AsmWriter.cpp revision 3aa6066d010b2ccfd58f07fb1be874becf5807c2
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/ParameterAttributes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instruction.h"
26#include "llvm/Instructions.h"
27#include "llvm/Module.h"
28#include "llvm/ValueSymbolTable.h"
29#include "llvm/TypeSymbolTable.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/Streams.h"
35#include <algorithm>
36#include <cctype>
37using namespace llvm;
38
39namespace llvm {
40
41// Make virtual table appear in this compilation unit.
42AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
43
44/// This class provides computation of slot numbers for LLVM Assembly writing.
45/// @brief LLVM Assembly Writing Slot Computation.
46class SlotMachine {
47
48/// @name Types
49/// @{
50public:
51
52  /// @brief A mapping of Values to slot numbers
53  typedef std::map<const Value*,unsigned> ValueMap;
54
55/// @}
56/// @name Constructors
57/// @{
58public:
59  /// @brief Construct from a module
60  SlotMachine(const Module *M);
61
62  /// @brief Construct from a function, starting out in incorp state.
63  SlotMachine(const Function *F);
64
65/// @}
66/// @name Accessors
67/// @{
68public:
69  /// Return the slot number of the specified value in it's type
70  /// plane.  If something is not in the SlotMachine, return -1.
71  int getLocalSlot(const Value *V);
72  int getGlobalSlot(const GlobalValue *V);
73
74/// @}
75/// @name Mutators
76/// @{
77public:
78  /// If you'd like to deal with a function instead of just a module, use
79  /// this method to get its data into the SlotMachine.
80  void incorporateFunction(const Function *F) {
81    TheFunction = F;
82    FunctionProcessed = false;
83  }
84
85  /// After calling incorporateFunction, use this method to remove the
86  /// most recently incorporated function from the SlotMachine. This
87  /// will reset the state of the machine back to just the module contents.
88  void purgeFunction();
89
90/// @}
91/// @name Implementation Details
92/// @{
93private:
94  /// This function does the actual initialization.
95  inline void initialize();
96
97  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
98  void CreateModuleSlot(const GlobalValue *V);
99
100  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
101  void CreateFunctionSlot(const Value *V);
102
103  /// Add all of the module level global variables (and their initializers)
104  /// and function declarations, but not the contents of those functions.
105  void processModule();
106
107  /// Add all of the functions arguments, basic blocks, and instructions
108  void processFunction();
109
110  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
111  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
112
113/// @}
114/// @name Data
115/// @{
116public:
117
118  /// @brief The module for which we are holding slot numbers
119  const Module* TheModule;
120
121  /// @brief The function for which we are holding slot numbers
122  const Function* TheFunction;
123  bool FunctionProcessed;
124
125  /// @brief The TypePlanes map for the module level data
126  ValueMap mMap;
127  unsigned mNext;
128
129  /// @brief The TypePlanes map for the function level data
130  ValueMap fMap;
131  unsigned fNext;
132
133/// @}
134
135};
136
137}  // end namespace llvm
138
139char PrintModulePass::ID = 0;
140static RegisterPass<PrintModulePass>
141X("printm", "Print module to stderr");
142char PrintFunctionPass::ID = 0;
143static RegisterPass<PrintFunctionPass>
144Y("print","Print function to stderr");
145
146static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
147                               std::map<const Type *, std::string> &TypeTable,
148                                   SlotMachine *Machine);
149
150static const Module *getModuleFromVal(const Value *V) {
151  if (const Argument *MA = dyn_cast<Argument>(V))
152    return MA->getParent() ? MA->getParent()->getParent() : 0;
153  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
154    return BB->getParent() ? BB->getParent()->getParent() : 0;
155  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
156    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
157    return M ? M->getParent() : 0;
158  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
159    return GV->getParent();
160  return 0;
161}
162
163static SlotMachine *createSlotMachine(const Value *V) {
164  if (const Argument *FA = dyn_cast<Argument>(V)) {
165    return new SlotMachine(FA->getParent());
166  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
167    return new SlotMachine(I->getParent()->getParent());
168  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
169    return new SlotMachine(BB->getParent());
170  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
171    return new SlotMachine(GV->getParent());
172  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)){
173    return new SlotMachine(GA->getParent());
174  } else if (const Function *Func = dyn_cast<Function>(V)) {
175    return new SlotMachine(Func);
176  }
177  return 0;
178}
179
180/// NameNeedsQuotes - Return true if the specified llvm name should be wrapped
181/// with ""'s.
182static std::string QuoteNameIfNeeded(const std::string &Name) {
183  std::string result;
184  bool needsQuotes = Name[0] >= '0' && Name[0] <= '9';
185  // Scan the name to see if it needs quotes and to replace funky chars with
186  // their octal equivalent.
187  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
188    char C = Name[i];
189    assert(C != '"' && "Illegal character in LLVM value name!");
190    if (isalnum(C) || C == '-' || C == '.' || C == '_')
191      result += C;
192    else if (C == '\\')  {
193      needsQuotes = true;
194      result += "\\\\";
195    } else if (isprint(C)) {
196      needsQuotes = true;
197      result += C;
198    } else {
199      needsQuotes = true;
200      result += "\\";
201      char hex1 = (C >> 4) & 0x0F;
202      if (hex1 < 10)
203        result += hex1 + '0';
204      else
205        result += hex1 - 10 + 'A';
206      char hex2 = C & 0x0F;
207      if (hex2 < 10)
208        result += hex2 + '0';
209      else
210        result += hex2 - 10 + 'A';
211    }
212  }
213  if (needsQuotes) {
214    result.insert(0,"\"");
215    result += '"';
216  }
217  return result;
218}
219
220enum PrefixType {
221  GlobalPrefix,
222  LabelPrefix,
223  LocalPrefix
224};
225
226/// getLLVMName - Turn the specified string into an 'LLVM name', which is either
227/// prefixed with % (if the string only contains simple characters) or is
228/// surrounded with ""'s (if it has special chars in it).
229static std::string getLLVMName(const std::string &Name, PrefixType Prefix) {
230  assert(!Name.empty() && "Cannot get empty name!");
231  switch (Prefix) {
232  default: assert(0 && "Bad prefix!");
233  case GlobalPrefix: return '@' + QuoteNameIfNeeded(Name);
234  case LabelPrefix:  return QuoteNameIfNeeded(Name);
235  case LocalPrefix:  return '%' + QuoteNameIfNeeded(Name);
236  }
237}
238
239
240/// fillTypeNameTable - If the module has a symbol table, take all global types
241/// and stuff their names into the TypeNames map.
242///
243static void fillTypeNameTable(const Module *M,
244                              std::map<const Type *, std::string> &TypeNames) {
245  if (!M) return;
246  const TypeSymbolTable &ST = M->getTypeSymbolTable();
247  TypeSymbolTable::const_iterator TI = ST.begin();
248  for (; TI != ST.end(); ++TI) {
249    // As a heuristic, don't insert pointer to primitive types, because
250    // they are used too often to have a single useful name.
251    //
252    const Type *Ty = cast<Type>(TI->second);
253    if (!isa<PointerType>(Ty) ||
254        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
255        !cast<PointerType>(Ty)->getElementType()->isInteger() ||
256        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
257      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first, LocalPrefix)));
258  }
259}
260
261
262
263static void calcTypeName(const Type *Ty,
264                         std::vector<const Type *> &TypeStack,
265                         std::map<const Type *, std::string> &TypeNames,
266                         std::string & Result){
267  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
268    Result += Ty->getDescription();  // Base case
269    return;
270  }
271
272  // Check to see if the type is named.
273  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
274  if (I != TypeNames.end()) {
275    Result += I->second;
276    return;
277  }
278
279  if (isa<OpaqueType>(Ty)) {
280    Result += "opaque";
281    return;
282  }
283
284  // Check to see if the Type is already on the stack...
285  unsigned Slot = 0, CurSize = TypeStack.size();
286  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
287
288  // This is another base case for the recursion.  In this case, we know
289  // that we have looped back to a type that we have previously visited.
290  // Generate the appropriate upreference to handle this.
291  if (Slot < CurSize) {
292    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
293    return;
294  }
295
296  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
297
298  switch (Ty->getTypeID()) {
299  case Type::IntegerTyID: {
300    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
301    Result += "i" + utostr(BitWidth);
302    break;
303  }
304  case Type::FunctionTyID: {
305    const FunctionType *FTy = cast<FunctionType>(Ty);
306    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
307    Result += " (";
308    unsigned Idx = 1;
309    const ParamAttrsList *Attrs = FTy->getParamAttrs();
310    for (FunctionType::param_iterator I = FTy->param_begin(),
311           E = FTy->param_end(); I != E; ++I) {
312      if (I != FTy->param_begin())
313        Result += ", ";
314      calcTypeName(*I, TypeStack, TypeNames, Result);
315      if (Attrs && Attrs->getParamAttrs(Idx) != ParamAttr::None) {
316        Result += + " ";
317        Result += Attrs->getParamAttrsTextByIndex(Idx);
318      }
319      Idx++;
320    }
321    if (FTy->isVarArg()) {
322      if (FTy->getNumParams()) Result += ", ";
323      Result += "...";
324    }
325    Result += ")";
326    if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None) {
327      Result += " ";
328      Result += Attrs->getParamAttrsTextByIndex(0);
329    }
330    break;
331  }
332  case Type::StructTyID: {
333    const StructType *STy = cast<StructType>(Ty);
334    if (STy->isPacked())
335      Result += '<';
336    Result += "{ ";
337    for (StructType::element_iterator I = STy->element_begin(),
338           E = STy->element_end(); I != E; ++I) {
339      if (I != STy->element_begin())
340        Result += ", ";
341      calcTypeName(*I, TypeStack, TypeNames, Result);
342    }
343    Result += " }";
344    if (STy->isPacked())
345      Result += '>';
346    break;
347  }
348  case Type::PointerTyID:
349    calcTypeName(cast<PointerType>(Ty)->getElementType(),
350                          TypeStack, TypeNames, Result);
351    Result += "*";
352    break;
353  case Type::ArrayTyID: {
354    const ArrayType *ATy = cast<ArrayType>(Ty);
355    Result += "[" + utostr(ATy->getNumElements()) + " x ";
356    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
357    Result += "]";
358    break;
359  }
360  case Type::VectorTyID: {
361    const VectorType *PTy = cast<VectorType>(Ty);
362    Result += "<" + utostr(PTy->getNumElements()) + " x ";
363    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
364    Result += ">";
365    break;
366  }
367  case Type::OpaqueTyID:
368    Result += "opaque";
369    break;
370  default:
371    Result += "<unrecognized-type>";
372    break;
373  }
374
375  TypeStack.pop_back();       // Remove self from stack...
376}
377
378
379/// printTypeInt - The internal guts of printing out a type that has a
380/// potentially named portion.
381///
382static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
383                              std::map<const Type *, std::string> &TypeNames) {
384  // Primitive types always print out their description, regardless of whether
385  // they have been named or not.
386  //
387  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)))
388    return Out << Ty->getDescription();
389
390  // Check to see if the type is named.
391  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
392  if (I != TypeNames.end()) return Out << I->second;
393
394  // Otherwise we have a type that has not been named but is a derived type.
395  // Carefully recurse the type hierarchy to print out any contained symbolic
396  // names.
397  //
398  std::vector<const Type *> TypeStack;
399  std::string TypeName;
400  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
401  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
402  return (Out << TypeName);
403}
404
405
406/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
407/// type, iff there is an entry in the modules symbol table for the specified
408/// type or one of it's component types. This is slower than a simple x << Type
409///
410std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
411                                      const Module *M) {
412  Out << ' ';
413
414  // If they want us to print out a type, but there is no context, we can't
415  // print it symbolically.
416  if (!M)
417    return Out << Ty->getDescription();
418
419  std::map<const Type *, std::string> TypeNames;
420  fillTypeNameTable(M, TypeNames);
421  return printTypeInt(Out, Ty, TypeNames);
422}
423
424// PrintEscapedString - Print each character of the specified string, escaping
425// it if it is not printable or if it is an escape char.
426static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
427  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
428    unsigned char C = Str[i];
429    if (isprint(C) && C != '"' && C != '\\') {
430      Out << C;
431    } else {
432      Out << '\\'
433          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
434          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
435    }
436  }
437}
438
439static const char *getPredicateText(unsigned predicate) {
440  const char * pred = "unknown";
441  switch (predicate) {
442    case FCmpInst::FCMP_FALSE: pred = "false"; break;
443    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
444    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
445    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
446    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
447    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
448    case FCmpInst::FCMP_ONE:   pred = "one"; break;
449    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
450    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
451    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
452    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
453    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
454    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
455    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
456    case FCmpInst::FCMP_UNE:   pred = "une"; break;
457    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
458    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
459    case ICmpInst::ICMP_NE:    pred = "ne"; break;
460    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
461    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
462    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
463    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
464    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
465    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
466    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
467    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
468  }
469  return pred;
470}
471
472/// @brief Internal constant writer.
473static void WriteConstantInt(std::ostream &Out, const Constant *CV,
474                             std::map<const Type *, std::string> &TypeTable,
475                             SlotMachine *Machine) {
476  const int IndentSize = 4;
477  static std::string Indent = "\n";
478  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
479    if (CI->getType() == Type::Int1Ty)
480      Out << (CI->getZExtValue() ? "true" : "false");
481    else
482      Out << CI->getValue().toStringSigned(10);
483  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
484    // We would like to output the FP constant value in exponential notation,
485    // but we cannot do this if doing so will lose precision.  Check here to
486    // make sure that we only output it in exponential format if we can parse
487    // the value back and get the same value.
488    //
489    std::string StrVal = ftostr(CFP->getValue());
490
491    // Check to make sure that the stringized number is not some string like
492    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
493    // the string matches the "[-+]?[0-9]" regex.
494    //
495    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
496        ((StrVal[0] == '-' || StrVal[0] == '+') &&
497         (StrVal[1] >= '0' && StrVal[1] <= '9')))
498      // Reparse stringized version!
499      if (atof(StrVal.c_str()) == CFP->getValue()) {
500        Out << StrVal;
501        return;
502      }
503
504    // Otherwise we could not reparse it to exactly the same value, so we must
505    // output the string in hexadecimal format!
506    assert(sizeof(double) == sizeof(uint64_t) &&
507           "assuming that double is 64 bits!");
508    Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
509
510  } else if (isa<ConstantAggregateZero>(CV)) {
511    Out << "zeroinitializer";
512  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
513    // As a special case, print the array as a string if it is an array of
514    // ubytes or an array of sbytes with positive values.
515    //
516    const Type *ETy = CA->getType()->getElementType();
517    if (CA->isString()) {
518      Out << "c\"";
519      PrintEscapedString(CA->getAsString(), Out);
520      Out << "\"";
521
522    } else {                // Cannot output in string format...
523      Out << '[';
524      if (CA->getNumOperands()) {
525        Out << ' ';
526        printTypeInt(Out, ETy, TypeTable);
527        WriteAsOperandInternal(Out, CA->getOperand(0),
528                               TypeTable, Machine);
529        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
530          Out << ", ";
531          printTypeInt(Out, ETy, TypeTable);
532          WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
533        }
534      }
535      Out << " ]";
536    }
537  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
538    if (CS->getType()->isPacked())
539      Out << '<';
540    Out << '{';
541    unsigned N = CS->getNumOperands();
542    if (N) {
543      if (N > 2) {
544        Indent += std::string(IndentSize, ' ');
545        Out << Indent;
546      } else {
547        Out << ' ';
548      }
549      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
550
551      WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
552
553      for (unsigned i = 1; i < N; i++) {
554        Out << ", ";
555        if (N > 2) Out << Indent;
556        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
557
558        WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
559      }
560      if (N > 2) Indent.resize(Indent.size() - IndentSize);
561    }
562
563    Out << " }";
564    if (CS->getType()->isPacked())
565      Out << '>';
566  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
567      const Type *ETy = CP->getType()->getElementType();
568      assert(CP->getNumOperands() > 0 &&
569             "Number of operands for a PackedConst must be > 0");
570      Out << '<';
571      Out << ' ';
572      printTypeInt(Out, ETy, TypeTable);
573      WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
574      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
575          Out << ", ";
576          printTypeInt(Out, ETy, TypeTable);
577          WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
578      }
579      Out << " >";
580  } else if (isa<ConstantPointerNull>(CV)) {
581    Out << "null";
582
583  } else if (isa<UndefValue>(CV)) {
584    Out << "undef";
585
586  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
587    Out << CE->getOpcodeName();
588    if (CE->isCompare())
589      Out << " " << getPredicateText(CE->getPredicate());
590    Out << " (";
591
592    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
593      printTypeInt(Out, (*OI)->getType(), TypeTable);
594      WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
595      if (OI+1 != CE->op_end())
596        Out << ", ";
597    }
598
599    if (CE->isCast()) {
600      Out << " to ";
601      printTypeInt(Out, CE->getType(), TypeTable);
602    }
603
604    Out << ')';
605
606  } else {
607    Out << "<placeholder or erroneous Constant>";
608  }
609}
610
611
612/// WriteAsOperand - Write the name of the specified value out to the specified
613/// ostream.  This can be useful when you just want to print int %reg126, not
614/// the whole instruction that generated it.
615///
616static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
617                                  std::map<const Type*, std::string> &TypeTable,
618                                   SlotMachine *Machine) {
619  Out << ' ';
620  if (V->hasName())
621    Out << getLLVMName(V->getName(),
622                       isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
623  else {
624    const Constant *CV = dyn_cast<Constant>(V);
625    if (CV && !isa<GlobalValue>(CV)) {
626      WriteConstantInt(Out, CV, TypeTable, Machine);
627    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
628      Out << "asm ";
629      if (IA->hasSideEffects())
630        Out << "sideeffect ";
631      Out << '"';
632      PrintEscapedString(IA->getAsmString(), Out);
633      Out << "\", \"";
634      PrintEscapedString(IA->getConstraintString(), Out);
635      Out << '"';
636    } else {
637      char Prefix = '%';
638      int Slot;
639      if (Machine) {
640        if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
641          Slot = Machine->getGlobalSlot(GV);
642          Prefix = '@';
643        } else {
644          Slot = Machine->getLocalSlot(V);
645        }
646      } else {
647        Machine = createSlotMachine(V);
648        if (Machine) {
649          if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
650            Slot = Machine->getGlobalSlot(GV);
651            Prefix = '@';
652          } else {
653            Slot = Machine->getLocalSlot(V);
654          }
655        } else {
656          Slot = -1;
657        }
658        delete Machine;
659      }
660      if (Slot != -1)
661        Out << Prefix << Slot;
662      else
663        Out << "<badref>";
664    }
665  }
666}
667
668/// WriteAsOperand - Write the name of the specified value out to the specified
669/// ostream.  This can be useful when you just want to print int %reg126, not
670/// the whole instruction that generated it.
671///
672std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
673                                   bool PrintType, const Module *Context) {
674  std::map<const Type *, std::string> TypeNames;
675  if (Context == 0) Context = getModuleFromVal(V);
676
677  if (Context)
678    fillTypeNameTable(Context, TypeNames);
679
680  if (PrintType)
681    printTypeInt(Out, V->getType(), TypeNames);
682
683  WriteAsOperandInternal(Out, V, TypeNames, 0);
684  return Out;
685}
686
687
688namespace llvm {
689
690class AssemblyWriter {
691  std::ostream &Out;
692  SlotMachine &Machine;
693  const Module *TheModule;
694  std::map<const Type *, std::string> TypeNames;
695  AssemblyAnnotationWriter *AnnotationWriter;
696public:
697  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
698                        AssemblyAnnotationWriter *AAW)
699    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
700
701    // If the module has a symbol table, take all global types and stuff their
702    // names into the TypeNames map.
703    //
704    fillTypeNameTable(M, TypeNames);
705  }
706
707  inline void write(const Module *M)         { printModule(M);       }
708  inline void write(const GlobalVariable *G) { printGlobal(G);       }
709  inline void write(const GlobalAlias *G)    { printAlias(G);        }
710  inline void write(const Function *F)       { printFunction(F);     }
711  inline void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
712  inline void write(const Instruction *I)    { printInstruction(*I); }
713  inline void write(const Type *Ty)          { printType(Ty);        }
714
715  void writeOperand(const Value *Op, bool PrintType);
716
717  const Module* getModule() { return TheModule; }
718
719private:
720  void printModule(const Module *M);
721  void printTypeSymbolTable(const TypeSymbolTable &ST);
722  void printGlobal(const GlobalVariable *GV);
723  void printAlias(const GlobalAlias *GV);
724  void printFunction(const Function *F);
725  void printArgument(const Argument *FA, uint16_t ParamAttrs);
726  void printBasicBlock(const BasicBlock *BB);
727  void printInstruction(const Instruction &I);
728
729  // printType - Go to extreme measures to attempt to print out a short,
730  // symbolic version of a type name.
731  //
732  std::ostream &printType(const Type *Ty) {
733    return printTypeInt(Out, Ty, TypeNames);
734  }
735
736  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
737  // without considering any symbolic types that we may have equal to it.
738  //
739  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
740
741  // printInfoComment - Print a little comment after the instruction indicating
742  // which slot it occupies.
743  void printInfoComment(const Value &V);
744};
745}  // end of llvm namespace
746
747/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
748/// without considering any symbolic types that we may have equal to it.
749///
750std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
751  if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
752    Out << "i" << utostr(ITy->getBitWidth());
753  else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
754    printType(FTy->getReturnType());
755    Out << " (";
756    unsigned Idx = 1;
757    const ParamAttrsList *Attrs = FTy->getParamAttrs();
758    for (FunctionType::param_iterator I = FTy->param_begin(),
759           E = FTy->param_end(); I != E; ++I) {
760      if (I != FTy->param_begin())
761        Out << ", ";
762      printType(*I);
763      if (Attrs && Attrs->getParamAttrs(Idx) != ParamAttr::None) {
764        Out << " " << Attrs->getParamAttrsTextByIndex(Idx);
765      }
766      Idx++;
767    }
768    if (FTy->isVarArg()) {
769      if (FTy->getNumParams()) Out << ", ";
770      Out << "...";
771    }
772    Out << ')';
773    if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None)
774      Out << ' ' << Attrs->getParamAttrsTextByIndex(0);
775  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
776    if (STy->isPacked())
777      Out << '<';
778    Out << "{ ";
779    for (StructType::element_iterator I = STy->element_begin(),
780           E = STy->element_end(); I != E; ++I) {
781      if (I != STy->element_begin())
782        Out << ", ";
783      printType(*I);
784    }
785    Out << " }";
786    if (STy->isPacked())
787      Out << '>';
788  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
789    printType(PTy->getElementType()) << '*';
790  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
791    Out << '[' << ATy->getNumElements() << " x ";
792    printType(ATy->getElementType()) << ']';
793  } else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
794    Out << '<' << PTy->getNumElements() << " x ";
795    printType(PTy->getElementType()) << '>';
796  }
797  else if (isa<OpaqueType>(Ty)) {
798    Out << "opaque";
799  } else {
800    if (!Ty->isPrimitiveType())
801      Out << "<unknown derived type>";
802    printType(Ty);
803  }
804  return Out;
805}
806
807
808void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
809  if (Operand == 0) {
810    Out << "<null operand!>";
811  } else {
812    if (PrintType) { Out << ' '; printType(Operand->getType()); }
813    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
814  }
815}
816
817
818void AssemblyWriter::printModule(const Module *M) {
819  if (!M->getModuleIdentifier().empty() &&
820      // Don't print the ID if it will start a new line (which would
821      // require a comment char before it).
822      M->getModuleIdentifier().find('\n') == std::string::npos)
823    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
824
825  if (!M->getDataLayout().empty())
826    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
827  if (!M->getTargetTriple().empty())
828    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
829
830  if (!M->getModuleInlineAsm().empty()) {
831    // Split the string into lines, to make it easier to read the .ll file.
832    std::string Asm = M->getModuleInlineAsm();
833    size_t CurPos = 0;
834    size_t NewLine = Asm.find_first_of('\n', CurPos);
835    while (NewLine != std::string::npos) {
836      // We found a newline, print the portion of the asm string from the
837      // last newline up to this newline.
838      Out << "module asm \"";
839      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
840                         Out);
841      Out << "\"\n";
842      CurPos = NewLine+1;
843      NewLine = Asm.find_first_of('\n', CurPos);
844    }
845    Out << "module asm \"";
846    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
847    Out << "\"\n";
848  }
849
850  // Loop over the dependent libraries and emit them.
851  Module::lib_iterator LI = M->lib_begin();
852  Module::lib_iterator LE = M->lib_end();
853  if (LI != LE) {
854    Out << "deplibs = [ ";
855    while (LI != LE) {
856      Out << '"' << *LI << '"';
857      ++LI;
858      if (LI != LE)
859        Out << ", ";
860    }
861    Out << " ]\n";
862  }
863
864  // Loop over the symbol table, emitting all named constants.
865  printTypeSymbolTable(M->getTypeSymbolTable());
866
867  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
868       I != E; ++I)
869    printGlobal(I);
870
871  // Output all aliases.
872  if (!M->alias_empty()) Out << "\n";
873  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
874       I != E; ++I)
875    printAlias(I);
876
877  // Output all of the functions.
878  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
879    printFunction(I);
880}
881
882void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
883  if (GV->hasName()) Out << getLLVMName(GV->getName(), GlobalPrefix) << " = ";
884
885  if (!GV->hasInitializer())
886    switch (GV->getLinkage()) {
887     case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
888     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
889     default: Out << "external "; break;
890    } else {
891    switch (GV->getLinkage()) {
892    case GlobalValue::InternalLinkage:     Out << "internal "; break;
893    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
894    case GlobalValue::WeakLinkage:         Out << "weak "; break;
895    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
896    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
897    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
898    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
899    case GlobalValue::ExternalLinkage:     break;
900    case GlobalValue::GhostLinkage:
901      cerr << "GhostLinkage not allowed in AsmWriter!\n";
902      abort();
903    }
904    switch (GV->getVisibility()) {
905    default: assert(0 && "Invalid visibility style!");
906    case GlobalValue::DefaultVisibility: break;
907    case GlobalValue::HiddenVisibility: Out << "hidden "; break;
908    case GlobalValue::ProtectedVisibility: Out << "protected "; break;
909    }
910  }
911
912  if (GV->isThreadLocal()) Out << "thread_local ";
913  Out << (GV->isConstant() ? "constant " : "global ");
914  printType(GV->getType()->getElementType());
915
916  if (GV->hasInitializer()) {
917    Constant* C = cast<Constant>(GV->getInitializer());
918    assert(C &&  "GlobalVar initializer isn't constant?");
919    writeOperand(GV->getInitializer(), false);
920  }
921
922  if (GV->hasSection())
923    Out << ", section \"" << GV->getSection() << '"';
924  if (GV->getAlignment())
925    Out << ", align " << GV->getAlignment();
926
927  printInfoComment(*GV);
928  Out << "\n";
929}
930
931void AssemblyWriter::printAlias(const GlobalAlias *GA) {
932  Out << getLLVMName(GA->getName(), GlobalPrefix) << " = ";
933  switch (GA->getVisibility()) {
934  default: assert(0 && "Invalid visibility style!");
935  case GlobalValue::DefaultVisibility: break;
936  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
937  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
938  }
939
940  Out << "alias ";
941
942  switch (GA->getLinkage()) {
943  case GlobalValue::WeakLinkage: Out << "weak "; break;
944  case GlobalValue::InternalLinkage: Out << "internal "; break;
945  case GlobalValue::ExternalLinkage: break;
946  default:
947   assert(0 && "Invalid alias linkage");
948  }
949
950  const Constant *Aliasee = GA->getAliasee();
951
952  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
953    printType(GV->getType());
954    Out << " " << getLLVMName(GV->getName(), GlobalPrefix);
955  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
956    printType(F->getFunctionType());
957    Out << "* ";
958
959    if (!F->getName().empty())
960      Out << getLLVMName(F->getName(), GlobalPrefix);
961    else
962      Out << "@\"\"";
963  } else {
964    const ConstantExpr *CE = 0;
965    if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
966        (CE->getOpcode() == Instruction::BitCast)) {
967      writeOperand(CE, false);
968    } else
969      assert(0 && "Unsupported aliasee");
970  }
971
972  printInfoComment(*GA);
973  Out << "\n";
974}
975
976void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
977  // Print the types.
978  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
979       TI != TE; ++TI) {
980    Out << "\t" << getLLVMName(TI->first, LocalPrefix) << " = type ";
981
982    // Make sure we print out at least one level of the type structure, so
983    // that we do not get %FILE = type %FILE
984    //
985    printTypeAtLeastOneLevel(TI->second) << "\n";
986  }
987}
988
989/// printFunction - Print all aspects of a function.
990///
991void AssemblyWriter::printFunction(const Function *F) {
992  // Print out the return type and name...
993  Out << "\n";
994
995  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
996
997  if (F->isDeclaration())
998    Out << "declare ";
999  else
1000    Out << "define ";
1001
1002  switch (F->getLinkage()) {
1003  case GlobalValue::InternalLinkage:     Out << "internal "; break;
1004  case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
1005  case GlobalValue::WeakLinkage:         Out << "weak "; break;
1006  case GlobalValue::AppendingLinkage:    Out << "appending "; break;
1007  case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
1008  case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
1009  case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1010  case GlobalValue::ExternalLinkage: break;
1011  case GlobalValue::GhostLinkage:
1012    cerr << "GhostLinkage not allowed in AsmWriter!\n";
1013    abort();
1014  }
1015  switch (F->getVisibility()) {
1016  default: assert(0 && "Invalid visibility style!");
1017  case GlobalValue::DefaultVisibility: break;
1018  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1019  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1020  }
1021
1022  // Print the calling convention.
1023  switch (F->getCallingConv()) {
1024  case CallingConv::C: break;   // default
1025  case CallingConv::Fast:         Out << "fastcc "; break;
1026  case CallingConv::Cold:         Out << "coldcc "; break;
1027  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1028  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1029  default: Out << "cc" << F->getCallingConv() << " "; break;
1030  }
1031
1032  const FunctionType *FT = F->getFunctionType();
1033  const ParamAttrsList *Attrs = FT->getParamAttrs();
1034  printType(F->getReturnType()) << ' ';
1035  if (!F->getName().empty())
1036    Out << getLLVMName(F->getName(), GlobalPrefix);
1037  else
1038    Out << "@\"\"";
1039  Out << '(';
1040  Machine.incorporateFunction(F);
1041
1042  // Loop over the arguments, printing them...
1043
1044  unsigned Idx = 1;
1045  if (!F->isDeclaration()) {
1046    // If this isn't a declaration, print the argument names as well.
1047    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1048         I != E; ++I) {
1049      // Insert commas as we go... the first arg doesn't get a comma
1050      if (I != F->arg_begin()) Out << ", ";
1051      printArgument(I, (Attrs ? Attrs->getParamAttrs(Idx)
1052                              : uint16_t(ParamAttr::None)));
1053      Idx++;
1054    }
1055  } else {
1056    // Otherwise, print the types from the function type.
1057    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1058      // Insert commas as we go... the first arg doesn't get a comma
1059      if (i) Out << ", ";
1060
1061      // Output type...
1062      printType(FT->getParamType(i));
1063
1064      unsigned ArgAttrs = ParamAttr::None;
1065      if (Attrs) ArgAttrs = Attrs->getParamAttrs(i+1);
1066      if (ArgAttrs != ParamAttr::None)
1067        Out << ' ' << ParamAttrsList::getParamAttrsText(ArgAttrs);
1068    }
1069  }
1070
1071  // Finish printing arguments...
1072  if (FT->isVarArg()) {
1073    if (FT->getNumParams()) Out << ", ";
1074    Out << "...";  // Output varargs portion of signature!
1075  }
1076  Out << ')';
1077  if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None)
1078    Out << ' ' << Attrs->getParamAttrsTextByIndex(0);
1079  if (F->hasSection())
1080    Out << " section \"" << F->getSection() << '"';
1081  if (F->getAlignment())
1082    Out << " align " << F->getAlignment();
1083
1084  if (F->isDeclaration()) {
1085    Out << "\n";
1086  } else {
1087    Out << " {";
1088
1089    // Output all of its basic blocks... for the function
1090    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1091      printBasicBlock(I);
1092
1093    Out << "}\n";
1094  }
1095
1096  Machine.purgeFunction();
1097}
1098
1099/// printArgument - This member is called for every argument that is passed into
1100/// the function.  Simply print it out
1101///
1102void AssemblyWriter::printArgument(const Argument *Arg, uint16_t Attrs) {
1103  // Output type...
1104  printType(Arg->getType());
1105
1106  if (Attrs != ParamAttr::None)
1107    Out << ' ' << ParamAttrsList::getParamAttrsText(Attrs);
1108
1109  // Output name, if available...
1110  if (Arg->hasName())
1111    Out << ' ' << getLLVMName(Arg->getName(), LocalPrefix);
1112}
1113
1114/// printBasicBlock - This member is called for each basic block in a method.
1115///
1116void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1117  if (BB->hasName()) {              // Print out the label if it exists...
1118    Out << "\n" << getLLVMName(BB->getName(), LabelPrefix) << ':';
1119  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1120    Out << "\n; <label>:";
1121    int Slot = Machine.getLocalSlot(BB);
1122    if (Slot != -1)
1123      Out << Slot;
1124    else
1125      Out << "<badref>";
1126  }
1127
1128  if (BB->getParent() == 0)
1129    Out << "\t\t; Error: Block without parent!";
1130  else {
1131    if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1132      // Output predecessors for the block...
1133      Out << "\t\t;";
1134      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1135
1136      if (PI == PE) {
1137        Out << " No predecessors!";
1138      } else {
1139        Out << " preds =";
1140        writeOperand(*PI, false);
1141        for (++PI; PI != PE; ++PI) {
1142          Out << ',';
1143          writeOperand(*PI, false);
1144        }
1145      }
1146    }
1147  }
1148
1149  Out << "\n";
1150
1151  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1152
1153  // Output all of the instructions in the basic block...
1154  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1155    printInstruction(*I);
1156
1157  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1158}
1159
1160
1161/// printInfoComment - Print a little comment after the instruction indicating
1162/// which slot it occupies.
1163///
1164void AssemblyWriter::printInfoComment(const Value &V) {
1165  if (V.getType() != Type::VoidTy) {
1166    Out << "\t\t; <";
1167    printType(V.getType()) << '>';
1168
1169    if (!V.hasName()) {
1170      int SlotNum;
1171      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1172        SlotNum = Machine.getGlobalSlot(GV);
1173      else
1174        SlotNum = Machine.getLocalSlot(&V);
1175      if (SlotNum == -1)
1176        Out << ":<badref>";
1177      else
1178        Out << ':' << SlotNum; // Print out the def slot taken.
1179    }
1180    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1181  }
1182}
1183
1184// This member is called for each Instruction in a function..
1185void AssemblyWriter::printInstruction(const Instruction &I) {
1186  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1187
1188  Out << "\t";
1189
1190  // Print out name if it exists...
1191  if (I.hasName())
1192    Out << getLLVMName(I.getName(), LocalPrefix) << " = ";
1193
1194  // If this is a volatile load or store, print out the volatile marker.
1195  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1196      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1197      Out << "volatile ";
1198  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1199    // If this is a call, check if it's a tail call.
1200    Out << "tail ";
1201  }
1202
1203  // Print out the opcode...
1204  Out << I.getOpcodeName();
1205
1206  // Print out the compare instruction predicates
1207  if (const FCmpInst *FCI = dyn_cast<FCmpInst>(&I)) {
1208    Out << " " << getPredicateText(FCI->getPredicate());
1209  } else if (const ICmpInst *ICI = dyn_cast<ICmpInst>(&I)) {
1210    Out << " " << getPredicateText(ICI->getPredicate());
1211  }
1212
1213  // Print out the type of the operands...
1214  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1215
1216  // Special case conditional branches to swizzle the condition out to the front
1217  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1218    writeOperand(I.getOperand(2), true);
1219    Out << ',';
1220    writeOperand(Operand, true);
1221    Out << ',';
1222    writeOperand(I.getOperand(1), true);
1223
1224  } else if (isa<SwitchInst>(I)) {
1225    // Special case switch statement to get formatting nice and correct...
1226    writeOperand(Operand        , true); Out << ',';
1227    writeOperand(I.getOperand(1), true); Out << " [";
1228
1229    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1230      Out << "\n\t\t";
1231      writeOperand(I.getOperand(op  ), true); Out << ',';
1232      writeOperand(I.getOperand(op+1), true);
1233    }
1234    Out << "\n\t]";
1235  } else if (isa<PHINode>(I)) {
1236    Out << ' ';
1237    printType(I.getType());
1238    Out << ' ';
1239
1240    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1241      if (op) Out << ", ";
1242      Out << '[';
1243      writeOperand(I.getOperand(op  ), false); Out << ',';
1244      writeOperand(I.getOperand(op+1), false); Out << " ]";
1245    }
1246  } else if (isa<ReturnInst>(I) && !Operand) {
1247    Out << " void";
1248  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1249    // Print the calling convention being used.
1250    switch (CI->getCallingConv()) {
1251    case CallingConv::C: break;   // default
1252    case CallingConv::Fast:  Out << " fastcc"; break;
1253    case CallingConv::Cold:  Out << " coldcc"; break;
1254    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1255    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1256    default: Out << " cc" << CI->getCallingConv(); break;
1257    }
1258
1259    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1260    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1261    const Type         *RetTy = FTy->getReturnType();
1262    const ParamAttrsList *PAL = FTy->getParamAttrs();
1263
1264    // If possible, print out the short form of the call instruction.  We can
1265    // only do this if the first argument is a pointer to a nonvararg function,
1266    // and if the return type is not a pointer to a function.
1267    //
1268    if (!FTy->isVarArg() &&
1269        (!isa<PointerType>(RetTy) ||
1270         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1271      Out << ' '; printType(RetTy);
1272      writeOperand(Operand, false);
1273    } else {
1274      writeOperand(Operand, true);
1275    }
1276    Out << '(';
1277    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1278      if (op > 1)
1279        Out << ',';
1280      writeOperand(I.getOperand(op), true);
1281      if (PAL && PAL->getParamAttrs(op) != ParamAttr::None)
1282        Out << " " << PAL->getParamAttrsTextByIndex(op);
1283    }
1284    Out << " )";
1285    if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
1286      Out << ' ' << PAL->getParamAttrsTextByIndex(0);
1287  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1288    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1289    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1290    const Type         *RetTy = FTy->getReturnType();
1291    const ParamAttrsList *PAL = FTy->getParamAttrs();
1292
1293    // Print the calling convention being used.
1294    switch (II->getCallingConv()) {
1295    case CallingConv::C: break;   // default
1296    case CallingConv::Fast:  Out << " fastcc"; break;
1297    case CallingConv::Cold:  Out << " coldcc"; break;
1298    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1299    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1300    default: Out << " cc" << II->getCallingConv(); break;
1301    }
1302
1303    // If possible, print out the short form of the invoke instruction. We can
1304    // only do this if the first argument is a pointer to a nonvararg function,
1305    // and if the return type is not a pointer to a function.
1306    //
1307    if (!FTy->isVarArg() &&
1308        (!isa<PointerType>(RetTy) ||
1309         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1310      Out << ' '; printType(RetTy);
1311      writeOperand(Operand, false);
1312    } else {
1313      writeOperand(Operand, true);
1314    }
1315
1316    Out << '(';
1317    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1318      if (op > 3)
1319        Out << ',';
1320      writeOperand(I.getOperand(op), true);
1321      if (PAL && PAL->getParamAttrs(op-2) != ParamAttr::None)
1322        Out << " " << PAL->getParamAttrsTextByIndex(op-2);
1323    }
1324
1325    Out << " )";
1326    if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
1327      Out << " " << PAL->getParamAttrsTextByIndex(0);
1328    Out << "\n\t\t\tto";
1329    writeOperand(II->getNormalDest(), true);
1330    Out << " unwind";
1331    writeOperand(II->getUnwindDest(), true);
1332
1333  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1334    Out << ' ';
1335    printType(AI->getType()->getElementType());
1336    if (AI->isArrayAllocation()) {
1337      Out << ',';
1338      writeOperand(AI->getArraySize(), true);
1339    }
1340    if (AI->getAlignment()) {
1341      Out << ", align " << AI->getAlignment();
1342    }
1343  } else if (isa<CastInst>(I)) {
1344    if (Operand) writeOperand(Operand, true);   // Work with broken code
1345    Out << " to ";
1346    printType(I.getType());
1347  } else if (isa<VAArgInst>(I)) {
1348    if (Operand) writeOperand(Operand, true);   // Work with broken code
1349    Out << ", ";
1350    printType(I.getType());
1351  } else if (Operand) {   // Print the normal way...
1352
1353    // PrintAllTypes - Instructions who have operands of all the same type
1354    // omit the type from all but the first operand.  If the instruction has
1355    // different type operands (for example br), then they are all printed.
1356    bool PrintAllTypes = false;
1357    const Type *TheType = Operand->getType();
1358
1359    // Select, Store and ShuffleVector always print all types.
1360    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)) {
1361      PrintAllTypes = true;
1362    } else {
1363      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1364        Operand = I.getOperand(i);
1365        if (Operand->getType() != TheType) {
1366          PrintAllTypes = true;    // We have differing types!  Print them all!
1367          break;
1368        }
1369      }
1370    }
1371
1372    if (!PrintAllTypes) {
1373      Out << ' ';
1374      printType(TheType);
1375    }
1376
1377    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1378      if (i) Out << ',';
1379      writeOperand(I.getOperand(i), PrintAllTypes);
1380    }
1381  }
1382
1383  // Print post operand alignment for load/store
1384  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1385    Out << ", align " << cast<LoadInst>(I).getAlignment();
1386  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1387    Out << ", align " << cast<StoreInst>(I).getAlignment();
1388  }
1389
1390  printInfoComment(I);
1391  Out << "\n";
1392}
1393
1394
1395//===----------------------------------------------------------------------===//
1396//                       External Interface declarations
1397//===----------------------------------------------------------------------===//
1398
1399void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1400  SlotMachine SlotTable(this);
1401  AssemblyWriter W(o, SlotTable, this, AAW);
1402  W.write(this);
1403}
1404
1405void GlobalVariable::print(std::ostream &o) const {
1406  SlotMachine SlotTable(getParent());
1407  AssemblyWriter W(o, SlotTable, getParent(), 0);
1408  W.write(this);
1409}
1410
1411void GlobalAlias::print(std::ostream &o) const {
1412  SlotMachine SlotTable(getParent());
1413  AssemblyWriter W(o, SlotTable, getParent(), 0);
1414  W.write(this);
1415}
1416
1417void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1418  SlotMachine SlotTable(getParent());
1419  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1420
1421  W.write(this);
1422}
1423
1424void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1425  WriteAsOperand(o, this, true, 0);
1426}
1427
1428void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1429  SlotMachine SlotTable(getParent());
1430  AssemblyWriter W(o, SlotTable,
1431                   getParent() ? getParent()->getParent() : 0, AAW);
1432  W.write(this);
1433}
1434
1435void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1436  const Function *F = getParent() ? getParent()->getParent() : 0;
1437  SlotMachine SlotTable(F);
1438  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1439
1440  W.write(this);
1441}
1442
1443void Constant::print(std::ostream &o) const {
1444  if (this == 0) { o << "<null> constant value\n"; return; }
1445
1446  o << ' ' << getType()->getDescription() << ' ';
1447
1448  std::map<const Type *, std::string> TypeTable;
1449  WriteConstantInt(o, this, TypeTable, 0);
1450}
1451
1452void Type::print(std::ostream &o) const {
1453  if (this == 0)
1454    o << "<null Type>";
1455  else
1456    o << getDescription();
1457}
1458
1459void Argument::print(std::ostream &o) const {
1460  WriteAsOperand(o, this, true, getParent() ? getParent()->getParent() : 0);
1461}
1462
1463// Value::dump - allow easy printing of  Values from the debugger.
1464// Located here because so much of the needed functionality is here.
1465void Value::dump() const { print(*cerr.stream()); cerr << '\n'; }
1466
1467// Type::dump - allow easy printing of  Values from the debugger.
1468// Located here because so much of the needed functionality is here.
1469void Type::dump() const { print(*cerr.stream()); cerr << '\n'; }
1470
1471void
1472ParamAttrsList::dump() const {
1473  cerr << "PAL[ ";
1474  for (unsigned i = 0; i < attrs.size(); ++i) {
1475    uint16_t index = getParamIndex(i);
1476    uint16_t attrs = getParamAttrs(index);
1477    cerr << "{" << index << "," << attrs << "} ";
1478  }
1479  cerr << "]\n";
1480}
1481
1482//===----------------------------------------------------------------------===//
1483//                         SlotMachine Implementation
1484//===----------------------------------------------------------------------===//
1485
1486#if 0
1487#define SC_DEBUG(X) cerr << X
1488#else
1489#define SC_DEBUG(X)
1490#endif
1491
1492// Module level constructor. Causes the contents of the Module (sans functions)
1493// to be added to the slot table.
1494SlotMachine::SlotMachine(const Module *M)
1495  : TheModule(M)    ///< Saved for lazy initialization.
1496  , TheFunction(0)
1497  , FunctionProcessed(false)
1498  , mMap(), mNext(0), fMap(), fNext(0)
1499{
1500}
1501
1502// Function level constructor. Causes the contents of the Module and the one
1503// function provided to be added to the slot table.
1504SlotMachine::SlotMachine(const Function *F)
1505  : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
1506  , TheFunction(F) ///< Saved for lazy initialization
1507  , FunctionProcessed(false)
1508  , mMap(), mNext(0), fMap(), fNext(0)
1509{
1510}
1511
1512inline void SlotMachine::initialize() {
1513  if (TheModule) {
1514    processModule();
1515    TheModule = 0; ///< Prevent re-processing next time we're called.
1516  }
1517  if (TheFunction && !FunctionProcessed)
1518    processFunction();
1519}
1520
1521// Iterate through all the global variables, functions, and global
1522// variable initializers and create slots for them.
1523void SlotMachine::processModule() {
1524  SC_DEBUG("begin processModule!\n");
1525
1526  // Add all of the unnamed global variables to the value table.
1527  for (Module::const_global_iterator I = TheModule->global_begin(),
1528       E = TheModule->global_end(); I != E; ++I)
1529    if (!I->hasName())
1530      CreateModuleSlot(I);
1531
1532  // Add all the unnamed functions to the table.
1533  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1534       I != E; ++I)
1535    if (!I->hasName())
1536      CreateModuleSlot(I);
1537
1538  SC_DEBUG("end processModule!\n");
1539}
1540
1541
1542// Process the arguments, basic blocks, and instructions  of a function.
1543void SlotMachine::processFunction() {
1544  SC_DEBUG("begin processFunction!\n");
1545  fNext = 0;
1546
1547  // Add all the function arguments with no names.
1548  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1549      AE = TheFunction->arg_end(); AI != AE; ++AI)
1550    if (!AI->hasName())
1551      CreateFunctionSlot(AI);
1552
1553  SC_DEBUG("Inserting Instructions:\n");
1554
1555  // Add all of the basic blocks and instructions with no names.
1556  for (Function::const_iterator BB = TheFunction->begin(),
1557       E = TheFunction->end(); BB != E; ++BB) {
1558    if (!BB->hasName())
1559      CreateFunctionSlot(BB);
1560    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1561      if (I->getType() != Type::VoidTy && !I->hasName())
1562        CreateFunctionSlot(I);
1563  }
1564
1565  FunctionProcessed = true;
1566
1567  SC_DEBUG("end processFunction!\n");
1568}
1569
1570/// Clean up after incorporating a function. This is the only way to get out of
1571/// the function incorporation state that affects get*Slot/Create*Slot. Function
1572/// incorporation state is indicated by TheFunction != 0.
1573void SlotMachine::purgeFunction() {
1574  SC_DEBUG("begin purgeFunction!\n");
1575  fMap.clear(); // Simply discard the function level map
1576  TheFunction = 0;
1577  FunctionProcessed = false;
1578  SC_DEBUG("end purgeFunction!\n");
1579}
1580
1581/// getGlobalSlot - Get the slot number of a global value.
1582int SlotMachine::getGlobalSlot(const GlobalValue *V) {
1583  // Check for uninitialized state and do lazy initialization.
1584  initialize();
1585
1586  // Find the type plane in the module map
1587  ValueMap::const_iterator MI = mMap.find(V);
1588  if (MI == mMap.end()) return -1;
1589
1590  return MI->second;
1591}
1592
1593
1594/// getLocalSlot - Get the slot number for a value that is local to a function.
1595int SlotMachine::getLocalSlot(const Value *V) {
1596  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1597
1598  // Check for uninitialized state and do lazy initialization.
1599  initialize();
1600
1601  ValueMap::const_iterator FI = fMap.find(V);
1602  if (FI == fMap.end()) return -1;
1603
1604  return FI->second;
1605}
1606
1607
1608/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1609void SlotMachine::CreateModuleSlot(const GlobalValue *V) {
1610  assert(V && "Can't insert a null Value into SlotMachine!");
1611  assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
1612  assert(!V->hasName() && "Doesn't need a slot!");
1613
1614  unsigned DestSlot = mNext++;
1615  mMap[V] = DestSlot;
1616
1617  SC_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1618           DestSlot << " [");
1619  // G = Global, F = Function, A = Alias, o = other
1620  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1621            (isa<Function> ? 'F' :
1622             (isa<GlobalAlias> ? 'A' : 'o'))) << "]\n");
1623}
1624
1625
1626/// CreateSlot - Create a new slot for the specified value if it has no name.
1627void SlotMachine::CreateFunctionSlot(const Value *V) {
1628  const Type *VTy = V->getType();
1629  assert(VTy != Type::VoidTy && !V->hasName() && "Doesn't need a slot!");
1630
1631  unsigned DestSlot = fNext++;
1632  fMap[V] = DestSlot;
1633
1634  // G = Global, F = Function, o = other
1635  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1636           DestSlot << " [o]\n");
1637}
1638