we are holding slot numbers
122  const Function* TheFunction;
123  bool FunctionProcessed;
124
125  /// @brief The TypePlanes map for the module level data
126  ValueMap mMap;
127  unsigned mNext;
128
129  /// @brief The TypePlanes map for the function level data
130  ValueMap fMap;
131  unsigned fNext;
132
133/// @}
134
135};
136
137}  // end namespace llvm
138
139char PrintModulePass::ID = 0;
140static RegisterPass<PrintModulePass>
141X("printm", "Print module to stderr");
142char PrintFunctionPass::ID = 0;
143static RegisterPass<PrintFunctionPass>
144Y("print","Print function to stderr");
145
146static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
147                               std::map<const Type *, std::string> &TypeTable,
148                                   SlotMachine *Machine);
149
150static const Module *getModuleFromVal(const Value *V) {
151  if (const Argument *MA = dyn_cast<Argument>(V))
152    return MA->getParent() ? MA->getParent()->getParent() : 0;
153  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
154    return BB->getParent() ? BB->getParent()->getParent() : 0;
155  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
156    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
157    return M ? M->getParent() : 0;
158  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
159    return GV->getParent();
160  return 0;
161}
162
163static SlotMachine *createSlotMachine(const Value *V) {
164  if (const Argument *FA = dyn_cast<Argument>(V)) {
165    return new SlotMachine(FA->getParent());
166  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
167    return new SlotMachine(I->getParent()->getParent());
168  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
169    return new SlotMachine(BB->getParent());
170  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
171    return new SlotMachine(GV->getParent());
172  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)){
173    return new SlotMachine(GA->getParent());
174  } else if (const Function *Func = dyn_cast<Function>(V)) {
175    return new SlotMachine(Func);
176  }
177  return 0;
178}
179
180/// NameNeedsQuotes - Return true if the specified llvm name should be wrapped
181/// with ""'s.
182static std::string QuoteNameIfNeeded(const std::string &Name) {
183  std::string result;
184  bool needsQuotes = Name[0] >= '0' && Name[0] <= '9';
185  // Scan the name to see if it needs quotes and to replace funky chars with
186  // their octal equivalent.
187  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
188    char C = Name[i];
189    assert(C != '"' && "Illegal character in LLVM value name!");
190    if (isalnum(C) || C == '-' || C == '.' || C == '_')
191      result += C;
192    else if (C == '\\')  {
193      needsQuotes = true;
194      result += "\\\\";
195    } else if (isprint(C)) {
196      needsQuotes = true;
197      result += C;
198    } else {
199      needsQuotes = true;
200      result += "\\";
201      char hex1 = (C >> 4) & 0x0F;
202      if (hex1 < 10)
203        result += hex1 + '0';
204      else
205        result += hex1 - 10 + 'A';
206      char hex2 = C & 0x0F;
207      if (hex2 < 10)
208        result += hex2 + '0';
209      else
210        result += hex2 - 10 + 'A';
211    }
212  }
213  if (needsQuotes) {
214    result.insert(0,"\"");
215    result += '"';
216  }
217  return result;
218}
219
220enum PrefixType {
221  GlobalPrefix,
222  LabelPrefix,
223  LocalPrefix
224};
225
226/// getLLVMName - Turn the specified string into an 'LLVM name', which is either
227/// prefixed with % (if the string only contains simple characters) or is
228/// surrounded with ""'s (if it has special chars in it).
229static std::string getLLVMName(const std::string &Name, PrefixType Prefix) {
230  assert(!Name.empty() && "Cannot get empty name!");
231  switch (Prefix) {
232  default: assert(0 && "Bad prefix!");
233  case GlobalPrefix: return '@' + QuoteNameIfNeeded(Name);
234  case LabelPrefix:  return QuoteNameIfNeeded(Name);
235  case LocalPrefix:  return '%' + QuoteNameIfNeeded(Name);
236  }
237}
238
239
240/// fillTypeNameTable - If the module has a symbol table, take all global types
241/// and stuff their names into the TypeNames map.
242///
243static void fillTypeNameTable(const Module *M,
244                              std::map<const Type *, std::string> &TypeNames) {
245  if (!M) return;
246  const TypeSymbolTable &ST = M->getTypeSymbolTable();
247  TypeSymbolTable::const_iterator TI = ST.begin();
248  for (; TI != ST.end(); ++TI) {
249    // As a heuristic, don't insert pointer to primitive types, because
250    // they are used too often to have a single useful name.
251    //
252    const Type *Ty = cast<Type>(TI->second);
253    if (!isa<PointerType>(Ty) ||
254        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
255        !cast<PointerType>(Ty)->getElementType()->isInteger() ||
256        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
257      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first, LocalPrefix)));
258  }
259}
260
261
262
263static void calcTypeName(const Type *Ty,
264                         std::vector<const Type *> &TypeStack,
265                         std::map<const Type *, std::string> &TypeNames,
266                         std::string & Result){
267  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
268    Result += Ty->getDescription();  // Base case
269    return;
270  }
271
272  // Check to see if the type is named.
273  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
274  if (I != TypeNames.end()) {
275    Result += I->second;
276    return;
277  }
278
279  if (isa<OpaqueType>(Ty)) {
280    Result += "opaque";
281    return;
282  }
283
284  // Check to see if the Type is already on the stack...
285  unsigned Slot = 0, CurSize = TypeStack.size();
286  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
287
288  // This is another base case for the recursion.  In this case, we know
289  // that we have looped back to a type that we have previously visited.
290  // Generate the appropriate upreference to handle this.
291  if (Slot < CurSize) {
292    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
293    return;
294  }
295
296  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
297
298  switch (Ty->getTypeID()) {
299  case Type::IntegerTyID: {
300    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
301    Result += "i" + utostr(BitWidth);
302    break;
303  }
304  case Type::FunctionTyID: {
305    const FunctionType *FTy = cast<FunctionType>(Ty);
306    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
307    Result += " (";
308    for (FunctionType::param_iterator I = FTy->param_begin(),
309         E = FTy->param_end(); I != E; ++I) {
310      if (I != FTy->param_begin())
311        Result += ", ";
312      calcTypeName(*I, TypeStack, TypeNames, Result);
313    }
314    if (FTy->isVarArg()) {
315      if (FTy->getNumParams()) Result += ", ";
316      Result += "...";
317    }
318    Result += ")";
319    break;
320  }
321  case Type::StructTyID: {
322    const StructType *STy = cast<StructType>(Ty);
323    if (STy->isPacked())
324      Result += '<';
325    Result += "{ ";
326    for (StructType::element_iterator I = STy->element_begin(),
327           E = STy->element_end(); I != E; ++I) {
328      if (I != STy->element_begin())
329        Result += ", ";
330      calcTypeName(*I, TypeStack, TypeNames, Result);
331    }
332    Result += " }";
333    if (STy->isPacked())
334      Result += '>';
335    break;
336  }
337  case Type::PointerTyID: {
338    const PointerType *PTy = cast<PointerType>(Ty);
339    calcTypeName(PTy->getElementType(),
340                          TypeStack, TypeNames, Result);
341    if (unsigned AddressSpace = PTy->getAddressSpace())
342      Result += " addrspace(" + utostr(AddressSpace) + ")";
343    Result += "*";
344    break;
345  }
346  case Type::ArrayTyID: {
347    const ArrayType *ATy = cast<ArrayType>(Ty);
348    Result += "[" + utostr(ATy->getNumElements()) + " x ";
349    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
350    Result += "]";
351    break;
352  }
353  case Type::VectorTyID: {
354    const VectorType *PTy = cast<VectorType>(Ty);
355    Result += "<" + utostr(PTy->getNumElements()) + " x ";
356    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
357    Result += ">";
358    break;
359  }
360  case Type::OpaqueTyID:
361    Result += "opaque";
362    break;
363  default:
364    Result += "<unrecognized-type>";
365    break;
366  }
367
368  TypeStack.pop_back();       // Remove self from stack...
369}
370
371
372/// printTypeInt - The internal guts of printing out a type that has a
373/// potentially named portion.
374///
375static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
376                              std::map<const Type *, std::string> &TypeNames) {
377  // Primitive types always print out their description, regardless of whether
378  // they have been named or not.
379  //
380  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)))
381    return Out << Ty->getDescription();
382
383  // Check to see if the type is named.
384  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
385  if (I != TypeNames.end()) return Out << I->second;
386
387  // Otherwise we have a type that has not been named but is a derived type.
388  // Carefully recurse the type hierarchy to print out any contained symbolic
389  // names.
390  //
391  std::vector<const Type *> TypeStack;
392  std::string TypeName;
393  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
394  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
395  return (Out << TypeName);
396}
397
398
399/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
400/// type, iff there is an entry in the modules symbol table for the specified
401/// type or one of it's component types. This is slower than a simple x << Type
402///
403std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
404                                      const Module *M) {
405  Out << ' ';
406
407  // If they want us to print out a type, but there is no context, we can't
408  // print it symbolically.
409  if (!M)
410    return Out << Ty->getDescription();
411
412  std::map<const Type *, std::string> TypeNames;
413  fillTypeNameTable(M, TypeNames);
414  return printTypeInt(Out, Ty, TypeNames);
415}
416
417// PrintEscapedString - Print each character of the specified string, escaping
418// it if it is not printable or if it is an escape char.
419static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
420  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
421    unsigned char C = Str[i];
422    if (isprint(C) && C != '"' && C != '\\') {
423      Out << C;
424    } else {
425      Out << '\\'
426          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
427          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
428    }
429  }
430}
431
432static const char *getPredicateText(unsigned predicate) {
433  const char * pred = "unknown";
434  switch (predicate) {
435    case FCmpInst::FCMP_FALSE: pred = "false"; break;
436    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
437    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
438    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
439    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
440    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
441    case FCmpInst::FCMP_ONE:   pred = "one"; break;
442    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
443    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
444    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
445    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
446    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
447    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
448    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
449    case FCmpInst::FCMP_UNE:   pred = "une"; break;
450    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
451    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
452    case ICmpInst::ICMP_NE:    pred = "ne"; break;
453    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
454    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
455    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
456    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
457    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
458    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
459    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
460    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
461  }
462  return pred;
463}
464
465/// @brief Internal constant writer.
466static void WriteConstantInt(std::ostream &Out, const Constant *CV,
467                             std::map<const Type *, std::string> &TypeTable,
468                             SlotMachine *Machine) {
469  const int IndentSize = 4;
470  static std::string Indent = "\n";
471  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
472    if (CI->getType() == Type::Int1Ty)
473      Out << (CI->getZExtValue() ? "true" : "false");
474    else
475      Out << CI->getValue().toStringSigned(10);
476  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
477    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
478        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
479      // We would like to output the FP constant value in exponential notation,
480      // but we cannot do this if doing so will lose precision.  Check here to
481      // make sure that we only output it in exponential format if we can parse
482      // the value back and get the same value.
483      //
484      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
485      double Val = (isDouble) ? CFP->getValueAPF().convertToDouble() :
486                                CFP->getValueAPF().convertToFloat();
487      std::string StrVal = ftostr(CFP->getValueAPF());
488
489      // Check to make sure that the stringized number is not some string like
490      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
491      // that the string matches the "[-+]?[0-9]" regex.
492      //
493      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
494          ((StrVal[0] == '-' || StrVal[0] == '+') &&
495           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
496        // Reparse stringized version!
497        if (atof(StrVal.c_str()) == Val) {
498          Out << StrVal;
499          return;
500        }
501      }
502      // Otherwise we could not reparse it to exactly the same value, so we must
503      // output the string in hexadecimal format!
504      assert(sizeof(double) == sizeof(uint64_t) &&
505             "assuming that double is 64 bits!");
506      Out << "0x" << utohexstr(DoubleToBits(Val));
507    } else {
508      // Some form of long double.  These appear as a magic letter identifying
509      // the type, then a fixed number of hex digits.
510      Out << "0x";
511      if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended)
512        Out << 'K';
513      else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
514        Out << 'L';
515      else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
516        Out << 'M';
517      else
518        assert(0 && "Unsupported floating point type");
519      // api needed to prevent premature destruction
520      APInt api = CFP->getValueAPF().convertToAPInt();
521      const uint64_t* p = api.getRawData();
522      uint64_t word = *p;
523      int shiftcount=60;
524      int width = api.getBitWidth();
525      for (int j=0; j<width; j+=4, shiftcount-=4) {
526        unsigned int nibble = (word>>shiftcount) & 15;
527        if (nibble < 10)
528          Out << (unsigned char)(nibble + '0');
529        else
530          Out << (unsigned char)(nibble - 10 + 'A');
531        if (shiftcount == 0) {
532          word = *(++p);
533          shiftcount = 64;
534          if (width-j-4 < 64)
535            shiftcount = width-j-4;
536        }
537      }
538    }
539  } else if (isa<ConstantAggregateZero>(CV)) {
540    Out << "zeroinitializer";
541  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
542    // As a special case, print the array as a string if it is an array of
543    // ubytes or an array of sbytes with positive values.
544    //
545    const Type *ETy = CA->getType()->getElementType();
546    if (CA->isString()) {
547      Out << "c\"";
548      PrintEscapedString(CA->getAsString(), Out);
549      Out << "\"";
550
551    } else {                // Cannot output in string format...
552      Out << '[';
553      if (CA->getNumOperands()) {
554        Out << ' ';
555        printTypeInt(Out, ETy, TypeTable);
556        WriteAsOperandInternal(Out, CA->getOperand(0),
557                               TypeTable, Machine);
558        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
559          Out << ", ";
560          printTypeInt(Out, ETy, TypeTable);
561          WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
562        }
563      }
564      Out << " ]";
565    }
566  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
567    if (CS->getType()->isPacked())
568      Out << '<';
569    Out << '{';
570    unsigned N = CS->getNumOperands();
571    if (N) {
572      if (N > 2) {
573        Indent += std::string(IndentSize, ' ');
574        Out << Indent;
575      } else {
576        Out << ' ';
577      }
578      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
579
580      WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
581
582      for (unsigned i = 1; i < N; i++) {
583        Out << ", ";
584        if (N > 2) Out << Indent;
585        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
586
587        WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
588      }
589      if (N > 2) Indent.resize(Indent.size() - IndentSize);
590    }
591
592    Out << " }";
593    if (CS->getType()->isPacked())
594      Out << '>';
595  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
596      const Type *ETy = CP->getType()->getElementType();
597      assert(CP->getNumOperands() > 0 &&
598             "Number of operands for a PackedConst must be > 0");
599      Out << '<';
600      Out << ' ';
601      printTypeInt(Out, ETy, TypeTable);
602      WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
603      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
604          Out << ", ";
605          printTypeInt(Out, ETy, TypeTable);
606          WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
607      }
608      Out << " >";
609  } else if (isa<ConstantPointerNull>(CV)) {
610    Out << "null";
611
612  } else if (isa<UndefValue>(CV)) {
613    Out << "undef";
614
615  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
616    Out << CE->getOpcodeName();
617    if (CE->isCompare())
618      Out << " " << getPredicateText(CE->getPredicate());
619    Out << " (";
620
621    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
622      printTypeInt(Out, (*OI)->getType(), TypeTable);
623      WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
624      if (OI+1 != CE->op_end())
625        Out << ", ";
626    }
627
628    if (CE->isCast()) {
629      Out << " to ";
630      printTypeInt(Out, CE->getType(), TypeTable);
631    }
632
633    Out << ')';
634
635  } else {
636    Out << "<placeholder or erroneous Constant>";
637  }
638}
639
640
641/// WriteAsOperand - Write the name of the specified value out to the specified
642/// ostream.  This can be useful when you just want to print int %reg126, not
643/// the whole instruction that generated it.
644///
645static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
646                                  std::map<const Type*, std::string> &TypeTable,
647                                   SlotMachine *Machine) {
648  Out << ' ';
649  if (V->hasName())
650    Out << getLLVMName(V->getName(),
651                       isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
652  else {
653    const Constant *CV = dyn_cast<Constant>(V);
654    if (CV && !isa<GlobalValue>(CV)) {
655      WriteConstantInt(Out, CV, TypeTable, Machine);
656    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
657      Out << "asm ";
658      if (IA->hasSideEffects())
659        Out << "sideeffect ";
660      Out << '"';
661      PrintEscapedString(IA->getAsmString(), Out);
662      Out << "\", \"";
663      PrintEscapedString(IA->getConstraintString(), Out);
664      Out << '"';
665    } else {
666      char Prefix = '%';
667      int Slot;
668      if (Machine) {
669        if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
670          Slot = Machine->getGlobalSlot(GV);
671          Prefix = '@';
672        } else {
673          Slot = Machine->getLocalSlot(V);
674        }
675      } else {
676        Machine = createSlotMachine(V);
677        if (Machine) {
678          if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
679            Slot = Machine->getGlobalSlot(GV);
680            Prefix = '@';
681          } else {
682            Slot = Machine->getLocalSlot(V);
683          }
684        } else {
685          Slot = -1;
686        }
687        delete Machine;
688      }
689      if (Slot != -1)
690        Out << Prefix << Slot;
691      else
692        Out << "<badref>";
693    }
694  }
695}
696
697/// WriteAsOperand - Write the name of the specified value out to the specified
698/// ostream.  This can be useful when you just want to print int %reg126, not
699/// the whole instruction that generated it.
700///
701std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
702                                   bool PrintType, const Module *Context) {
703  std::map<const Type *, std::string> TypeNames;
704  if (Context == 0) Context = getModuleFromVal(V);
705
706  if (Context)
707    fillTypeNameTable(Context, TypeNames);
708
709  if (PrintType)
710    printTypeInt(Out, V->getType(), TypeNames);
711
712  WriteAsOperandInternal(Out, V, TypeNames, 0);
713  return Out;
714}
715
716
717namespace llvm {
718
719class AssemblyWriter {
720  std::ostream &Out;
721  SlotMachine &Machine;
722  const Module *TheModule;
723  std::map<const Type *, std::string> TypeNames;
724  AssemblyAnnotationWriter *AnnotationWriter;
725public:
726  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
727                        AssemblyAnnotationWriter *AAW)
728    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
729
730    // If the module has a symbol table, take all global types and stuff their
731    // names into the TypeNames map.
732    //
733    fillTypeNameTable(M, TypeNames);
734  }
735
736  inline void write(const Module *M)         { printModule(M);       }
737  inline void write(const GlobalVariable *G) { printGlobal(G);       }
738  inline void write(const GlobalAlias *G)    { printAlias(G);        }
739  inline void write(const Function *F)       { printFunction(F);     }
740  inline void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
741  inline void write(const Instruction *I)    { printInstruction(*I); }
742  inline void write(const Type *Ty)          { printType(Ty);        }
743
744  void writeOperand(const Value *Op, bool PrintType);
745  void writeParamOperand(const Value *Operand, ParameterAttributes Attrs);
746
747  const Module* getModule() { return TheModule; }
748
749private:
750  void printModule(const Module *M);
751  void printTypeSymbolTable(const TypeSymbolTable &ST);
752  void printGlobal(const GlobalVariable *GV);
753  void printAlias(const GlobalAlias *GV);
754  void printFunction(const Function *F);
755  void printArgument(const Argument *FA, ParameterAttributes Attrs);
756  void printBasicBlock(const BasicBlock *BB);
757  void printInstruction(const Instruction &I);
758
759  // printType - Go to extreme measures to attempt to print out a short,
760  // symbolic version of a type name.
761  //
762  std::ostream &printType(const Type *Ty) {
763    return printTypeInt(Out, Ty, TypeNames);
764  }
765
766  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
767  // without considering any symbolic types that we may have equal to it.
768  //
769  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
770
771  // printInfoComment - Print a little comment after the instruction indicating
772  // which slot it occupies.
773  void printInfoComment(const Value &V);
774};
775}  // end of llvm namespace
776
777/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
778/// without considering any symbolic types that we may have equal to it.
779///
780std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
781  if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
782    Out << "i" << utostr(ITy->getBitWidth());
783  else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
784    printType(FTy->getReturnType());
785    Out << " (";
786    for (FunctionType::param_iterator I = FTy->param_begin(),
787           E = FTy->param_end(); I != E; ++I) {
788      if (I != FTy->param_begin())
789        Out << ", ";
790      printType(*I);
791    }
792    if (FTy->isVarArg()) {
793      if (FTy->getNumParams()) Out << ", ";
794      Out << "...";
795    }
796    Out << ')';
797  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
798    if (STy->isPacked())
799      Out << '<';
800    Out << "{ ";
801    for (StructType::element_iterator I = STy->element_begin(),
802           E = STy->element_end(); I != E; ++I) {
803      if (I != STy->element_begin())
804        Out << ", ";
805      printType(*I);
806    }
807    Out << " }";
808    if (STy->isPacked())
809      Out << '>';
810  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
811    printType(PTy->getElementType());
812    if (unsigned AddressSpace = PTy->getAddressSpace())
813      Out << " addrspace(" << AddressSpace << ")";
814    Out << '*';
815  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
816    Out << '[' << ATy->getNumElements() << " x ";
817    printType(ATy->getElementType()) << ']';
818  } else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
819    Out << '<' << PTy->getNumElements() << " x ";
820    printType(PTy->getElementType()) << '>';
821  }
822  else if (isa<OpaqueType>(Ty)) {
823    Out << "opaque";
824  } else {
825    if (!Ty->isPrimitiveType())
826      Out << "<unknown derived type>";
827    printType(Ty);
828  }
829  return Out;
830}
831
832
833void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
834  if (Operand == 0) {
835    Out << "<null operand!>";
836  } else {
837    if (PrintType) { Out << ' '; printType(Operand->getType()); }
838    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
839  }
840}
841
842void AssemblyWriter::writeParamOperand(const Value *Operand,
843                                       ParameterAttributes Attrs) {
844  if (Operand == 0) {
845    Out << "<null operand!>";
846  } else {
847    Out << ' ';
848    // Print the type
849    printType(Operand->getType());
850    // Print parameter attributes list
851    if (Attrs != ParamAttr::None)
852      Out << ' ' << ParamAttrsList::getParamAttrsText(Attrs);
853    // Print the operand
854    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
855  }
856}
857
858void AssemblyWriter::printModule(const Module *M) {
859  if (!M->getModuleIdentifier().empty() &&
860      // Don't print the ID if it will start a new line (which would
861      // require a comment char before it).
862      M->getModuleIdentifier().find('\n') == std::string::npos)
863    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
864
865  if (!M->getDataLayout().empty())
866    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
867  if (!M->getTargetTriple().empty())
868    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
869
870  if (!M->getModuleInlineAsm().empty()) {
871    // Split the string into lines, to make it easier to read the .ll file.
872    std::string Asm = M->getModuleInlineAsm();
873    size_t CurPos = 0;
874    size_t NewLine = Asm.find_first_of('\n', CurPos);
875    while (NewLine != std::string::npos) {
876      // We found a newline, print the portion of the asm string from the
877      // last newline up to this newline.
878      Out << "module asm \"";
879      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
880                         Out);
881      Out << "\"\n";
882      CurPos = NewLine+1;
883      NewLine = Asm.find_first_of('\n', CurPos);
884    }
885    Out << "module asm \"";
886    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
887    Out << "\"\n";
888  }
889
890  // Loop over the dependent libraries and emit them.
891  Module::lib_iterator LI = M->lib_begin();
892  Module::lib_iterator LE = M->lib_end();
893  if (LI != LE) {
894    Out << "deplibs = [ ";
895    while (LI != LE) {
896      Out << '"' << *LI << '"';
897      ++LI;
898      if (LI != LE)
899        Out << ", ";
900    }
901    Out << " ]\n";
902  }
903
904  // Loop over the symbol table, emitting all named constants.
905  printTypeSymbolTable(M->getTypeSymbolTable());
906
907  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
908       I != E; ++I)
909    printGlobal(I);
910
911  // Output all aliases.
912  if (!M->alias_empty()) Out << "\n";
913  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
914       I != E; ++I)
915    printAlias(I);
916
917  // Output all of the functions.
918  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
919    printFunction(I);
920}
921
922void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
923  if (GV->hasName()) Out << getLLVMName(GV->getName(), GlobalPrefix) << " = ";
924
925  if (!GV->hasInitializer()) {
926    switch (GV->getLinkage()) {
927     case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
928     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
929     default: Out << "external "; break;
930    }
931  } else {
932    switch (GV->getLinkage()) {
933    case GlobalValue::InternalLinkage:     Out << "internal "; break;
934    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
935    case GlobalValue::WeakLinkage:         Out << "weak "; break;
936    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
937    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
938    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
939    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
940    case GlobalValue::ExternalLinkage:     break;
941    case GlobalValue::GhostLinkage:
942      cerr << "GhostLinkage not allowed in AsmWriter!\n";
943      abort();
944    }
945    switch (GV->getVisibility()) {
946    default: assert(0 && "Invalid visibility style!");
947    case GlobalValue::DefaultVisibility: break;
948    case GlobalValue::HiddenVisibility: Out << "hidden "; break;
949    case GlobalValue::ProtectedVisibility: Out << "protected "; break;
950    }
951  }
952
953  if (GV->isThreadLocal()) Out << "thread_local ";
954  Out << (GV->isConstant() ? "constant " : "global ");
955  printType(GV->getType()->getElementType());
956
957  if (GV->hasInitializer()) {
958    Constant* C = cast<Constant>(GV->getInitializer());
959    assert(C &&  "GlobalVar initializer isn't constant?");
960    writeOperand(GV->getInitializer(), false);
961  }
962
963  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
964    Out << " addrspace(" << AddressSpace << ") ";
965
966  if (GV->hasSection())
967    Out << ", section \"" << GV->getSection() << '"';
968  if (GV->getAlignment())
969    Out << ", align " << GV->getAlignment();
970
971  printInfoComment(*GV);
972  Out << "\n";
973}
974
975void AssemblyWriter::printAlias(const GlobalAlias *GA) {
976  Out << getLLVMName(GA->getName(), GlobalPrefix) << " = ";
977  switch (GA->getVisibility()) {
978  default: assert(0 && "Invalid visibility style!");
979  case GlobalValue::DefaultVisibility: break;
980  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
981  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
982  }
983
984  Out << "alias ";
985
986  switch (GA->getLinkage()) {
987  case GlobalValue::WeakLinkage: Out << "weak "; break;
988  case GlobalValue::InternalLinkage: Out << "internal "; break;
989  case GlobalValue::ExternalLinkage: break;
990  default:
991   assert(0 && "Invalid alias linkage");
992  }
993
994  const Constant *Aliasee = GA->getAliasee();
995
996  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
997    printType(GV->getType());
998    Out << " " << getLLVMName(GV->getName(), GlobalPrefix);
999  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1000    printType(F->getFunctionType());
1001    Out << "* ";
1002
1003    if (!F->getName().empty())
1004      Out << getLLVMName(F->getName(), GlobalPrefix);
1005    else
1006      Out << "@\"\"";
1007  } else {
1008    const ConstantExpr *CE = 0;
1009    if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
1010        (CE->getOpcode() == Instruction::BitCast)) {
1011      writeOperand(CE, false);
1012    } else
1013      assert(0 && "Unsupported aliasee");
1014  }
1015
1016  printInfoComment(*GA);
1017  Out << "\n";
1018}
1019
1020void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1021  // Print the types.
1022  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1023       TI != TE; ++TI) {
1024    Out << "\t" << getLLVMName(TI->first, LocalPrefix) << " = type ";
1025
1026    // Make sure we print out at least one level of the type structure, so
1027    // that we do not get %FILE = type %FILE
1028    //
1029    printTypeAtLeastOneLevel(TI->second) << "\n";
1030  }
1031}
1032
1033/// printFunction - Print all aspects of a function.
1034///
1035void AssemblyWriter::printFunction(const Function *F) {
1036  // Print out the return type and name...
1037  Out << "\n";
1038
1039  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1040
1041  if (F->isDeclaration())
1042    Out << "declare ";
1043  else
1044    Out << "define ";
1045
1046  switch (F->getLinkage()) {
1047  case GlobalValue::InternalLinkage:     Out << "internal "; break;
1048  case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
1049  case GlobalValue::WeakLinkage:         Out << "weak "; break;
1050  case GlobalValue::AppendingLinkage:    Out << "appending "; break;
1051  case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
1052  case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
1053  case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1054  case GlobalValue::ExternalLinkage: break;
1055  case GlobalValue::GhostLinkage:
1056    cerr << "GhostLinkage not allowed in AsmWriter!\n";
1057    abort();
1058  }
1059  switch (F->getVisibility()) {
1060  default: assert(0 && "Invalid visibility style!");
1061  case GlobalValue::DefaultVisibility: break;
1062  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1063  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1064  }
1065
1066  // Print the calling convention.
1067  switch (F->getCallingConv()) {
1068  case CallingConv::C: break;   // default
1069  case CallingConv::Fast:         Out << "fastcc "; break;
1070  case CallingConv::Cold:         Out << "coldcc "; break;
1071  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1072  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1073  default: Out << "cc" << F->getCallingConv() << " "; break;
1074  }
1075
1076  const FunctionType *FT = F->getFunctionType();
1077  const ParamAttrsList *Attrs = F->getParamAttrs();
1078  printType(F->getReturnType()) << ' ';
1079  if (!F->getName().empty())
1080    Out << getLLVMName(F->getName(), GlobalPrefix);
1081  else
1082    Out << "@\"\"";
1083  Out << '(';
1084  Machine.incorporateFunction(F);
1085
1086  // Loop over the arguments, printing them...
1087
1088  unsigned Idx = 1;
1089  if (!F->isDeclaration()) {
1090    // If this isn't a declaration, print the argument names as well.
1091    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1092         I != E; ++I) {
1093      // Insert commas as we go... the first arg doesn't get a comma
1094      if (I != F->arg_begin()) Out << ", ";
1095      printArgument(I, (Attrs ? Attrs->getParamAttrs(Idx)
1096                              : ParamAttr::None));
1097      Idx++;
1098    }
1099  } else {
1100    // Otherwise, print the types from the function type.
1101    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1102      // Insert commas as we go... the first arg doesn't get a comma
1103      if (i) Out << ", ";
1104
1105      // Output type...
1106      printType(FT->getParamType(i));
1107
1108      ParameterAttributes ArgAttrs = ParamAttr::None;
1109      if (Attrs) ArgAttrs = Attrs->getParamAttrs(i+1);
1110      if (ArgAttrs != ParamAttr::None)
1111        Out << ' ' << ParamAttrsList::getParamAttrsText(ArgAttrs);
1112    }
1113  }
1114
1115  // Finish printing arguments...
1116  if (FT->isVarArg()) {
1117    if (FT->getNumParams()) Out << ", ";
1118    Out << "...";  // Output varargs portion of signature!
1119  }
1120  Out << ')';
1121  if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None)
1122    Out << ' ' << Attrs->getParamAttrsTextByIndex(0);
1123  if (F->hasSection())
1124    Out << " section \"" << F->getSection() << '"';
1125  if (F->getAlignment())
1126    Out << " align " << F->getAlignment();
1127  if (F->hasCollector())
1128    Out << " gc \"" << F->getCollector() << '"';
1129
1130  if (F->isDeclaration()) {
1131    Out << "\n";
1132  } else {
1133    Out << " {";
1134
1135    // Output all of its basic blocks... for the function
1136    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1137      printBasicBlock(I);
1138
1139    Out << "}\n";
1140  }
1141
1142  Machine.purgeFunction();
1143}
1144
1145/// printArgument - This member is called for every argument that is passed into
1146/// the function.  Simply print it out
1147///
1148void AssemblyWriter::printArgument(const Argument *Arg,
1149                                   ParameterAttributes Attrs) {
1150  // Output type...
1151  printType(Arg->getType());
1152
1153  // Output parameter attributes list
1154  if (Attrs != ParamAttr::None)
1155    Out << ' ' << ParamAttrsList::getParamAttrsText(Attrs);
1156
1157  // Output name, if available...
1158  if (Arg->hasName())
1159    Out << ' ' << getLLVMName(Arg->getName(), LocalPrefix);
1160}
1161
1162/// printBasicBlock - This member is called for each basic block in a method.
1163///
1164void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1165  if (BB->hasName()) {              // Print out the label if it exists...
1166    Out << "\n" << getLLVMName(BB->getName(), LabelPrefix) << ':';
1167  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1168    Out << "\n; <label>:";
1169    int Slot = Machine.getLocalSlot(BB);
1170    if (Slot != -1)
1171      Out << Slot;
1172    else
1173      Out << "<badref>";
1174  }
1175
1176  if (BB->getParent() == 0)
1177    Out << "\t\t; Error: Block without parent!";
1178  else {
1179    if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1180      // Output predecessors for the block...
1181      Out << "\t\t;";
1182      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1183
1184      if (PI == PE) {
1185        Out << " No predecessors!";
1186      } else {
1187        Out << " preds =";
1188        writeOperand(*PI, false);
1189        for (++PI; PI != PE; ++PI) {
1190          Out << ',';
1191          writeOperand(*PI, false);
1192        }
1193      }
1194    }
1195  }
1196
1197  Out << "\n";
1198
1199  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1200
1201  // Output all of the instructions in the basic block...
1202  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1203    printInstruction(*I);
1204
1205  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1206}
1207
1208
1209/// printInfoComment - Print a little comment after the instruction indicating
1210/// which slot it occupies.
1211///
1212void AssemblyWriter::printInfoComment(const Value &V) {
1213  if (V.getType() != Type::VoidTy) {
1214    Out << "\t\t; <";
1215    printType(V.getType()) << '>';
1216
1217    if (!V.hasName()) {
1218      int SlotNum;
1219      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1220        SlotNum = Machine.getGlobalSlot(GV);
1221      else
1222        SlotNum = Machine.getLocalSlot(&V);
1223      if (SlotNum == -1)
1224        Out << ":<badref>";
1225      else
1226        Out << ':' << SlotNum; // Print out the def slot taken.
1227    }
1228    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1229  }
1230}
1231
1232// This member is called for each Instruction in a function..
1233void AssemblyWriter::printInstruction(const Instruction &I) {
1234  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1235
1236  Out << "\t";
1237
1238  // Print out name if it exists...
1239  if (I.hasName())
1240    Out << getLLVMName(I.getName(), LocalPrefix) << " = ";
1241
1242  // If this is a volatile load or store, print out the volatile marker.
1243  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1244      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1245      Out << "volatile ";
1246  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1247    // If this is a call, check if it's a tail call.
1248    Out << "tail ";
1249  }
1250
1251  // Print out the opcode...
1252  Out << I.getOpcodeName();
1253
1254  // Print out the compare instruction predicates
1255  if (const FCmpInst *FCI = dyn_cast<FCmpInst>(&I)) {
1256    Out << " " << getPredicateText(FCI->getPredicate());
1257  } else if (const ICmpInst *ICI = dyn_cast<ICmpInst>(&I)) {
1258    Out << " " << getPredicateText(ICI->getPredicate());
1259  }
1260
1261  // Print out the type of the operands...
1262  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1263
1264  // Special case conditional branches to swizzle the condition out to the front
1265  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1266    writeOperand(I.getOperand(2), true);
1267    Out << ',';
1268    writeOperand(Operand, true);
1269    Out << ',';
1270    writeOperand(I.getOperand(1), true);
1271
1272  } else if (isa<SwitchInst>(I)) {
1273    // Special case switch statement to get formatting nice and correct...
1274    writeOperand(Operand        , true); Out << ',';
1275    writeOperand(I.getOperand(1), true); Out << " [";
1276
1277    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1278      Out << "\n\t\t";
1279      writeOperand(I.getOperand(op  ), true); Out << ',';
1280      writeOperand(I.getOperand(op+1), true);
1281    }
1282    Out << "\n\t]";
1283  } else if (isa<PHINode>(I)) {
1284    Out << ' ';
1285    printType(I.getType());
1286    Out << ' ';
1287
1288    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1289      if (op) Out << ", ";
1290      Out << '[';
1291      writeOperand(I.getOperand(op  ), false); Out << ',';
1292      writeOperand(I.getOperand(op+1), false); Out << " ]";
1293    }
1294  } else if (isa<ReturnInst>(I) && !Operand) {
1295    Out << " void";
1296  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1297    // Print the calling convention being used.
1298    switch (CI->getCallingConv()) {
1299    case CallingConv::C: break;   // default
1300    case CallingConv::Fast:  Out << " fastcc"; break;
1301    case CallingConv::Cold:  Out << " coldcc"; break;
1302    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1303    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1304    default: Out << " cc" << CI->getCallingConv(); break;
1305    }
1306
1307    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1308    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1309    const Type         *RetTy = FTy->getReturnType();
1310    const ParamAttrsList *PAL = CI->getParamAttrs();
1311
1312    // If possible, print out the short form of the call instruction.  We can
1313    // only do this if the first argument is a pointer to a nonvararg function,
1314    // and if the return type is not a pointer to a function.
1315    //
1316    if (!FTy->isVarArg() &&
1317        (!isa<PointerType>(RetTy) ||
1318         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1319      Out << ' '; printType(RetTy);
1320      writeOperand(Operand, false);
1321    } else {
1322      writeOperand(Operand, true);
1323    }
1324    Out << '(';
1325    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1326      if (op > 1)
1327        Out << ',';
1328      writeParamOperand(I.getOperand(op), PAL ? PAL->getParamAttrs(op) :
1329                                          ParamAttr::None);
1330    }
1331    Out << " )";
1332    if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
1333      Out << ' ' << PAL->getParamAttrsTextByIndex(0);
1334  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1335    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1336    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1337    const Type         *RetTy = FTy->getReturnType();
1338    const ParamAttrsList *PAL = II->getParamAttrs();
1339
1340    // Print the calling convention being used.
1341    switch (II->getCallingConv()) {
1342    case CallingConv::C: break;   // default
1343    case CallingConv::Fast:  Out << " fastcc"; break;
1344    case CallingConv::Cold:  Out << " coldcc"; break;
1345    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1346    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1347    default: Out << " cc" << II->getCallingConv(); break;
1348    }
1349
1350    // If possible, print out the short form of the invoke instruction. We can
1351    // only do this if the first argument is a pointer to a nonvararg function,
1352    // and if the return type is not a pointer to a function.
1353    //
1354    if (!FTy->isVarArg() &&
1355        (!isa<PointerType>(RetTy) ||
1356         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1357      Out << ' '; printType(RetTy);
1358      writeOperand(Operand, false);
1359    } else {
1360      writeOperand(Operand, true);
1361    }
1362
1363    Out << '(';
1364    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1365      if (op > 3)
1366        Out << ',';
1367      writeParamOperand(I.getOperand(op), PAL ? PAL->getParamAttrs(op-2) :
1368                                          ParamAttr::None);
1369    }
1370
1371    Out << " )";
1372    if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
1373      Out << " " << PAL->getParamAttrsTextByIndex(0);
1374    Out << "\n\t\t\tto";
1375    writeOperand(II->getNormalDest(), true);
1376    Out << " unwind";
1377    writeOperand(II->getUnwindDest(), true);
1378
1379  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1380    Out << ' ';
1381    printType(AI->getType()->getElementType());
1382    if (AI->isArrayAllocation()) {
1383      Out << ',';
1384      writeOperand(AI->getArraySize(), true);
1385    }
1386    if (AI->getAlignment()) {
1387      Out << ", align " << AI->getAlignment();
1388    }
1389  } else if (isa<CastInst>(I)) {
1390    if (Operand) writeOperand(Operand, true);   // Work with broken code
1391    Out << " to ";
1392    printType(I.getType());
1393  } else if (isa<VAArgInst>(I)) {
1394    if (Operand) writeOperand(Operand, true);   // Work with broken code
1395    Out << ", ";
1396    printType(I.getType());
1397  } else if (Operand) {   // Print the normal way...
1398
1399    // PrintAllTypes - Instructions who have operands of all the same type
1400    // omit the type from all but the first operand.  If the instruction has
1401    // different type operands (for example br), then they are all printed.
1402    bool PrintAllTypes = false;
1403    const Type *TheType = Operand->getType();
1404
1405    // Select, Store and ShuffleVector always print all types.
1406    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)) {
1407      PrintAllTypes = true;
1408    } else {
1409      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1410        Operand = I.getOperand(i);
1411        if (Operand->getType() != TheType) {
1412          PrintAllTypes = true;    // We have differing types!  Print them all!
1413          break;
1414        }
1415      }
1416    }
1417
1418    if (!PrintAllTypes) {
1419      Out << ' ';
1420      printType(TheType);
1421    }
1422
1423    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1424      if (i) Out << ',';
1425      writeOperand(I.getOperand(i), PrintAllTypes);
1426    }
1427  }
1428
1429  // Print post operand alignment for load/store
1430  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1431    Out << ", align " << cast<LoadInst>(I).getAlignment();
1432  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1433    Out << ", align " << cast<StoreInst>(I).getAlignment();
1434  }
1435
1436  printInfoComment(I);
1437  Out << "\n";
1438}
1439
1440
1441//===----------------------------------------------------------------------===//
1442//                       External Interface declarations
1443//===----------------------------------------------------------------------===//
1444
1445void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1446  SlotMachine SlotTable(this);
1447  AssemblyWriter W(o, SlotTable, this, AAW);
1448  W.write(this);
1449}
1450
1451void GlobalVariable::print(std::ostream &o) const {
1452  SlotMachine SlotTable(getParent());
1453  AssemblyWriter W(o, SlotTable, getParent(), 0);
1454  W.write(this);
1455}
1456
1457void GlobalAlias::print(std::ostream &o) const {
1458  SlotMachine SlotTable(getParent());
1459  AssemblyWriter W(o, SlotTable, getParent(), 0);
1460  W.write(this);
1461}
1462
1463void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1464  SlotMachine SlotTable(getParent());
1465  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1466
1467  W.write(this);
1468}
1469
1470void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1471  WriteAsOperand(o, this, true, 0);
1472}
1473
1474void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1475  SlotMachine SlotTable(getParent());
1476  AssemblyWriter W(o, SlotTable,
1477                   getParent() ? getParent()->getParent() : 0, AAW);
1478  W.write(this);
1479}
1480
1481void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1482  const Function *F = getParent() ? getParent()->getParent() : 0;
1483  SlotMachine SlotTable(F);
1484  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1485
1486  W.write(this);
1487}
1488
1489void Constant::print(std::ostream &o) const {
1490  if (this == 0) { o << "<null> constant value\n"; return; }
1491
1492  o << ' ' << getType()->getDescription() << ' ';
1493
1494  std::map<const Type *, std::string> TypeTable;
1495  WriteConstantInt(o, this, TypeTable, 0);
1496}
1497
1498void Type::print(std::ostream &o) const {
1499  if (this == 0)
1500    o << "<null Type>";
1501  else
1502    o << getDescription();
1503}
1504
1505void Argument::print(std::ostream &o) const {
1506  WriteAsOperand(o, this, true, getParent() ? getParent()->getParent() : 0);
1507}
1508
1509// Value::dump - allow easy printing of  Values from the debugger.
1510// Located here because so much of the needed functionality is here.
1511void Value::dump() const { print(*cerr.stream()); cerr << '\n'; }
1512
1513// Type::dump - allow easy printing of  Values from the debugger.
1514// Located here because so much of the needed functionality is here.
1515void Type::dump() const { print(*cerr.stream()); cerr << '\n'; }
1516
1517void
1518ParamAttrsList::dump() const {
1519  cerr << "PAL[ ";
1520  for (unsigned i = 0; i < attrs.size(); ++i) {
1521    uint16_t index = getParamIndex(i);
1522    ParameterAttributes attrs = getParamAttrs(index);
1523    cerr << "{" << index << "," << attrs << "} ";
1524  }
1525
1526  cerr << "]\n";
1527}
1528
1529//===----------------------------------------------------------------------===//
1530//                         SlotMachine Implementation
1531//===----------------------------------------------------------------------===//
1532
1533#if 0
1534#define SC_DEBUG(X) cerr << X
1535#else
1536#define SC_DEBUG(X)
1537#endif
1538
1539// Module level constructor. Causes the contents of the Module (sans functions)
1540// to be added to the slot table.
1541SlotMachine::SlotMachine(const Module *M)
1542  : TheModule(M)    ///< Saved for lazy initialization.
1543  , TheFunction(0)
1544  , FunctionProcessed(false)
1545  , mMap(), mNext(0), fMap(), fNext(0)
1546{
1547}
1548
1549// Function level constructor. Causes the contents of the Module and the one
1550// function provided to be added to the slot table.
1551SlotMachine::SlotMachine(const Function *F)
1552  : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
1553  , TheFunction(F) ///< Saved for lazy initialization
1554  , FunctionProcessed(false)
1555  , mMap(), mNext(0), fMap(), fNext(0)
1556{
1557}
1558
1559inline void SlotMachine::initialize() {
1560  if (TheModule) {
1561    processModule();
1562    TheModule = 0; ///< Prevent re-processing next time we're called.
1563  }
1564  if (TheFunction && !FunctionProcessed)
1565    processFunction();
1566}
1567
1568// Iterate through all the global variables, functions, and global
1569// variable initializers and create slots for them.
1570void SlotMachine::processModule() {
1571  SC_DEBUG("begin processModule!\n");
1572
1573  // Add all of the unnamed global variables to the value table.
1574  for (Module::const_global_iterator I = TheModule->global_begin(),
1575       E = TheModule->global_end(); I != E; ++I)
1576    if (!I->hasName())
1577      CreateModuleSlot(I);
1578
1579  // Add all the unnamed functions to the table.
1580  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1581       I != E; ++I)
1582    if (!I->hasName())
1583      CreateModuleSlot(I);
1584
1585  SC_DEBUG("end processModule!\n");
1586}
1587
1588
1589// Process the arguments, basic blocks, and instructions  of a function.
1590void SlotMachine::processFunction() {
1591  SC_DEBUG("begin processFunction!\n");
1592  fNext = 0;
1593
1594  // Add all the function arguments with no names.
1595  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1596      AE = TheFunction->arg_end(); AI != AE; ++AI)
1597    if (!AI->hasName())
1598      CreateFunctionSlot(AI);
1599
1600  SC_DEBUG("Inserting Instructions:\n");
1601
1602  // Add all of the basic blocks and instructions with no names.
1603  for (Function::const_iterator BB = TheFunction->begin(),
1604       E = TheFunction->end(); BB != E; ++BB) {
1605    if (!BB->hasName())
1606      CreateFunctionSlot(BB);
1607    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1608      if (I->getType() != Type::VoidTy && !I->hasName())
1609        CreateFunctionSlot(I);
1610  }
1611
1612  FunctionProcessed = true;
1613
1614  SC_DEBUG("end processFunction!\n");
1615}
1616
1617/// Clean up after incorporating a function. This is the only way to get out of
1618/// the function incorporation state that affects get*Slot/Create*Slot. Function
1619/// incorporation state is indicated by TheFunction != 0.
1620void SlotMachine::purgeFunction() {
1621  SC_DEBUG("begin purgeFunction!\n");
1622  fMap.clear(); // Simply discard the function level map
1623  TheFunction = 0;
1624  FunctionProcessed = false;
1625  SC_DEBUG("end purgeFunction!\n");
1626}
1627
1628/// getGlobalSlot - Get the slot number of a global value.
1629int SlotMachine::getGlobalSlot(const GlobalValue *V) {
1630  // Check for uninitialized state and do lazy initialization.
1631  initialize();
1632
1633  // Find the type plane in the module map
1634  ValueMap::const_iterator MI = mMap.find(V);
1635  if (MI == mMap.end()) return -1;
1636
1637  return MI->second;
1638}
1639
1640
1641/// getLocalSlot - Get the slot number for a value that is local to a function.
1642int SlotMachine::getLocalSlot(const Value *V) {
1643  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1644
1645  // Check for uninitialized state and do lazy initialization.
1646  initialize();
1647
1648  ValueMap::const_iterator FI = fMap.find(V);
1649  if (FI == fMap.end()) return -1;
1650
1651  return FI->second;
1652}
1653
1654
1655/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1656void SlotMachine::CreateModuleSlot(const GlobalValue *V) {
1657  assert(V && "Can't insert a null Value into SlotMachine!");
1658  assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
1659  assert(!V->hasName() && "Doesn't need a slot!");
1660
1661  unsigned DestSlot = mNext++;
1662  mMap[V] = DestSlot;
1663
1664  SC_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1665           DestSlot << " [");
1666  // G = Global, F = Function, A = Alias, o = other
1667  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1668            (isa<Function> ? 'F' :
1669             (isa<GlobalAlias> ? 'A' : 'o'))) << "]\n");
1670}
1671
1672
1673/// CreateSlot - Create a new slot for the specified value if it has no name.
1674void SlotMachine::CreateFunctionSlot(const Value *V) {
1675  const Type *VTy = V->getType();
1676  assert(VTy != Type::VoidTy && !V->hasName() && "Doesn't need a slot!");
1677
1678  unsigned DestSlot = fNext++;
1679  fMap[V] = DestSlot;
1680
1681  // G = Global, F = Function, o = other
1682  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1683           DestSlot << " [o]\n");
1684}
1685