AsmWriter.cpp revision 3518175d4256df88fcaf133c0ed9fb166db7993c
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/Module.h"
27#include "llvm/ValueSymbolTable.h"
28#include "llvm/TypeSymbolTable.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cctype>
37using namespace llvm;
38
39// Make virtual table appear in this compilation unit.
40AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
41
42char PrintModulePass::ID = 0;
43static RegisterPass<PrintModulePass>
44X("printm", "Print module to stderr");
45char PrintFunctionPass::ID = 0;
46static RegisterPass<PrintFunctionPass>
47Y("print","Print function to stderr");
48
49
50//===----------------------------------------------------------------------===//
51// Helper Functions
52//===----------------------------------------------------------------------===//
53
54static const Module *getModuleFromVal(const Value *V) {
55  if (const Argument *MA = dyn_cast<Argument>(V))
56    return MA->getParent() ? MA->getParent()->getParent() : 0;
57
58  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
59    return BB->getParent() ? BB->getParent()->getParent() : 0;
60
61  if (const Instruction *I = dyn_cast<Instruction>(V)) {
62    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
63    return M ? M->getParent() : 0;
64  }
65
66  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
67    return GV->getParent();
68  return 0;
69}
70
71
72/// NameNeedsQuotes - Return true if the specified llvm name should be wrapped
73/// with ""'s.
74static std::string QuoteNameIfNeeded(const std::string &Name) {
75  std::string result;
76  bool needsQuotes = Name[0] >= '0' && Name[0] <= '9';
77  // Scan the name to see if it needs quotes and to replace funky chars with
78  // their octal equivalent.
79  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
80    char C = Name[i];
81    assert(C != '"' && "Illegal character in LLVM value name!");
82    if (isalnum(C) || C == '-' || C == '.' || C == '_')
83      result += C;
84    else if (C == '\\')  {
85      needsQuotes = true;
86      result += "\\\\";
87    } else if (isprint(C)) {
88      needsQuotes = true;
89      result += C;
90    } else {
91      needsQuotes = true;
92      result += "\\";
93      char hex1 = (C >> 4) & 0x0F;
94      if (hex1 < 10)
95        result += hex1 + '0';
96      else
97        result += hex1 - 10 + 'A';
98      char hex2 = C & 0x0F;
99      if (hex2 < 10)
100        result += hex2 + '0';
101      else
102        result += hex2 - 10 + 'A';
103    }
104  }
105  if (needsQuotes) {
106    result.insert(0,"\"");
107    result += '"';
108  }
109  return result;
110}
111
112/// getLLVMName - Turn the specified string into an 'LLVM name', which is
113/// surrounded with ""'s and escaped if it has special chars in it.
114static std::string getLLVMName(const std::string &Name) {
115  assert(!Name.empty() && "Cannot get empty name!");
116  return QuoteNameIfNeeded(Name);
117}
118
119enum PrefixType {
120  GlobalPrefix,
121  LabelPrefix,
122  LocalPrefix
123};
124
125/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
126/// prefixed with % (if the string only contains simple characters) or is
127/// surrounded with ""'s (if it has special chars in it).  Print it out.
128static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
129                          unsigned NameLen, PrefixType Prefix) {
130  assert(NameStr && "Cannot get empty name!");
131  switch (Prefix) {
132  default: assert(0 && "Bad prefix!");
133  case GlobalPrefix: OS << '@'; break;
134  case LabelPrefix:  break;
135  case LocalPrefix:  OS << '%'; break;
136  }
137
138  // Scan the name to see if it needs quotes first.
139  bool NeedsQuotes = NameStr[0] >= '0' && NameStr[0] <= '9';
140  if (!NeedsQuotes) {
141    for (unsigned i = 0; i != NameLen; ++i) {
142      char C = NameStr[i];
143      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
144        NeedsQuotes = true;
145        break;
146      }
147    }
148  }
149
150  // If we didn't need any quotes, just write out the name in one blast.
151  if (!NeedsQuotes) {
152    OS.write(NameStr, NameLen);
153    return;
154  }
155
156  // Okay, we need quotes.  Output the quotes and escape any scary characters as
157  // needed.
158  OS << '"';
159  for (unsigned i = 0; i != NameLen; ++i) {
160    char C = NameStr[i];
161    assert(C != '"' && "Illegal character in LLVM value name!");
162    if (C == '\\') {
163      OS << "\\\\";
164    } else if (isprint(C)) {
165      OS << C;
166    } else {
167      OS << '\\';
168      char hex1 = (C >> 4) & 0x0F;
169      if (hex1 < 10)
170        OS << (char)(hex1 + '0');
171      else
172        OS << (char)(hex1 - 10 + 'A');
173      char hex2 = C & 0x0F;
174      if (hex2 < 10)
175        OS << (char)(hex2 + '0');
176      else
177        OS << (char)(hex2 - 10 + 'A');
178    }
179  }
180  OS << '"';
181}
182
183/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
184/// prefixed with % (if the string only contains simple characters) or is
185/// surrounded with ""'s (if it has special chars in it).  Print it out.
186static void PrintLLVMName(raw_ostream &OS, const Value *V) {
187  PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
188                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
189}
190
191
192
193//===----------------------------------------------------------------------===//
194// SlotTracker Class: Enumerate slot numbers for unnamed values
195//===----------------------------------------------------------------------===//
196
197namespace {
198
199/// This class provides computation of slot numbers for LLVM Assembly writing.
200///
201class SlotTracker {
202public:
203  /// ValueMap - A mapping of Values to slot numbers
204  typedef DenseMap<const Value*, unsigned> ValueMap;
205
206private:
207  /// TheModule - The module for which we are holding slot numbers
208  const Module* TheModule;
209
210  /// TheFunction - The function for which we are holding slot numbers
211  const Function* TheFunction;
212  bool FunctionProcessed;
213
214  /// mMap - The TypePlanes map for the module level data
215  ValueMap mMap;
216  unsigned mNext;
217
218  /// fMap - The TypePlanes map for the function level data
219  ValueMap fMap;
220  unsigned fNext;
221
222public:
223  /// Construct from a module
224  explicit SlotTracker(const Module *M);
225  /// Construct from a function, starting out in incorp state.
226  explicit SlotTracker(const Function *F);
227
228  /// Return the slot number of the specified value in it's type
229  /// plane.  If something is not in the SlotTracker, return -1.
230  int getLocalSlot(const Value *V);
231  int getGlobalSlot(const GlobalValue *V);
232
233  /// If you'd like to deal with a function instead of just a module, use
234  /// this method to get its data into the SlotTracker.
235  void incorporateFunction(const Function *F) {
236    TheFunction = F;
237    FunctionProcessed = false;
238  }
239
240  /// After calling incorporateFunction, use this method to remove the
241  /// most recently incorporated function from the SlotTracker. This
242  /// will reset the state of the machine back to just the module contents.
243  void purgeFunction();
244
245  // Implementation Details
246private:
247  /// This function does the actual initialization.
248  inline void initialize();
249
250  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
251  void CreateModuleSlot(const GlobalValue *V);
252
253  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
254  void CreateFunctionSlot(const Value *V);
255
256  /// Add all of the module level global variables (and their initializers)
257  /// and function declarations, but not the contents of those functions.
258  void processModule();
259
260  /// Add all of the functions arguments, basic blocks, and instructions
261  void processFunction();
262
263  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
264  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
265};
266
267}  // end anonymous namespace
268
269
270static SlotTracker *createSlotTracker(const Value *V) {
271  if (const Argument *FA = dyn_cast<Argument>(V))
272    return new SlotTracker(FA->getParent());
273
274  if (const Instruction *I = dyn_cast<Instruction>(V))
275    return new SlotTracker(I->getParent()->getParent());
276
277  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
278    return new SlotTracker(BB->getParent());
279
280  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
281    return new SlotTracker(GV->getParent());
282
283  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
284    return new SlotTracker(GA->getParent());
285
286  if (const Function *Func = dyn_cast<Function>(V))
287    return new SlotTracker(Func);
288
289  return 0;
290}
291
292#if 0
293#define ST_DEBUG(X) cerr << X
294#else
295#define ST_DEBUG(X)
296#endif
297
298// Module level constructor. Causes the contents of the Module (sans functions)
299// to be added to the slot table.
300SlotTracker::SlotTracker(const Module *M)
301  : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
302}
303
304// Function level constructor. Causes the contents of the Module and the one
305// function provided to be added to the slot table.
306SlotTracker::SlotTracker(const Function *F)
307  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
308    mNext(0), fNext(0) {
309}
310
311inline void SlotTracker::initialize() {
312  if (TheModule) {
313    processModule();
314    TheModule = 0; ///< Prevent re-processing next time we're called.
315  }
316
317  if (TheFunction && !FunctionProcessed)
318    processFunction();
319}
320
321// Iterate through all the global variables, functions, and global
322// variable initializers and create slots for them.
323void SlotTracker::processModule() {
324  ST_DEBUG("begin processModule!\n");
325
326  // Add all of the unnamed global variables to the value table.
327  for (Module::const_global_iterator I = TheModule->global_begin(),
328       E = TheModule->global_end(); I != E; ++I)
329    if (!I->hasName())
330      CreateModuleSlot(I);
331
332  // Add all the unnamed functions to the table.
333  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
334       I != E; ++I)
335    if (!I->hasName())
336      CreateModuleSlot(I);
337
338  ST_DEBUG("end processModule!\n");
339}
340
341
342// Process the arguments, basic blocks, and instructions  of a function.
343void SlotTracker::processFunction() {
344  ST_DEBUG("begin processFunction!\n");
345  fNext = 0;
346
347  // Add all the function arguments with no names.
348  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
349      AE = TheFunction->arg_end(); AI != AE; ++AI)
350    if (!AI->hasName())
351      CreateFunctionSlot(AI);
352
353  ST_DEBUG("Inserting Instructions:\n");
354
355  // Add all of the basic blocks and instructions with no names.
356  for (Function::const_iterator BB = TheFunction->begin(),
357       E = TheFunction->end(); BB != E; ++BB) {
358    if (!BB->hasName())
359      CreateFunctionSlot(BB);
360    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
361      if (I->getType() != Type::VoidTy && !I->hasName())
362        CreateFunctionSlot(I);
363  }
364
365  FunctionProcessed = true;
366
367  ST_DEBUG("end processFunction!\n");
368}
369
370/// Clean up after incorporating a function. This is the only way to get out of
371/// the function incorporation state that affects get*Slot/Create*Slot. Function
372/// incorporation state is indicated by TheFunction != 0.
373void SlotTracker::purgeFunction() {
374  ST_DEBUG("begin purgeFunction!\n");
375  fMap.clear(); // Simply discard the function level map
376  TheFunction = 0;
377  FunctionProcessed = false;
378  ST_DEBUG("end purgeFunction!\n");
379}
380
381/// getGlobalSlot - Get the slot number of a global value.
382int SlotTracker::getGlobalSlot(const GlobalValue *V) {
383  // Check for uninitialized state and do lazy initialization.
384  initialize();
385
386  // Find the type plane in the module map
387  ValueMap::iterator MI = mMap.find(V);
388  return MI == mMap.end() ? -1 : MI->second;
389}
390
391
392/// getLocalSlot - Get the slot number for a value that is local to a function.
393int SlotTracker::getLocalSlot(const Value *V) {
394  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
395
396  // Check for uninitialized state and do lazy initialization.
397  initialize();
398
399  ValueMap::iterator FI = fMap.find(V);
400  return FI == fMap.end() ? -1 : FI->second;
401}
402
403
404/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
405void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
406  assert(V && "Can't insert a null Value into SlotTracker!");
407  assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
408  assert(!V->hasName() && "Doesn't need a slot!");
409
410  unsigned DestSlot = mNext++;
411  mMap[V] = DestSlot;
412
413  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
414           DestSlot << " [");
415  // G = Global, F = Function, A = Alias, o = other
416  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
417            (isa<Function>(V) ? 'F' :
418             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
419}
420
421
422/// CreateSlot - Create a new slot for the specified value if it has no name.
423void SlotTracker::CreateFunctionSlot(const Value *V) {
424  assert(V->getType() != Type::VoidTy && !V->hasName() &&
425         "Doesn't need a slot!");
426
427  unsigned DestSlot = fNext++;
428  fMap[V] = DestSlot;
429
430  // G = Global, F = Function, o = other
431  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
432           DestSlot << " [o]\n");
433}
434
435
436
437//===----------------------------------------------------------------------===//
438// AsmWriter Implementation
439//===----------------------------------------------------------------------===//
440
441static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
442                               std::map<const Type *, std::string> &TypeTable,
443                                   SlotTracker *Machine);
444
445
446
447/// fillTypeNameTable - If the module has a symbol table, take all global types
448/// and stuff their names into the TypeNames map.
449///
450static void fillTypeNameTable(const Module *M,
451                              std::map<const Type *, std::string> &TypeNames) {
452  if (!M) return;
453  const TypeSymbolTable &ST = M->getTypeSymbolTable();
454  TypeSymbolTable::const_iterator TI = ST.begin();
455  for (; TI != ST.end(); ++TI) {
456    // As a heuristic, don't insert pointer to primitive types, because
457    // they are used too often to have a single useful name.
458    //
459    const Type *Ty = cast<Type>(TI->second);
460    if (!isa<PointerType>(Ty) ||
461        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
462        !cast<PointerType>(Ty)->getElementType()->isInteger() ||
463        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
464      TypeNames.insert(std::make_pair(Ty, '%' + getLLVMName(TI->first)));
465  }
466}
467
468
469
470static void calcTypeName(const Type *Ty,
471                         std::vector<const Type *> &TypeStack,
472                         std::map<const Type *, std::string> &TypeNames,
473                         std::string &Result) {
474  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
475    Result += Ty->getDescription();  // Base case
476    return;
477  }
478
479  // Check to see if the type is named.
480  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
481  if (I != TypeNames.end()) {
482    Result += I->second;
483    return;
484  }
485
486  if (isa<OpaqueType>(Ty)) {
487    Result += "opaque";
488    return;
489  }
490
491  // Check to see if the Type is already on the stack...
492  unsigned Slot = 0, CurSize = TypeStack.size();
493  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
494
495  // This is another base case for the recursion.  In this case, we know
496  // that we have looped back to a type that we have previously visited.
497  // Generate the appropriate upreference to handle this.
498  if (Slot < CurSize) {
499    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
500    return;
501  }
502
503  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
504
505  switch (Ty->getTypeID()) {
506  case Type::IntegerTyID: {
507    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
508    Result += "i" + utostr(BitWidth);
509    break;
510  }
511  case Type::FunctionTyID: {
512    const FunctionType *FTy = cast<FunctionType>(Ty);
513    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
514    Result += " (";
515    for (FunctionType::param_iterator I = FTy->param_begin(),
516         E = FTy->param_end(); I != E; ++I) {
517      if (I != FTy->param_begin())
518        Result += ", ";
519      calcTypeName(*I, TypeStack, TypeNames, Result);
520    }
521    if (FTy->isVarArg()) {
522      if (FTy->getNumParams()) Result += ", ";
523      Result += "...";
524    }
525    Result += ")";
526    break;
527  }
528  case Type::StructTyID: {
529    const StructType *STy = cast<StructType>(Ty);
530    if (STy->isPacked())
531      Result += '<';
532    Result += "{ ";
533    for (StructType::element_iterator I = STy->element_begin(),
534           E = STy->element_end(); I != E; ++I) {
535      if (I != STy->element_begin())
536        Result += ", ";
537      calcTypeName(*I, TypeStack, TypeNames, Result);
538    }
539    Result += " }";
540    if (STy->isPacked())
541      Result += '>';
542    break;
543  }
544  case Type::PointerTyID: {
545    const PointerType *PTy = cast<PointerType>(Ty);
546    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
547    if (unsigned AddressSpace = PTy->getAddressSpace())
548      Result += " addrspace(" + utostr(AddressSpace) + ")";
549    Result += "*";
550    break;
551  }
552  case Type::ArrayTyID: {
553    const ArrayType *ATy = cast<ArrayType>(Ty);
554    Result += "[" + utostr(ATy->getNumElements()) + " x ";
555    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
556    Result += "]";
557    break;
558  }
559  case Type::VectorTyID: {
560    const VectorType *PTy = cast<VectorType>(Ty);
561    Result += "<" + utostr(PTy->getNumElements()) + " x ";
562    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
563    Result += ">";
564    break;
565  }
566  case Type::OpaqueTyID:
567    Result += "opaque";
568    break;
569  default:
570    Result += "<unrecognized-type>";
571    break;
572  }
573
574  TypeStack.pop_back();       // Remove self from stack...
575}
576
577
578/// printTypeInt - The internal guts of printing out a type that has a
579/// potentially named portion.
580///
581static void printTypeInt(raw_ostream &Out, const Type *Ty,
582                         std::map<const Type *, std::string> &TypeNames) {
583  // Primitive types always print out their description, regardless of whether
584  // they have been named or not.
585  //
586  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
587    Out << Ty->getDescription();
588    return;
589  }
590
591  // Check to see if the type is named.
592  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
593  if (I != TypeNames.end()) {
594    Out << I->second;
595    return;
596  }
597
598  // Otherwise we have a type that has not been named but is a derived type.
599  // Carefully recurse the type hierarchy to print out any contained symbolic
600  // names.
601  //
602  std::vector<const Type *> TypeStack;
603  std::string TypeName;
604  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
605  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
606  Out << TypeName;
607}
608
609
610/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
611/// type, iff there is an entry in the modules symbol table for the specified
612/// type or one of it's component types. This is slower than a simple x << Type
613///
614void llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
615                             const Module *M) {
616  raw_os_ostream RO(Out);
617  WriteTypeSymbolic(RO, Ty, M);
618}
619
620void llvm::WriteTypeSymbolic(raw_ostream &Out, const Type *Ty, const Module *M){
621  Out << ' ';
622
623  // If they want us to print out a type, but there is no context, we can't
624  // print it symbolically.
625  if (!M) {
626    Out << Ty->getDescription();
627  } else {
628    std::map<const Type *, std::string> TypeNames;
629    fillTypeNameTable(M, TypeNames);
630    printTypeInt(Out, Ty, TypeNames);
631  }
632}
633
634// PrintEscapedString - Print each character of the specified string, escaping
635// it if it is not printable or if it is an escape char.
636static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
637  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
638    unsigned char C = Str[i];
639    if (isprint(C) && C != '"' && C != '\\') {
640      Out << C;
641    } else {
642      Out << '\\'
643          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
644          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
645    }
646  }
647}
648
649static const char *getPredicateText(unsigned predicate) {
650  const char * pred = "unknown";
651  switch (predicate) {
652    case FCmpInst::FCMP_FALSE: pred = "false"; break;
653    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
654    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
655    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
656    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
657    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
658    case FCmpInst::FCMP_ONE:   pred = "one"; break;
659    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
660    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
661    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
662    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
663    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
664    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
665    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
666    case FCmpInst::FCMP_UNE:   pred = "une"; break;
667    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
668    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
669    case ICmpInst::ICMP_NE:    pred = "ne"; break;
670    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
671    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
672    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
673    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
674    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
675    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
676    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
677    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
678  }
679  return pred;
680}
681
682static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
683                             std::map<const Type *, std::string> &TypeTable,
684                             SlotTracker *Machine) {
685  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
686    if (CI->getType() == Type::Int1Ty) {
687      Out << (CI->getZExtValue() ? "true" : "false");
688      return;
689    }
690    Out << CI->getValue();
691    return;
692  }
693
694  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
695    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
696        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
697      // We would like to output the FP constant value in exponential notation,
698      // but we cannot do this if doing so will lose precision.  Check here to
699      // make sure that we only output it in exponential format if we can parse
700      // the value back and get the same value.
701      //
702      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
703      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
704                              CFP->getValueAPF().convertToFloat();
705      std::string StrVal = ftostr(CFP->getValueAPF());
706
707      // Check to make sure that the stringized number is not some string like
708      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
709      // that the string matches the "[-+]?[0-9]" regex.
710      //
711      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
712          ((StrVal[0] == '-' || StrVal[0] == '+') &&
713           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
714        // Reparse stringized version!
715        if (atof(StrVal.c_str()) == Val) {
716          Out << StrVal;
717          return;
718        }
719      }
720      // Otherwise we could not reparse it to exactly the same value, so we must
721      // output the string in hexadecimal format!
722      assert(sizeof(double) == sizeof(uint64_t) &&
723             "assuming that double is 64 bits!");
724      Out << "0x" << utohexstr(DoubleToBits(Val));
725      return;
726    }
727
728    // Some form of long double.  These appear as a magic letter identifying
729    // the type, then a fixed number of hex digits.
730    Out << "0x";
731    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended)
732      Out << 'K';
733    else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
734      Out << 'L';
735    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
736      Out << 'M';
737    else
738      assert(0 && "Unsupported floating point type");
739    // api needed to prevent premature destruction
740    APInt api = CFP->getValueAPF().convertToAPInt();
741    const uint64_t* p = api.getRawData();
742    uint64_t word = *p;
743    int shiftcount=60;
744    int width = api.getBitWidth();
745    for (int j=0; j<width; j+=4, shiftcount-=4) {
746      unsigned int nibble = (word>>shiftcount) & 15;
747      if (nibble < 10)
748        Out << (unsigned char)(nibble + '0');
749      else
750        Out << (unsigned char)(nibble - 10 + 'A');
751      if (shiftcount == 0 && j+4 < width) {
752        word = *(++p);
753        shiftcount = 64;
754        if (width-j-4 < 64)
755          shiftcount = width-j-4;
756      }
757    }
758    return;
759  }
760
761  if (isa<ConstantAggregateZero>(CV)) {
762    Out << "zeroinitializer";
763    return;
764  }
765
766  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
767    // As a special case, print the array as a string if it is an array of
768    // i8 with ConstantInt values.
769    //
770    const Type *ETy = CA->getType()->getElementType();
771    if (CA->isString()) {
772      Out << "c\"";
773      PrintEscapedString(CA->getAsString(), Out);
774      Out << '"';
775    } else {                // Cannot output in string format...
776      Out << '[';
777      if (CA->getNumOperands()) {
778        Out << ' ';
779        printTypeInt(Out, ETy, TypeTable);
780        WriteAsOperandInternal(Out, CA->getOperand(0),
781                               TypeTable, Machine);
782        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
783          Out << ", ";
784          printTypeInt(Out, ETy, TypeTable);
785          WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
786        }
787      }
788      Out << " ]";
789    }
790    return;
791  }
792
793  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
794    if (CS->getType()->isPacked())
795      Out << '<';
796    Out << '{';
797    unsigned N = CS->getNumOperands();
798    if (N) {
799      Out << ' ';
800      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
801
802      WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
803
804      for (unsigned i = 1; i < N; i++) {
805        Out << ", ";
806        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
807
808        WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
809      }
810    }
811
812    Out << " }";
813    if (CS->getType()->isPacked())
814      Out << '>';
815    return;
816  }
817
818  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
819    const Type *ETy = CP->getType()->getElementType();
820    assert(CP->getNumOperands() > 0 &&
821           "Number of operands for a PackedConst must be > 0");
822    Out << "< ";
823    printTypeInt(Out, ETy, TypeTable);
824    WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
825    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
826      Out << ", ";
827      printTypeInt(Out, ETy, TypeTable);
828      WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
829    }
830    Out << " >";
831    return;
832  }
833
834  if (isa<ConstantPointerNull>(CV)) {
835    Out << "null";
836    return;
837  }
838
839  if (isa<UndefValue>(CV)) {
840    Out << "undef";
841    return;
842  }
843
844  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
845    Out << CE->getOpcodeName();
846    if (CE->isCompare())
847      Out << ' ' << getPredicateText(CE->getPredicate());
848    Out << " (";
849
850    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
851      printTypeInt(Out, (*OI)->getType(), TypeTable);
852      WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
853      if (OI+1 != CE->op_end())
854        Out << ", ";
855    }
856
857    if (CE->hasIndices()) {
858      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
859      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
860        Out << ", " << Indices[i];
861    }
862
863    if (CE->isCast()) {
864      Out << " to ";
865      printTypeInt(Out, CE->getType(), TypeTable);
866    }
867
868    Out << ')';
869    return;
870  }
871
872  Out << "<placeholder or erroneous Constant>";
873}
874
875
876/// WriteAsOperand - Write the name of the specified value out to the specified
877/// ostream.  This can be useful when you just want to print int %reg126, not
878/// the whole instruction that generated it.
879///
880static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
881                                  std::map<const Type*, std::string> &TypeTable,
882                                   SlotTracker *Machine) {
883  Out << ' ';
884  if (V->hasName()) {
885    PrintLLVMName(Out, V);
886    return;
887  }
888
889  const Constant *CV = dyn_cast<Constant>(V);
890  if (CV && !isa<GlobalValue>(CV)) {
891    WriteConstantInt(Out, CV, TypeTable, Machine);
892    return;
893  }
894
895  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
896    Out << "asm ";
897    if (IA->hasSideEffects())
898      Out << "sideeffect ";
899    Out << '"';
900    PrintEscapedString(IA->getAsmString(), Out);
901    Out << "\", \"";
902    PrintEscapedString(IA->getConstraintString(), Out);
903    Out << '"';
904    return;
905  }
906
907  char Prefix = '%';
908  int Slot;
909  if (Machine) {
910    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
911      Slot = Machine->getGlobalSlot(GV);
912      Prefix = '@';
913    } else {
914      Slot = Machine->getLocalSlot(V);
915    }
916  } else {
917    Machine = createSlotTracker(V);
918    if (Machine) {
919      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
920        Slot = Machine->getGlobalSlot(GV);
921        Prefix = '@';
922      } else {
923        Slot = Machine->getLocalSlot(V);
924      }
925    } else {
926      Slot = -1;
927    }
928    delete Machine;
929  }
930
931  if (Slot != -1)
932    Out << Prefix << Slot;
933  else
934    Out << "<badref>";
935}
936
937/// WriteAsOperand - Write the name of the specified value out to the specified
938/// ostream.  This can be useful when you just want to print int %reg126, not
939/// the whole instruction that generated it.
940///
941void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
942                          const Module *Context) {
943  raw_os_ostream OS(Out);
944  WriteAsOperand(OS, V, PrintType, Context);
945}
946
947void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
948                          const Module *Context) {
949  std::map<const Type *, std::string> TypeNames;
950  if (Context == 0) Context = getModuleFromVal(V);
951
952  if (Context)
953    fillTypeNameTable(Context, TypeNames);
954
955  if (PrintType)
956    printTypeInt(Out, V->getType(), TypeNames);
957
958  WriteAsOperandInternal(Out, V, TypeNames, 0);
959}
960
961
962namespace {
963
964class AssemblyWriter {
965  raw_ostream &Out;
966  SlotTracker &Machine;
967  const Module *TheModule;
968  std::map<const Type *, std::string> TypeNames;
969  AssemblyAnnotationWriter *AnnotationWriter;
970public:
971  inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
972                        AssemblyAnnotationWriter *AAW)
973    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
974
975    // If the module has a symbol table, take all global types and stuff their
976    // names into the TypeNames map.
977    //
978    fillTypeNameTable(M, TypeNames);
979  }
980
981  void write(const Module *M) { printModule(M);       }
982
983  void write(const GlobalValue *G) {
984    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
985      printGlobal(GV);
986    else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
987      printAlias(GA);
988    else if (const Function *F = dyn_cast<Function>(G))
989      printFunction(F);
990    else
991      assert(0 && "Unknown global");
992  }
993
994  void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
995  void write(const Instruction *I)    { printInstruction(*I); }
996  void write(const Type *Ty)          { printType(Ty);        }
997
998  void writeOperand(const Value *Op, bool PrintType);
999  void writeParamOperand(const Value *Operand, ParameterAttributes Attrs);
1000
1001  const Module* getModule() { return TheModule; }
1002
1003private:
1004  void printModule(const Module *M);
1005  void printTypeSymbolTable(const TypeSymbolTable &ST);
1006  void printGlobal(const GlobalVariable *GV);
1007  void printAlias(const GlobalAlias *GV);
1008  void printFunction(const Function *F);
1009  void printArgument(const Argument *FA, ParameterAttributes Attrs);
1010  void printBasicBlock(const BasicBlock *BB);
1011  void printInstruction(const Instruction &I);
1012
1013  // printType - Go to extreme measures to attempt to print out a short,
1014  // symbolic version of a type name.
1015  //
1016  void printType(const Type *Ty) {
1017    printTypeInt(Out, Ty, TypeNames);
1018  }
1019
1020  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
1021  // without considering any symbolic types that we may have equal to it.
1022  //
1023  void printTypeAtLeastOneLevel(const Type *Ty);
1024
1025  // printInfoComment - Print a little comment after the instruction indicating
1026  // which slot it occupies.
1027  void printInfoComment(const Value &V);
1028};
1029}  // end of llvm namespace
1030
1031/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
1032/// without considering any symbolic types that we may have equal to it.
1033///
1034void AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
1035  if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
1036    Out << "i" << utostr(ITy->getBitWidth());
1037    return;
1038  }
1039
1040  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
1041    printType(FTy->getReturnType());
1042    Out << " (";
1043    for (FunctionType::param_iterator I = FTy->param_begin(),
1044           E = FTy->param_end(); I != E; ++I) {
1045      if (I != FTy->param_begin())
1046        Out << ", ";
1047      printType(*I);
1048    }
1049    if (FTy->isVarArg()) {
1050      if (FTy->getNumParams()) Out << ", ";
1051      Out << "...";
1052    }
1053    Out << ')';
1054    return;
1055  }
1056
1057  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1058    if (STy->isPacked())
1059      Out << '<';
1060    Out << "{ ";
1061    for (StructType::element_iterator I = STy->element_begin(),
1062           E = STy->element_end(); I != E; ++I) {
1063      if (I != STy->element_begin())
1064        Out << ", ";
1065      printType(*I);
1066    }
1067    Out << " }";
1068    if (STy->isPacked())
1069      Out << '>';
1070    return;
1071  }
1072
1073  if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1074    printType(PTy->getElementType());
1075    if (unsigned AddressSpace = PTy->getAddressSpace())
1076      Out << " addrspace(" << AddressSpace << ")";
1077    Out << '*';
1078    return;
1079  }
1080
1081  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1082    Out << '[' << ATy->getNumElements() << " x ";
1083    printType(ATy->getElementType());
1084    Out << ']';
1085    return;
1086  }
1087
1088  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
1089    Out << '<' << PTy->getNumElements() << " x ";
1090    printType(PTy->getElementType());
1091    Out << '>';
1092    return;
1093  }
1094
1095  if (isa<OpaqueType>(Ty)) {
1096    Out << "opaque";
1097    return;
1098  }
1099
1100  if (!Ty->isPrimitiveType())
1101    Out << "<unknown derived type>";
1102  printType(Ty);
1103}
1104
1105
1106void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1107  if (Operand == 0) {
1108    Out << "<null operand!>";
1109  } else {
1110    if (PrintType) {
1111      Out << ' ';
1112      printType(Operand->getType());
1113    }
1114    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
1115  }
1116}
1117
1118void AssemblyWriter::writeParamOperand(const Value *Operand,
1119                                       ParameterAttributes Attrs) {
1120  if (Operand == 0) {
1121    Out << "<null operand!>";
1122  } else {
1123    Out << ' ';
1124    // Print the type
1125    printType(Operand->getType());
1126    // Print parameter attributes list
1127    if (Attrs != ParamAttr::None)
1128      Out << ' ' << ParamAttr::getAsString(Attrs);
1129    // Print the operand
1130    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
1131  }
1132}
1133
1134void AssemblyWriter::printModule(const Module *M) {
1135  if (!M->getModuleIdentifier().empty() &&
1136      // Don't print the ID if it will start a new line (which would
1137      // require a comment char before it).
1138      M->getModuleIdentifier().find('\n') == std::string::npos)
1139    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1140
1141  if (!M->getDataLayout().empty())
1142    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1143  if (!M->getTargetTriple().empty())
1144    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1145
1146  if (!M->getModuleInlineAsm().empty()) {
1147    // Split the string into lines, to make it easier to read the .ll file.
1148    std::string Asm = M->getModuleInlineAsm();
1149    size_t CurPos = 0;
1150    size_t NewLine = Asm.find_first_of('\n', CurPos);
1151    while (NewLine != std::string::npos) {
1152      // We found a newline, print the portion of the asm string from the
1153      // last newline up to this newline.
1154      Out << "module asm \"";
1155      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1156                         Out);
1157      Out << "\"\n";
1158      CurPos = NewLine+1;
1159      NewLine = Asm.find_first_of('\n', CurPos);
1160    }
1161    Out << "module asm \"";
1162    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1163    Out << "\"\n";
1164  }
1165
1166  // Loop over the dependent libraries and emit them.
1167  Module::lib_iterator LI = M->lib_begin();
1168  Module::lib_iterator LE = M->lib_end();
1169  if (LI != LE) {
1170    Out << "deplibs = [ ";
1171    while (LI != LE) {
1172      Out << '"' << *LI << '"';
1173      ++LI;
1174      if (LI != LE)
1175        Out << ", ";
1176    }
1177    Out << " ]\n";
1178  }
1179
1180  // Loop over the symbol table, emitting all named constants.
1181  printTypeSymbolTable(M->getTypeSymbolTable());
1182
1183  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1184       I != E; ++I)
1185    printGlobal(I);
1186
1187  // Output all aliases.
1188  if (!M->alias_empty()) Out << "\n";
1189  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1190       I != E; ++I)
1191    printAlias(I);
1192
1193  // Output all of the functions.
1194  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1195    printFunction(I);
1196}
1197
1198static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
1199  switch (LT) {
1200  case GlobalValue::InternalLinkage:     Out << "internal "; break;
1201  case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
1202  case GlobalValue::WeakLinkage:         Out << "weak "; break;
1203  case GlobalValue::CommonLinkage:       Out << "common "; break;
1204  case GlobalValue::AppendingLinkage:    Out << "appending "; break;
1205  case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
1206  case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
1207  case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1208  case GlobalValue::ExternalLinkage: break;
1209  case GlobalValue::GhostLinkage:
1210    Out << "GhostLinkage not allowed in AsmWriter!\n";
1211    abort();
1212  }
1213}
1214
1215
1216static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1217                            raw_ostream &Out) {
1218  switch (Vis) {
1219  default: assert(0 && "Invalid visibility style!");
1220  case GlobalValue::DefaultVisibility: break;
1221  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1222  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1223  }
1224}
1225
1226void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1227  if (GV->hasName()) {
1228    PrintLLVMName(Out, GV);
1229    Out << " = ";
1230  }
1231
1232  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1233    Out << "external ";
1234
1235  PrintLinkage(GV->getLinkage(), Out);
1236  PrintVisibility(GV->getVisibility(), Out);
1237
1238  if (GV->isThreadLocal()) Out << "thread_local ";
1239  Out << (GV->isConstant() ? "constant " : "global ");
1240  printType(GV->getType()->getElementType());
1241
1242  if (GV->hasInitializer())
1243    writeOperand(GV->getInitializer(), false);
1244
1245  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1246    Out << " addrspace(" << AddressSpace << ") ";
1247
1248  if (GV->hasSection())
1249    Out << ", section \"" << GV->getSection() << '"';
1250  if (GV->getAlignment())
1251    Out << ", align " << GV->getAlignment();
1252
1253  printInfoComment(*GV);
1254  Out << '\n';
1255}
1256
1257void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1258  // Don't crash when dumping partially built GA
1259  if (!GA->hasName())
1260    Out << "<<nameless>> = ";
1261  else {
1262    PrintLLVMName(Out, GA);
1263    Out << " = ";
1264  }
1265  PrintVisibility(GA->getVisibility(), Out);
1266
1267  Out << "alias ";
1268
1269  PrintLinkage(GA->getLinkage(), Out);
1270
1271  const Constant *Aliasee = GA->getAliasee();
1272
1273  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1274    printType(GV->getType());
1275    Out << ' ';
1276    PrintLLVMName(Out, GV);
1277  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1278    printType(F->getFunctionType());
1279    Out << "* ";
1280
1281    if (F->hasName())
1282      PrintLLVMName(Out, F);
1283    else
1284      Out << "@\"\"";
1285  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1286    printType(GA->getType());
1287    Out << " ";
1288    PrintLLVMName(Out, GA);
1289  } else {
1290    const ConstantExpr *CE = 0;
1291    if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
1292        (CE->getOpcode() == Instruction::BitCast)) {
1293      writeOperand(CE, false);
1294    } else
1295      assert(0 && "Unsupported aliasee");
1296  }
1297
1298  printInfoComment(*GA);
1299  Out << '\n';
1300}
1301
1302void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1303  // Print the types.
1304  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1305       TI != TE; ++TI) {
1306    Out << '\t';
1307    PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
1308    Out << " = type ";
1309
1310    // Make sure we print out at least one level of the type structure, so
1311    // that we do not get %FILE = type %FILE
1312    //
1313    printTypeAtLeastOneLevel(TI->second);
1314    Out << '\n';
1315  }
1316}
1317
1318/// printFunction - Print all aspects of a function.
1319///
1320void AssemblyWriter::printFunction(const Function *F) {
1321  // Print out the return type and name.
1322  Out << '\n';
1323
1324  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1325
1326  if (F->isDeclaration())
1327    Out << "declare ";
1328  else
1329    Out << "define ";
1330
1331  PrintLinkage(F->getLinkage(), Out);
1332  PrintVisibility(F->getVisibility(), Out);
1333
1334  // Print the calling convention.
1335  switch (F->getCallingConv()) {
1336  case CallingConv::C: break;   // default
1337  case CallingConv::Fast:         Out << "fastcc "; break;
1338  case CallingConv::Cold:         Out << "coldcc "; break;
1339  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1340  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1341  case CallingConv::X86_SSECall:  Out << "x86_ssecallcc "; break;
1342  default: Out << "cc" << F->getCallingConv() << " "; break;
1343  }
1344
1345  const FunctionType *FT = F->getFunctionType();
1346  const PAListPtr &Attrs = F->getParamAttrs();
1347  printType(F->getReturnType());
1348  Out << ' ';
1349  if (F->hasName())
1350    PrintLLVMName(Out, F);
1351  else
1352    Out << "@\"\"";
1353  Out << '(';
1354  Machine.incorporateFunction(F);
1355
1356  // Loop over the arguments, printing them...
1357
1358  unsigned Idx = 1;
1359  if (!F->isDeclaration()) {
1360    // If this isn't a declaration, print the argument names as well.
1361    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1362         I != E; ++I) {
1363      // Insert commas as we go... the first arg doesn't get a comma
1364      if (I != F->arg_begin()) Out << ", ";
1365      printArgument(I, Attrs.getParamAttrs(Idx));
1366      Idx++;
1367    }
1368  } else {
1369    // Otherwise, print the types from the function type.
1370    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1371      // Insert commas as we go... the first arg doesn't get a comma
1372      if (i) Out << ", ";
1373
1374      // Output type...
1375      printType(FT->getParamType(i));
1376
1377      ParameterAttributes ArgAttrs = Attrs.getParamAttrs(i+1);
1378      if (ArgAttrs != ParamAttr::None)
1379        Out << ' ' << ParamAttr::getAsString(ArgAttrs);
1380    }
1381  }
1382
1383  // Finish printing arguments...
1384  if (FT->isVarArg()) {
1385    if (FT->getNumParams()) Out << ", ";
1386    Out << "...";  // Output varargs portion of signature!
1387  }
1388  Out << ')';
1389  ParameterAttributes RetAttrs = Attrs.getParamAttrs(0);
1390  if (RetAttrs != ParamAttr::None)
1391    Out << ' ' << ParamAttr::getAsString(Attrs.getParamAttrs(0));
1392  if (F->hasSection())
1393    Out << " section \"" << F->getSection() << '"';
1394  if (F->getAlignment())
1395    Out << " align " << F->getAlignment();
1396  if (F->hasGC())
1397    Out << " gc \"" << F->getGC() << '"';
1398
1399  if (F->isDeclaration()) {
1400    Out << "\n";
1401  } else {
1402    Out << " {";
1403
1404    // Output all of its basic blocks... for the function
1405    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1406      printBasicBlock(I);
1407
1408    Out << "}\n";
1409  }
1410
1411  Machine.purgeFunction();
1412}
1413
1414/// printArgument - This member is called for every argument that is passed into
1415/// the function.  Simply print it out
1416///
1417void AssemblyWriter::printArgument(const Argument *Arg,
1418                                   ParameterAttributes Attrs) {
1419  // Output type...
1420  printType(Arg->getType());
1421
1422  // Output parameter attributes list
1423  if (Attrs != ParamAttr::None)
1424    Out << ' ' << ParamAttr::getAsString(Attrs);
1425
1426  // Output name, if available...
1427  if (Arg->hasName()) {
1428    Out << ' ';
1429    PrintLLVMName(Out, Arg);
1430  }
1431}
1432
1433/// printBasicBlock - This member is called for each basic block in a method.
1434///
1435void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1436  if (BB->hasName()) {              // Print out the label if it exists...
1437    Out << "\n";
1438    PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
1439    Out << ':';
1440  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1441    Out << "\n; <label>:";
1442    int Slot = Machine.getLocalSlot(BB);
1443    if (Slot != -1)
1444      Out << Slot;
1445    else
1446      Out << "<badref>";
1447  }
1448
1449  if (BB->getParent() == 0)
1450    Out << "\t\t; Error: Block without parent!";
1451  else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1452    // Output predecessors for the block...
1453    Out << "\t\t;";
1454    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1455
1456    if (PI == PE) {
1457      Out << " No predecessors!";
1458    } else {
1459      Out << " preds =";
1460      writeOperand(*PI, false);
1461      for (++PI; PI != PE; ++PI) {
1462        Out << ',';
1463        writeOperand(*PI, false);
1464      }
1465    }
1466  }
1467
1468  Out << "\n";
1469
1470  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1471
1472  // Output all of the instructions in the basic block...
1473  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1474    printInstruction(*I);
1475
1476  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1477}
1478
1479
1480/// printInfoComment - Print a little comment after the instruction indicating
1481/// which slot it occupies.
1482///
1483void AssemblyWriter::printInfoComment(const Value &V) {
1484  if (V.getType() != Type::VoidTy) {
1485    Out << "\t\t; <";
1486    printType(V.getType());
1487    Out << '>';
1488
1489    if (!V.hasName()) {
1490      int SlotNum;
1491      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1492        SlotNum = Machine.getGlobalSlot(GV);
1493      else
1494        SlotNum = Machine.getLocalSlot(&V);
1495      if (SlotNum == -1)
1496        Out << ":<badref>";
1497      else
1498        Out << ':' << SlotNum; // Print out the def slot taken.
1499    }
1500    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1501  }
1502}
1503
1504// This member is called for each Instruction in a function..
1505void AssemblyWriter::printInstruction(const Instruction &I) {
1506  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1507
1508  Out << '\t';
1509
1510  // Print out name if it exists...
1511  if (I.hasName()) {
1512    PrintLLVMName(Out, &I);
1513    Out << " = ";
1514  }
1515
1516  // If this is a volatile load or store, print out the volatile marker.
1517  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1518      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1519      Out << "volatile ";
1520  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1521    // If this is a call, check if it's a tail call.
1522    Out << "tail ";
1523  }
1524
1525  // Print out the opcode...
1526  Out << I.getOpcodeName();
1527
1528  // Print out the compare instruction predicates
1529  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1530    Out << ' ' << getPredicateText(CI->getPredicate());
1531
1532  // Print out the type of the operands...
1533  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1534
1535  // Special case conditional branches to swizzle the condition out to the front
1536  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1537    writeOperand(I.getOperand(2), true);
1538    Out << ',';
1539    writeOperand(Operand, true);
1540    Out << ',';
1541    writeOperand(I.getOperand(1), true);
1542
1543  } else if (isa<SwitchInst>(I)) {
1544    // Special case switch statement to get formatting nice and correct...
1545    writeOperand(Operand        , true);
1546    Out << ',';
1547    writeOperand(I.getOperand(1), true);
1548    Out << " [";
1549
1550    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1551      Out << "\n\t\t";
1552      writeOperand(I.getOperand(op  ), true);
1553      Out << ',';
1554      writeOperand(I.getOperand(op+1), true);
1555    }
1556    Out << "\n\t]";
1557  } else if (isa<PHINode>(I)) {
1558    Out << ' ';
1559    printType(I.getType());
1560    Out << ' ';
1561
1562    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1563      if (op) Out << ", ";
1564      Out << '[';
1565      writeOperand(I.getOperand(op  ), false); Out << ',';
1566      writeOperand(I.getOperand(op+1), false); Out << " ]";
1567    }
1568  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1569    writeOperand(I.getOperand(0), true);
1570    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1571      Out << ", " << *i;
1572  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1573    writeOperand(I.getOperand(0), true); Out << ',';
1574    writeOperand(I.getOperand(1), true);
1575    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1576      Out << ", " << *i;
1577  } else if (isa<ReturnInst>(I) && !Operand) {
1578    Out << " void";
1579  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1580    // Print the calling convention being used.
1581    switch (CI->getCallingConv()) {
1582    case CallingConv::C: break;   // default
1583    case CallingConv::Fast:  Out << " fastcc"; break;
1584    case CallingConv::Cold:  Out << " coldcc"; break;
1585    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1586    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1587    case CallingConv::X86_SSECall: Out << " x86_ssecallcc"; break;
1588    default: Out << " cc" << CI->getCallingConv(); break;
1589    }
1590
1591    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1592    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1593    const Type         *RetTy = FTy->getReturnType();
1594    const PAListPtr &PAL = CI->getParamAttrs();
1595
1596    // If possible, print out the short form of the call instruction.  We can
1597    // only do this if the first argument is a pointer to a nonvararg function,
1598    // and if the return type is not a pointer to a function.
1599    //
1600    if (!FTy->isVarArg() &&
1601        (!isa<PointerType>(RetTy) ||
1602         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1603      Out << ' '; printType(RetTy);
1604      writeOperand(Operand, false);
1605    } else {
1606      writeOperand(Operand, true);
1607    }
1608    Out << '(';
1609    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1610      if (op > 1)
1611        Out << ',';
1612      writeParamOperand(I.getOperand(op), PAL.getParamAttrs(op));
1613    }
1614    Out << " )";
1615    if (PAL.getParamAttrs(0) != ParamAttr::None)
1616      Out << ' ' << ParamAttr::getAsString(PAL.getParamAttrs(0));
1617  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1618    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1619    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1620    const Type         *RetTy = FTy->getReturnType();
1621    const PAListPtr &PAL = II->getParamAttrs();
1622
1623    // Print the calling convention being used.
1624    switch (II->getCallingConv()) {
1625    case CallingConv::C: break;   // default
1626    case CallingConv::Fast:  Out << " fastcc"; break;
1627    case CallingConv::Cold:  Out << " coldcc"; break;
1628    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1629    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1630    case CallingConv::X86_SSECall: Out << "x86_ssecallcc "; break;
1631    default: Out << " cc" << II->getCallingConv(); break;
1632    }
1633
1634    // If possible, print out the short form of the invoke instruction. We can
1635    // only do this if the first argument is a pointer to a nonvararg function,
1636    // and if the return type is not a pointer to a function.
1637    //
1638    if (!FTy->isVarArg() &&
1639        (!isa<PointerType>(RetTy) ||
1640         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1641      Out << ' '; printType(RetTy);
1642      writeOperand(Operand, false);
1643    } else {
1644      writeOperand(Operand, true);
1645    }
1646
1647    Out << '(';
1648    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1649      if (op > 3)
1650        Out << ',';
1651      writeParamOperand(I.getOperand(op), PAL.getParamAttrs(op-2));
1652    }
1653
1654    Out << " )";
1655    if (PAL.getParamAttrs(0) != ParamAttr::None)
1656      Out << ' ' << ParamAttr::getAsString(PAL.getParamAttrs(0));
1657    Out << "\n\t\t\tto";
1658    writeOperand(II->getNormalDest(), true);
1659    Out << " unwind";
1660    writeOperand(II->getUnwindDest(), true);
1661
1662  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1663    Out << ' ';
1664    printType(AI->getType()->getElementType());
1665    if (AI->isArrayAllocation()) {
1666      Out << ',';
1667      writeOperand(AI->getArraySize(), true);
1668    }
1669    if (AI->getAlignment()) {
1670      Out << ", align " << AI->getAlignment();
1671    }
1672  } else if (isa<CastInst>(I)) {
1673    if (Operand) writeOperand(Operand, true);   // Work with broken code
1674    Out << " to ";
1675    printType(I.getType());
1676  } else if (isa<VAArgInst>(I)) {
1677    if (Operand) writeOperand(Operand, true);   // Work with broken code
1678    Out << ", ";
1679    printType(I.getType());
1680  } else if (Operand) {   // Print the normal way...
1681
1682    // PrintAllTypes - Instructions who have operands of all the same type
1683    // omit the type from all but the first operand.  If the instruction has
1684    // different type operands (for example br), then they are all printed.
1685    bool PrintAllTypes = false;
1686    const Type *TheType = Operand->getType();
1687
1688    // Select, Store and ShuffleVector always print all types.
1689    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1690        || isa<ReturnInst>(I)) {
1691      PrintAllTypes = true;
1692    } else {
1693      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1694        Operand = I.getOperand(i);
1695        if (Operand->getType() != TheType) {
1696          PrintAllTypes = true;    // We have differing types!  Print them all!
1697          break;
1698        }
1699      }
1700    }
1701
1702    if (!PrintAllTypes) {
1703      Out << ' ';
1704      printType(TheType);
1705    }
1706
1707    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1708      if (i) Out << ',';
1709      writeOperand(I.getOperand(i), PrintAllTypes);
1710    }
1711  }
1712
1713  // Print post operand alignment for load/store
1714  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1715    Out << ", align " << cast<LoadInst>(I).getAlignment();
1716  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1717    Out << ", align " << cast<StoreInst>(I).getAlignment();
1718  }
1719
1720  printInfoComment(I);
1721  Out << '\n';
1722}
1723
1724
1725//===----------------------------------------------------------------------===//
1726//                       External Interface declarations
1727//===----------------------------------------------------------------------===//
1728
1729void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1730  raw_os_ostream OS(o);
1731  print(OS, AAW);
1732}
1733void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1734  SlotTracker SlotTable(this);
1735  AssemblyWriter W(OS, SlotTable, this, AAW);
1736  W.write(this);
1737}
1738
1739void Type::print(std::ostream &o) const {
1740  raw_os_ostream OS(o);
1741  print(OS);
1742}
1743
1744void Type::print(raw_ostream &o) const {
1745  if (this == 0)
1746    o << "<null Type>";
1747  else
1748    o << getDescription();
1749}
1750
1751void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1752  if (this == 0) {
1753    OS << "printing a <null> value\n";
1754    return;
1755  }
1756
1757  if (const Instruction *I = dyn_cast<Instruction>(this)) {
1758    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
1759    SlotTracker SlotTable(F);
1760    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
1761    W.write(I);
1762  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
1763    SlotTracker SlotTable(BB->getParent());
1764    AssemblyWriter W(OS, SlotTable,
1765                     BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
1766    W.write(BB);
1767  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
1768    SlotTracker SlotTable(GV->getParent());
1769    AssemblyWriter W(OS, SlotTable, GV->getParent(), 0);
1770    W.write(GV);
1771  } else if (const Constant *C = dyn_cast<Constant>(this)) {
1772    OS << ' ' << C->getType()->getDescription() << ' ';
1773    std::map<const Type *, std::string> TypeTable;
1774    WriteConstantInt(OS, C, TypeTable, 0);
1775  } else if (const Argument *A = dyn_cast<Argument>(this)) {
1776    WriteAsOperand(OS, this, true,
1777                   A->getParent() ? A->getParent()->getParent() : 0);
1778  } else if (isa<InlineAsm>(this)) {
1779    WriteAsOperand(OS, this, true, 0);
1780  } else {
1781    // FIXME: PseudoSourceValue breaks this!
1782    //assert(0 && "Unknown value to print out!");
1783  }
1784}
1785
1786void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
1787  raw_os_ostream OS(O);
1788  print(OS, AAW);
1789}
1790
1791// Value::dump - allow easy printing of  Values from the debugger.
1792// Located here because so much of the needed functionality is here.
1793void Value::dump() const { print(errs()); errs() << '\n'; errs().flush(); }
1794
1795// Type::dump - allow easy printing of  Values from the debugger.
1796// Located here because so much of the needed functionality is here.
1797void Type::dump() const { print(errs()); errs() << '\n'; errs().flush(); }
1798
1799// Module::dump() - Allow printing from debugger
1800void Module::dump() const { print(errs(), 0); errs().flush(); }
1801
1802
1803