AsmWriter.cpp revision 2ff961f66816daab8bbc58a19025161d969821c2
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/Operator.h"
27#include "llvm/Module.h"
28#include "llvm/ValueSymbolTable.h"
29#include "llvm/TypeSymbolTable.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/Dwarf.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/FormattedStream.h"
40#include <algorithm>
41#include <cctype>
42#include <map>
43using namespace llvm;
44
45// Make virtual table appear in this compilation unit.
46AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
47
48//===----------------------------------------------------------------------===//
49// Helper Functions
50//===----------------------------------------------------------------------===//
51
52static const Module *getModuleFromVal(const Value *V) {
53  if (const Argument *MA = dyn_cast<Argument>(V))
54    return MA->getParent() ? MA->getParent()->getParent() : 0;
55
56  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
57    return BB->getParent() ? BB->getParent()->getParent() : 0;
58
59  if (const Instruction *I = dyn_cast<Instruction>(V)) {
60    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
61    return M ? M->getParent() : 0;
62  }
63
64  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
65    return GV->getParent();
66  if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
67    return NMD->getParent();
68  return 0;
69}
70
71// PrintEscapedString - Print each character of the specified string, escaping
72// it if it is not printable or if it is an escape char.
73static void PrintEscapedString(const StringRef &Name,
74                               raw_ostream &Out) {
75  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
76    unsigned char C = Name[i];
77    if (isprint(C) && C != '\\' && C != '"')
78      Out << C;
79    else
80      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
81  }
82}
83
84enum PrefixType {
85  GlobalPrefix,
86  LabelPrefix,
87  LocalPrefix,
88  NoPrefix
89};
90
91/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
92/// prefixed with % (if the string only contains simple characters) or is
93/// surrounded with ""'s (if it has special chars in it).  Print it out.
94static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
95                          PrefixType Prefix) {
96  assert(Name.data() && "Cannot get empty name!");
97  switch (Prefix) {
98  default: llvm_unreachable("Bad prefix!");
99  case NoPrefix: break;
100  case GlobalPrefix: OS << '@'; break;
101  case LabelPrefix:  break;
102  case LocalPrefix:  OS << '%'; break;
103  }
104
105  // Scan the name to see if it needs quotes first.
106  bool NeedsQuotes = isdigit(Name[0]);
107  if (!NeedsQuotes) {
108    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
109      char C = Name[i];
110      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
111        NeedsQuotes = true;
112        break;
113      }
114    }
115  }
116
117  // If we didn't need any quotes, just write out the name in one blast.
118  if (!NeedsQuotes) {
119    OS << Name;
120    return;
121  }
122
123  // Okay, we need quotes.  Output the quotes and escape any scary characters as
124  // needed.
125  OS << '"';
126  PrintEscapedString(Name, OS);
127  OS << '"';
128}
129
130/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
131/// prefixed with % (if the string only contains simple characters) or is
132/// surrounded with ""'s (if it has special chars in it).  Print it out.
133static void PrintLLVMName(raw_ostream &OS, const Value *V) {
134  PrintLLVMName(OS, V->getName(),
135                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
136}
137
138//===----------------------------------------------------------------------===//
139// TypePrinting Class: Type printing machinery
140//===----------------------------------------------------------------------===//
141
142static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
143  return *static_cast<DenseMap<const Type *, std::string>*>(M);
144}
145
146void TypePrinting::clear() {
147  getTypeNamesMap(TypeNames).clear();
148}
149
150bool TypePrinting::hasTypeName(const Type *Ty) const {
151  return getTypeNamesMap(TypeNames).count(Ty);
152}
153
154void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
155  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
156}
157
158
159TypePrinting::TypePrinting() {
160  TypeNames = new DenseMap<const Type *, std::string>();
161}
162
163TypePrinting::~TypePrinting() {
164  delete &getTypeNamesMap(TypeNames);
165}
166
167/// CalcTypeName - Write the specified type to the specified raw_ostream, making
168/// use of type names or up references to shorten the type name where possible.
169void TypePrinting::CalcTypeName(const Type *Ty,
170                                SmallVectorImpl<const Type *> &TypeStack,
171                                raw_ostream &OS, bool IgnoreTopLevelName) {
172  // Check to see if the type is named.
173  if (!IgnoreTopLevelName) {
174    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
175    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
176    if (I != TM.end()) {
177      OS << I->second;
178      return;
179    }
180  }
181
182  // Check to see if the Type is already on the stack...
183  unsigned Slot = 0, CurSize = TypeStack.size();
184  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
185
186  // This is another base case for the recursion.  In this case, we know
187  // that we have looped back to a type that we have previously visited.
188  // Generate the appropriate upreference to handle this.
189  if (Slot < CurSize) {
190    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
191    return;
192  }
193
194  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
195
196  switch (Ty->getTypeID()) {
197  case Type::VoidTyID:      OS << "void"; break;
198  case Type::FloatTyID:     OS << "float"; break;
199  case Type::DoubleTyID:    OS << "double"; break;
200  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
201  case Type::FP128TyID:     OS << "fp128"; break;
202  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
203  case Type::LabelTyID:     OS << "label"; break;
204  case Type::MetadataTyID:  OS << "metadata"; break;
205  case Type::IntegerTyID:
206    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
207    break;
208
209  case Type::FunctionTyID: {
210    const FunctionType *FTy = cast<FunctionType>(Ty);
211    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
212    OS << " (";
213    for (FunctionType::param_iterator I = FTy->param_begin(),
214         E = FTy->param_end(); I != E; ++I) {
215      if (I != FTy->param_begin())
216        OS << ", ";
217      CalcTypeName(*I, TypeStack, OS);
218    }
219    if (FTy->isVarArg()) {
220      if (FTy->getNumParams()) OS << ", ";
221      OS << "...";
222    }
223    OS << ')';
224    break;
225  }
226  case Type::StructTyID: {
227    const StructType *STy = cast<StructType>(Ty);
228    if (STy->isPacked())
229      OS << '<';
230    OS << '{';
231    for (StructType::element_iterator I = STy->element_begin(),
232         E = STy->element_end(); I != E; ++I) {
233      OS << ' ';
234      CalcTypeName(*I, TypeStack, OS);
235      if (next(I) == STy->element_end())
236        OS << ' ';
237      else
238        OS << ',';
239    }
240    OS << '}';
241    if (STy->isPacked())
242      OS << '>';
243    break;
244  }
245  case Type::UnionTyID: {
246    const UnionType *UTy = cast<UnionType>(Ty);
247    OS << "union {";
248    for (StructType::element_iterator I = UTy->element_begin(),
249         E = UTy->element_end(); I != E; ++I) {
250      OS << ' ';
251      CalcTypeName(*I, TypeStack, OS);
252      if (next(I) == UTy->element_end())
253        OS << ' ';
254      else
255        OS << ',';
256    }
257    OS << '}';
258    break;
259  }
260  case Type::PointerTyID: {
261    const PointerType *PTy = cast<PointerType>(Ty);
262    CalcTypeName(PTy->getElementType(), TypeStack, OS);
263    if (unsigned AddressSpace = PTy->getAddressSpace())
264      OS << " addrspace(" << AddressSpace << ')';
265    OS << '*';
266    break;
267  }
268  case Type::ArrayTyID: {
269    const ArrayType *ATy = cast<ArrayType>(Ty);
270    OS << '[' << ATy->getNumElements() << " x ";
271    CalcTypeName(ATy->getElementType(), TypeStack, OS);
272    OS << ']';
273    break;
274  }
275  case Type::VectorTyID: {
276    const VectorType *PTy = cast<VectorType>(Ty);
277    OS << "<" << PTy->getNumElements() << " x ";
278    CalcTypeName(PTy->getElementType(), TypeStack, OS);
279    OS << '>';
280    break;
281  }
282  case Type::OpaqueTyID:
283    OS << "opaque";
284    break;
285  default:
286    OS << "<unrecognized-type>";
287    break;
288  }
289
290  TypeStack.pop_back();       // Remove self from stack.
291}
292
293/// printTypeInt - The internal guts of printing out a type that has a
294/// potentially named portion.
295///
296void TypePrinting::print(const Type *Ty, raw_ostream &OS,
297                         bool IgnoreTopLevelName) {
298  // Check to see if the type is named.
299  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
300  if (!IgnoreTopLevelName) {
301    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
302    if (I != TM.end()) {
303      OS << I->second;
304      return;
305    }
306  }
307
308  // Otherwise we have a type that has not been named but is a derived type.
309  // Carefully recurse the type hierarchy to print out any contained symbolic
310  // names.
311  SmallVector<const Type *, 16> TypeStack;
312  std::string TypeName;
313
314  raw_string_ostream TypeOS(TypeName);
315  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
316  OS << TypeOS.str();
317
318  // Cache type name for later use.
319  if (!IgnoreTopLevelName)
320    TM.insert(std::make_pair(Ty, TypeOS.str()));
321}
322
323namespace {
324  class TypeFinder {
325    // To avoid walking constant expressions multiple times and other IR
326    // objects, we keep several helper maps.
327    DenseSet<const Value*> VisitedConstants;
328    DenseSet<const Type*> VisitedTypes;
329
330    TypePrinting &TP;
331    std::vector<const Type*> &NumberedTypes;
332  public:
333    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
334      : TP(tp), NumberedTypes(numberedTypes) {}
335
336    void Run(const Module &M) {
337      // Get types from the type symbol table.  This gets opaque types referened
338      // only through derived named types.
339      const TypeSymbolTable &ST = M.getTypeSymbolTable();
340      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
341           TI != E; ++TI)
342        IncorporateType(TI->second);
343
344      // Get types from global variables.
345      for (Module::const_global_iterator I = M.global_begin(),
346           E = M.global_end(); I != E; ++I) {
347        IncorporateType(I->getType());
348        if (I->hasInitializer())
349          IncorporateValue(I->getInitializer());
350      }
351
352      // Get types from aliases.
353      for (Module::const_alias_iterator I = M.alias_begin(),
354           E = M.alias_end(); I != E; ++I) {
355        IncorporateType(I->getType());
356        IncorporateValue(I->getAliasee());
357      }
358
359      // Get types from functions.
360      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
361        IncorporateType(FI->getType());
362
363        for (Function::const_iterator BB = FI->begin(), E = FI->end();
364             BB != E;++BB)
365          for (BasicBlock::const_iterator II = BB->begin(),
366               E = BB->end(); II != E; ++II) {
367            const Instruction &I = *II;
368            // Incorporate the type of the instruction and all its operands.
369            IncorporateType(I.getType());
370            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
371                 OI != OE; ++OI)
372              IncorporateValue(*OI);
373          }
374      }
375    }
376
377  private:
378    void IncorporateType(const Type *Ty) {
379      // Check to see if we're already visited this type.
380      if (!VisitedTypes.insert(Ty).second)
381        return;
382
383      // If this is a structure or opaque type, add a name for the type.
384      if (((Ty->isStructTy() && cast<StructType>(Ty)->getNumElements())
385            || Ty->isOpaqueTy()) && !TP.hasTypeName(Ty)) {
386        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
387        NumberedTypes.push_back(Ty);
388      }
389
390      // Recursively walk all contained types.
391      for (Type::subtype_iterator I = Ty->subtype_begin(),
392           E = Ty->subtype_end(); I != E; ++I)
393        IncorporateType(*I);
394    }
395
396    /// IncorporateValue - This method is used to walk operand lists finding
397    /// types hiding in constant expressions and other operands that won't be
398    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
399    /// inst operands are all explicitly enumerated.
400    void IncorporateValue(const Value *V) {
401      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
402
403      // Already visited?
404      if (!VisitedConstants.insert(V).second)
405        return;
406
407      // Check this type.
408      IncorporateType(V->getType());
409
410      // Look in operands for types.
411      const Constant *C = cast<Constant>(V);
412      for (Constant::const_op_iterator I = C->op_begin(),
413           E = C->op_end(); I != E;++I)
414        IncorporateValue(*I);
415    }
416  };
417} // end anonymous namespace
418
419
420/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
421/// the specified module to the TypePrinter and all numbered types to it and the
422/// NumberedTypes table.
423static void AddModuleTypesToPrinter(TypePrinting &TP,
424                                    std::vector<const Type*> &NumberedTypes,
425                                    const Module *M) {
426  if (M == 0) return;
427
428  // If the module has a symbol table, take all global types and stuff their
429  // names into the TypeNames map.
430  const TypeSymbolTable &ST = M->getTypeSymbolTable();
431  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
432       TI != E; ++TI) {
433    const Type *Ty = cast<Type>(TI->second);
434
435    // As a heuristic, don't insert pointer to primitive types, because
436    // they are used too often to have a single useful name.
437    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
438      const Type *PETy = PTy->getElementType();
439      if ((PETy->isPrimitiveType() || PETy->isIntegerTy()) &&
440          !PETy->isOpaqueTy())
441        continue;
442    }
443
444    // Likewise don't insert primitives either.
445    if (Ty->isIntegerTy() || Ty->isPrimitiveType())
446      continue;
447
448    // Get the name as a string and insert it into TypeNames.
449    std::string NameStr;
450    raw_string_ostream NameROS(NameStr);
451    formatted_raw_ostream NameOS(NameROS);
452    PrintLLVMName(NameOS, TI->first, LocalPrefix);
453    NameOS.flush();
454    TP.addTypeName(Ty, NameStr);
455  }
456
457  // Walk the entire module to find references to unnamed structure and opaque
458  // types.  This is required for correctness by opaque types (because multiple
459  // uses of an unnamed opaque type needs to be referred to by the same ID) and
460  // it shrinks complex recursive structure types substantially in some cases.
461  TypeFinder(TP, NumberedTypes).Run(*M);
462}
463
464
465/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
466/// type, iff there is an entry in the modules symbol table for the specified
467/// type or one of it's component types.
468///
469void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
470  TypePrinting Printer;
471  std::vector<const Type*> NumberedTypes;
472  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
473  Printer.print(Ty, OS);
474}
475
476//===----------------------------------------------------------------------===//
477// SlotTracker Class: Enumerate slot numbers for unnamed values
478//===----------------------------------------------------------------------===//
479
480namespace {
481
482/// This class provides computation of slot numbers for LLVM Assembly writing.
483///
484class SlotTracker {
485public:
486  /// ValueMap - A mapping of Values to slot numbers.
487  typedef DenseMap<const Value*, unsigned> ValueMap;
488
489private:
490  /// TheModule - The module for which we are holding slot numbers.
491  const Module* TheModule;
492
493  /// TheFunction - The function for which we are holding slot numbers.
494  const Function* TheFunction;
495  bool FunctionProcessed;
496
497  /// mMap - The TypePlanes map for the module level data.
498  ValueMap mMap;
499  unsigned mNext;
500
501  /// fMap - The TypePlanes map for the function level data.
502  ValueMap fMap;
503  unsigned fNext;
504
505  /// mdnMap - Map for MDNodes.
506  DenseMap<const MDNode*, unsigned> mdnMap;
507  unsigned mdnNext;
508public:
509  /// Construct from a module
510  explicit SlotTracker(const Module *M);
511  /// Construct from a function, starting out in incorp state.
512  explicit SlotTracker(const Function *F);
513
514  /// Return the slot number of the specified value in it's type
515  /// plane.  If something is not in the SlotTracker, return -1.
516  int getLocalSlot(const Value *V);
517  int getGlobalSlot(const GlobalValue *V);
518  int getMetadataSlot(const MDNode *N);
519
520  /// If you'd like to deal with a function instead of just a module, use
521  /// this method to get its data into the SlotTracker.
522  void incorporateFunction(const Function *F) {
523    TheFunction = F;
524    FunctionProcessed = false;
525  }
526
527  /// After calling incorporateFunction, use this method to remove the
528  /// most recently incorporated function from the SlotTracker. This
529  /// will reset the state of the machine back to just the module contents.
530  void purgeFunction();
531
532  /// MDNode map iterators.
533  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
534  mdn_iterator mdn_begin() { return mdnMap.begin(); }
535  mdn_iterator mdn_end() { return mdnMap.end(); }
536  unsigned mdn_size() const { return mdnMap.size(); }
537  bool mdn_empty() const { return mdnMap.empty(); }
538
539  /// This function does the actual initialization.
540  inline void initialize();
541
542  // Implementation Details
543private:
544  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
545  void CreateModuleSlot(const GlobalValue *V);
546
547  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
548  void CreateMetadataSlot(const MDNode *N);
549
550  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
551  void CreateFunctionSlot(const Value *V);
552
553  /// Add all of the module level global variables (and their initializers)
554  /// and function declarations, but not the contents of those functions.
555  void processModule();
556
557  /// Add all of the functions arguments, basic blocks, and instructions.
558  void processFunction();
559
560  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
561  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
562};
563
564}  // end anonymous namespace
565
566
567static SlotTracker *createSlotTracker(const Value *V) {
568  if (const Argument *FA = dyn_cast<Argument>(V))
569    return new SlotTracker(FA->getParent());
570
571  if (const Instruction *I = dyn_cast<Instruction>(V))
572    return new SlotTracker(I->getParent()->getParent());
573
574  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
575    return new SlotTracker(BB->getParent());
576
577  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
578    return new SlotTracker(GV->getParent());
579
580  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
581    return new SlotTracker(GA->getParent());
582
583  if (const Function *Func = dyn_cast<Function>(V))
584    return new SlotTracker(Func);
585
586  if (isa<MDNode>(V))
587    return new SlotTracker((Function *)0);
588
589  return 0;
590}
591
592#if 0
593#define ST_DEBUG(X) dbgs() << X
594#else
595#define ST_DEBUG(X)
596#endif
597
598// Module level constructor. Causes the contents of the Module (sans functions)
599// to be added to the slot table.
600SlotTracker::SlotTracker(const Module *M)
601  : TheModule(M), TheFunction(0), FunctionProcessed(false),
602    mNext(0), fNext(0),  mdnNext(0) {
603}
604
605// Function level constructor. Causes the contents of the Module and the one
606// function provided to be added to the slot table.
607SlotTracker::SlotTracker(const Function *F)
608  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
609    mNext(0), fNext(0), mdnNext(0) {
610}
611
612inline void SlotTracker::initialize() {
613  if (TheModule) {
614    processModule();
615    TheModule = 0; ///< Prevent re-processing next time we're called.
616  }
617
618  if (TheFunction && !FunctionProcessed)
619    processFunction();
620}
621
622// Iterate through all the global variables, functions, and global
623// variable initializers and create slots for them.
624void SlotTracker::processModule() {
625  ST_DEBUG("begin processModule!\n");
626
627  // Add all of the unnamed global variables to the value table.
628  for (Module::const_global_iterator I = TheModule->global_begin(),
629         E = TheModule->global_end(); I != E; ++I) {
630    if (!I->hasName())
631      CreateModuleSlot(I);
632  }
633
634  // Add metadata used by named metadata.
635  for (Module::const_named_metadata_iterator
636         I = TheModule->named_metadata_begin(),
637         E = TheModule->named_metadata_end(); I != E; ++I) {
638    const NamedMDNode *NMD = I;
639    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
640      if (MDNode *MD = NMD->getOperand(i))
641        CreateMetadataSlot(MD);
642    }
643  }
644
645  // Add all the unnamed functions to the table.
646  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
647       I != E; ++I)
648    if (!I->hasName())
649      CreateModuleSlot(I);
650
651  ST_DEBUG("end processModule!\n");
652}
653
654// Process the arguments, basic blocks, and instructions  of a function.
655void SlotTracker::processFunction() {
656  ST_DEBUG("begin processFunction!\n");
657  fNext = 0;
658
659  // Add all the function arguments with no names.
660  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
661      AE = TheFunction->arg_end(); AI != AE; ++AI)
662    if (!AI->hasName())
663      CreateFunctionSlot(AI);
664
665  ST_DEBUG("Inserting Instructions:\n");
666
667  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
668
669  // Add all of the basic blocks and instructions with no names.
670  for (Function::const_iterator BB = TheFunction->begin(),
671       E = TheFunction->end(); BB != E; ++BB) {
672    if (!BB->hasName())
673      CreateFunctionSlot(BB);
674
675    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
676         ++I) {
677      if (!I->getType()->isVoidTy() && !I->hasName())
678        CreateFunctionSlot(I);
679
680      // Intrinsics can directly use metadata.
681      if (isa<IntrinsicInst>(I))
682        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
683          if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
684            CreateMetadataSlot(N);
685
686      // Process metadata attached with this instruction.
687      I->getAllMetadata(MDForInst);
688      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
689        CreateMetadataSlot(MDForInst[i].second);
690      MDForInst.clear();
691    }
692  }
693
694  FunctionProcessed = true;
695
696  ST_DEBUG("end processFunction!\n");
697}
698
699/// Clean up after incorporating a function. This is the only way to get out of
700/// the function incorporation state that affects get*Slot/Create*Slot. Function
701/// incorporation state is indicated by TheFunction != 0.
702void SlotTracker::purgeFunction() {
703  ST_DEBUG("begin purgeFunction!\n");
704  fMap.clear(); // Simply discard the function level map
705  TheFunction = 0;
706  FunctionProcessed = false;
707  ST_DEBUG("end purgeFunction!\n");
708}
709
710/// getGlobalSlot - Get the slot number of a global value.
711int SlotTracker::getGlobalSlot(const GlobalValue *V) {
712  // Check for uninitialized state and do lazy initialization.
713  initialize();
714
715  // Find the type plane in the module map
716  ValueMap::iterator MI = mMap.find(V);
717  return MI == mMap.end() ? -1 : (int)MI->second;
718}
719
720/// getMetadataSlot - Get the slot number of a MDNode.
721int SlotTracker::getMetadataSlot(const MDNode *N) {
722  // Check for uninitialized state and do lazy initialization.
723  initialize();
724
725  // Find the type plane in the module map
726  mdn_iterator MI = mdnMap.find(N);
727  return MI == mdnMap.end() ? -1 : (int)MI->second;
728}
729
730
731/// getLocalSlot - Get the slot number for a value that is local to a function.
732int SlotTracker::getLocalSlot(const Value *V) {
733  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
734
735  // Check for uninitialized state and do lazy initialization.
736  initialize();
737
738  ValueMap::iterator FI = fMap.find(V);
739  return FI == fMap.end() ? -1 : (int)FI->second;
740}
741
742
743/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
744void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
745  assert(V && "Can't insert a null Value into SlotTracker!");
746  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
747  assert(!V->hasName() && "Doesn't need a slot!");
748
749  unsigned DestSlot = mNext++;
750  mMap[V] = DestSlot;
751
752  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
753           DestSlot << " [");
754  // G = Global, F = Function, A = Alias, o = other
755  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
756            (isa<Function>(V) ? 'F' :
757             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
758}
759
760/// CreateSlot - Create a new slot for the specified value if it has no name.
761void SlotTracker::CreateFunctionSlot(const Value *V) {
762  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
763
764  unsigned DestSlot = fNext++;
765  fMap[V] = DestSlot;
766
767  // G = Global, F = Function, o = other
768  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
769           DestSlot << " [o]\n");
770}
771
772/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
773void SlotTracker::CreateMetadataSlot(const MDNode *N) {
774  assert(N && "Can't insert a null Value into SlotTracker!");
775
776  // Don't insert if N is a function-local metadata, these are always printed
777  // inline.
778  if (N->isFunctionLocal())
779    return;
780
781  mdn_iterator I = mdnMap.find(N);
782  if (I != mdnMap.end())
783    return;
784
785  unsigned DestSlot = mdnNext++;
786  mdnMap[N] = DestSlot;
787
788  // Recursively add any MDNodes referenced by operands.
789  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
790    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
791      CreateMetadataSlot(Op);
792}
793
794//===----------------------------------------------------------------------===//
795// AsmWriter Implementation
796//===----------------------------------------------------------------------===//
797
798static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
799                                   TypePrinting *TypePrinter,
800                                   SlotTracker *Machine);
801
802
803
804static const char *getPredicateText(unsigned predicate) {
805  const char * pred = "unknown";
806  switch (predicate) {
807  case FCmpInst::FCMP_FALSE: pred = "false"; break;
808  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
809  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
810  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
811  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
812  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
813  case FCmpInst::FCMP_ONE:   pred = "one"; break;
814  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
815  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
816  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
817  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
818  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
819  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
820  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
821  case FCmpInst::FCMP_UNE:   pred = "une"; break;
822  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
823  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
824  case ICmpInst::ICMP_NE:    pred = "ne"; break;
825  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
826  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
827  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
828  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
829  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
830  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
831  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
832  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
833  }
834  return pred;
835}
836
837
838static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
839  if (const OverflowingBinaryOperator *OBO =
840        dyn_cast<OverflowingBinaryOperator>(U)) {
841    if (OBO->hasNoUnsignedWrap())
842      Out << " nuw";
843    if (OBO->hasNoSignedWrap())
844      Out << " nsw";
845  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
846    if (Div->isExact())
847      Out << " exact";
848  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
849    if (GEP->isInBounds())
850      Out << " inbounds";
851  }
852}
853
854static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
855                             TypePrinting &TypePrinter, SlotTracker *Machine) {
856  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
857    if (CI->getType()->isIntegerTy(1)) {
858      Out << (CI->getZExtValue() ? "true" : "false");
859      return;
860    }
861    Out << CI->getValue();
862    return;
863  }
864
865  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
866    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
867        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
868      // We would like to output the FP constant value in exponential notation,
869      // but we cannot do this if doing so will lose precision.  Check here to
870      // make sure that we only output it in exponential format if we can parse
871      // the value back and get the same value.
872      //
873      bool ignored;
874      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
875      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
876                              CFP->getValueAPF().convertToFloat();
877      SmallString<128> StrVal;
878      raw_svector_ostream(StrVal) << Val;
879
880      // Check to make sure that the stringized number is not some string like
881      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
882      // that the string matches the "[-+]?[0-9]" regex.
883      //
884      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
885          ((StrVal[0] == '-' || StrVal[0] == '+') &&
886           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
887        // Reparse stringized version!
888        if (atof(StrVal.c_str()) == Val) {
889          Out << StrVal.str();
890          return;
891        }
892      }
893      // Otherwise we could not reparse it to exactly the same value, so we must
894      // output the string in hexadecimal format!  Note that loading and storing
895      // floating point types changes the bits of NaNs on some hosts, notably
896      // x86, so we must not use these types.
897      assert(sizeof(double) == sizeof(uint64_t) &&
898             "assuming that double is 64 bits!");
899      char Buffer[40];
900      APFloat apf = CFP->getValueAPF();
901      // Floats are represented in ASCII IR as double, convert.
902      if (!isDouble)
903        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
904                          &ignored);
905      Out << "0x" <<
906              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
907                            Buffer+40);
908      return;
909    }
910
911    // Some form of long double.  These appear as a magic letter identifying
912    // the type, then a fixed number of hex digits.
913    Out << "0x";
914    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
915      Out << 'K';
916      // api needed to prevent premature destruction
917      APInt api = CFP->getValueAPF().bitcastToAPInt();
918      const uint64_t* p = api.getRawData();
919      uint64_t word = p[1];
920      int shiftcount=12;
921      int width = api.getBitWidth();
922      for (int j=0; j<width; j+=4, shiftcount-=4) {
923        unsigned int nibble = (word>>shiftcount) & 15;
924        if (nibble < 10)
925          Out << (unsigned char)(nibble + '0');
926        else
927          Out << (unsigned char)(nibble - 10 + 'A');
928        if (shiftcount == 0 && j+4 < width) {
929          word = *p;
930          shiftcount = 64;
931          if (width-j-4 < 64)
932            shiftcount = width-j-4;
933        }
934      }
935      return;
936    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
937      Out << 'L';
938    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
939      Out << 'M';
940    else
941      llvm_unreachable("Unsupported floating point type");
942    // api needed to prevent premature destruction
943    APInt api = CFP->getValueAPF().bitcastToAPInt();
944    const uint64_t* p = api.getRawData();
945    uint64_t word = *p;
946    int shiftcount=60;
947    int width = api.getBitWidth();
948    for (int j=0; j<width; j+=4, shiftcount-=4) {
949      unsigned int nibble = (word>>shiftcount) & 15;
950      if (nibble < 10)
951        Out << (unsigned char)(nibble + '0');
952      else
953        Out << (unsigned char)(nibble - 10 + 'A');
954      if (shiftcount == 0 && j+4 < width) {
955        word = *(++p);
956        shiftcount = 64;
957        if (width-j-4 < 64)
958          shiftcount = width-j-4;
959      }
960    }
961    return;
962  }
963
964  if (isa<ConstantAggregateZero>(CV)) {
965    Out << "zeroinitializer";
966    return;
967  }
968
969  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
970    Out << "blockaddress(";
971    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine);
972    Out << ", ";
973    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine);
974    Out << ")";
975    return;
976  }
977
978  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
979    // As a special case, print the array as a string if it is an array of
980    // i8 with ConstantInt values.
981    //
982    const Type *ETy = CA->getType()->getElementType();
983    if (CA->isString()) {
984      Out << "c\"";
985      PrintEscapedString(CA->getAsString(), Out);
986      Out << '"';
987    } else {                // Cannot output in string format...
988      Out << '[';
989      if (CA->getNumOperands()) {
990        TypePrinter.print(ETy, Out);
991        Out << ' ';
992        WriteAsOperandInternal(Out, CA->getOperand(0),
993                               &TypePrinter, Machine);
994        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
995          Out << ", ";
996          TypePrinter.print(ETy, Out);
997          Out << ' ';
998          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
999        }
1000      }
1001      Out << ']';
1002    }
1003    return;
1004  }
1005
1006  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1007    if (CS->getType()->isPacked())
1008      Out << '<';
1009    Out << '{';
1010    unsigned N = CS->getNumOperands();
1011    if (N) {
1012      Out << ' ';
1013      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1014      Out << ' ';
1015
1016      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
1017
1018      for (unsigned i = 1; i < N; i++) {
1019        Out << ", ";
1020        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1021        Out << ' ';
1022
1023        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1024      }
1025      Out << ' ';
1026    }
1027
1028    Out << '}';
1029    if (CS->getType()->isPacked())
1030      Out << '>';
1031    return;
1032  }
1033
1034  if (const ConstantUnion *CU = dyn_cast<ConstantUnion>(CV)) {
1035    Out << "{ ";
1036    TypePrinter.print(CU->getOperand(0)->getType(), Out);
1037    Out << ' ';
1038    WriteAsOperandInternal(Out, CU->getOperand(0), &TypePrinter, Machine);
1039    Out << " }";
1040    return;
1041  }
1042
1043  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1044    const Type *ETy = CP->getType()->getElementType();
1045    assert(CP->getNumOperands() > 0 &&
1046           "Number of operands for a PackedConst must be > 0");
1047    Out << '<';
1048    TypePrinter.print(ETy, Out);
1049    Out << ' ';
1050    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1051    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1052      Out << ", ";
1053      TypePrinter.print(ETy, Out);
1054      Out << ' ';
1055      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1056    }
1057    Out << '>';
1058    return;
1059  }
1060
1061  if (isa<ConstantPointerNull>(CV)) {
1062    Out << "null";
1063    return;
1064  }
1065
1066  if (isa<UndefValue>(CV)) {
1067    Out << "undef";
1068    return;
1069  }
1070
1071  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1072    Out << "!" << Machine->getMetadataSlot(Node);
1073    return;
1074  }
1075
1076  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1077    Out << CE->getOpcodeName();
1078    WriteOptimizationInfo(Out, CE);
1079    if (CE->isCompare())
1080      Out << ' ' << getPredicateText(CE->getPredicate());
1081    Out << " (";
1082
1083    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1084      TypePrinter.print((*OI)->getType(), Out);
1085      Out << ' ';
1086      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1087      if (OI+1 != CE->op_end())
1088        Out << ", ";
1089    }
1090
1091    if (CE->hasIndices()) {
1092      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1093      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1094        Out << ", " << Indices[i];
1095    }
1096
1097    if (CE->isCast()) {
1098      Out << " to ";
1099      TypePrinter.print(CE->getType(), Out);
1100    }
1101
1102    Out << ')';
1103    return;
1104  }
1105
1106  Out << "<placeholder or erroneous Constant>";
1107}
1108
1109static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1110                                    TypePrinting *TypePrinter,
1111                                    SlotTracker *Machine) {
1112  Out << "!{";
1113  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1114    const Value *V = Node->getOperand(mi);
1115    if (V == 0)
1116      Out << "null";
1117    else {
1118      TypePrinter->print(V->getType(), Out);
1119      Out << ' ';
1120      WriteAsOperandInternal(Out, Node->getOperand(mi),
1121                             TypePrinter, Machine);
1122    }
1123    if (mi + 1 != me)
1124      Out << ", ";
1125  }
1126
1127  Out << "}";
1128}
1129
1130
1131/// WriteAsOperand - Write the name of the specified value out to the specified
1132/// ostream.  This can be useful when you just want to print int %reg126, not
1133/// the whole instruction that generated it.
1134///
1135static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1136                                   TypePrinting *TypePrinter,
1137                                   SlotTracker *Machine) {
1138  if (V->hasName()) {
1139    PrintLLVMName(Out, V);
1140    return;
1141  }
1142
1143  const Constant *CV = dyn_cast<Constant>(V);
1144  if (CV && !isa<GlobalValue>(CV)) {
1145    assert(TypePrinter && "Constants require TypePrinting!");
1146    WriteConstantInt(Out, CV, *TypePrinter, Machine);
1147    return;
1148  }
1149
1150  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1151    Out << "asm ";
1152    if (IA->hasSideEffects())
1153      Out << "sideeffect ";
1154    if (IA->isAlignStack())
1155      Out << "alignstack ";
1156    Out << '"';
1157    PrintEscapedString(IA->getAsmString(), Out);
1158    Out << "\", \"";
1159    PrintEscapedString(IA->getConstraintString(), Out);
1160    Out << '"';
1161    return;
1162  }
1163
1164  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1165    if (N->isFunctionLocal()) {
1166      // Print metadata inline, not via slot reference number.
1167      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine);
1168      return;
1169    }
1170
1171    if (!Machine)
1172      Machine = createSlotTracker(V);
1173    Out << '!' << Machine->getMetadataSlot(N);
1174    return;
1175  }
1176
1177  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1178    Out << "!\"";
1179    PrintEscapedString(MDS->getString(), Out);
1180    Out << '"';
1181    return;
1182  }
1183
1184  if (V->getValueID() == Value::PseudoSourceValueVal ||
1185      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1186    V->print(Out);
1187    return;
1188  }
1189
1190  char Prefix = '%';
1191  int Slot;
1192  if (Machine) {
1193    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1194      Slot = Machine->getGlobalSlot(GV);
1195      Prefix = '@';
1196    } else {
1197      Slot = Machine->getLocalSlot(V);
1198    }
1199  } else {
1200    Machine = createSlotTracker(V);
1201    if (Machine) {
1202      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1203        Slot = Machine->getGlobalSlot(GV);
1204        Prefix = '@';
1205      } else {
1206        Slot = Machine->getLocalSlot(V);
1207      }
1208      delete Machine;
1209    } else {
1210      Slot = -1;
1211    }
1212  }
1213
1214  if (Slot != -1)
1215    Out << Prefix << Slot;
1216  else
1217    Out << "<badref>";
1218}
1219
1220void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1221                          bool PrintType, const Module *Context) {
1222
1223  // Fast path: Don't construct and populate a TypePrinting object if we
1224  // won't be needing any types printed.
1225  if (!PrintType &&
1226      (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1227    WriteAsOperandInternal(Out, V, 0, 0);
1228    return;
1229  }
1230
1231  if (Context == 0) Context = getModuleFromVal(V);
1232
1233  TypePrinting TypePrinter;
1234  std::vector<const Type*> NumberedTypes;
1235  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1236  if (PrintType) {
1237    TypePrinter.print(V->getType(), Out);
1238    Out << ' ';
1239  }
1240
1241  WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1242}
1243
1244namespace {
1245
1246class AssemblyWriter {
1247  formatted_raw_ostream &Out;
1248  SlotTracker &Machine;
1249  const Module *TheModule;
1250  TypePrinting TypePrinter;
1251  AssemblyAnnotationWriter *AnnotationWriter;
1252  std::vector<const Type*> NumberedTypes;
1253
1254public:
1255  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1256                        const Module *M,
1257                        AssemblyAnnotationWriter *AAW)
1258    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1259    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1260  }
1261
1262  void printMDNodeBody(const MDNode *MD);
1263  void printNamedMDNode(const NamedMDNode *NMD);
1264
1265  void printModule(const Module *M);
1266
1267  void writeOperand(const Value *Op, bool PrintType);
1268  void writeParamOperand(const Value *Operand, Attributes Attrs);
1269
1270  void writeAllMDNodes();
1271
1272  void printTypeSymbolTable(const TypeSymbolTable &ST);
1273  void printGlobal(const GlobalVariable *GV);
1274  void printAlias(const GlobalAlias *GV);
1275  void printFunction(const Function *F);
1276  void printArgument(const Argument *FA, Attributes Attrs);
1277  void printBasicBlock(const BasicBlock *BB);
1278  void printInstruction(const Instruction &I);
1279
1280private:
1281  // printInfoComment - Print a little comment after the instruction indicating
1282  // which slot it occupies.
1283  void printInfoComment(const Value &V);
1284};
1285}  // end of anonymous namespace
1286
1287void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1288  if (Operand == 0) {
1289    Out << "<null operand!>";
1290    return;
1291  }
1292  if (PrintType) {
1293    TypePrinter.print(Operand->getType(), Out);
1294    Out << ' ';
1295  }
1296  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1297}
1298
1299void AssemblyWriter::writeParamOperand(const Value *Operand,
1300                                       Attributes Attrs) {
1301  if (Operand == 0) {
1302    Out << "<null operand!>";
1303    return;
1304  }
1305
1306  // Print the type
1307  TypePrinter.print(Operand->getType(), Out);
1308  // Print parameter attributes list
1309  if (Attrs != Attribute::None)
1310    Out << ' ' << Attribute::getAsString(Attrs);
1311  Out << ' ';
1312  // Print the operand
1313  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1314}
1315
1316void AssemblyWriter::printModule(const Module *M) {
1317  if (!M->getModuleIdentifier().empty() &&
1318      // Don't print the ID if it will start a new line (which would
1319      // require a comment char before it).
1320      M->getModuleIdentifier().find('\n') == std::string::npos)
1321    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1322
1323  if (!M->getDataLayout().empty())
1324    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1325  if (!M->getTargetTriple().empty())
1326    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1327
1328  if (!M->getModuleInlineAsm().empty()) {
1329    // Split the string into lines, to make it easier to read the .ll file.
1330    std::string Asm = M->getModuleInlineAsm();
1331    size_t CurPos = 0;
1332    size_t NewLine = Asm.find_first_of('\n', CurPos);
1333    Out << '\n';
1334    while (NewLine != std::string::npos) {
1335      // We found a newline, print the portion of the asm string from the
1336      // last newline up to this newline.
1337      Out << "module asm \"";
1338      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1339                         Out);
1340      Out << "\"\n";
1341      CurPos = NewLine+1;
1342      NewLine = Asm.find_first_of('\n', CurPos);
1343    }
1344    Out << "module asm \"";
1345    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1346    Out << "\"\n";
1347  }
1348
1349  // Loop over the dependent libraries and emit them.
1350  Module::lib_iterator LI = M->lib_begin();
1351  Module::lib_iterator LE = M->lib_end();
1352  if (LI != LE) {
1353    Out << '\n';
1354    Out << "deplibs = [ ";
1355    while (LI != LE) {
1356      Out << '"' << *LI << '"';
1357      ++LI;
1358      if (LI != LE)
1359        Out << ", ";
1360    }
1361    Out << " ]";
1362  }
1363
1364  // Loop over the symbol table, emitting all id'd types.
1365  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1366  printTypeSymbolTable(M->getTypeSymbolTable());
1367
1368  // Output all globals.
1369  if (!M->global_empty()) Out << '\n';
1370  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1371       I != E; ++I)
1372    printGlobal(I);
1373
1374  // Output all aliases.
1375  if (!M->alias_empty()) Out << "\n";
1376  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1377       I != E; ++I)
1378    printAlias(I);
1379
1380  // Output all of the functions.
1381  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1382    printFunction(I);
1383
1384  // Output named metadata.
1385  if (!M->named_metadata_empty()) Out << '\n';
1386
1387  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1388       E = M->named_metadata_end(); I != E; ++I)
1389    printNamedMDNode(I);
1390
1391  // Output metadata.
1392  if (!Machine.mdn_empty()) {
1393    Out << '\n';
1394    writeAllMDNodes();
1395  }
1396}
1397
1398void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1399  Out << "!" << NMD->getName() << " = !{";
1400  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1401    if (i) Out << ", ";
1402    if (MDNode *MD = NMD->getOperand(i))
1403      Out << '!' << Machine.getMetadataSlot(MD);
1404    else
1405      Out << "null";
1406  }
1407  Out << "}\n";
1408}
1409
1410
1411static void PrintLinkage(GlobalValue::LinkageTypes LT,
1412                         formatted_raw_ostream &Out) {
1413  switch (LT) {
1414  case GlobalValue::ExternalLinkage: break;
1415  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1416  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1417  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1418  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1419  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1420  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1421  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1422  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1423  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1424  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1425  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1426  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1427  case GlobalValue::AvailableExternallyLinkage:
1428    Out << "available_externally ";
1429    break;
1430  }
1431}
1432
1433
1434static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1435                            formatted_raw_ostream &Out) {
1436  switch (Vis) {
1437  case GlobalValue::DefaultVisibility: break;
1438  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1439  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1440  }
1441}
1442
1443void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1444  if (GV->isMaterializable())
1445    Out << "; Materializable\n";
1446
1447  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1448  Out << " = ";
1449
1450  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1451    Out << "external ";
1452
1453  PrintLinkage(GV->getLinkage(), Out);
1454  PrintVisibility(GV->getVisibility(), Out);
1455
1456  if (GV->isThreadLocal()) Out << "thread_local ";
1457  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1458    Out << "addrspace(" << AddressSpace << ") ";
1459  Out << (GV->isConstant() ? "constant " : "global ");
1460  TypePrinter.print(GV->getType()->getElementType(), Out);
1461
1462  if (GV->hasInitializer()) {
1463    Out << ' ';
1464    writeOperand(GV->getInitializer(), false);
1465  }
1466
1467  if (GV->hasSection())
1468    Out << ", section \"" << GV->getSection() << '"';
1469  if (GV->getAlignment())
1470    Out << ", align " << GV->getAlignment();
1471
1472  printInfoComment(*GV);
1473  Out << '\n';
1474}
1475
1476void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1477  if (GA->isMaterializable())
1478    Out << "; Materializable\n";
1479
1480  // Don't crash when dumping partially built GA
1481  if (!GA->hasName())
1482    Out << "<<nameless>> = ";
1483  else {
1484    PrintLLVMName(Out, GA);
1485    Out << " = ";
1486  }
1487  PrintVisibility(GA->getVisibility(), Out);
1488
1489  Out << "alias ";
1490
1491  PrintLinkage(GA->getLinkage(), Out);
1492
1493  const Constant *Aliasee = GA->getAliasee();
1494
1495  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1496    TypePrinter.print(GV->getType(), Out);
1497    Out << ' ';
1498    PrintLLVMName(Out, GV);
1499  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1500    TypePrinter.print(F->getFunctionType(), Out);
1501    Out << "* ";
1502
1503    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1504  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1505    TypePrinter.print(GA->getType(), Out);
1506    Out << ' ';
1507    PrintLLVMName(Out, GA);
1508  } else {
1509    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1510    // The only valid GEP is an all zero GEP.
1511    assert((CE->getOpcode() == Instruction::BitCast ||
1512            CE->getOpcode() == Instruction::GetElementPtr) &&
1513           "Unsupported aliasee");
1514    writeOperand(CE, false);
1515  }
1516
1517  printInfoComment(*GA);
1518  Out << '\n';
1519}
1520
1521void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1522  // Emit all numbered types.
1523  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1524    Out << '%' << i << " = type ";
1525
1526    // Make sure we print out at least one level of the type structure, so
1527    // that we do not get %2 = type %2
1528    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1529    Out << '\n';
1530  }
1531
1532  // Print the named types.
1533  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1534       TI != TE; ++TI) {
1535    PrintLLVMName(Out, TI->first, LocalPrefix);
1536    Out << " = type ";
1537
1538    // Make sure we print out at least one level of the type structure, so
1539    // that we do not get %FILE = type %FILE
1540    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1541    Out << '\n';
1542  }
1543}
1544
1545/// printFunction - Print all aspects of a function.
1546///
1547void AssemblyWriter::printFunction(const Function *F) {
1548  // Print out the return type and name.
1549  Out << '\n';
1550
1551  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1552
1553  if (F->isMaterializable())
1554    Out << "; Materializable\n";
1555
1556  if (F->isDeclaration())
1557    Out << "declare ";
1558  else
1559    Out << "define ";
1560
1561  PrintLinkage(F->getLinkage(), Out);
1562  PrintVisibility(F->getVisibility(), Out);
1563
1564  // Print the calling convention.
1565  switch (F->getCallingConv()) {
1566  case CallingConv::C: break;   // default
1567  case CallingConv::Fast:         Out << "fastcc "; break;
1568  case CallingConv::Cold:         Out << "coldcc "; break;
1569  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1570  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1571  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1572  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1573  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1574  case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
1575  default: Out << "cc" << F->getCallingConv() << " "; break;
1576  }
1577
1578  const FunctionType *FT = F->getFunctionType();
1579  const AttrListPtr &Attrs = F->getAttributes();
1580  Attributes RetAttrs = Attrs.getRetAttributes();
1581  if (RetAttrs != Attribute::None)
1582    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1583  TypePrinter.print(F->getReturnType(), Out);
1584  Out << ' ';
1585  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1586  Out << '(';
1587  Machine.incorporateFunction(F);
1588
1589  // Loop over the arguments, printing them...
1590
1591  unsigned Idx = 1;
1592  if (!F->isDeclaration()) {
1593    // If this isn't a declaration, print the argument names as well.
1594    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1595         I != E; ++I) {
1596      // Insert commas as we go... the first arg doesn't get a comma
1597      if (I != F->arg_begin()) Out << ", ";
1598      printArgument(I, Attrs.getParamAttributes(Idx));
1599      Idx++;
1600    }
1601  } else {
1602    // Otherwise, print the types from the function type.
1603    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1604      // Insert commas as we go... the first arg doesn't get a comma
1605      if (i) Out << ", ";
1606
1607      // Output type...
1608      TypePrinter.print(FT->getParamType(i), Out);
1609
1610      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1611      if (ArgAttrs != Attribute::None)
1612        Out << ' ' << Attribute::getAsString(ArgAttrs);
1613    }
1614  }
1615
1616  // Finish printing arguments...
1617  if (FT->isVarArg()) {
1618    if (FT->getNumParams()) Out << ", ";
1619    Out << "...";  // Output varargs portion of signature!
1620  }
1621  Out << ')';
1622  Attributes FnAttrs = Attrs.getFnAttributes();
1623  if (FnAttrs != Attribute::None)
1624    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1625  if (F->hasSection())
1626    Out << " section \"" << F->getSection() << '"';
1627  if (F->getAlignment())
1628    Out << " align " << F->getAlignment();
1629  if (F->hasGC())
1630    Out << " gc \"" << F->getGC() << '"';
1631  if (F->isDeclaration()) {
1632    Out << "\n";
1633  } else {
1634    Out << " {";
1635
1636    // Output all of its basic blocks... for the function
1637    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1638      printBasicBlock(I);
1639
1640    Out << "}\n";
1641  }
1642
1643  Machine.purgeFunction();
1644}
1645
1646/// printArgument - This member is called for every argument that is passed into
1647/// the function.  Simply print it out
1648///
1649void AssemblyWriter::printArgument(const Argument *Arg,
1650                                   Attributes Attrs) {
1651  // Output type...
1652  TypePrinter.print(Arg->getType(), Out);
1653
1654  // Output parameter attributes list
1655  if (Attrs != Attribute::None)
1656    Out << ' ' << Attribute::getAsString(Attrs);
1657
1658  // Output name, if available...
1659  if (Arg->hasName()) {
1660    Out << ' ';
1661    PrintLLVMName(Out, Arg);
1662  }
1663}
1664
1665/// printBasicBlock - This member is called for each basic block in a method.
1666///
1667void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1668  if (BB->hasName()) {              // Print out the label if it exists...
1669    Out << "\n";
1670    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1671    Out << ':';
1672  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1673    Out << "\n; <label>:";
1674    int Slot = Machine.getLocalSlot(BB);
1675    if (Slot != -1)
1676      Out << Slot;
1677    else
1678      Out << "<badref>";
1679  }
1680
1681  if (BB->getParent() == 0) {
1682    Out.PadToColumn(50);
1683    Out << "; Error: Block without parent!";
1684  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1685    // Output predecessors for the block...
1686    Out.PadToColumn(50);
1687    Out << ";";
1688    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1689
1690    if (PI == PE) {
1691      Out << " No predecessors!";
1692    } else {
1693      Out << " preds = ";
1694      writeOperand(*PI, false);
1695      for (++PI; PI != PE; ++PI) {
1696        Out << ", ";
1697        writeOperand(*PI, false);
1698      }
1699    }
1700  }
1701
1702  Out << "\n";
1703
1704  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1705
1706  // Output all of the instructions in the basic block...
1707  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1708    printInstruction(*I);
1709    Out << '\n';
1710  }
1711
1712  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1713}
1714
1715/// printInfoComment - Print a little comment after the instruction indicating
1716/// which slot it occupies.
1717///
1718void AssemblyWriter::printInfoComment(const Value &V) {
1719  if (AnnotationWriter) {
1720    AnnotationWriter->printInfoComment(V, Out);
1721    return;
1722  }
1723
1724  if (V.getType()->isVoidTy()) return;
1725
1726  Out.PadToColumn(50);
1727  Out << "; <";
1728  TypePrinter.print(V.getType(), Out);
1729  Out << "> [#uses=" << V.getNumUses() << ']';  // Output # uses
1730}
1731
1732// This member is called for each Instruction in a function..
1733void AssemblyWriter::printInstruction(const Instruction &I) {
1734  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1735
1736  // Print out indentation for an instruction.
1737  Out << "  ";
1738
1739  // Print out name if it exists...
1740  if (I.hasName()) {
1741    PrintLLVMName(Out, &I);
1742    Out << " = ";
1743  } else if (!I.getType()->isVoidTy()) {
1744    // Print out the def slot taken.
1745    int SlotNum = Machine.getLocalSlot(&I);
1746    if (SlotNum == -1)
1747      Out << "<badref> = ";
1748    else
1749      Out << '%' << SlotNum << " = ";
1750  }
1751
1752  // If this is a volatile load or store, print out the volatile marker.
1753  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1754      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1755      Out << "volatile ";
1756  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1757    // If this is a call, check if it's a tail call.
1758    Out << "tail ";
1759  }
1760
1761  // Print out the opcode...
1762  Out << I.getOpcodeName();
1763
1764  // Print out optimization information.
1765  WriteOptimizationInfo(Out, &I);
1766
1767  // Print out the compare instruction predicates
1768  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1769    Out << ' ' << getPredicateText(CI->getPredicate());
1770
1771  // Print out the type of the operands...
1772  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1773
1774  // Special case conditional branches to swizzle the condition out to the front
1775  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1776    BranchInst &BI(cast<BranchInst>(I));
1777    Out << ' ';
1778    writeOperand(BI.getCondition(), true);
1779    Out << ", ";
1780    writeOperand(BI.getSuccessor(0), true);
1781    Out << ", ";
1782    writeOperand(BI.getSuccessor(1), true);
1783
1784  } else if (isa<SwitchInst>(I)) {
1785    // Special case switch instruction to get formatting nice and correct.
1786    Out << ' ';
1787    writeOperand(Operand        , true);
1788    Out << ", ";
1789    writeOperand(I.getOperand(1), true);
1790    Out << " [";
1791
1792    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1793      Out << "\n    ";
1794      writeOperand(I.getOperand(op  ), true);
1795      Out << ", ";
1796      writeOperand(I.getOperand(op+1), true);
1797    }
1798    Out << "\n  ]";
1799  } else if (isa<IndirectBrInst>(I)) {
1800    // Special case indirectbr instruction to get formatting nice and correct.
1801    Out << ' ';
1802    writeOperand(Operand, true);
1803    Out << ", [";
1804
1805    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1806      if (i != 1)
1807        Out << ", ";
1808      writeOperand(I.getOperand(i), true);
1809    }
1810    Out << ']';
1811  } else if (isa<PHINode>(I)) {
1812    Out << ' ';
1813    TypePrinter.print(I.getType(), Out);
1814    Out << ' ';
1815
1816    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1817      if (op) Out << ", ";
1818      Out << "[ ";
1819      writeOperand(I.getOperand(op  ), false); Out << ", ";
1820      writeOperand(I.getOperand(op+1), false); Out << " ]";
1821    }
1822  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1823    Out << ' ';
1824    writeOperand(I.getOperand(0), true);
1825    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1826      Out << ", " << *i;
1827  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1828    Out << ' ';
1829    writeOperand(I.getOperand(0), true); Out << ", ";
1830    writeOperand(I.getOperand(1), true);
1831    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1832      Out << ", " << *i;
1833  } else if (isa<ReturnInst>(I) && !Operand) {
1834    Out << " void";
1835  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1836    // Print the calling convention being used.
1837    switch (CI->getCallingConv()) {
1838    case CallingConv::C: break;   // default
1839    case CallingConv::Fast:  Out << " fastcc"; break;
1840    case CallingConv::Cold:  Out << " coldcc"; break;
1841    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1842    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1843    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1844    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1845    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1846    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1847    default: Out << " cc" << CI->getCallingConv(); break;
1848    }
1849
1850    Operand = CI->getCalledValue();
1851    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1852    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1853    const Type         *RetTy = FTy->getReturnType();
1854    const AttrListPtr &PAL = CI->getAttributes();
1855
1856    if (PAL.getRetAttributes() != Attribute::None)
1857      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1858
1859    // If possible, print out the short form of the call instruction.  We can
1860    // only do this if the first argument is a pointer to a nonvararg function,
1861    // and if the return type is not a pointer to a function.
1862    //
1863    Out << ' ';
1864    if (!FTy->isVarArg() &&
1865        (!RetTy->isPointerTy() ||
1866         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1867      TypePrinter.print(RetTy, Out);
1868      Out << ' ';
1869      writeOperand(Operand, false);
1870    } else {
1871      writeOperand(Operand, true);
1872    }
1873    Out << '(';
1874    for (unsigned op = 0, Eop = CI->getNumOperands() - 1; op < Eop; ++op) {
1875      if (op > 0)
1876        Out << ", ";
1877      writeParamOperand(CI->getOperand(op), PAL.getParamAttributes(op + 1));
1878    }
1879    Out << ')';
1880    if (PAL.getFnAttributes() != Attribute::None)
1881      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1882  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1883    Operand = II->getCalledValue();
1884    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1885    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1886    const Type         *RetTy = FTy->getReturnType();
1887    const AttrListPtr &PAL = II->getAttributes();
1888
1889    // Print the calling convention being used.
1890    switch (II->getCallingConv()) {
1891    case CallingConv::C: break;   // default
1892    case CallingConv::Fast:  Out << " fastcc"; break;
1893    case CallingConv::Cold:  Out << " coldcc"; break;
1894    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1895    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1896    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1897    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1898    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1899    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1900    default: Out << " cc" << II->getCallingConv(); break;
1901    }
1902
1903    if (PAL.getRetAttributes() != Attribute::None)
1904      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1905
1906    // If possible, print out the short form of the invoke instruction. We can
1907    // only do this if the first argument is a pointer to a nonvararg function,
1908    // and if the return type is not a pointer to a function.
1909    //
1910    Out << ' ';
1911    if (!FTy->isVarArg() &&
1912        (!RetTy->isPointerTy() ||
1913         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1914      TypePrinter.print(RetTy, Out);
1915      Out << ' ';
1916      writeOperand(Operand, false);
1917    } else {
1918      writeOperand(Operand, true);
1919    }
1920    Out << '(';
1921    for (unsigned op = 0, Eop = II->getNumOperands() - 3; op < Eop; ++op) {
1922      if (op)
1923        Out << ", ";
1924      writeParamOperand(II->getOperand(op), PAL.getParamAttributes(op + 1));
1925    }
1926
1927    Out << ')';
1928    if (PAL.getFnAttributes() != Attribute::None)
1929      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1930
1931    Out << "\n          to ";
1932    writeOperand(II->getNormalDest(), true);
1933    Out << " unwind ";
1934    writeOperand(II->getUnwindDest(), true);
1935
1936  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1937    Out << ' ';
1938    TypePrinter.print(AI->getType()->getElementType(), Out);
1939    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1940      Out << ", ";
1941      writeOperand(AI->getArraySize(), true);
1942    }
1943    if (AI->getAlignment()) {
1944      Out << ", align " << AI->getAlignment();
1945    }
1946  } else if (isa<CastInst>(I)) {
1947    if (Operand) {
1948      Out << ' ';
1949      writeOperand(Operand, true);   // Work with broken code
1950    }
1951    Out << " to ";
1952    TypePrinter.print(I.getType(), Out);
1953  } else if (isa<VAArgInst>(I)) {
1954    if (Operand) {
1955      Out << ' ';
1956      writeOperand(Operand, true);   // Work with broken code
1957    }
1958    Out << ", ";
1959    TypePrinter.print(I.getType(), Out);
1960  } else if (Operand) {   // Print the normal way.
1961
1962    // PrintAllTypes - Instructions who have operands of all the same type
1963    // omit the type from all but the first operand.  If the instruction has
1964    // different type operands (for example br), then they are all printed.
1965    bool PrintAllTypes = false;
1966    const Type *TheType = Operand->getType();
1967
1968    // Select, Store and ShuffleVector always print all types.
1969    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1970        || isa<ReturnInst>(I)) {
1971      PrintAllTypes = true;
1972    } else {
1973      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1974        Operand = I.getOperand(i);
1975        // note that Operand shouldn't be null, but the test helps make dump()
1976        // more tolerant of malformed IR
1977        if (Operand && Operand->getType() != TheType) {
1978          PrintAllTypes = true;    // We have differing types!  Print them all!
1979          break;
1980        }
1981      }
1982    }
1983
1984    if (!PrintAllTypes) {
1985      Out << ' ';
1986      TypePrinter.print(TheType, Out);
1987    }
1988
1989    Out << ' ';
1990    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1991      if (i) Out << ", ";
1992      writeOperand(I.getOperand(i), PrintAllTypes);
1993    }
1994  }
1995
1996  // Print post operand alignment for load/store.
1997  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1998    Out << ", align " << cast<LoadInst>(I).getAlignment();
1999  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
2000    Out << ", align " << cast<StoreInst>(I).getAlignment();
2001  }
2002
2003  // Print Metadata info.
2004  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2005  I.getAllMetadata(InstMD);
2006  if (!InstMD.empty()) {
2007    SmallVector<StringRef, 8> MDNames;
2008    I.getType()->getContext().getMDKindNames(MDNames);
2009    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2010      unsigned Kind = InstMD[i].first;
2011       if (Kind < MDNames.size()) {
2012         Out << ", !" << MDNames[Kind];
2013      } else {
2014        Out << ", !<unknown kind #" << Kind << ">";
2015      }
2016      Out << " !" << Machine.getMetadataSlot(InstMD[i].second);
2017    }
2018  }
2019  printInfoComment(I);
2020}
2021
2022static void WriteMDNodeComment(const MDNode *Node,
2023			       formatted_raw_ostream &Out) {
2024  if (Node->getNumOperands() < 1)
2025    return;
2026  ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
2027  if (!CI) return;
2028  unsigned Val = CI->getZExtValue();
2029  unsigned Tag = Val & ~LLVMDebugVersionMask;
2030  if (Val < LLVMDebugVersion)
2031    return;
2032
2033  Out.PadToColumn(50);
2034  if (Tag == dwarf::DW_TAG_auto_variable)
2035    Out << "; [ DW_TAG_auto_variable ]";
2036  else if (Tag == dwarf::DW_TAG_arg_variable)
2037    Out << "; [ DW_TAG_arg_variable ]";
2038  else if (Tag == dwarf::DW_TAG_return_variable)
2039    Out << "; [ DW_TAG_return_variable ]";
2040  else if (Tag == dwarf::DW_TAG_vector_type)
2041    Out << "; [ DW_TAG_vector_type ]";
2042  else if (Tag == dwarf::DW_TAG_user_base)
2043    Out << "; [ DW_TAG_user_base ]";
2044  else if (const char *TagName = dwarf::TagString(Tag))
2045    Out << "; [ " << TagName << " ]";
2046}
2047
2048void AssemblyWriter::writeAllMDNodes() {
2049  SmallVector<const MDNode *, 16> Nodes;
2050  Nodes.resize(Machine.mdn_size());
2051  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2052       I != E; ++I)
2053    Nodes[I->second] = cast<MDNode>(I->first);
2054
2055  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2056    Out << '!' << i << " = metadata ";
2057    printMDNodeBody(Nodes[i]);
2058  }
2059}
2060
2061void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2062  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine);
2063  WriteMDNodeComment(Node, Out);
2064  Out << "\n";
2065}
2066
2067//===----------------------------------------------------------------------===//
2068//                       External Interface declarations
2069//===----------------------------------------------------------------------===//
2070
2071void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2072  SlotTracker SlotTable(this);
2073  formatted_raw_ostream OS(ROS);
2074  AssemblyWriter W(OS, SlotTable, this, AAW);
2075  W.printModule(this);
2076}
2077
2078void Type::print(raw_ostream &OS) const {
2079  if (this == 0) {
2080    OS << "<null Type>";
2081    return;
2082  }
2083  TypePrinting().print(this, OS);
2084}
2085
2086void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2087  if (this == 0) {
2088    ROS << "printing a <null> value\n";
2089    return;
2090  }
2091  formatted_raw_ostream OS(ROS);
2092  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2093    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2094    SlotTracker SlotTable(F);
2095    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2096    W.printInstruction(*I);
2097  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2098    SlotTracker SlotTable(BB->getParent());
2099    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2100    W.printBasicBlock(BB);
2101  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2102    SlotTracker SlotTable(GV->getParent());
2103    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2104    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2105      W.printGlobal(V);
2106    else if (const Function *F = dyn_cast<Function>(GV))
2107      W.printFunction(F);
2108    else
2109      W.printAlias(cast<GlobalAlias>(GV));
2110  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2111    const Function *F = N->getFunction();
2112    SlotTracker SlotTable(F);
2113    AssemblyWriter W(OS, SlotTable, F ? getModuleFromVal(F) : 0, AAW);
2114    W.printMDNodeBody(N);
2115  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2116    SlotTracker SlotTable(N->getParent());
2117    AssemblyWriter W(OS, SlotTable, N->getParent(), AAW);
2118    W.printNamedMDNode(N);
2119  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2120    TypePrinting TypePrinter;
2121    TypePrinter.print(C->getType(), OS);
2122    OS << ' ';
2123    WriteConstantInt(OS, C, TypePrinter, 0);
2124  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2125             isa<Argument>(this)) {
2126    WriteAsOperand(OS, this, true, 0);
2127  } else {
2128    // Otherwise we don't know what it is. Call the virtual function to
2129    // allow a subclass to print itself.
2130    printCustom(OS);
2131  }
2132}
2133
2134// Value::printCustom - subclasses should override this to implement printing.
2135void Value::printCustom(raw_ostream &OS) const {
2136  llvm_unreachable("Unknown value to print out!");
2137}
2138
2139// Value::dump - allow easy printing of Values from the debugger.
2140void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2141
2142// Type::dump - allow easy printing of Types from the debugger.
2143// This one uses type names from the given context module
2144void Type::dump(const Module *Context) const {
2145  WriteTypeSymbolic(dbgs(), this, Context);
2146  dbgs() << '\n';
2147}
2148
2149// Type::dump - allow easy printing of Types from the debugger.
2150void Type::dump() const { dump(0); }
2151
2152// Module::dump() - Allow printing of Modules from the debugger.
2153void Module::dump() const { print(dbgs(), 0); }
2154