AsmWriter.cpp revision 2f9c3b002d3cb465fefc5f4b2535ca994c5e9283
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/Operator.h"
27#include "llvm/MDNode.h"
28#include "llvm/Module.h"
29#include "llvm/ValueSymbolTable.h"
30#include "llvm/TypeSymbolTable.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Streams.h"
38#include "llvm/Support/raw_ostream.h"
39#include <algorithm>
40#include <cctype>
41#include <map>
42using namespace llvm;
43
44// Make virtual table appear in this compilation unit.
45AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46
47//===----------------------------------------------------------------------===//
48// Helper Functions
49//===----------------------------------------------------------------------===//
50
51static const Module *getModuleFromVal(const Value *V) {
52  if (const Argument *MA = dyn_cast<Argument>(V))
53    return MA->getParent() ? MA->getParent()->getParent() : 0;
54
55  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
56    return BB->getParent() ? BB->getParent()->getParent() : 0;
57
58  if (const Instruction *I = dyn_cast<Instruction>(V)) {
59    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
60    return M ? M->getParent() : 0;
61  }
62
63  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
64    return GV->getParent();
65  return 0;
66}
67
68// PrintEscapedString - Print each character of the specified string, escaping
69// it if it is not printable or if it is an escape char.
70static void PrintEscapedString(const char *Str, unsigned Length,
71                               raw_ostream &Out) {
72  for (unsigned i = 0; i != Length; ++i) {
73    unsigned char C = Str[i];
74    if (isprint(C) && C != '\\' && C != '"')
75      Out << C;
76    else
77      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
78  }
79}
80
81// PrintEscapedString - Print each character of the specified string, escaping
82// it if it is not printable or if it is an escape char.
83static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
84  PrintEscapedString(Str.c_str(), Str.size(), Out);
85}
86
87enum PrefixType {
88  GlobalPrefix,
89  LabelPrefix,
90  LocalPrefix,
91  NoPrefix
92};
93
94/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
95/// prefixed with % (if the string only contains simple characters) or is
96/// surrounded with ""'s (if it has special chars in it).  Print it out.
97static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
98                          unsigned NameLen, PrefixType Prefix) {
99  assert(NameStr && "Cannot get empty name!");
100  switch (Prefix) {
101  default: llvm_unreachable("Bad prefix!");
102  case NoPrefix: break;
103  case GlobalPrefix: OS << '@'; break;
104  case LabelPrefix:  break;
105  case LocalPrefix:  OS << '%'; break;
106  }
107
108  // Scan the name to see if it needs quotes first.
109  bool NeedsQuotes = isdigit(NameStr[0]);
110  if (!NeedsQuotes) {
111    for (unsigned i = 0; i != NameLen; ++i) {
112      char C = NameStr[i];
113      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
114        NeedsQuotes = true;
115        break;
116      }
117    }
118  }
119
120  // If we didn't need any quotes, just write out the name in one blast.
121  if (!NeedsQuotes) {
122    OS.write(NameStr, NameLen);
123    return;
124  }
125
126  // Okay, we need quotes.  Output the quotes and escape any scary characters as
127  // needed.
128  OS << '"';
129  PrintEscapedString(NameStr, NameLen, OS);
130  OS << '"';
131}
132
133/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
134/// prefixed with % (if the string only contains simple characters) or is
135/// surrounded with ""'s (if it has special chars in it).  Print it out.
136static void PrintLLVMName(raw_ostream &OS, const Value *V) {
137  PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
138                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
139}
140
141//===----------------------------------------------------------------------===//
142// TypePrinting Class: Type printing machinery
143//===----------------------------------------------------------------------===//
144
145static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
146  return *static_cast<DenseMap<const Type *, std::string>*>(M);
147}
148
149void TypePrinting::clear() {
150  getTypeNamesMap(TypeNames).clear();
151}
152
153bool TypePrinting::hasTypeName(const Type *Ty) const {
154  return getTypeNamesMap(TypeNames).count(Ty);
155}
156
157void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
158  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
159}
160
161
162TypePrinting::TypePrinting() {
163  TypeNames = new DenseMap<const Type *, std::string>();
164}
165
166TypePrinting::~TypePrinting() {
167  delete &getTypeNamesMap(TypeNames);
168}
169
170/// CalcTypeName - Write the specified type to the specified raw_ostream, making
171/// use of type names or up references to shorten the type name where possible.
172void TypePrinting::CalcTypeName(const Type *Ty,
173                                SmallVectorImpl<const Type *> &TypeStack,
174                                raw_ostream &OS, bool IgnoreTopLevelName) {
175  // Check to see if the type is named.
176  if (!IgnoreTopLevelName) {
177    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
178    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
179    if (I != TM.end()) {
180      OS << I->second;
181      return;
182    }
183  }
184
185  // Check to see if the Type is already on the stack...
186  unsigned Slot = 0, CurSize = TypeStack.size();
187  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
188
189  // This is another base case for the recursion.  In this case, we know
190  // that we have looped back to a type that we have previously visited.
191  // Generate the appropriate upreference to handle this.
192  if (Slot < CurSize) {
193    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
194    return;
195  }
196
197  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
198
199  switch (Ty->getTypeID()) {
200  case Type::VoidTyID:      OS << "void"; break;
201  case Type::FloatTyID:     OS << "float"; break;
202  case Type::DoubleTyID:    OS << "double"; break;
203  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
204  case Type::FP128TyID:     OS << "fp128"; break;
205  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
206  case Type::LabelTyID:     OS << "label"; break;
207  case Type::MetadataTyID:  OS << "metadata"; break;
208  case Type::IntegerTyID:
209    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
210    break;
211
212  case Type::FunctionTyID: {
213    const FunctionType *FTy = cast<FunctionType>(Ty);
214    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
215    OS << " (";
216    for (FunctionType::param_iterator I = FTy->param_begin(),
217         E = FTy->param_end(); I != E; ++I) {
218      if (I != FTy->param_begin())
219        OS << ", ";
220      CalcTypeName(*I, TypeStack, OS);
221    }
222    if (FTy->isVarArg()) {
223      if (FTy->getNumParams()) OS << ", ";
224      OS << "...";
225    }
226    OS << ')';
227    break;
228  }
229  case Type::StructTyID: {
230    const StructType *STy = cast<StructType>(Ty);
231    if (STy->isPacked())
232      OS << '<';
233    OS << "{ ";
234    for (StructType::element_iterator I = STy->element_begin(),
235         E = STy->element_end(); I != E; ++I) {
236      CalcTypeName(*I, TypeStack, OS);
237      if (next(I) != STy->element_end())
238        OS << ',';
239      OS << ' ';
240    }
241    OS << '}';
242    if (STy->isPacked())
243      OS << '>';
244    break;
245  }
246  case Type::PointerTyID: {
247    const PointerType *PTy = cast<PointerType>(Ty);
248    CalcTypeName(PTy->getElementType(), TypeStack, OS);
249    if (unsigned AddressSpace = PTy->getAddressSpace())
250      OS << " addrspace(" << AddressSpace << ')';
251    OS << '*';
252    break;
253  }
254  case Type::ArrayTyID: {
255    const ArrayType *ATy = cast<ArrayType>(Ty);
256    OS << '[' << ATy->getNumElements() << " x ";
257    CalcTypeName(ATy->getElementType(), TypeStack, OS);
258    OS << ']';
259    break;
260  }
261  case Type::VectorTyID: {
262    const VectorType *PTy = cast<VectorType>(Ty);
263    OS << "<" << PTy->getNumElements() << " x ";
264    CalcTypeName(PTy->getElementType(), TypeStack, OS);
265    OS << '>';
266    break;
267  }
268  case Type::OpaqueTyID:
269    OS << "opaque";
270    break;
271  default:
272    OS << "<unrecognized-type>";
273    break;
274  }
275
276  TypeStack.pop_back();       // Remove self from stack.
277}
278
279/// printTypeInt - The internal guts of printing out a type that has a
280/// potentially named portion.
281///
282void TypePrinting::print(const Type *Ty, raw_ostream &OS,
283                         bool IgnoreTopLevelName) {
284  // Check to see if the type is named.
285  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
286  if (!IgnoreTopLevelName) {
287    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
288    if (I != TM.end()) {
289      OS << I->second;
290      return;
291    }
292  }
293
294  // Otherwise we have a type that has not been named but is a derived type.
295  // Carefully recurse the type hierarchy to print out any contained symbolic
296  // names.
297  SmallVector<const Type *, 16> TypeStack;
298  std::string TypeName;
299
300  raw_string_ostream TypeOS(TypeName);
301  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
302  OS << TypeOS.str();
303
304  // Cache type name for later use.
305  if (!IgnoreTopLevelName)
306    TM.insert(std::make_pair(Ty, TypeOS.str()));
307}
308
309namespace {
310  class TypeFinder {
311    // To avoid walking constant expressions multiple times and other IR
312    // objects, we keep several helper maps.
313    DenseSet<const Value*> VisitedConstants;
314    DenseSet<const Type*> VisitedTypes;
315
316    TypePrinting &TP;
317    std::vector<const Type*> &NumberedTypes;
318  public:
319    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
320      : TP(tp), NumberedTypes(numberedTypes) {}
321
322    void Run(const Module &M) {
323      // Get types from the type symbol table.  This gets opaque types referened
324      // only through derived named types.
325      const TypeSymbolTable &ST = M.getTypeSymbolTable();
326      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
327           TI != E; ++TI)
328        IncorporateType(TI->second);
329
330      // Get types from global variables.
331      for (Module::const_global_iterator I = M.global_begin(),
332           E = M.global_end(); I != E; ++I) {
333        IncorporateType(I->getType());
334        if (I->hasInitializer())
335          IncorporateValue(I->getInitializer());
336      }
337
338      // Get types from aliases.
339      for (Module::const_alias_iterator I = M.alias_begin(),
340           E = M.alias_end(); I != E; ++I) {
341        IncorporateType(I->getType());
342        IncorporateValue(I->getAliasee());
343      }
344
345      // Get types from functions.
346      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
347        IncorporateType(FI->getType());
348
349        for (Function::const_iterator BB = FI->begin(), E = FI->end();
350             BB != E;++BB)
351          for (BasicBlock::const_iterator II = BB->begin(),
352               E = BB->end(); II != E; ++II) {
353            const Instruction &I = *II;
354            // Incorporate the type of the instruction and all its operands.
355            IncorporateType(I.getType());
356            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
357                 OI != OE; ++OI)
358              IncorporateValue(*OI);
359          }
360      }
361    }
362
363  private:
364    void IncorporateType(const Type *Ty) {
365      // Check to see if we're already visited this type.
366      if (!VisitedTypes.insert(Ty).second)
367        return;
368
369      // If this is a structure or opaque type, add a name for the type.
370      if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
371            || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
372        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
373        NumberedTypes.push_back(Ty);
374      }
375
376      // Recursively walk all contained types.
377      for (Type::subtype_iterator I = Ty->subtype_begin(),
378           E = Ty->subtype_end(); I != E; ++I)
379        IncorporateType(*I);
380    }
381
382    /// IncorporateValue - This method is used to walk operand lists finding
383    /// types hiding in constant expressions and other operands that won't be
384    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
385    /// inst operands are all explicitly enumerated.
386    void IncorporateValue(const Value *V) {
387      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
388
389      // Already visited?
390      if (!VisitedConstants.insert(V).second)
391        return;
392
393      // Check this type.
394      IncorporateType(V->getType());
395
396      // Look in operands for types.
397      const Constant *C = cast<Constant>(V);
398      for (Constant::const_op_iterator I = C->op_begin(),
399           E = C->op_end(); I != E;++I)
400        IncorporateValue(*I);
401    }
402  };
403} // end anonymous namespace
404
405
406/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
407/// the specified module to the TypePrinter and all numbered types to it and the
408/// NumberedTypes table.
409static void AddModuleTypesToPrinter(TypePrinting &TP,
410                                    std::vector<const Type*> &NumberedTypes,
411                                    const Module *M) {
412  if (M == 0) return;
413
414  // If the module has a symbol table, take all global types and stuff their
415  // names into the TypeNames map.
416  const TypeSymbolTable &ST = M->getTypeSymbolTable();
417  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
418       TI != E; ++TI) {
419    const Type *Ty = cast<Type>(TI->second);
420
421    // As a heuristic, don't insert pointer to primitive types, because
422    // they are used too often to have a single useful name.
423    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
424      const Type *PETy = PTy->getElementType();
425      if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
426          !isa<OpaqueType>(PETy))
427        continue;
428    }
429
430    // Likewise don't insert primitives either.
431    if (Ty->isInteger() || Ty->isPrimitiveType())
432      continue;
433
434    // Get the name as a string and insert it into TypeNames.
435    std::string NameStr;
436    raw_string_ostream NameOS(NameStr);
437    PrintLLVMName(NameOS, TI->first.c_str(), TI->first.length(), LocalPrefix);
438    TP.addTypeName(Ty, NameOS.str());
439  }
440
441  // Walk the entire module to find references to unnamed structure and opaque
442  // types.  This is required for correctness by opaque types (because multiple
443  // uses of an unnamed opaque type needs to be referred to by the same ID) and
444  // it shrinks complex recursive structure types substantially in some cases.
445  TypeFinder(TP, NumberedTypes).Run(*M);
446}
447
448
449/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
450/// type, iff there is an entry in the modules symbol table for the specified
451/// type or one of it's component types.
452///
453void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
454  TypePrinting Printer;
455  std::vector<const Type*> NumberedTypes;
456  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
457  Printer.print(Ty, OS);
458}
459
460//===----------------------------------------------------------------------===//
461// SlotTracker Class: Enumerate slot numbers for unnamed values
462//===----------------------------------------------------------------------===//
463
464namespace {
465
466/// This class provides computation of slot numbers for LLVM Assembly writing.
467///
468class SlotTracker {
469public:
470  /// ValueMap - A mapping of Values to slot numbers.
471  typedef DenseMap<const Value*, unsigned> ValueMap;
472
473private:
474  /// TheModule - The module for which we are holding slot numbers.
475  const Module* TheModule;
476
477  /// TheFunction - The function for which we are holding slot numbers.
478  const Function* TheFunction;
479  bool FunctionProcessed;
480
481  /// TheMDNode - The MDNode for which we are holding slot numbers.
482  const MDNode *TheMDNode;
483
484  /// mMap - The TypePlanes map for the module level data.
485  ValueMap mMap;
486  unsigned mNext;
487
488  /// fMap - The TypePlanes map for the function level data.
489  ValueMap fMap;
490  unsigned fNext;
491
492  /// mdnMap - Map for MDNodes.
493  ValueMap mdnMap;
494  unsigned mdnNext;
495public:
496  /// Construct from a module
497  explicit SlotTracker(const Module *M);
498  /// Construct from a function, starting out in incorp state.
499  explicit SlotTracker(const Function *F);
500  /// Construct from a mdnode.
501  explicit SlotTracker(const MDNode *N);
502
503  /// Return the slot number of the specified value in it's type
504  /// plane.  If something is not in the SlotTracker, return -1.
505  int getLocalSlot(const Value *V);
506  int getGlobalSlot(const GlobalValue *V);
507  int getMetadataSlot(const MDNode *N);
508
509  /// If you'd like to deal with a function instead of just a module, use
510  /// this method to get its data into the SlotTracker.
511  void incorporateFunction(const Function *F) {
512    TheFunction = F;
513    FunctionProcessed = false;
514  }
515
516  /// After calling incorporateFunction, use this method to remove the
517  /// most recently incorporated function from the SlotTracker. This
518  /// will reset the state of the machine back to just the module contents.
519  void purgeFunction();
520
521  /// MDNode map iterators.
522  ValueMap::iterator mdnBegin() { return mdnMap.begin(); }
523  ValueMap::iterator mdnEnd() { return mdnMap.end(); }
524  unsigned mdnSize() { return mdnMap.size(); }
525
526  /// This function does the actual initialization.
527  inline void initialize();
528
529  // Implementation Details
530private:
531  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
532  void CreateModuleSlot(const GlobalValue *V);
533
534  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
535  void CreateMetadataSlot(const MDNode *N);
536
537  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
538  void CreateFunctionSlot(const Value *V);
539
540  /// Add all of the module level global variables (and their initializers)
541  /// and function declarations, but not the contents of those functions.
542  void processModule();
543
544  /// Add all of the functions arguments, basic blocks, and instructions.
545  void processFunction();
546
547  /// Add all MDNode operands.
548  void processMDNode();
549
550  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
551  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
552};
553
554}  // end anonymous namespace
555
556
557static SlotTracker *createSlotTracker(const Value *V) {
558  if (const Argument *FA = dyn_cast<Argument>(V))
559    return new SlotTracker(FA->getParent());
560
561  if (const Instruction *I = dyn_cast<Instruction>(V))
562    return new SlotTracker(I->getParent()->getParent());
563
564  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
565    return new SlotTracker(BB->getParent());
566
567  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
568    return new SlotTracker(GV->getParent());
569
570  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
571    return new SlotTracker(GA->getParent());
572
573  if (const Function *Func = dyn_cast<Function>(V))
574    return new SlotTracker(Func);
575
576  return 0;
577}
578
579#if 0
580#define ST_DEBUG(X) cerr << X
581#else
582#define ST_DEBUG(X)
583#endif
584
585// Module level constructor. Causes the contents of the Module (sans functions)
586// to be added to the slot table.
587SlotTracker::SlotTracker(const Module *M)
588  : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
589    mNext(0), fNext(0),  mdnNext(0) {
590}
591
592// Function level constructor. Causes the contents of the Module and the one
593// function provided to be added to the slot table.
594SlotTracker::SlotTracker(const Function *F)
595  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
596    TheMDNode(0), mNext(0), fNext(0) {
597}
598
599// Constructor to handle single MDNode.
600SlotTracker::SlotTracker(const MDNode *C)
601  : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C),
602    mNext(0), fNext(0),  mdnNext(0) {
603}
604
605inline void SlotTracker::initialize() {
606  if (TheModule) {
607    processModule();
608    TheModule = 0; ///< Prevent re-processing next time we're called.
609  }
610
611  if (TheFunction && !FunctionProcessed)
612    processFunction();
613
614  if (TheMDNode)
615    processMDNode();
616}
617
618// Iterate through all the global variables, functions, and global
619// variable initializers and create slots for them.
620void SlotTracker::processModule() {
621  ST_DEBUG("begin processModule!\n");
622
623  // Add all of the unnamed global variables to the value table.
624  for (Module::const_global_iterator I = TheModule->global_begin(),
625         E = TheModule->global_end(); I != E; ++I) {
626    if (!I->hasName())
627      CreateModuleSlot(I);
628    if (I->hasInitializer()) {
629      if (MDNode *N = dyn_cast<MDNode>(I->getInitializer()))
630        CreateMetadataSlot(N);
631    }
632  }
633
634  // Add all the unnamed functions to the table.
635  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
636       I != E; ++I)
637    if (!I->hasName())
638      CreateModuleSlot(I);
639
640  ST_DEBUG("end processModule!\n");
641}
642
643// Process the arguments, basic blocks, and instructions  of a function.
644void SlotTracker::processFunction() {
645  ST_DEBUG("begin processFunction!\n");
646  fNext = 0;
647
648  // Add all the function arguments with no names.
649  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
650      AE = TheFunction->arg_end(); AI != AE; ++AI)
651    if (!AI->hasName())
652      CreateFunctionSlot(AI);
653
654  ST_DEBUG("Inserting Instructions:\n");
655
656  // Add all of the basic blocks and instructions with no names.
657  for (Function::const_iterator BB = TheFunction->begin(),
658       E = TheFunction->end(); BB != E; ++BB) {
659    if (!BB->hasName())
660      CreateFunctionSlot(BB);
661    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
662         ++I) {
663      if (I->getType() != Type::VoidTy && !I->hasName())
664        CreateFunctionSlot(I);
665      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
666        if (MDNode *N = dyn_cast<MDNode>(I->getOperand(i)))
667          CreateMetadataSlot(N);
668    }
669  }
670
671  FunctionProcessed = true;
672
673  ST_DEBUG("end processFunction!\n");
674}
675
676/// processMDNode - Process TheMDNode.
677void SlotTracker::processMDNode() {
678  ST_DEBUG("begin processMDNode!\n");
679  mdnNext = 0;
680  CreateMetadataSlot(TheMDNode);
681  TheMDNode = 0;
682  ST_DEBUG("end processMDNode!\n");
683}
684
685/// Clean up after incorporating a function. This is the only way to get out of
686/// the function incorporation state that affects get*Slot/Create*Slot. Function
687/// incorporation state is indicated by TheFunction != 0.
688void SlotTracker::purgeFunction() {
689  ST_DEBUG("begin purgeFunction!\n");
690  fMap.clear(); // Simply discard the function level map
691  TheFunction = 0;
692  FunctionProcessed = false;
693  ST_DEBUG("end purgeFunction!\n");
694}
695
696/// getGlobalSlot - Get the slot number of a global value.
697int SlotTracker::getGlobalSlot(const GlobalValue *V) {
698  // Check for uninitialized state and do lazy initialization.
699  initialize();
700
701  // Find the type plane in the module map
702  ValueMap::iterator MI = mMap.find(V);
703  return MI == mMap.end() ? -1 : (int)MI->second;
704}
705
706/// getGlobalSlot - Get the slot number of a MDNode.
707int SlotTracker::getMetadataSlot(const MDNode *N) {
708  // Check for uninitialized state and do lazy initialization.
709  initialize();
710
711  // Find the type plane in the module map
712  ValueMap::iterator MI = mdnMap.find(N);
713  return MI == mdnMap.end() ? -1 : (int)MI->second;
714}
715
716
717/// getLocalSlot - Get the slot number for a value that is local to a function.
718int SlotTracker::getLocalSlot(const Value *V) {
719  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
720
721  // Check for uninitialized state and do lazy initialization.
722  initialize();
723
724  ValueMap::iterator FI = fMap.find(V);
725  return FI == fMap.end() ? -1 : (int)FI->second;
726}
727
728
729/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
730void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
731  assert(V && "Can't insert a null Value into SlotTracker!");
732  assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
733  assert(!V->hasName() && "Doesn't need a slot!");
734
735  unsigned DestSlot = mNext++;
736  mMap[V] = DestSlot;
737
738  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
739           DestSlot << " [");
740  // G = Global, F = Function, A = Alias, o = other
741  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
742            (isa<Function>(V) ? 'F' :
743             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
744}
745
746/// CreateSlot - Create a new slot for the specified value if it has no name.
747void SlotTracker::CreateFunctionSlot(const Value *V) {
748  assert(V->getType() != Type::VoidTy && !V->hasName() &&
749         "Doesn't need a slot!");
750
751  unsigned DestSlot = fNext++;
752  fMap[V] = DestSlot;
753
754  // G = Global, F = Function, o = other
755  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
756           DestSlot << " [o]\n");
757}
758
759/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
760void SlotTracker::CreateMetadataSlot(const MDNode *N) {
761  assert(N && "Can't insert a null Value into SlotTracker!");
762
763  ValueMap::iterator I = mdnMap.find(N);
764  if (I != mdnMap.end())
765    return;
766
767  unsigned DestSlot = mdnNext++;
768  mdnMap[N] = DestSlot;
769
770  for (MDNode::const_elem_iterator MDI = N->elem_begin(),
771         MDE = N->elem_end(); MDI != MDE; ++MDI) {
772    const Value *TV = *MDI;
773    if (TV)
774      if (const MDNode *N2 = dyn_cast<MDNode>(TV))
775        CreateMetadataSlot(N2);
776  }
777}
778
779//===----------------------------------------------------------------------===//
780// AsmWriter Implementation
781//===----------------------------------------------------------------------===//
782
783static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
784                                   TypePrinting &TypePrinter,
785                                   SlotTracker *Machine);
786
787
788
789static const char *getPredicateText(unsigned predicate) {
790  const char * pred = "unknown";
791  switch (predicate) {
792    case FCmpInst::FCMP_FALSE: pred = "false"; break;
793    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
794    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
795    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
796    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
797    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
798    case FCmpInst::FCMP_ONE:   pred = "one"; break;
799    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
800    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
801    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
802    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
803    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
804    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
805    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
806    case FCmpInst::FCMP_UNE:   pred = "une"; break;
807    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
808    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
809    case ICmpInst::ICMP_NE:    pred = "ne"; break;
810    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
811    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
812    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
813    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
814    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
815    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
816    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
817    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
818  }
819  return pred;
820}
821
822static void WriteMDNodes(raw_ostream &Out, TypePrinting &TypePrinter,
823                         SlotTracker &Machine) {
824  SmallVector<const MDNode *, 16> Nodes;
825  Nodes.resize(Machine.mdnSize());
826  for (SlotTracker::ValueMap::iterator I =
827         Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I)
828    Nodes[I->second] = cast<MDNode>(I->first);
829
830  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
831    Out << '!' << i << " = metadata ";
832    const MDNode *Node = Nodes[i];
833    Out << "!{";
834    for (MDNode::const_elem_iterator NI = Node->elem_begin(),
835           NE = Node->elem_end(); NI != NE;) {
836      const Value *V = *NI;
837      if (!V)
838        Out << "null";
839      else if (const MDNode *N = dyn_cast<MDNode>(V)) {
840        Out << "metadata ";
841        Out << '!' << Machine.getMetadataSlot(N);
842      }
843      else {
844        TypePrinter.print((*NI)->getType(), Out);
845        Out << ' ';
846        WriteAsOperandInternal(Out, *NI, TypePrinter, &Machine);
847      }
848      if (++NI != NE)
849        Out << ", ";
850    }
851    Out << "}\n";
852  }
853}
854
855static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
856  if (const OverflowingBinaryOperator *OBO =
857        dyn_cast<OverflowingBinaryOperator>(U)) {
858    if (OBO->hasNoUnsignedOverflow())
859      Out << "nuw ";
860    if (OBO->hasNoSignedOverflow())
861      Out << "nsw ";
862  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
863    if (Div->isExact())
864      Out << "exact ";
865  }
866}
867
868static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
869                             TypePrinting &TypePrinter, SlotTracker *Machine) {
870  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
871    if (CI->getType() == Type::Int1Ty) {
872      Out << (CI->getZExtValue() ? "true" : "false");
873      return;
874    }
875    Out << CI->getValue();
876    return;
877  }
878
879  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
880    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
881        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
882      // We would like to output the FP constant value in exponential notation,
883      // but we cannot do this if doing so will lose precision.  Check here to
884      // make sure that we only output it in exponential format if we can parse
885      // the value back and get the same value.
886      //
887      bool ignored;
888      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
889      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
890                              CFP->getValueAPF().convertToFloat();
891      std::string StrVal = ftostr(CFP->getValueAPF());
892
893      // Check to make sure that the stringized number is not some string like
894      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
895      // that the string matches the "[-+]?[0-9]" regex.
896      //
897      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
898          ((StrVal[0] == '-' || StrVal[0] == '+') &&
899           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
900        // Reparse stringized version!
901        if (atof(StrVal.c_str()) == Val) {
902          Out << StrVal;
903          return;
904        }
905      }
906      // Otherwise we could not reparse it to exactly the same value, so we must
907      // output the string in hexadecimal format!  Note that loading and storing
908      // floating point types changes the bits of NaNs on some hosts, notably
909      // x86, so we must not use these types.
910      assert(sizeof(double) == sizeof(uint64_t) &&
911             "assuming that double is 64 bits!");
912      char Buffer[40];
913      APFloat apf = CFP->getValueAPF();
914      // Floats are represented in ASCII IR as double, convert.
915      if (!isDouble)
916        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
917                          &ignored);
918      Out << "0x" <<
919              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
920                            Buffer+40);
921      return;
922    }
923
924    // Some form of long double.  These appear as a magic letter identifying
925    // the type, then a fixed number of hex digits.
926    Out << "0x";
927    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
928      Out << 'K';
929      // api needed to prevent premature destruction
930      APInt api = CFP->getValueAPF().bitcastToAPInt();
931      const uint64_t* p = api.getRawData();
932      uint64_t word = p[1];
933      int shiftcount=12;
934      int width = api.getBitWidth();
935      for (int j=0; j<width; j+=4, shiftcount-=4) {
936        unsigned int nibble = (word>>shiftcount) & 15;
937        if (nibble < 10)
938          Out << (unsigned char)(nibble + '0');
939        else
940          Out << (unsigned char)(nibble - 10 + 'A');
941        if (shiftcount == 0 && j+4 < width) {
942          word = *p;
943          shiftcount = 64;
944          if (width-j-4 < 64)
945            shiftcount = width-j-4;
946        }
947      }
948      return;
949    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
950      Out << 'L';
951    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
952      Out << 'M';
953    else
954      llvm_unreachable("Unsupported floating point type");
955    // api needed to prevent premature destruction
956    APInt api = CFP->getValueAPF().bitcastToAPInt();
957    const uint64_t* p = api.getRawData();
958    uint64_t word = *p;
959    int shiftcount=60;
960    int width = api.getBitWidth();
961    for (int j=0; j<width; j+=4, shiftcount-=4) {
962      unsigned int nibble = (word>>shiftcount) & 15;
963      if (nibble < 10)
964        Out << (unsigned char)(nibble + '0');
965      else
966        Out << (unsigned char)(nibble - 10 + 'A');
967      if (shiftcount == 0 && j+4 < width) {
968        word = *(++p);
969        shiftcount = 64;
970        if (width-j-4 < 64)
971          shiftcount = width-j-4;
972      }
973    }
974    return;
975  }
976
977  if (isa<ConstantAggregateZero>(CV)) {
978    Out << "zeroinitializer";
979    return;
980  }
981
982  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
983    // As a special case, print the array as a string if it is an array of
984    // i8 with ConstantInt values.
985    //
986    const Type *ETy = CA->getType()->getElementType();
987    if (CA->isString()) {
988      Out << "c\"";
989      PrintEscapedString(CA->getAsString(), Out);
990      Out << '"';
991    } else {                // Cannot output in string format...
992      Out << '[';
993      if (CA->getNumOperands()) {
994        TypePrinter.print(ETy, Out);
995        Out << ' ';
996        WriteAsOperandInternal(Out, CA->getOperand(0),
997                               TypePrinter, Machine);
998        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
999          Out << ", ";
1000          TypePrinter.print(ETy, Out);
1001          Out << ' ';
1002          WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine);
1003        }
1004      }
1005      Out << ']';
1006    }
1007    return;
1008  }
1009
1010  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1011    if (CS->getType()->isPacked())
1012      Out << '<';
1013    Out << '{';
1014    unsigned N = CS->getNumOperands();
1015    if (N) {
1016      Out << ' ';
1017      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1018      Out << ' ';
1019
1020      WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine);
1021
1022      for (unsigned i = 1; i < N; i++) {
1023        Out << ", ";
1024        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1025        Out << ' ';
1026
1027        WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine);
1028      }
1029      Out << ' ';
1030    }
1031
1032    Out << '}';
1033    if (CS->getType()->isPacked())
1034      Out << '>';
1035    return;
1036  }
1037
1038  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1039    const Type *ETy = CP->getType()->getElementType();
1040    assert(CP->getNumOperands() > 0 &&
1041           "Number of operands for a PackedConst must be > 0");
1042    Out << '<';
1043    TypePrinter.print(ETy, Out);
1044    Out << ' ';
1045    WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine);
1046    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1047      Out << ", ";
1048      TypePrinter.print(ETy, Out);
1049      Out << ' ';
1050      WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine);
1051    }
1052    Out << '>';
1053    return;
1054  }
1055
1056  if (isa<ConstantPointerNull>(CV)) {
1057    Out << "null";
1058    return;
1059  }
1060
1061  if (isa<UndefValue>(CV)) {
1062    Out << "undef";
1063    return;
1064  }
1065
1066  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1067    Out << "!" << Machine->getMetadataSlot(Node);
1068    return;
1069  }
1070
1071  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1072    WriteOptimizationInfo(Out, CE);
1073    Out << CE->getOpcodeName();
1074    if (CE->isCompare())
1075      Out << ' ' << getPredicateText(CE->getPredicate());
1076    Out << " (";
1077
1078    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1079      TypePrinter.print((*OI)->getType(), Out);
1080      Out << ' ';
1081      WriteAsOperandInternal(Out, *OI, TypePrinter, Machine);
1082      if (OI+1 != CE->op_end())
1083        Out << ", ";
1084    }
1085
1086    if (CE->hasIndices()) {
1087      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1088      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1089        Out << ", " << Indices[i];
1090    }
1091
1092    if (CE->isCast()) {
1093      Out << " to ";
1094      TypePrinter.print(CE->getType(), Out);
1095    }
1096
1097    Out << ')';
1098    return;
1099  }
1100
1101  Out << "<placeholder or erroneous Constant>";
1102}
1103
1104
1105/// WriteAsOperand - Write the name of the specified value out to the specified
1106/// ostream.  This can be useful when you just want to print int %reg126, not
1107/// the whole instruction that generated it.
1108///
1109static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1110                                   TypePrinting &TypePrinter,
1111                                   SlotTracker *Machine) {
1112  if (V->hasName()) {
1113    PrintLLVMName(Out, V);
1114    return;
1115  }
1116
1117  const Constant *CV = dyn_cast<Constant>(V);
1118  if (CV && !isa<GlobalValue>(CV)) {
1119    WriteConstantInt(Out, CV, TypePrinter, Machine);
1120    return;
1121  }
1122
1123  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1124    Out << "asm ";
1125    if (IA->hasSideEffects())
1126      Out << "sideeffect ";
1127    Out << '"';
1128    PrintEscapedString(IA->getAsmString(), Out);
1129    Out << "\", \"";
1130    PrintEscapedString(IA->getConstraintString(), Out);
1131    Out << '"';
1132    return;
1133  }
1134
1135  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1136    Out << '!' << Machine->getMetadataSlot(N);
1137    return;
1138  }
1139
1140  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1141    Out << "!\"";
1142    PrintEscapedString(MDS->begin(), MDS->length(), Out);
1143    Out << '"';
1144    return;
1145  }
1146
1147  char Prefix = '%';
1148  int Slot;
1149  if (Machine) {
1150    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1151      Slot = Machine->getGlobalSlot(GV);
1152      Prefix = '@';
1153    } else {
1154      Slot = Machine->getLocalSlot(V);
1155    }
1156  } else {
1157    Machine = createSlotTracker(V);
1158    if (Machine) {
1159      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1160        Slot = Machine->getGlobalSlot(GV);
1161        Prefix = '@';
1162      } else {
1163        Slot = Machine->getLocalSlot(V);
1164      }
1165    } else {
1166      Slot = -1;
1167    }
1168    delete Machine;
1169  }
1170
1171  if (Slot != -1)
1172    Out << Prefix << Slot;
1173  else
1174    Out << "<badref>";
1175}
1176
1177/// WriteAsOperand - Write the name of the specified value out to the specified
1178/// ostream.  This can be useful when you just want to print int %reg126, not
1179/// the whole instruction that generated it.
1180///
1181void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
1182                          const Module *Context) {
1183  raw_os_ostream OS(Out);
1184  WriteAsOperand(OS, V, PrintType, Context);
1185}
1186
1187void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
1188                          const Module *Context) {
1189  if (Context == 0) Context = getModuleFromVal(V);
1190
1191  TypePrinting TypePrinter;
1192  std::vector<const Type*> NumberedTypes;
1193  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1194  if (PrintType) {
1195    TypePrinter.print(V->getType(), Out);
1196    Out << ' ';
1197  }
1198
1199  WriteAsOperandInternal(Out, V, TypePrinter, 0);
1200}
1201
1202
1203namespace {
1204
1205class AssemblyWriter {
1206  raw_ostream &Out;
1207  SlotTracker &Machine;
1208  const Module *TheModule;
1209  TypePrinting TypePrinter;
1210  AssemblyAnnotationWriter *AnnotationWriter;
1211  std::vector<const Type*> NumberedTypes;
1212
1213  // Each MDNode is assigned unique MetadataIDNo.
1214  std::map<const MDNode *, unsigned> MDNodes;
1215  unsigned MetadataIDNo;
1216public:
1217  inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
1218                        AssemblyAnnotationWriter *AAW)
1219    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW), MetadataIDNo(0) {
1220    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1221  }
1222
1223  void write(const Module *M) { printModule(M); }
1224
1225  void write(const GlobalValue *G) {
1226    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
1227      printGlobal(GV);
1228    else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
1229      printAlias(GA);
1230    else if (const Function *F = dyn_cast<Function>(G))
1231      printFunction(F);
1232    else
1233      llvm_unreachable("Unknown global");
1234  }
1235
1236  void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
1237  void write(const Instruction *I)    { printInstruction(*I); }
1238
1239  void writeOperand(const Value *Op, bool PrintType);
1240  void writeParamOperand(const Value *Operand, Attributes Attrs);
1241
1242  const Module* getModule() { return TheModule; }
1243
1244private:
1245  void printModule(const Module *M);
1246  void printTypeSymbolTable(const TypeSymbolTable &ST);
1247  void printGlobal(const GlobalVariable *GV);
1248  void printAlias(const GlobalAlias *GV);
1249  void printFunction(const Function *F);
1250  void printArgument(const Argument *FA, Attributes Attrs);
1251  void printBasicBlock(const BasicBlock *BB);
1252  void printInstruction(const Instruction &I);
1253
1254  // printInfoComment - Print a little comment after the instruction indicating
1255  // which slot it occupies.
1256  void printInfoComment(const Value &V);
1257};
1258}  // end of anonymous namespace
1259
1260
1261void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1262  if (Operand == 0) {
1263    Out << "<null operand!>";
1264  } else {
1265    if (PrintType) {
1266      TypePrinter.print(Operand->getType(), Out);
1267      Out << ' ';
1268    }
1269    WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
1270  }
1271}
1272
1273void AssemblyWriter::writeParamOperand(const Value *Operand,
1274                                       Attributes Attrs) {
1275  if (Operand == 0) {
1276    Out << "<null operand!>";
1277  } else {
1278    // Print the type
1279    TypePrinter.print(Operand->getType(), Out);
1280    // Print parameter attributes list
1281    if (Attrs != Attribute::None)
1282      Out << ' ' << Attribute::getAsString(Attrs);
1283    Out << ' ';
1284    // Print the operand
1285    WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
1286  }
1287}
1288
1289void AssemblyWriter::printModule(const Module *M) {
1290  if (!M->getModuleIdentifier().empty() &&
1291      // Don't print the ID if it will start a new line (which would
1292      // require a comment char before it).
1293      M->getModuleIdentifier().find('\n') == std::string::npos)
1294    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1295
1296  if (!M->getDataLayout().empty())
1297    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1298  if (!M->getTargetTriple().empty())
1299    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1300
1301  if (!M->getModuleInlineAsm().empty()) {
1302    // Split the string into lines, to make it easier to read the .ll file.
1303    std::string Asm = M->getModuleInlineAsm();
1304    size_t CurPos = 0;
1305    size_t NewLine = Asm.find_first_of('\n', CurPos);
1306    while (NewLine != std::string::npos) {
1307      // We found a newline, print the portion of the asm string from the
1308      // last newline up to this newline.
1309      Out << "module asm \"";
1310      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1311                         Out);
1312      Out << "\"\n";
1313      CurPos = NewLine+1;
1314      NewLine = Asm.find_first_of('\n', CurPos);
1315    }
1316    Out << "module asm \"";
1317    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1318    Out << "\"\n";
1319  }
1320
1321  // Loop over the dependent libraries and emit them.
1322  Module::lib_iterator LI = M->lib_begin();
1323  Module::lib_iterator LE = M->lib_end();
1324  if (LI != LE) {
1325    Out << "deplibs = [ ";
1326    while (LI != LE) {
1327      Out << '"' << *LI << '"';
1328      ++LI;
1329      if (LI != LE)
1330        Out << ", ";
1331    }
1332    Out << " ]\n";
1333  }
1334
1335  // Loop over the symbol table, emitting all id'd types.
1336  printTypeSymbolTable(M->getTypeSymbolTable());
1337
1338  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1339       I != E; ++I)
1340    printGlobal(I);
1341
1342  // Output all aliases.
1343  if (!M->alias_empty()) Out << "\n";
1344  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1345       I != E; ++I)
1346    printAlias(I);
1347
1348  // Output all of the functions.
1349  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1350    printFunction(I);
1351
1352  WriteMDNodes(Out, TypePrinter, Machine);
1353}
1354
1355static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
1356  switch (LT) {
1357  case GlobalValue::ExternalLinkage: break;
1358  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1359  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1360  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1361  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1362  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1363  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1364  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1365  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1366  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1367  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1368  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1369  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1370  case GlobalValue::AvailableExternallyLinkage:
1371    Out << "available_externally ";
1372    break;
1373  case GlobalValue::GhostLinkage:
1374    llvm_unreachable("GhostLinkage not allowed in AsmWriter!");
1375  }
1376}
1377
1378
1379static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1380                            raw_ostream &Out) {
1381  switch (Vis) {
1382  default: llvm_unreachable("Invalid visibility style!");
1383  case GlobalValue::DefaultVisibility: break;
1384  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1385  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1386  }
1387}
1388
1389void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1390  if (GV->hasName()) {
1391    PrintLLVMName(Out, GV);
1392    Out << " = ";
1393  }
1394
1395  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1396    Out << "external ";
1397
1398  PrintLinkage(GV->getLinkage(), Out);
1399  PrintVisibility(GV->getVisibility(), Out);
1400
1401  if (GV->isThreadLocal()) Out << "thread_local ";
1402  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1403    Out << "addrspace(" << AddressSpace << ") ";
1404  Out << (GV->isConstant() ? "constant " : "global ");
1405  TypePrinter.print(GV->getType()->getElementType(), Out);
1406
1407  if (GV->hasInitializer()) {
1408    Out << ' ';
1409    writeOperand(GV->getInitializer(), false);
1410  }
1411
1412  if (GV->hasSection())
1413    Out << ", section \"" << GV->getSection() << '"';
1414  if (GV->getAlignment())
1415    Out << ", align " << GV->getAlignment();
1416
1417  printInfoComment(*GV);
1418  Out << '\n';
1419}
1420
1421void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1422  // Don't crash when dumping partially built GA
1423  if (!GA->hasName())
1424    Out << "<<nameless>> = ";
1425  else {
1426    PrintLLVMName(Out, GA);
1427    Out << " = ";
1428  }
1429  PrintVisibility(GA->getVisibility(), Out);
1430
1431  Out << "alias ";
1432
1433  PrintLinkage(GA->getLinkage(), Out);
1434
1435  const Constant *Aliasee = GA->getAliasee();
1436
1437  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1438    TypePrinter.print(GV->getType(), Out);
1439    Out << ' ';
1440    PrintLLVMName(Out, GV);
1441  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1442    TypePrinter.print(F->getFunctionType(), Out);
1443    Out << "* ";
1444
1445    WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1446  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1447    TypePrinter.print(GA->getType(), Out);
1448    Out << ' ';
1449    PrintLLVMName(Out, GA);
1450  } else {
1451    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1452    // The only valid GEP is an all zero GEP.
1453    assert((CE->getOpcode() == Instruction::BitCast ||
1454            CE->getOpcode() == Instruction::GetElementPtr) &&
1455           "Unsupported aliasee");
1456    writeOperand(CE, false);
1457  }
1458
1459  printInfoComment(*GA);
1460  Out << '\n';
1461}
1462
1463void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1464  // Emit all numbered types.
1465  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1466    Out << "\ttype ";
1467
1468    // Make sure we print out at least one level of the type structure, so
1469    // that we do not get %2 = type %2
1470    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1471    Out << "\t\t; type %" << i << '\n';
1472  }
1473
1474  // Print the named types.
1475  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1476       TI != TE; ++TI) {
1477    Out << '\t';
1478    PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
1479    Out << " = type ";
1480
1481    // Make sure we print out at least one level of the type structure, so
1482    // that we do not get %FILE = type %FILE
1483    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1484    Out << '\n';
1485  }
1486}
1487
1488/// printFunction - Print all aspects of a function.
1489///
1490void AssemblyWriter::printFunction(const Function *F) {
1491  // Print out the return type and name.
1492  Out << '\n';
1493
1494  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1495
1496  if (F->isDeclaration())
1497    Out << "declare ";
1498  else
1499    Out << "define ";
1500
1501  PrintLinkage(F->getLinkage(), Out);
1502  PrintVisibility(F->getVisibility(), Out);
1503
1504  // Print the calling convention.
1505  switch (F->getCallingConv()) {
1506  case CallingConv::C: break;   // default
1507  case CallingConv::Fast:         Out << "fastcc "; break;
1508  case CallingConv::Cold:         Out << "coldcc "; break;
1509  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1510  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1511  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1512  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1513  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1514  default: Out << "cc" << F->getCallingConv() << " "; break;
1515  }
1516
1517  const FunctionType *FT = F->getFunctionType();
1518  const AttrListPtr &Attrs = F->getAttributes();
1519  Attributes RetAttrs = Attrs.getRetAttributes();
1520  if (RetAttrs != Attribute::None)
1521    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1522  TypePrinter.print(F->getReturnType(), Out);
1523  Out << ' ';
1524  WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1525  Out << '(';
1526  Machine.incorporateFunction(F);
1527
1528  // Loop over the arguments, printing them...
1529
1530  unsigned Idx = 1;
1531  if (!F->isDeclaration()) {
1532    // If this isn't a declaration, print the argument names as well.
1533    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1534         I != E; ++I) {
1535      // Insert commas as we go... the first arg doesn't get a comma
1536      if (I != F->arg_begin()) Out << ", ";
1537      printArgument(I, Attrs.getParamAttributes(Idx));
1538      Idx++;
1539    }
1540  } else {
1541    // Otherwise, print the types from the function type.
1542    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1543      // Insert commas as we go... the first arg doesn't get a comma
1544      if (i) Out << ", ";
1545
1546      // Output type...
1547      TypePrinter.print(FT->getParamType(i), Out);
1548
1549      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1550      if (ArgAttrs != Attribute::None)
1551        Out << ' ' << Attribute::getAsString(ArgAttrs);
1552    }
1553  }
1554
1555  // Finish printing arguments...
1556  if (FT->isVarArg()) {
1557    if (FT->getNumParams()) Out << ", ";
1558    Out << "...";  // Output varargs portion of signature!
1559  }
1560  Out << ')';
1561  Attributes FnAttrs = Attrs.getFnAttributes();
1562  if (FnAttrs != Attribute::None)
1563    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1564  if (F->hasSection())
1565    Out << " section \"" << F->getSection() << '"';
1566  if (F->getAlignment())
1567    Out << " align " << F->getAlignment();
1568  if (F->hasGC())
1569    Out << " gc \"" << F->getGC() << '"';
1570  if (F->isDeclaration()) {
1571    Out << "\n";
1572  } else {
1573    Out << " {";
1574
1575    // Output all of its basic blocks... for the function
1576    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1577      printBasicBlock(I);
1578
1579    Out << "}\n";
1580  }
1581
1582  Machine.purgeFunction();
1583}
1584
1585/// printArgument - This member is called for every argument that is passed into
1586/// the function.  Simply print it out
1587///
1588void AssemblyWriter::printArgument(const Argument *Arg,
1589                                   Attributes Attrs) {
1590  // Output type...
1591  TypePrinter.print(Arg->getType(), Out);
1592
1593  // Output parameter attributes list
1594  if (Attrs != Attribute::None)
1595    Out << ' ' << Attribute::getAsString(Attrs);
1596
1597  // Output name, if available...
1598  if (Arg->hasName()) {
1599    Out << ' ';
1600    PrintLLVMName(Out, Arg);
1601  }
1602}
1603
1604/// printBasicBlock - This member is called for each basic block in a method.
1605///
1606void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1607  if (BB->hasName()) {              // Print out the label if it exists...
1608    Out << "\n";
1609    PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
1610    Out << ':';
1611  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1612    Out << "\n; <label>:";
1613    int Slot = Machine.getLocalSlot(BB);
1614    if (Slot != -1)
1615      Out << Slot;
1616    else
1617      Out << "<badref>";
1618  }
1619
1620  if (BB->getParent() == 0)
1621    Out << "\t\t; Error: Block without parent!";
1622  else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1623    // Output predecessors for the block...
1624    Out << "\t\t;";
1625    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1626
1627    if (PI == PE) {
1628      Out << " No predecessors!";
1629    } else {
1630      Out << " preds = ";
1631      writeOperand(*PI, false);
1632      for (++PI; PI != PE; ++PI) {
1633        Out << ", ";
1634        writeOperand(*PI, false);
1635      }
1636    }
1637  }
1638
1639  Out << "\n";
1640
1641  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1642
1643  // Output all of the instructions in the basic block...
1644  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1645    printInstruction(*I);
1646    Out << '\n';
1647  }
1648
1649  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1650}
1651
1652
1653/// printInfoComment - Print a little comment after the instruction indicating
1654/// which slot it occupies.
1655///
1656void AssemblyWriter::printInfoComment(const Value &V) {
1657  if (V.getType() != Type::VoidTy) {
1658    Out << "\t\t; <";
1659    TypePrinter.print(V.getType(), Out);
1660    Out << '>';
1661
1662    if (!V.hasName() && !isa<Instruction>(V)) {
1663      int SlotNum;
1664      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1665        SlotNum = Machine.getGlobalSlot(GV);
1666      else
1667        SlotNum = Machine.getLocalSlot(&V);
1668      if (SlotNum == -1)
1669        Out << ":<badref>";
1670      else
1671        Out << ':' << SlotNum; // Print out the def slot taken.
1672    }
1673    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1674  }
1675}
1676
1677// This member is called for each Instruction in a function..
1678void AssemblyWriter::printInstruction(const Instruction &I) {
1679  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1680
1681  Out << '\t';
1682
1683  // Print out name if it exists...
1684  if (I.hasName()) {
1685    PrintLLVMName(Out, &I);
1686    Out << " = ";
1687  } else if (I.getType() != Type::VoidTy) {
1688    // Print out the def slot taken.
1689    int SlotNum = Machine.getLocalSlot(&I);
1690    if (SlotNum == -1)
1691      Out << "<badref> = ";
1692    else
1693      Out << '%' << SlotNum << " = ";
1694  }
1695
1696  // If this is a volatile load or store, print out the volatile marker.
1697  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1698      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1699      Out << "volatile ";
1700  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1701    // If this is a call, check if it's a tail call.
1702    Out << "tail ";
1703  }
1704
1705  // Print out optimization information.
1706  WriteOptimizationInfo(Out, &I);
1707
1708  // Print out the opcode...
1709  Out << I.getOpcodeName();
1710
1711  // Print out the compare instruction predicates
1712  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1713    Out << ' ' << getPredicateText(CI->getPredicate());
1714
1715  // Print out the type of the operands...
1716  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1717
1718  // Special case conditional branches to swizzle the condition out to the front
1719  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1720    BranchInst &BI(cast<BranchInst>(I));
1721    Out << ' ';
1722    writeOperand(BI.getCondition(), true);
1723    Out << ", ";
1724    writeOperand(BI.getSuccessor(0), true);
1725    Out << ", ";
1726    writeOperand(BI.getSuccessor(1), true);
1727
1728  } else if (isa<SwitchInst>(I)) {
1729    // Special case switch statement to get formatting nice and correct...
1730    Out << ' ';
1731    writeOperand(Operand        , true);
1732    Out << ", ";
1733    writeOperand(I.getOperand(1), true);
1734    Out << " [";
1735
1736    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1737      Out << "\n\t\t";
1738      writeOperand(I.getOperand(op  ), true);
1739      Out << ", ";
1740      writeOperand(I.getOperand(op+1), true);
1741    }
1742    Out << "\n\t]";
1743  } else if (isa<PHINode>(I)) {
1744    Out << ' ';
1745    TypePrinter.print(I.getType(), Out);
1746    Out << ' ';
1747
1748    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1749      if (op) Out << ", ";
1750      Out << "[ ";
1751      writeOperand(I.getOperand(op  ), false); Out << ", ";
1752      writeOperand(I.getOperand(op+1), false); Out << " ]";
1753    }
1754  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1755    Out << ' ';
1756    writeOperand(I.getOperand(0), true);
1757    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1758      Out << ", " << *i;
1759  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1760    Out << ' ';
1761    writeOperand(I.getOperand(0), true); Out << ", ";
1762    writeOperand(I.getOperand(1), true);
1763    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1764      Out << ", " << *i;
1765  } else if (isa<ReturnInst>(I) && !Operand) {
1766    Out << " void";
1767  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1768    // Print the calling convention being used.
1769    switch (CI->getCallingConv()) {
1770    case CallingConv::C: break;   // default
1771    case CallingConv::Fast:  Out << " fastcc"; break;
1772    case CallingConv::Cold:  Out << " coldcc"; break;
1773    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1774    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1775    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1776    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1777    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1778    default: Out << " cc" << CI->getCallingConv(); break;
1779    }
1780
1781    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1782    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1783    const Type         *RetTy = FTy->getReturnType();
1784    const AttrListPtr &PAL = CI->getAttributes();
1785
1786    if (PAL.getRetAttributes() != Attribute::None)
1787      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1788
1789    // If possible, print out the short form of the call instruction.  We can
1790    // only do this if the first argument is a pointer to a nonvararg function,
1791    // and if the return type is not a pointer to a function.
1792    //
1793    Out << ' ';
1794    if (!FTy->isVarArg() &&
1795        (!isa<PointerType>(RetTy) ||
1796         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1797      TypePrinter.print(RetTy, Out);
1798      Out << ' ';
1799      writeOperand(Operand, false);
1800    } else {
1801      writeOperand(Operand, true);
1802    }
1803    Out << '(';
1804    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1805      if (op > 1)
1806        Out << ", ";
1807      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1808    }
1809    Out << ')';
1810    if (PAL.getFnAttributes() != Attribute::None)
1811      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1812  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1813    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1814    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1815    const Type         *RetTy = FTy->getReturnType();
1816    const AttrListPtr &PAL = II->getAttributes();
1817
1818    // Print the calling convention being used.
1819    switch (II->getCallingConv()) {
1820    case CallingConv::C: break;   // default
1821    case CallingConv::Fast:  Out << " fastcc"; break;
1822    case CallingConv::Cold:  Out << " coldcc"; break;
1823    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1824    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1825    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1826    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1827    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1828    default: Out << " cc" << II->getCallingConv(); break;
1829    }
1830
1831    if (PAL.getRetAttributes() != Attribute::None)
1832      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1833
1834    // If possible, print out the short form of the invoke instruction. We can
1835    // only do this if the first argument is a pointer to a nonvararg function,
1836    // and if the return type is not a pointer to a function.
1837    //
1838    Out << ' ';
1839    if (!FTy->isVarArg() &&
1840        (!isa<PointerType>(RetTy) ||
1841         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1842      TypePrinter.print(RetTy, Out);
1843      Out << ' ';
1844      writeOperand(Operand, false);
1845    } else {
1846      writeOperand(Operand, true);
1847    }
1848    Out << '(';
1849    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1850      if (op > 3)
1851        Out << ", ";
1852      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1853    }
1854
1855    Out << ')';
1856    if (PAL.getFnAttributes() != Attribute::None)
1857      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1858
1859    Out << "\n\t\t\tto ";
1860    writeOperand(II->getNormalDest(), true);
1861    Out << " unwind ";
1862    writeOperand(II->getUnwindDest(), true);
1863
1864  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1865    Out << ' ';
1866    TypePrinter.print(AI->getType()->getElementType(), Out);
1867    if (AI->isArrayAllocation()) {
1868      Out << ", ";
1869      writeOperand(AI->getArraySize(), true);
1870    }
1871    if (AI->getAlignment()) {
1872      Out << ", align " << AI->getAlignment();
1873    }
1874  } else if (isa<CastInst>(I)) {
1875    if (Operand) {
1876      Out << ' ';
1877      writeOperand(Operand, true);   // Work with broken code
1878    }
1879    Out << " to ";
1880    TypePrinter.print(I.getType(), Out);
1881  } else if (isa<VAArgInst>(I)) {
1882    if (Operand) {
1883      Out << ' ';
1884      writeOperand(Operand, true);   // Work with broken code
1885    }
1886    Out << ", ";
1887    TypePrinter.print(I.getType(), Out);
1888  } else if (Operand) {   // Print the normal way.
1889
1890    // PrintAllTypes - Instructions who have operands of all the same type
1891    // omit the type from all but the first operand.  If the instruction has
1892    // different type operands (for example br), then they are all printed.
1893    bool PrintAllTypes = false;
1894    const Type *TheType = Operand->getType();
1895
1896    // Select, Store and ShuffleVector always print all types.
1897    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1898        || isa<ReturnInst>(I)) {
1899      PrintAllTypes = true;
1900    } else {
1901      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1902        Operand = I.getOperand(i);
1903        // note that Operand shouldn't be null, but the test helps make dump()
1904        // more tolerant of malformed IR
1905        if (Operand && Operand->getType() != TheType) {
1906          PrintAllTypes = true;    // We have differing types!  Print them all!
1907          break;
1908        }
1909      }
1910    }
1911
1912    if (!PrintAllTypes) {
1913      Out << ' ';
1914      TypePrinter.print(TheType, Out);
1915    }
1916
1917    Out << ' ';
1918    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1919      if (i) Out << ", ";
1920      writeOperand(I.getOperand(i), PrintAllTypes);
1921    }
1922  }
1923
1924  // Print post operand alignment for load/store
1925  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1926    Out << ", align " << cast<LoadInst>(I).getAlignment();
1927  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1928    Out << ", align " << cast<StoreInst>(I).getAlignment();
1929  }
1930
1931  printInfoComment(I);
1932}
1933
1934
1935//===----------------------------------------------------------------------===//
1936//                       External Interface declarations
1937//===----------------------------------------------------------------------===//
1938
1939void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1940  raw_os_ostream OS(o);
1941  print(OS, AAW);
1942}
1943void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1944  SlotTracker SlotTable(this);
1945  AssemblyWriter W(OS, SlotTable, this, AAW);
1946  W.write(this);
1947}
1948
1949void Type::print(std::ostream &o) const {
1950  raw_os_ostream OS(o);
1951  print(OS);
1952}
1953
1954void Type::print(raw_ostream &OS) const {
1955  if (this == 0) {
1956    OS << "<null Type>";
1957    return;
1958  }
1959  TypePrinting().print(this, OS);
1960}
1961
1962void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1963  if (this == 0) {
1964    OS << "printing a <null> value\n";
1965    return;
1966  }
1967  if (const Instruction *I = dyn_cast<Instruction>(this)) {
1968    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
1969    SlotTracker SlotTable(F);
1970    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
1971    W.write(I);
1972  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
1973    SlotTracker SlotTable(BB->getParent());
1974    AssemblyWriter W(OS, SlotTable,
1975                     BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
1976    W.write(BB);
1977  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
1978    SlotTracker SlotTable(GV->getParent());
1979    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
1980    W.write(GV);
1981  } else if (const MDString *MDS = dyn_cast<MDString>(this)) {
1982    TypePrinting TypePrinter;
1983    TypePrinter.print(MDS->getType(), OS);
1984    OS << ' ';
1985    OS << "!\"";
1986    PrintEscapedString(MDS->begin(), MDS->length(), OS);
1987    OS << '"';
1988  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
1989    SlotTracker SlotTable(N);
1990    TypePrinting TypePrinter;
1991    SlotTable.initialize();
1992    WriteMDNodes(OS, TypePrinter, SlotTable);
1993  } else if (const Constant *C = dyn_cast<Constant>(this)) {
1994    TypePrinting TypePrinter;
1995    TypePrinter.print(C->getType(), OS);
1996    OS << ' ';
1997    WriteConstantInt(OS, C, TypePrinter, 0);
1998  } else if (const Argument *A = dyn_cast<Argument>(this)) {
1999    WriteAsOperand(OS, this, true,
2000                   A->getParent() ? A->getParent()->getParent() : 0);
2001  } else if (isa<InlineAsm>(this)) {
2002    WriteAsOperand(OS, this, true, 0);
2003  } else {
2004    llvm_unreachable("Unknown value to print out!");
2005  }
2006}
2007
2008void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
2009  raw_os_ostream OS(O);
2010  print(OS, AAW);
2011}
2012
2013// Value::dump - allow easy printing of Values from the debugger.
2014void Value::dump() const { print(errs()); errs() << '\n'; }
2015
2016// Type::dump - allow easy printing of Types from the debugger.
2017// This one uses type names from the given context module
2018void Type::dump(const Module *Context) const {
2019  WriteTypeSymbolic(errs(), this, Context);
2020  errs() << '\n';
2021}
2022
2023// Type::dump - allow easy printing of Types from the debugger.
2024void Type::dump() const { dump(0); }
2025
2026// Module::dump() - Allow printing of Modules from the debugger.
2027void Module::dump() const { print(errs(), 0); }
2028