AsmWriter.cpp revision 1cde4af15712f6ccdb81ab540df800cda90d0d74
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/Operator.h"
27#include "llvm/Module.h"
28#include "llvm/ValueSymbolTable.h"
29#include "llvm/TypeSymbolTable.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/Dwarf.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/FormattedStream.h"
40#include <algorithm>
41#include <cctype>
42#include <map>
43using namespace llvm;
44
45// Make virtual table appear in this compilation unit.
46AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
47
48//===----------------------------------------------------------------------===//
49// Helper Functions
50//===----------------------------------------------------------------------===//
51
52static const Module *getModuleFromVal(const Value *V) {
53  if (const Argument *MA = dyn_cast<Argument>(V))
54    return MA->getParent() ? MA->getParent()->getParent() : 0;
55
56  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
57    return BB->getParent() ? BB->getParent()->getParent() : 0;
58
59  if (const Instruction *I = dyn_cast<Instruction>(V)) {
60    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
61    return M ? M->getParent() : 0;
62  }
63
64  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
65    return GV->getParent();
66  if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
67    return NMD->getParent();
68  return 0;
69}
70
71// PrintEscapedString - Print each character of the specified string, escaping
72// it if it is not printable or if it is an escape char.
73static void PrintEscapedString(const StringRef &Name,
74                               raw_ostream &Out) {
75  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
76    unsigned char C = Name[i];
77    if (isprint(C) && C != '\\' && C != '"')
78      Out << C;
79    else
80      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
81  }
82}
83
84enum PrefixType {
85  GlobalPrefix,
86  LabelPrefix,
87  LocalPrefix,
88  NoPrefix
89};
90
91/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
92/// prefixed with % (if the string only contains simple characters) or is
93/// surrounded with ""'s (if it has special chars in it).  Print it out.
94static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
95                          PrefixType Prefix) {
96  assert(Name.data() && "Cannot get empty name!");
97  switch (Prefix) {
98  default: llvm_unreachable("Bad prefix!");
99  case NoPrefix: break;
100  case GlobalPrefix: OS << '@'; break;
101  case LabelPrefix:  break;
102  case LocalPrefix:  OS << '%'; break;
103  }
104
105  // Scan the name to see if it needs quotes first.
106  bool NeedsQuotes = isdigit(Name[0]);
107  if (!NeedsQuotes) {
108    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
109      char C = Name[i];
110      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
111        NeedsQuotes = true;
112        break;
113      }
114    }
115  }
116
117  // If we didn't need any quotes, just write out the name in one blast.
118  if (!NeedsQuotes) {
119    OS << Name;
120    return;
121  }
122
123  // Okay, we need quotes.  Output the quotes and escape any scary characters as
124  // needed.
125  OS << '"';
126  PrintEscapedString(Name, OS);
127  OS << '"';
128}
129
130/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
131/// prefixed with % (if the string only contains simple characters) or is
132/// surrounded with ""'s (if it has special chars in it).  Print it out.
133static void PrintLLVMName(raw_ostream &OS, const Value *V) {
134  PrintLLVMName(OS, V->getName(),
135                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
136}
137
138//===----------------------------------------------------------------------===//
139// TypePrinting Class: Type printing machinery
140//===----------------------------------------------------------------------===//
141
142static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
143  return *static_cast<DenseMap<const Type *, std::string>*>(M);
144}
145
146void TypePrinting::clear() {
147  getTypeNamesMap(TypeNames).clear();
148}
149
150bool TypePrinting::hasTypeName(const Type *Ty) const {
151  return getTypeNamesMap(TypeNames).count(Ty);
152}
153
154void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
155  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
156}
157
158
159TypePrinting::TypePrinting() {
160  TypeNames = new DenseMap<const Type *, std::string>();
161}
162
163TypePrinting::~TypePrinting() {
164  delete &getTypeNamesMap(TypeNames);
165}
166
167/// CalcTypeName - Write the specified type to the specified raw_ostream, making
168/// use of type names or up references to shorten the type name where possible.
169void TypePrinting::CalcTypeName(const Type *Ty,
170                                SmallVectorImpl<const Type *> &TypeStack,
171                                raw_ostream &OS, bool IgnoreTopLevelName) {
172  // Check to see if the type is named.
173  if (!IgnoreTopLevelName) {
174    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
175    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
176    if (I != TM.end()) {
177      OS << I->second;
178      return;
179    }
180  }
181
182  // Check to see if the Type is already on the stack...
183  unsigned Slot = 0, CurSize = TypeStack.size();
184  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
185
186  // This is another base case for the recursion.  In this case, we know
187  // that we have looped back to a type that we have previously visited.
188  // Generate the appropriate upreference to handle this.
189  if (Slot < CurSize) {
190    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
191    return;
192  }
193
194  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
195
196  switch (Ty->getTypeID()) {
197  case Type::VoidTyID:      OS << "void"; break;
198  case Type::FloatTyID:     OS << "float"; break;
199  case Type::DoubleTyID:    OS << "double"; break;
200  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
201  case Type::FP128TyID:     OS << "fp128"; break;
202  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
203  case Type::LabelTyID:     OS << "label"; break;
204  case Type::MetadataTyID:  OS << "metadata"; break;
205  case Type::IntegerTyID:
206    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
207    break;
208
209  case Type::FunctionTyID: {
210    const FunctionType *FTy = cast<FunctionType>(Ty);
211    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
212    OS << " (";
213    for (FunctionType::param_iterator I = FTy->param_begin(),
214         E = FTy->param_end(); I != E; ++I) {
215      if (I != FTy->param_begin())
216        OS << ", ";
217      CalcTypeName(*I, TypeStack, OS);
218    }
219    if (FTy->isVarArg()) {
220      if (FTy->getNumParams()) OS << ", ";
221      OS << "...";
222    }
223    OS << ')';
224    break;
225  }
226  case Type::StructTyID: {
227    const StructType *STy = cast<StructType>(Ty);
228    if (STy->isPacked())
229      OS << '<';
230    OS << "{ ";
231    for (StructType::element_iterator I = STy->element_begin(),
232         E = STy->element_end(); I != E; ++I) {
233      CalcTypeName(*I, TypeStack, OS);
234      if (next(I) != STy->element_end())
235        OS << ',';
236      OS << ' ';
237    }
238    OS << '}';
239    if (STy->isPacked())
240      OS << '>';
241    break;
242  }
243  case Type::UnionTyID: {
244    const UnionType *UTy = cast<UnionType>(Ty);
245    OS << "union { ";
246    for (StructType::element_iterator I = UTy->element_begin(),
247         E = UTy->element_end(); I != E; ++I) {
248      CalcTypeName(*I, TypeStack, OS);
249      if (next(I) != UTy->element_end())
250        OS << ',';
251      OS << ' ';
252    }
253    OS << '}';
254    break;
255  }
256  case Type::PointerTyID: {
257    const PointerType *PTy = cast<PointerType>(Ty);
258    CalcTypeName(PTy->getElementType(), TypeStack, OS);
259    if (unsigned AddressSpace = PTy->getAddressSpace())
260      OS << " addrspace(" << AddressSpace << ')';
261    OS << '*';
262    break;
263  }
264  case Type::ArrayTyID: {
265    const ArrayType *ATy = cast<ArrayType>(Ty);
266    OS << '[' << ATy->getNumElements() << " x ";
267    CalcTypeName(ATy->getElementType(), TypeStack, OS);
268    OS << ']';
269    break;
270  }
271  case Type::VectorTyID: {
272    const VectorType *PTy = cast<VectorType>(Ty);
273    OS << "<" << PTy->getNumElements() << " x ";
274    CalcTypeName(PTy->getElementType(), TypeStack, OS);
275    OS << '>';
276    break;
277  }
278  case Type::OpaqueTyID:
279    OS << "opaque";
280    break;
281  default:
282    OS << "<unrecognized-type>";
283    break;
284  }
285
286  TypeStack.pop_back();       // Remove self from stack.
287}
288
289/// printTypeInt - The internal guts of printing out a type that has a
290/// potentially named portion.
291///
292void TypePrinting::print(const Type *Ty, raw_ostream &OS,
293                         bool IgnoreTopLevelName) {
294  // Check to see if the type is named.
295  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
296  if (!IgnoreTopLevelName) {
297    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
298    if (I != TM.end()) {
299      OS << I->second;
300      return;
301    }
302  }
303
304  // Otherwise we have a type that has not been named but is a derived type.
305  // Carefully recurse the type hierarchy to print out any contained symbolic
306  // names.
307  SmallVector<const Type *, 16> TypeStack;
308  std::string TypeName;
309
310  raw_string_ostream TypeOS(TypeName);
311  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
312  OS << TypeOS.str();
313
314  // Cache type name for later use.
315  if (!IgnoreTopLevelName)
316    TM.insert(std::make_pair(Ty, TypeOS.str()));
317}
318
319namespace {
320  class TypeFinder {
321    // To avoid walking constant expressions multiple times and other IR
322    // objects, we keep several helper maps.
323    DenseSet<const Value*> VisitedConstants;
324    DenseSet<const Type*> VisitedTypes;
325
326    TypePrinting &TP;
327    std::vector<const Type*> &NumberedTypes;
328  public:
329    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
330      : TP(tp), NumberedTypes(numberedTypes) {}
331
332    void Run(const Module &M) {
333      // Get types from the type symbol table.  This gets opaque types referened
334      // only through derived named types.
335      const TypeSymbolTable &ST = M.getTypeSymbolTable();
336      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
337           TI != E; ++TI)
338        IncorporateType(TI->second);
339
340      // Get types from global variables.
341      for (Module::const_global_iterator I = M.global_begin(),
342           E = M.global_end(); I != E; ++I) {
343        IncorporateType(I->getType());
344        if (I->hasInitializer())
345          IncorporateValue(I->getInitializer());
346      }
347
348      // Get types from aliases.
349      for (Module::const_alias_iterator I = M.alias_begin(),
350           E = M.alias_end(); I != E; ++I) {
351        IncorporateType(I->getType());
352        IncorporateValue(I->getAliasee());
353      }
354
355      // Get types from functions.
356      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
357        IncorporateType(FI->getType());
358
359        for (Function::const_iterator BB = FI->begin(), E = FI->end();
360             BB != E;++BB)
361          for (BasicBlock::const_iterator II = BB->begin(),
362               E = BB->end(); II != E; ++II) {
363            const Instruction &I = *II;
364            // Incorporate the type of the instruction and all its operands.
365            IncorporateType(I.getType());
366            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
367                 OI != OE; ++OI)
368              IncorporateValue(*OI);
369          }
370      }
371    }
372
373  private:
374    void IncorporateType(const Type *Ty) {
375      // Check to see if we're already visited this type.
376      if (!VisitedTypes.insert(Ty).second)
377        return;
378
379      // If this is a structure or opaque type, add a name for the type.
380      if (((Ty->isStructTy() && cast<StructType>(Ty)->getNumElements())
381            || Ty->isOpaqueTy()) && !TP.hasTypeName(Ty)) {
382        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
383        NumberedTypes.push_back(Ty);
384      }
385
386      // Recursively walk all contained types.
387      for (Type::subtype_iterator I = Ty->subtype_begin(),
388           E = Ty->subtype_end(); I != E; ++I)
389        IncorporateType(*I);
390    }
391
392    /// IncorporateValue - This method is used to walk operand lists finding
393    /// types hiding in constant expressions and other operands that won't be
394    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
395    /// inst operands are all explicitly enumerated.
396    void IncorporateValue(const Value *V) {
397      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
398
399      // Already visited?
400      if (!VisitedConstants.insert(V).second)
401        return;
402
403      // Check this type.
404      IncorporateType(V->getType());
405
406      // Look in operands for types.
407      const Constant *C = cast<Constant>(V);
408      for (Constant::const_op_iterator I = C->op_begin(),
409           E = C->op_end(); I != E;++I)
410        IncorporateValue(*I);
411    }
412  };
413} // end anonymous namespace
414
415
416/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
417/// the specified module to the TypePrinter and all numbered types to it and the
418/// NumberedTypes table.
419static void AddModuleTypesToPrinter(TypePrinting &TP,
420                                    std::vector<const Type*> &NumberedTypes,
421                                    const Module *M) {
422  if (M == 0) return;
423
424  // If the module has a symbol table, take all global types and stuff their
425  // names into the TypeNames map.
426  const TypeSymbolTable &ST = M->getTypeSymbolTable();
427  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
428       TI != E; ++TI) {
429    const Type *Ty = cast<Type>(TI->second);
430
431    // As a heuristic, don't insert pointer to primitive types, because
432    // they are used too often to have a single useful name.
433    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
434      const Type *PETy = PTy->getElementType();
435      if ((PETy->isPrimitiveType() || PETy->isIntegerTy()) &&
436          !PETy->isOpaqueTy())
437        continue;
438    }
439
440    // Likewise don't insert primitives either.
441    if (Ty->isIntegerTy() || Ty->isPrimitiveType())
442      continue;
443
444    // Get the name as a string and insert it into TypeNames.
445    std::string NameStr;
446    raw_string_ostream NameROS(NameStr);
447    formatted_raw_ostream NameOS(NameROS);
448    PrintLLVMName(NameOS, TI->first, LocalPrefix);
449    NameOS.flush();
450    TP.addTypeName(Ty, NameStr);
451  }
452
453  // Walk the entire module to find references to unnamed structure and opaque
454  // types.  This is required for correctness by opaque types (because multiple
455  // uses of an unnamed opaque type needs to be referred to by the same ID) and
456  // it shrinks complex recursive structure types substantially in some cases.
457  TypeFinder(TP, NumberedTypes).Run(*M);
458}
459
460
461/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
462/// type, iff there is an entry in the modules symbol table for the specified
463/// type or one of it's component types.
464///
465void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
466  TypePrinting Printer;
467  std::vector<const Type*> NumberedTypes;
468  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
469  Printer.print(Ty, OS);
470}
471
472//===----------------------------------------------------------------------===//
473// SlotTracker Class: Enumerate slot numbers for unnamed values
474//===----------------------------------------------------------------------===//
475
476namespace {
477
478/// This class provides computation of slot numbers for LLVM Assembly writing.
479///
480class SlotTracker {
481public:
482  /// ValueMap - A mapping of Values to slot numbers.
483  typedef DenseMap<const Value*, unsigned> ValueMap;
484
485private:
486  /// TheModule - The module for which we are holding slot numbers.
487  const Module* TheModule;
488
489  /// TheFunction - The function for which we are holding slot numbers.
490  const Function* TheFunction;
491  bool FunctionProcessed;
492
493  /// mMap - The TypePlanes map for the module level data.
494  ValueMap mMap;
495  unsigned mNext;
496
497  /// fMap - The TypePlanes map for the function level data.
498  ValueMap fMap;
499  unsigned fNext;
500
501  /// mdnMap - Map for MDNodes.
502  DenseMap<const MDNode*, unsigned> mdnMap;
503  unsigned mdnNext;
504public:
505  /// Construct from a module
506  explicit SlotTracker(const Module *M);
507  /// Construct from a function, starting out in incorp state.
508  explicit SlotTracker(const Function *F);
509
510  /// Return the slot number of the specified value in it's type
511  /// plane.  If something is not in the SlotTracker, return -1.
512  int getLocalSlot(const Value *V);
513  int getGlobalSlot(const GlobalValue *V);
514  int getMetadataSlot(const MDNode *N);
515
516  /// If you'd like to deal with a function instead of just a module, use
517  /// this method to get its data into the SlotTracker.
518  void incorporateFunction(const Function *F) {
519    TheFunction = F;
520    FunctionProcessed = false;
521  }
522
523  /// After calling incorporateFunction, use this method to remove the
524  /// most recently incorporated function from the SlotTracker. This
525  /// will reset the state of the machine back to just the module contents.
526  void purgeFunction();
527
528  /// MDNode map iterators.
529  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
530  mdn_iterator mdn_begin() { return mdnMap.begin(); }
531  mdn_iterator mdn_end() { return mdnMap.end(); }
532  unsigned mdn_size() const { return mdnMap.size(); }
533  bool mdn_empty() const { return mdnMap.empty(); }
534
535  /// This function does the actual initialization.
536  inline void initialize();
537
538  // Implementation Details
539private:
540  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
541  void CreateModuleSlot(const GlobalValue *V);
542
543  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
544  void CreateMetadataSlot(const MDNode *N);
545
546  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
547  void CreateFunctionSlot(const Value *V);
548
549  /// Add all of the module level global variables (and their initializers)
550  /// and function declarations, but not the contents of those functions.
551  void processModule();
552
553  /// Add all of the functions arguments, basic blocks, and instructions.
554  void processFunction();
555
556  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
557  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
558};
559
560}  // end anonymous namespace
561
562
563static SlotTracker *createSlotTracker(const Value *V) {
564  if (const Argument *FA = dyn_cast<Argument>(V))
565    return new SlotTracker(FA->getParent());
566
567  if (const Instruction *I = dyn_cast<Instruction>(V))
568    return new SlotTracker(I->getParent()->getParent());
569
570  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
571    return new SlotTracker(BB->getParent());
572
573  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
574    return new SlotTracker(GV->getParent());
575
576  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
577    return new SlotTracker(GA->getParent());
578
579  if (const Function *Func = dyn_cast<Function>(V))
580    return new SlotTracker(Func);
581
582  if (isa<MDNode>(V))
583    return new SlotTracker((Function *)0);
584
585  return 0;
586}
587
588#if 0
589#define ST_DEBUG(X) dbgs() << X
590#else
591#define ST_DEBUG(X)
592#endif
593
594// Module level constructor. Causes the contents of the Module (sans functions)
595// to be added to the slot table.
596SlotTracker::SlotTracker(const Module *M)
597  : TheModule(M), TheFunction(0), FunctionProcessed(false),
598    mNext(0), fNext(0),  mdnNext(0) {
599}
600
601// Function level constructor. Causes the contents of the Module and the one
602// function provided to be added to the slot table.
603SlotTracker::SlotTracker(const Function *F)
604  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
605    mNext(0), fNext(0), mdnNext(0) {
606}
607
608inline void SlotTracker::initialize() {
609  if (TheModule) {
610    processModule();
611    TheModule = 0; ///< Prevent re-processing next time we're called.
612  }
613
614  if (TheFunction && !FunctionProcessed)
615    processFunction();
616}
617
618// Iterate through all the global variables, functions, and global
619// variable initializers and create slots for them.
620void SlotTracker::processModule() {
621  ST_DEBUG("begin processModule!\n");
622
623  // Add all of the unnamed global variables to the value table.
624  for (Module::const_global_iterator I = TheModule->global_begin(),
625         E = TheModule->global_end(); I != E; ++I) {
626    if (!I->hasName())
627      CreateModuleSlot(I);
628  }
629
630  // Add metadata used by named metadata.
631  for (Module::const_named_metadata_iterator
632         I = TheModule->named_metadata_begin(),
633         E = TheModule->named_metadata_end(); I != E; ++I) {
634    const NamedMDNode *NMD = I;
635    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
636      if (MDNode *MD = NMD->getOperand(i))
637        CreateMetadataSlot(MD);
638    }
639  }
640
641  // Add all the unnamed functions to the table.
642  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
643       I != E; ++I)
644    if (!I->hasName())
645      CreateModuleSlot(I);
646
647  ST_DEBUG("end processModule!\n");
648}
649
650// Process the arguments, basic blocks, and instructions  of a function.
651void SlotTracker::processFunction() {
652  ST_DEBUG("begin processFunction!\n");
653  fNext = 0;
654
655  // Add all the function arguments with no names.
656  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
657      AE = TheFunction->arg_end(); AI != AE; ++AI)
658    if (!AI->hasName())
659      CreateFunctionSlot(AI);
660
661  ST_DEBUG("Inserting Instructions:\n");
662
663  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
664
665  // Add all of the basic blocks and instructions with no names.
666  for (Function::const_iterator BB = TheFunction->begin(),
667       E = TheFunction->end(); BB != E; ++BB) {
668    if (!BB->hasName())
669      CreateFunctionSlot(BB);
670
671    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
672         ++I) {
673      if (!I->getType()->isVoidTy() && !I->hasName())
674        CreateFunctionSlot(I);
675
676      // Intrinsics can directly use metadata.
677      if (isa<IntrinsicInst>(I))
678        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
679          if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
680            CreateMetadataSlot(N);
681
682      // Process metadata attached with this instruction.
683      I->getAllMetadata(MDForInst);
684      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
685        CreateMetadataSlot(MDForInst[i].second);
686      MDForInst.clear();
687    }
688  }
689
690  FunctionProcessed = true;
691
692  ST_DEBUG("end processFunction!\n");
693}
694
695/// Clean up after incorporating a function. This is the only way to get out of
696/// the function incorporation state that affects get*Slot/Create*Slot. Function
697/// incorporation state is indicated by TheFunction != 0.
698void SlotTracker::purgeFunction() {
699  ST_DEBUG("begin purgeFunction!\n");
700  fMap.clear(); // Simply discard the function level map
701  TheFunction = 0;
702  FunctionProcessed = false;
703  ST_DEBUG("end purgeFunction!\n");
704}
705
706/// getGlobalSlot - Get the slot number of a global value.
707int SlotTracker::getGlobalSlot(const GlobalValue *V) {
708  // Check for uninitialized state and do lazy initialization.
709  initialize();
710
711  // Find the type plane in the module map
712  ValueMap::iterator MI = mMap.find(V);
713  return MI == mMap.end() ? -1 : (int)MI->second;
714}
715
716/// getMetadataSlot - Get the slot number of a MDNode.
717int SlotTracker::getMetadataSlot(const MDNode *N) {
718  // Check for uninitialized state and do lazy initialization.
719  initialize();
720
721  // Find the type plane in the module map
722  mdn_iterator MI = mdnMap.find(N);
723  return MI == mdnMap.end() ? -1 : (int)MI->second;
724}
725
726
727/// getLocalSlot - Get the slot number for a value that is local to a function.
728int SlotTracker::getLocalSlot(const Value *V) {
729  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
730
731  // Check for uninitialized state and do lazy initialization.
732  initialize();
733
734  ValueMap::iterator FI = fMap.find(V);
735  return FI == fMap.end() ? -1 : (int)FI->second;
736}
737
738
739/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
740void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
741  assert(V && "Can't insert a null Value into SlotTracker!");
742  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
743  assert(!V->hasName() && "Doesn't need a slot!");
744
745  unsigned DestSlot = mNext++;
746  mMap[V] = DestSlot;
747
748  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
749           DestSlot << " [");
750  // G = Global, F = Function, A = Alias, o = other
751  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
752            (isa<Function>(V) ? 'F' :
753             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
754}
755
756/// CreateSlot - Create a new slot for the specified value if it has no name.
757void SlotTracker::CreateFunctionSlot(const Value *V) {
758  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
759
760  unsigned DestSlot = fNext++;
761  fMap[V] = DestSlot;
762
763  // G = Global, F = Function, o = other
764  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
765           DestSlot << " [o]\n");
766}
767
768/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
769void SlotTracker::CreateMetadataSlot(const MDNode *N) {
770  assert(N && "Can't insert a null Value into SlotTracker!");
771
772  // Don't insert if N is a function-local metadata, these are always printed
773  // inline.
774  if (N->isFunctionLocal())
775    return;
776
777  mdn_iterator I = mdnMap.find(N);
778  if (I != mdnMap.end())
779    return;
780
781  unsigned DestSlot = mdnNext++;
782  mdnMap[N] = DestSlot;
783
784  // Recursively add any MDNodes referenced by operands.
785  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
786    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
787      CreateMetadataSlot(Op);
788}
789
790//===----------------------------------------------------------------------===//
791// AsmWriter Implementation
792//===----------------------------------------------------------------------===//
793
794static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
795                                   TypePrinting *TypePrinter,
796                                   SlotTracker *Machine);
797
798
799
800static const char *getPredicateText(unsigned predicate) {
801  const char * pred = "unknown";
802  switch (predicate) {
803  case FCmpInst::FCMP_FALSE: pred = "false"; break;
804  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
805  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
806  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
807  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
808  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
809  case FCmpInst::FCMP_ONE:   pred = "one"; break;
810  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
811  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
812  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
813  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
814  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
815  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
816  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
817  case FCmpInst::FCMP_UNE:   pred = "une"; break;
818  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
819  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
820  case ICmpInst::ICMP_NE:    pred = "ne"; break;
821  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
822  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
823  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
824  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
825  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
826  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
827  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
828  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
829  }
830  return pred;
831}
832
833
834static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
835  if (const OverflowingBinaryOperator *OBO =
836        dyn_cast<OverflowingBinaryOperator>(U)) {
837    if (OBO->hasNoUnsignedWrap())
838      Out << " nuw";
839    if (OBO->hasNoSignedWrap())
840      Out << " nsw";
841  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
842    if (Div->isExact())
843      Out << " exact";
844  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
845    if (GEP->isInBounds())
846      Out << " inbounds";
847  }
848}
849
850static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
851                             TypePrinting &TypePrinter, SlotTracker *Machine) {
852  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
853    if (CI->getType()->isIntegerTy(1)) {
854      Out << (CI->getZExtValue() ? "true" : "false");
855      return;
856    }
857    Out << CI->getValue();
858    return;
859  }
860
861  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
862    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
863        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
864      // We would like to output the FP constant value in exponential notation,
865      // but we cannot do this if doing so will lose precision.  Check here to
866      // make sure that we only output it in exponential format if we can parse
867      // the value back and get the same value.
868      //
869      bool ignored;
870      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
871      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
872                              CFP->getValueAPF().convertToFloat();
873      SmallString<128> StrVal;
874      raw_svector_ostream(StrVal) << Val;
875
876      // Check to make sure that the stringized number is not some string like
877      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
878      // that the string matches the "[-+]?[0-9]" regex.
879      //
880      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
881          ((StrVal[0] == '-' || StrVal[0] == '+') &&
882           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
883        // Reparse stringized version!
884        if (atof(StrVal.c_str()) == Val) {
885          Out << StrVal.str();
886          return;
887        }
888      }
889      // Otherwise we could not reparse it to exactly the same value, so we must
890      // output the string in hexadecimal format!  Note that loading and storing
891      // floating point types changes the bits of NaNs on some hosts, notably
892      // x86, so we must not use these types.
893      assert(sizeof(double) == sizeof(uint64_t) &&
894             "assuming that double is 64 bits!");
895      char Buffer[40];
896      APFloat apf = CFP->getValueAPF();
897      // Floats are represented in ASCII IR as double, convert.
898      if (!isDouble)
899        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
900                          &ignored);
901      Out << "0x" <<
902              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
903                            Buffer+40);
904      return;
905    }
906
907    // Some form of long double.  These appear as a magic letter identifying
908    // the type, then a fixed number of hex digits.
909    Out << "0x";
910    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
911      Out << 'K';
912      // api needed to prevent premature destruction
913      APInt api = CFP->getValueAPF().bitcastToAPInt();
914      const uint64_t* p = api.getRawData();
915      uint64_t word = p[1];
916      int shiftcount=12;
917      int width = api.getBitWidth();
918      for (int j=0; j<width; j+=4, shiftcount-=4) {
919        unsigned int nibble = (word>>shiftcount) & 15;
920        if (nibble < 10)
921          Out << (unsigned char)(nibble + '0');
922        else
923          Out << (unsigned char)(nibble - 10 + 'A');
924        if (shiftcount == 0 && j+4 < width) {
925          word = *p;
926          shiftcount = 64;
927          if (width-j-4 < 64)
928            shiftcount = width-j-4;
929        }
930      }
931      return;
932    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
933      Out << 'L';
934    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
935      Out << 'M';
936    else
937      llvm_unreachable("Unsupported floating point type");
938    // api needed to prevent premature destruction
939    APInt api = CFP->getValueAPF().bitcastToAPInt();
940    const uint64_t* p = api.getRawData();
941    uint64_t word = *p;
942    int shiftcount=60;
943    int width = api.getBitWidth();
944    for (int j=0; j<width; j+=4, shiftcount-=4) {
945      unsigned int nibble = (word>>shiftcount) & 15;
946      if (nibble < 10)
947        Out << (unsigned char)(nibble + '0');
948      else
949        Out << (unsigned char)(nibble - 10 + 'A');
950      if (shiftcount == 0 && j+4 < width) {
951        word = *(++p);
952        shiftcount = 64;
953        if (width-j-4 < 64)
954          shiftcount = width-j-4;
955      }
956    }
957    return;
958  }
959
960  if (isa<ConstantAggregateZero>(CV)) {
961    Out << "zeroinitializer";
962    return;
963  }
964
965  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
966    Out << "blockaddress(";
967    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine);
968    Out << ", ";
969    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine);
970    Out << ")";
971    return;
972  }
973
974  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
975    // As a special case, print the array as a string if it is an array of
976    // i8 with ConstantInt values.
977    //
978    const Type *ETy = CA->getType()->getElementType();
979    if (CA->isString()) {
980      Out << "c\"";
981      PrintEscapedString(CA->getAsString(), Out);
982      Out << '"';
983    } else {                // Cannot output in string format...
984      Out << '[';
985      if (CA->getNumOperands()) {
986        TypePrinter.print(ETy, Out);
987        Out << ' ';
988        WriteAsOperandInternal(Out, CA->getOperand(0),
989                               &TypePrinter, Machine);
990        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
991          Out << ", ";
992          TypePrinter.print(ETy, Out);
993          Out << ' ';
994          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
995        }
996      }
997      Out << ']';
998    }
999    return;
1000  }
1001
1002  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1003    if (CS->getType()->isPacked())
1004      Out << '<';
1005    Out << '{';
1006    unsigned N = CS->getNumOperands();
1007    if (N) {
1008      Out << ' ';
1009      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1010      Out << ' ';
1011
1012      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
1013
1014      for (unsigned i = 1; i < N; i++) {
1015        Out << ", ";
1016        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1017        Out << ' ';
1018
1019        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1020      }
1021      Out << ' ';
1022    }
1023
1024    Out << '}';
1025    if (CS->getType()->isPacked())
1026      Out << '>';
1027    return;
1028  }
1029
1030  if (const ConstantUnion *CU = dyn_cast<ConstantUnion>(CV)) {
1031    Out << "{ ";
1032    TypePrinter.print(CU->getOperand(0)->getType(), Out);
1033    Out << ' ';
1034    WriteAsOperandInternal(Out, CU->getOperand(0), &TypePrinter, Machine);
1035    Out << " }";
1036    return;
1037  }
1038
1039  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1040    const Type *ETy = CP->getType()->getElementType();
1041    assert(CP->getNumOperands() > 0 &&
1042           "Number of operands for a PackedConst must be > 0");
1043    Out << '<';
1044    TypePrinter.print(ETy, Out);
1045    Out << ' ';
1046    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1047    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1048      Out << ", ";
1049      TypePrinter.print(ETy, Out);
1050      Out << ' ';
1051      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1052    }
1053    Out << '>';
1054    return;
1055  }
1056
1057  if (isa<ConstantPointerNull>(CV)) {
1058    Out << "null";
1059    return;
1060  }
1061
1062  if (isa<UndefValue>(CV)) {
1063    Out << "undef";
1064    return;
1065  }
1066
1067  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1068    Out << "!" << Machine->getMetadataSlot(Node);
1069    return;
1070  }
1071
1072  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1073    Out << CE->getOpcodeName();
1074    WriteOptimizationInfo(Out, CE);
1075    if (CE->isCompare())
1076      Out << ' ' << getPredicateText(CE->getPredicate());
1077    Out << " (";
1078
1079    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1080      TypePrinter.print((*OI)->getType(), Out);
1081      Out << ' ';
1082      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1083      if (OI+1 != CE->op_end())
1084        Out << ", ";
1085    }
1086
1087    if (CE->hasIndices()) {
1088      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1089      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1090        Out << ", " << Indices[i];
1091    }
1092
1093    if (CE->isCast()) {
1094      Out << " to ";
1095      TypePrinter.print(CE->getType(), Out);
1096    }
1097
1098    Out << ')';
1099    return;
1100  }
1101
1102  Out << "<placeholder or erroneous Constant>";
1103}
1104
1105static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1106                                    TypePrinting *TypePrinter,
1107                                    SlotTracker *Machine) {
1108  Out << "!{";
1109  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1110    const Value *V = Node->getOperand(mi);
1111    if (V == 0)
1112      Out << "null";
1113    else {
1114      TypePrinter->print(V->getType(), Out);
1115      Out << ' ';
1116      WriteAsOperandInternal(Out, Node->getOperand(mi),
1117                             TypePrinter, Machine);
1118    }
1119    if (mi + 1 != me)
1120      Out << ", ";
1121  }
1122
1123  Out << "}";
1124}
1125
1126
1127/// WriteAsOperand - Write the name of the specified value out to the specified
1128/// ostream.  This can be useful when you just want to print int %reg126, not
1129/// the whole instruction that generated it.
1130///
1131static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1132                                   TypePrinting *TypePrinter,
1133                                   SlotTracker *Machine) {
1134  if (V->hasName()) {
1135    PrintLLVMName(Out, V);
1136    return;
1137  }
1138
1139  const Constant *CV = dyn_cast<Constant>(V);
1140  if (CV && !isa<GlobalValue>(CV)) {
1141    assert(TypePrinter && "Constants require TypePrinting!");
1142    WriteConstantInt(Out, CV, *TypePrinter, Machine);
1143    return;
1144  }
1145
1146  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1147    Out << "asm ";
1148    if (IA->hasSideEffects())
1149      Out << "sideeffect ";
1150    if (IA->isAlignStack())
1151      Out << "alignstack ";
1152    Out << '"';
1153    PrintEscapedString(IA->getAsmString(), Out);
1154    Out << "\", \"";
1155    PrintEscapedString(IA->getConstraintString(), Out);
1156    Out << '"';
1157    return;
1158  }
1159
1160  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1161    if (N->isFunctionLocal()) {
1162      // Print metadata inline, not via slot reference number.
1163      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine);
1164      return;
1165    }
1166
1167    if (!Machine)
1168      Machine = createSlotTracker(V);
1169    Out << '!' << Machine->getMetadataSlot(N);
1170    return;
1171  }
1172
1173  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1174    Out << "!\"";
1175    PrintEscapedString(MDS->getString(), Out);
1176    Out << '"';
1177    return;
1178  }
1179
1180  if (V->getValueID() == Value::PseudoSourceValueVal ||
1181      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1182    V->print(Out);
1183    return;
1184  }
1185
1186  char Prefix = '%';
1187  int Slot;
1188  if (Machine) {
1189    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1190      Slot = Machine->getGlobalSlot(GV);
1191      Prefix = '@';
1192    } else {
1193      Slot = Machine->getLocalSlot(V);
1194    }
1195  } else {
1196    Machine = createSlotTracker(V);
1197    if (Machine) {
1198      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1199        Slot = Machine->getGlobalSlot(GV);
1200        Prefix = '@';
1201      } else {
1202        Slot = Machine->getLocalSlot(V);
1203      }
1204      delete Machine;
1205    } else {
1206      Slot = -1;
1207    }
1208  }
1209
1210  if (Slot != -1)
1211    Out << Prefix << Slot;
1212  else
1213    Out << "<badref>";
1214}
1215
1216void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1217                          bool PrintType, const Module *Context) {
1218
1219  // Fast path: Don't construct and populate a TypePrinting object if we
1220  // won't be needing any types printed.
1221  if (!PrintType &&
1222      (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1223    WriteAsOperandInternal(Out, V, 0, 0);
1224    return;
1225  }
1226
1227  if (Context == 0) Context = getModuleFromVal(V);
1228
1229  TypePrinting TypePrinter;
1230  std::vector<const Type*> NumberedTypes;
1231  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1232  if (PrintType) {
1233    TypePrinter.print(V->getType(), Out);
1234    Out << ' ';
1235  }
1236
1237  WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1238}
1239
1240namespace {
1241
1242class AssemblyWriter {
1243  formatted_raw_ostream &Out;
1244  SlotTracker &Machine;
1245  const Module *TheModule;
1246  TypePrinting TypePrinter;
1247  AssemblyAnnotationWriter *AnnotationWriter;
1248  std::vector<const Type*> NumberedTypes;
1249
1250public:
1251  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1252                        const Module *M,
1253                        AssemblyAnnotationWriter *AAW)
1254    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1255    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1256  }
1257
1258  void printMDNodeBody(const MDNode *MD);
1259  void printNamedMDNode(const NamedMDNode *NMD);
1260
1261  void printModule(const Module *M);
1262
1263  void writeOperand(const Value *Op, bool PrintType);
1264  void writeParamOperand(const Value *Operand, Attributes Attrs);
1265
1266  void writeAllMDNodes();
1267
1268  void printTypeSymbolTable(const TypeSymbolTable &ST);
1269  void printGlobal(const GlobalVariable *GV);
1270  void printAlias(const GlobalAlias *GV);
1271  void printFunction(const Function *F);
1272  void printArgument(const Argument *FA, Attributes Attrs);
1273  void printBasicBlock(const BasicBlock *BB);
1274  void printInstruction(const Instruction &I);
1275
1276private:
1277  // printInfoComment - Print a little comment after the instruction indicating
1278  // which slot it occupies.
1279  void printInfoComment(const Value &V);
1280};
1281}  // end of anonymous namespace
1282
1283void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1284  if (Operand == 0) {
1285    Out << "<null operand!>";
1286    return;
1287  }
1288  if (PrintType) {
1289    TypePrinter.print(Operand->getType(), Out);
1290    Out << ' ';
1291  }
1292  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1293}
1294
1295void AssemblyWriter::writeParamOperand(const Value *Operand,
1296                                       Attributes Attrs) {
1297  if (Operand == 0) {
1298    Out << "<null operand!>";
1299    return;
1300  }
1301
1302  // Print the type
1303  TypePrinter.print(Operand->getType(), Out);
1304  // Print parameter attributes list
1305  if (Attrs != Attribute::None)
1306    Out << ' ' << Attribute::getAsString(Attrs);
1307  Out << ' ';
1308  // Print the operand
1309  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1310}
1311
1312void AssemblyWriter::printModule(const Module *M) {
1313  if (!M->getModuleIdentifier().empty() &&
1314      // Don't print the ID if it will start a new line (which would
1315      // require a comment char before it).
1316      M->getModuleIdentifier().find('\n') == std::string::npos)
1317    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1318
1319  if (!M->getDataLayout().empty())
1320    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1321  if (!M->getTargetTriple().empty())
1322    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1323
1324  if (!M->getModuleInlineAsm().empty()) {
1325    // Split the string into lines, to make it easier to read the .ll file.
1326    std::string Asm = M->getModuleInlineAsm();
1327    size_t CurPos = 0;
1328    size_t NewLine = Asm.find_first_of('\n', CurPos);
1329    Out << '\n';
1330    while (NewLine != std::string::npos) {
1331      // We found a newline, print the portion of the asm string from the
1332      // last newline up to this newline.
1333      Out << "module asm \"";
1334      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1335                         Out);
1336      Out << "\"\n";
1337      CurPos = NewLine+1;
1338      NewLine = Asm.find_first_of('\n', CurPos);
1339    }
1340    Out << "module asm \"";
1341    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1342    Out << "\"\n";
1343  }
1344
1345  // Loop over the dependent libraries and emit them.
1346  Module::lib_iterator LI = M->lib_begin();
1347  Module::lib_iterator LE = M->lib_end();
1348  if (LI != LE) {
1349    Out << '\n';
1350    Out << "deplibs = [ ";
1351    while (LI != LE) {
1352      Out << '"' << *LI << '"';
1353      ++LI;
1354      if (LI != LE)
1355        Out << ", ";
1356    }
1357    Out << " ]";
1358  }
1359
1360  // Loop over the symbol table, emitting all id'd types.
1361  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1362  printTypeSymbolTable(M->getTypeSymbolTable());
1363
1364  // Output all globals.
1365  if (!M->global_empty()) Out << '\n';
1366  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1367       I != E; ++I)
1368    printGlobal(I);
1369
1370  // Output all aliases.
1371  if (!M->alias_empty()) Out << "\n";
1372  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1373       I != E; ++I)
1374    printAlias(I);
1375
1376  // Output all of the functions.
1377  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1378    printFunction(I);
1379
1380  // Output named metadata.
1381  if (!M->named_metadata_empty()) Out << '\n';
1382
1383  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1384       E = M->named_metadata_end(); I != E; ++I)
1385    printNamedMDNode(I);
1386
1387  // Output metadata.
1388  if (!Machine.mdn_empty()) {
1389    Out << '\n';
1390    writeAllMDNodes();
1391  }
1392}
1393
1394void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1395  Out << "!" << NMD->getName() << " = !{";
1396  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1397    if (i) Out << ", ";
1398    if (MDNode *MD = NMD->getOperand(i))
1399      Out << '!' << Machine.getMetadataSlot(MD);
1400    else
1401      Out << "null";
1402  }
1403  Out << "}\n";
1404}
1405
1406
1407static void PrintLinkage(GlobalValue::LinkageTypes LT,
1408                         formatted_raw_ostream &Out) {
1409  switch (LT) {
1410  case GlobalValue::ExternalLinkage: break;
1411  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1412  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1413  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1414  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1415  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1416  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1417  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1418  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1419  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1420  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1421  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1422  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1423  case GlobalValue::AvailableExternallyLinkage:
1424    Out << "available_externally ";
1425    break;
1426  }
1427}
1428
1429
1430static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1431                            formatted_raw_ostream &Out) {
1432  switch (Vis) {
1433  case GlobalValue::DefaultVisibility: break;
1434  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1435  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1436  }
1437}
1438
1439void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1440  if (GV->isMaterializable())
1441    Out << "; Materializable\n";
1442
1443  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1444  Out << " = ";
1445
1446  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1447    Out << "external ";
1448
1449  PrintLinkage(GV->getLinkage(), Out);
1450  PrintVisibility(GV->getVisibility(), Out);
1451
1452  if (GV->isThreadLocal()) Out << "thread_local ";
1453  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1454    Out << "addrspace(" << AddressSpace << ") ";
1455  Out << (GV->isConstant() ? "constant " : "global ");
1456  TypePrinter.print(GV->getType()->getElementType(), Out);
1457
1458  if (GV->hasInitializer()) {
1459    Out << ' ';
1460    writeOperand(GV->getInitializer(), false);
1461  }
1462
1463  if (GV->hasSection())
1464    Out << ", section \"" << GV->getSection() << '"';
1465  if (GV->getAlignment())
1466    Out << ", align " << GV->getAlignment();
1467
1468  printInfoComment(*GV);
1469  Out << '\n';
1470}
1471
1472void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1473  if (GA->isMaterializable())
1474    Out << "; Materializable\n";
1475
1476  // Don't crash when dumping partially built GA
1477  if (!GA->hasName())
1478    Out << "<<nameless>> = ";
1479  else {
1480    PrintLLVMName(Out, GA);
1481    Out << " = ";
1482  }
1483  PrintVisibility(GA->getVisibility(), Out);
1484
1485  Out << "alias ";
1486
1487  PrintLinkage(GA->getLinkage(), Out);
1488
1489  const Constant *Aliasee = GA->getAliasee();
1490
1491  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1492    TypePrinter.print(GV->getType(), Out);
1493    Out << ' ';
1494    PrintLLVMName(Out, GV);
1495  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1496    TypePrinter.print(F->getFunctionType(), Out);
1497    Out << "* ";
1498
1499    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1500  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1501    TypePrinter.print(GA->getType(), Out);
1502    Out << ' ';
1503    PrintLLVMName(Out, GA);
1504  } else {
1505    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1506    // The only valid GEP is an all zero GEP.
1507    assert((CE->getOpcode() == Instruction::BitCast ||
1508            CE->getOpcode() == Instruction::GetElementPtr) &&
1509           "Unsupported aliasee");
1510    writeOperand(CE, false);
1511  }
1512
1513  printInfoComment(*GA);
1514  Out << '\n';
1515}
1516
1517void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1518  // Emit all numbered types.
1519  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1520    Out << '%' << i << " = type ";
1521
1522    // Make sure we print out at least one level of the type structure, so
1523    // that we do not get %2 = type %2
1524    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1525    Out << '\n';
1526  }
1527
1528  // Print the named types.
1529  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1530       TI != TE; ++TI) {
1531    PrintLLVMName(Out, TI->first, LocalPrefix);
1532    Out << " = type ";
1533
1534    // Make sure we print out at least one level of the type structure, so
1535    // that we do not get %FILE = type %FILE
1536    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1537    Out << '\n';
1538  }
1539}
1540
1541/// printFunction - Print all aspects of a function.
1542///
1543void AssemblyWriter::printFunction(const Function *F) {
1544  // Print out the return type and name.
1545  Out << '\n';
1546
1547  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1548
1549  if (F->isMaterializable())
1550    Out << "; Materializable\n";
1551
1552  if (F->isDeclaration())
1553    Out << "declare ";
1554  else
1555    Out << "define ";
1556
1557  PrintLinkage(F->getLinkage(), Out);
1558  PrintVisibility(F->getVisibility(), Out);
1559
1560  // Print the calling convention.
1561  switch (F->getCallingConv()) {
1562  case CallingConv::C: break;   // default
1563  case CallingConv::Fast:         Out << "fastcc "; break;
1564  case CallingConv::Cold:         Out << "coldcc "; break;
1565  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1566  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1567  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1568  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1569  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1570  case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
1571  default: Out << "cc" << F->getCallingConv() << " "; break;
1572  }
1573
1574  const FunctionType *FT = F->getFunctionType();
1575  const AttrListPtr &Attrs = F->getAttributes();
1576  Attributes RetAttrs = Attrs.getRetAttributes();
1577  if (RetAttrs != Attribute::None)
1578    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1579  TypePrinter.print(F->getReturnType(), Out);
1580  Out << ' ';
1581  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1582  Out << '(';
1583  Machine.incorporateFunction(F);
1584
1585  // Loop over the arguments, printing them...
1586
1587  unsigned Idx = 1;
1588  if (!F->isDeclaration()) {
1589    // If this isn't a declaration, print the argument names as well.
1590    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1591         I != E; ++I) {
1592      // Insert commas as we go... the first arg doesn't get a comma
1593      if (I != F->arg_begin()) Out << ", ";
1594      printArgument(I, Attrs.getParamAttributes(Idx));
1595      Idx++;
1596    }
1597  } else {
1598    // Otherwise, print the types from the function type.
1599    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1600      // Insert commas as we go... the first arg doesn't get a comma
1601      if (i) Out << ", ";
1602
1603      // Output type...
1604      TypePrinter.print(FT->getParamType(i), Out);
1605
1606      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1607      if (ArgAttrs != Attribute::None)
1608        Out << ' ' << Attribute::getAsString(ArgAttrs);
1609    }
1610  }
1611
1612  // Finish printing arguments...
1613  if (FT->isVarArg()) {
1614    if (FT->getNumParams()) Out << ", ";
1615    Out << "...";  // Output varargs portion of signature!
1616  }
1617  Out << ')';
1618  Attributes FnAttrs = Attrs.getFnAttributes();
1619  if (FnAttrs != Attribute::None)
1620    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1621  if (F->hasSection())
1622    Out << " section \"" << F->getSection() << '"';
1623  if (F->getAlignment())
1624    Out << " align " << F->getAlignment();
1625  if (F->hasGC())
1626    Out << " gc \"" << F->getGC() << '"';
1627  if (F->isDeclaration()) {
1628    Out << "\n";
1629  } else {
1630    Out << " {";
1631
1632    // Output all of its basic blocks... for the function
1633    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1634      printBasicBlock(I);
1635
1636    Out << "}\n";
1637  }
1638
1639  Machine.purgeFunction();
1640}
1641
1642/// printArgument - This member is called for every argument that is passed into
1643/// the function.  Simply print it out
1644///
1645void AssemblyWriter::printArgument(const Argument *Arg,
1646                                   Attributes Attrs) {
1647  // Output type...
1648  TypePrinter.print(Arg->getType(), Out);
1649
1650  // Output parameter attributes list
1651  if (Attrs != Attribute::None)
1652    Out << ' ' << Attribute::getAsString(Attrs);
1653
1654  // Output name, if available...
1655  if (Arg->hasName()) {
1656    Out << ' ';
1657    PrintLLVMName(Out, Arg);
1658  }
1659}
1660
1661/// printBasicBlock - This member is called for each basic block in a method.
1662///
1663void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1664  if (BB->hasName()) {              // Print out the label if it exists...
1665    Out << "\n";
1666    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1667    Out << ':';
1668  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1669    Out << "\n; <label>:";
1670    int Slot = Machine.getLocalSlot(BB);
1671    if (Slot != -1)
1672      Out << Slot;
1673    else
1674      Out << "<badref>";
1675  }
1676
1677  if (BB->getParent() == 0) {
1678    Out.PadToColumn(50);
1679    Out << "; Error: Block without parent!";
1680  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1681    // Output predecessors for the block...
1682    Out.PadToColumn(50);
1683    Out << ";";
1684    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1685
1686    if (PI == PE) {
1687      Out << " No predecessors!";
1688    } else {
1689      Out << " preds = ";
1690      writeOperand(*PI, false);
1691      for (++PI; PI != PE; ++PI) {
1692        Out << ", ";
1693        writeOperand(*PI, false);
1694      }
1695    }
1696  }
1697
1698  Out << "\n";
1699
1700  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1701
1702  // Output all of the instructions in the basic block...
1703  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1704    printInstruction(*I);
1705    Out << '\n';
1706  }
1707
1708  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1709}
1710
1711/// printInfoComment - Print a little comment after the instruction indicating
1712/// which slot it occupies.
1713///
1714void AssemblyWriter::printInfoComment(const Value &V) {
1715  if (AnnotationWriter) {
1716    AnnotationWriter->printInfoComment(V, Out);
1717    return;
1718  }
1719
1720  if (V.getType()->isVoidTy()) return;
1721
1722  Out.PadToColumn(50);
1723  Out << "; <";
1724  TypePrinter.print(V.getType(), Out);
1725  Out << "> [#uses=" << V.getNumUses() << ']';  // Output # uses
1726}
1727
1728// This member is called for each Instruction in a function..
1729void AssemblyWriter::printInstruction(const Instruction &I) {
1730  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1731
1732  // Print out indentation for an instruction.
1733  Out << "  ";
1734
1735  // Print out name if it exists...
1736  if (I.hasName()) {
1737    PrintLLVMName(Out, &I);
1738    Out << " = ";
1739  } else if (!I.getType()->isVoidTy()) {
1740    // Print out the def slot taken.
1741    int SlotNum = Machine.getLocalSlot(&I);
1742    if (SlotNum == -1)
1743      Out << "<badref> = ";
1744    else
1745      Out << '%' << SlotNum << " = ";
1746  }
1747
1748  // If this is a volatile load or store, print out the volatile marker.
1749  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1750      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1751      Out << "volatile ";
1752  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1753    // If this is a call, check if it's a tail call.
1754    Out << "tail ";
1755  }
1756
1757  // Print out the opcode...
1758  Out << I.getOpcodeName();
1759
1760  // Print out optimization information.
1761  WriteOptimizationInfo(Out, &I);
1762
1763  // Print out the compare instruction predicates
1764  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1765    Out << ' ' << getPredicateText(CI->getPredicate());
1766
1767  // Print out the type of the operands...
1768  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1769
1770  // Special case conditional branches to swizzle the condition out to the front
1771  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1772    BranchInst &BI(cast<BranchInst>(I));
1773    Out << ' ';
1774    writeOperand(BI.getCondition(), true);
1775    Out << ", ";
1776    writeOperand(BI.getSuccessor(0), true);
1777    Out << ", ";
1778    writeOperand(BI.getSuccessor(1), true);
1779
1780  } else if (isa<SwitchInst>(I)) {
1781    // Special case switch instruction to get formatting nice and correct.
1782    Out << ' ';
1783    writeOperand(Operand        , true);
1784    Out << ", ";
1785    writeOperand(I.getOperand(1), true);
1786    Out << " [";
1787
1788    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1789      Out << "\n    ";
1790      writeOperand(I.getOperand(op  ), true);
1791      Out << ", ";
1792      writeOperand(I.getOperand(op+1), true);
1793    }
1794    Out << "\n  ]";
1795  } else if (isa<IndirectBrInst>(I)) {
1796    // Special case indirectbr instruction to get formatting nice and correct.
1797    Out << ' ';
1798    writeOperand(Operand, true);
1799    Out << ", [";
1800
1801    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1802      if (i != 1)
1803        Out << ", ";
1804      writeOperand(I.getOperand(i), true);
1805    }
1806    Out << ']';
1807  } else if (isa<PHINode>(I)) {
1808    Out << ' ';
1809    TypePrinter.print(I.getType(), Out);
1810    Out << ' ';
1811
1812    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1813      if (op) Out << ", ";
1814      Out << "[ ";
1815      writeOperand(I.getOperand(op  ), false); Out << ", ";
1816      writeOperand(I.getOperand(op+1), false); Out << " ]";
1817    }
1818  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1819    Out << ' ';
1820    writeOperand(I.getOperand(0), true);
1821    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1822      Out << ", " << *i;
1823  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1824    Out << ' ';
1825    writeOperand(I.getOperand(0), true); Out << ", ";
1826    writeOperand(I.getOperand(1), true);
1827    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1828      Out << ", " << *i;
1829  } else if (isa<ReturnInst>(I) && !Operand) {
1830    Out << " void";
1831  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1832    // Print the calling convention being used.
1833    switch (CI->getCallingConv()) {
1834    case CallingConv::C: break;   // default
1835    case CallingConv::Fast:  Out << " fastcc"; break;
1836    case CallingConv::Cold:  Out << " coldcc"; break;
1837    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1838    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1839    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1840    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1841    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1842    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1843    default: Out << " cc" << CI->getCallingConv(); break;
1844    }
1845
1846    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1847    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1848    const Type         *RetTy = FTy->getReturnType();
1849    const AttrListPtr &PAL = CI->getAttributes();
1850
1851    if (PAL.getRetAttributes() != Attribute::None)
1852      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1853
1854    // If possible, print out the short form of the call instruction.  We can
1855    // only do this if the first argument is a pointer to a nonvararg function,
1856    // and if the return type is not a pointer to a function.
1857    //
1858    Out << ' ';
1859    if (!FTy->isVarArg() &&
1860        (!RetTy->isPointerTy() ||
1861         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1862      TypePrinter.print(RetTy, Out);
1863      Out << ' ';
1864      writeOperand(Operand, false);
1865    } else {
1866      writeOperand(Operand, true);
1867    }
1868    Out << '(';
1869    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1870      if (op > 1)
1871        Out << ", ";
1872      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1873    }
1874    Out << ')';
1875    if (PAL.getFnAttributes() != Attribute::None)
1876      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1877  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1878    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1879    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1880    const Type         *RetTy = FTy->getReturnType();
1881    const AttrListPtr &PAL = II->getAttributes();
1882
1883    // Print the calling convention being used.
1884    switch (II->getCallingConv()) {
1885    case CallingConv::C: break;   // default
1886    case CallingConv::Fast:  Out << " fastcc"; break;
1887    case CallingConv::Cold:  Out << " coldcc"; break;
1888    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1889    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1890    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1891    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1892    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1893    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1894    default: Out << " cc" << II->getCallingConv(); break;
1895    }
1896
1897    if (PAL.getRetAttributes() != Attribute::None)
1898      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1899
1900    // If possible, print out the short form of the invoke instruction. We can
1901    // only do this if the first argument is a pointer to a nonvararg function,
1902    // and if the return type is not a pointer to a function.
1903    //
1904    Out << ' ';
1905    if (!FTy->isVarArg() &&
1906        (!RetTy->isPointerTy() ||
1907         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1908      TypePrinter.print(RetTy, Out);
1909      Out << ' ';
1910      writeOperand(Operand, false);
1911    } else {
1912      writeOperand(Operand, true);
1913    }
1914    Out << '(';
1915    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1916      if (op > 3)
1917        Out << ", ";
1918      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1919    }
1920
1921    Out << ')';
1922    if (PAL.getFnAttributes() != Attribute::None)
1923      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1924
1925    Out << "\n          to ";
1926    writeOperand(II->getNormalDest(), true);
1927    Out << " unwind ";
1928    writeOperand(II->getUnwindDest(), true);
1929
1930  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1931    Out << ' ';
1932    TypePrinter.print(AI->getType()->getElementType(), Out);
1933    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1934      Out << ", ";
1935      writeOperand(AI->getArraySize(), true);
1936    }
1937    if (AI->getAlignment()) {
1938      Out << ", align " << AI->getAlignment();
1939    }
1940  } else if (isa<CastInst>(I)) {
1941    if (Operand) {
1942      Out << ' ';
1943      writeOperand(Operand, true);   // Work with broken code
1944    }
1945    Out << " to ";
1946    TypePrinter.print(I.getType(), Out);
1947  } else if (isa<VAArgInst>(I)) {
1948    if (Operand) {
1949      Out << ' ';
1950      writeOperand(Operand, true);   // Work with broken code
1951    }
1952    Out << ", ";
1953    TypePrinter.print(I.getType(), Out);
1954  } else if (Operand) {   // Print the normal way.
1955
1956    // PrintAllTypes - Instructions who have operands of all the same type
1957    // omit the type from all but the first operand.  If the instruction has
1958    // different type operands (for example br), then they are all printed.
1959    bool PrintAllTypes = false;
1960    const Type *TheType = Operand->getType();
1961
1962    // Select, Store and ShuffleVector always print all types.
1963    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1964        || isa<ReturnInst>(I)) {
1965      PrintAllTypes = true;
1966    } else {
1967      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1968        Operand = I.getOperand(i);
1969        // note that Operand shouldn't be null, but the test helps make dump()
1970        // more tolerant of malformed IR
1971        if (Operand && Operand->getType() != TheType) {
1972          PrintAllTypes = true;    // We have differing types!  Print them all!
1973          break;
1974        }
1975      }
1976    }
1977
1978    if (!PrintAllTypes) {
1979      Out << ' ';
1980      TypePrinter.print(TheType, Out);
1981    }
1982
1983    Out << ' ';
1984    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1985      if (i) Out << ", ";
1986      writeOperand(I.getOperand(i), PrintAllTypes);
1987    }
1988  }
1989
1990  // Print post operand alignment for load/store.
1991  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1992    Out << ", align " << cast<LoadInst>(I).getAlignment();
1993  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1994    Out << ", align " << cast<StoreInst>(I).getAlignment();
1995  }
1996
1997  // Print Metadata info.
1998  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
1999  I.getAllMetadata(InstMD);
2000  if (!InstMD.empty()) {
2001    SmallVector<StringRef, 8> MDNames;
2002    I.getType()->getContext().getMDKindNames(MDNames);
2003    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2004      unsigned Kind = InstMD[i].first;
2005       if (Kind < MDNames.size()) {
2006         Out << ", !" << MDNames[Kind];
2007      } else {
2008        Out << ", !<unknown kind #" << Kind << ">";
2009      }
2010      Out << " !" << Machine.getMetadataSlot(InstMD[i].second);
2011    }
2012  }
2013  printInfoComment(I);
2014}
2015
2016static void WriteMDNodeComment(const MDNode *Node,
2017			       formatted_raw_ostream &Out) {
2018  if (Node->getNumOperands() < 1)
2019    return;
2020  ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
2021  if (!CI) return;
2022  unsigned Val = CI->getZExtValue();
2023  unsigned Tag = Val & ~LLVMDebugVersionMask;
2024  if (Val < LLVMDebugVersion)
2025    return;
2026
2027  Out.PadToColumn(50);
2028  if (Tag == dwarf::DW_TAG_auto_variable)
2029    Out << "; [ DW_TAG_auto_variable ]";
2030  else if (Tag == dwarf::DW_TAG_arg_variable)
2031    Out << "; [ DW_TAG_arg_variable ]";
2032  else if (Tag == dwarf::DW_TAG_return_variable)
2033    Out << "; [ DW_TAG_return_variable ]";
2034  else if (Tag == dwarf::DW_TAG_vector_type)
2035    Out << "; [ DW_TAG_vector_type ]";
2036  else if (Tag == dwarf::DW_TAG_user_base)
2037    Out << "; [ DW_TAG_user_base ]";
2038  else if (const char *TagName = dwarf::TagString(Tag))
2039    Out << "; [ " << TagName << " ]";
2040}
2041
2042void AssemblyWriter::writeAllMDNodes() {
2043  SmallVector<const MDNode *, 16> Nodes;
2044  Nodes.resize(Machine.mdn_size());
2045  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2046       I != E; ++I)
2047    Nodes[I->second] = cast<MDNode>(I->first);
2048
2049  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2050    Out << '!' << i << " = metadata ";
2051    printMDNodeBody(Nodes[i]);
2052  }
2053}
2054
2055void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2056  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine);
2057  WriteMDNodeComment(Node, Out);
2058  Out << "\n";
2059}
2060
2061//===----------------------------------------------------------------------===//
2062//                       External Interface declarations
2063//===----------------------------------------------------------------------===//
2064
2065void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2066  SlotTracker SlotTable(this);
2067  formatted_raw_ostream OS(ROS);
2068  AssemblyWriter W(OS, SlotTable, this, AAW);
2069  W.printModule(this);
2070}
2071
2072void Type::print(raw_ostream &OS) const {
2073  if (this == 0) {
2074    OS << "<null Type>";
2075    return;
2076  }
2077  TypePrinting().print(this, OS);
2078}
2079
2080void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2081  if (this == 0) {
2082    ROS << "printing a <null> value\n";
2083    return;
2084  }
2085  formatted_raw_ostream OS(ROS);
2086  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2087    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2088    SlotTracker SlotTable(F);
2089    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2090    W.printInstruction(*I);
2091  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2092    SlotTracker SlotTable(BB->getParent());
2093    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2094    W.printBasicBlock(BB);
2095  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2096    SlotTracker SlotTable(GV->getParent());
2097    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2098    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2099      W.printGlobal(V);
2100    else if (const Function *F = dyn_cast<Function>(GV))
2101      W.printFunction(F);
2102    else
2103      W.printAlias(cast<GlobalAlias>(GV));
2104  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2105    const Function *F = N->getFunction();
2106    SlotTracker SlotTable(F);
2107    AssemblyWriter W(OS, SlotTable, F ? getModuleFromVal(F) : 0, AAW);
2108    W.printMDNodeBody(N);
2109  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2110    SlotTracker SlotTable(N->getParent());
2111    AssemblyWriter W(OS, SlotTable, N->getParent(), AAW);
2112    W.printNamedMDNode(N);
2113  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2114    TypePrinting TypePrinter;
2115    TypePrinter.print(C->getType(), OS);
2116    OS << ' ';
2117    WriteConstantInt(OS, C, TypePrinter, 0);
2118  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2119             isa<Argument>(this)) {
2120    WriteAsOperand(OS, this, true, 0);
2121  } else {
2122    // Otherwise we don't know what it is. Call the virtual function to
2123    // allow a subclass to print itself.
2124    printCustom(OS);
2125  }
2126}
2127
2128// Value::printCustom - subclasses should override this to implement printing.
2129void Value::printCustom(raw_ostream &OS) const {
2130  llvm_unreachable("Unknown value to print out!");
2131}
2132
2133// Value::dump - allow easy printing of Values from the debugger.
2134void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2135
2136// Type::dump - allow easy printing of Types from the debugger.
2137// This one uses type names from the given context module
2138void Type::dump(const Module *Context) const {
2139  WriteTypeSymbolic(dbgs(), this, Context);
2140  dbgs() << '\n';
2141}
2142
2143// Type::dump - allow easy printing of Types from the debugger.
2144void Type::dump() const { dump(0); }
2145
2146// Module::dump() - Allow printing of Modules from the debugger.
2147void Module::dump() const { print(dbgs(), 0); }
2148